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Preface

These notes represent work in progress on producing a comprehensive intro-
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the web page of the first author for several years now.

We are both grateful to the Mittag-Lefller Institute for giving us the
opportunity to be working in the same place for an extended period during
the Logic Year (2000-01), which enabled our collaboration to get off the
ground and produce the present version of the notes. We are also grateful to
our home institutions' for allowing us to take part in the Logic Year?

!Manchester University Mathematics and Computer Science Departments for Peter
Aczel and Leeds University for Michael Rathjen

2In the case of Peter Aczel this involved three months sabbatical leave and he is grateful
to his colleagues for allowing this.
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1 Introduction

The general topic of Constructive Set Theory originated in the seminal 1975
paper of John Myhill, [Myh75], where a specific axiom system CST was
introduced. Constructive Set Theory provides a standard set theoretical
framework for the development of constructive mathematics in the style of
Errett Bishop?® and is one of several such frameworks for constructive mathe-
matics that have been considered. It is distinctive in that it uses the standard
first order language of classical axiomatic set theory* and makes no explicit
use of specifically constructive ideas. Of course its logic is intuitionistic, but
there is no special notion of construction or constructive object. There are
just the sets, as in classical set theory. This means that mathematics in con-
structive set theory can look very much like ordinary classical mathematics.
The advantage of this is that the ideas, conventions and practise of the set
theoretical presentation of ordinary mathematics can be used also in the set
theoretical development of constructive mathematics, provided that a suit-
able discipline is adhered to. In the first place only the methods of logical
reasoning available in intuitionistic logic should be used. In addition only the
set theoretical axioms allowed in constructive set theory can be used. With
some practise it is not difficult for the constructive mathematician to adhere
to this discipline.

Of course the constructive mathematician is concerned to know that the
axiom system she is being asked to use as a framework for presenting her
mathematics makes good constructive sense. What is the constructive no-
tion of set that constructive set theory claims to be about? An answer to this
question has been given in a series of three papers on the Type Theoretic
Interpretation of Constructive Set Theory, [Acz78, Acz82, Acz86]. These
papers are based on taking Martin-Lof’s Constructive Type Theory as the
most acceptable foundational framework of ideas that make precise the con-
structive approach to mathematics. Those papers show how a particular
type of the type theory can be used as the type of sets forming a universe
of objects to interprete constructive set theory so that by using the Curry-
Howard ‘propositions as types’ idea the axioms of constructive set theory get
interpreted as provable propositions.

Why not present constructive mathematics directly in the type theory?
This is an obvious option for the constructive mathematician. It has the
drawback that there is no extensive tradition of presenting mathematics in

3See [BB85], by Bishop and Bridges
4Myhill’s original paper used some other primitives in C'ST besides the notion of set.

But this was inessential and it here seems preferable to keep to the standard language of
axiomatic set theory.
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a type theoretic setting. So, many techniques for representing mathemat-
ical ideas in a set theoretical language have to be reconsidered for a type
theoretical language. This can be avoided by keeping to the set theoretical
language.

Surprisingly there is still no extensive presentation of an approach to
constructive mathematics that is based on a completely explicitly described
axiom system - neither in constructive set theory, constructive type theory
or any other axiom system.

One of the aims of these notes is to initiate an account of how construc-
tive mathematics can be developed on the basis of a set theoretical axiom
system. At first we will be concerned to prove each basic result relying on as
weak an axiom system as possible. But later we will be content to explore
the consequences of stronger axiom systems provided that they can still be
justified on the basis of the type theoretic interpretation. Because of the
open ended nature of constructive type theory we also think of constructive
set theory as an open ended discipline in which it may always be possible to
consider adding new axioms to any given axiom system.

In particular there is current interest in the formulation of stronger and
stronger notions of type universes and hierarchies of type universes in type
theory. This activity is analogous to the pursuit of ever larger large cardinal
principles by classical set theorists. In the context of constructive set theory
we are led to consider set theoretical notions of universe. As an example there
is the notion of inaccessible set of Rathjen (see [RGP]). An aim of these notes
is to lay the basis for a thorough study of the notion of inaccessible set and
other notions of largeness in constructive set theory.

A further motivation for these notes is the current interest in the devel-
opment of a ‘formal topology’ in constructive mathematics. It would seem
that constructive set theory may make a good setting to represent formal
topology. We wish to explore the extent to which this is indeed the case.

These notes represent work in progress and are necessarily very incom-
plete and open to change.
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2 Some Axiom Systems

Constructive Set Theory is a variant of Classical Set Theory which uses in-
tuitionistic logic. It differs from another such variant called Intuitionistic Set
Theory because of its avoidance of the full impredicativity that Intuitionistic
Set Theory has. Constructive Set Theory does not have the Powerset axiom
or the full Separation Axiom Scheme. We introduce constructive set theory
here by contrasting it with the other two theories. Note that we consider each
of these theories as a framework and consider representative axiom systems
for them, ZF and IZF for the Classical and Intuitionistic set Theories and
CZF; and CZF for Constructive Set Theory.

2.1 Classical Set Theory

The classical Zermelo-Fraenkel axiomatic set theory, ZF, is formulated in
first order logic with equality, using a binary predicate symbol € as its only
non-logical symbol. We will use Syf(y) to abbreviate

WVyly € b < O(y).

The axiom system ZF uses the axioms and axiom schemes

Pairing
VaVbSyly=a V y = b]
Union
VaSy3zecaly € x|
Powerset
VaSyVzeyx € a
Infinity
Jda [z z € a A Vz€aTy€a z € y]
Extensionality
VaVb|Vz[z € a < = € b] — a = b
Foundation

Va[3z[x € a] — Tx€aVyecaly & ]
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Separation
V---VaSz [z € a A ¢(z,...)]

for all formulae ¢(z,...).

Replacement
V.- -Va[Vzeadlyop(z,y,...) = Sydzcap(z,y,...)]

for all formulae ¢(z,y,...).

2.2 Intuitionistic Set Theory

A natural Intuitionistic version of ZF is Intuitionistic Zermelo-Fraenkel (IZF).
It is like ZF except that the following changes are made.

1. It uses Intuitionistic logic instead of Classical logic.
2. It uses the Set Induction Scheme instead of the Foundation axiom.
3. It uses the Collection Scheme instead of the Replacement Scheme.
Set Induction
V---Va Vz€ag(z,...) > ¢(a,...)] — Vad(a,...)
Collection

V.- -VaVz€adyl(z,y,...) — 3TbVrcadychO(z,y,...)]

2.3 Constructive Set Theory
CZF,

Our first axiom system for Constructive Set Theory, CZF, is like IZF except
for the following changes.

1. Tt uses the Replacement Scheme instead of the Collection Scheme.
2. It drops the Powerset Axiom.

3. It uses the Mathematical Induction Scheme instead of the Set Induction
Scheme.

4. Tt uses the Restricted Separation Scheme instead of the full Separation
Scheme.
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5. It uses the Strong Infinity Axiom instead of the Infinity axiom.

Restricted Separation
V---VaSz [z € a A ¢(z, .. .)]

for all restricted formulae ¢(z,...). A formula is restricted if all its
quantifiers are restricted; i.e. occur only in one of the forms dz€y or
Vrey.

Strong Infinity
SzNat(zx)]
where we use the following abbreviations.

e Trans(a) for (Vy € a)(Vz € y)[z € al,

e Empty(y) for (Vz € y) L,

o Succ(z,y) for Vulu €y < u € zVu=z,

e Nat(z) for Ja[Trans(a) A (Vy € a)[Empty(y)V IzSucc(z,y) Ax €
al.

Mathematical Induction

Fy[Empty(y) A ¢(y,...)] A
Vald(z,...) = Jy((y, . ..) A Succ(z, y))]
— Vz[Nat(z) — ¢(z,...)]

The Union-Replacement Scheme

This is a natural scheme that combines the Union Axiom with the Replace-
ment Scheme.

V---Va[Vz€aSyd(z,y, ) — Sydr€ad(z,y, )]

Proposition: 2.1 Given the Extensionality and Pairing axioms the Union-
Replacement axiom scheme is equivalent to the combination of the Union
aziom and the Replacement axiom scheme.

Proof:  Assume Union-Replacement and let Vaz € 3y ¢(x,y). Then, as
singleton classes are sets,
VzcaSyd(z, y)

so that by Union-Replacement

Sy3zecap(z,y).
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So we have proved replacement. The Union axiom follows from the instance
of Union-replacement where ¢(z,y) is y € .

Conversely, given the Union axiom and the Replacement scheme, suppose
that
VzeaSyp(x,y). Then

Veeadl2Vyly € z < é(x,y)].
So, by Replacement we may form the set
{z | JzeaVyly € 2z < @(z,y)]}.
By the Union axiom we may form the union set of this set, which is

{y | Jrcad(z,y)}-

Thus we have proved the Union-Replacement axiom scheme.
[ |

So the axiom system CZF, can be considered to consist of the three ax-
ioms of Extensionality, Pairing and Strong Infinity and the three schemes of
Restricted Separation, Union-Replacement and Mathematical Induction.
Constructive Zermelo Fraenkel, CZF
The constructive Set Theory CZF is obtained from CZF, as follows.

1. Add the Set Induction Scheme and drop Mathematical Induction,

2. Add the Subset Collection Scheme,

3. Use the Strong Collection Scheme instead of the Replacement Scheme.

4. Use the ordinary Infinity axiom instead of Strong Infinity.

In stating the two Collection schemes we shall use B(z € a,y € b)¢ as an
abbreviation for
Vreadycbey A Vyecbdzrcao.

Subset Collection
VaVb3c [ Yu Vzeadyeb 0(x,y,u) — Jz€c B(x€a, yez)0(x,y, u) |

Strong Collection
V.- -Va[Vz€adyb(z,y,...) — FbB(zca,yeb) 0(z,y,...) ]
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Notes on Constructive Set Theory Section 3

3 Elementary Mathematics in Constructive
Set Theory

We show how to develop some of the standard apparatus for representing
mathematical ideas in CZF,. Recall that the non-logical axioms and schemes
of this constructive set theory are the three axioms of Extensionality, Pairing
and Strong Infinity and the three schemes of Restricted Separation, Union-
Replacement and Mathematical Induction.

3.1 Class Notation

In doing mathematics in Constructive Set Theory we shall exploit the use of
class notation and terminology, just as in Classical Set Theory. So, if ¢(z) is
a first order formula in the language of set theory with one free variable z,
that may have parameters for sets, then we may define a class A.

A={z|o(x)}

with defining axiom
Ve[z € A < ¢(x)].

In particular each set a is identified with the class {z | z € a}. Classes A, B
are defined to be equal if

Vi[x € A < z € B.

Also, A is a subclass of B, written A C B, Vx€A =z € B. So, without
assuming any non-logical axioms we may form the following classes, where
A, B, C are classes and a, aq,...,a, are sets.

1. {a1,...;an} ={2 |z =0a1V---V2 =a,}. When n = 0 this is the
empty class 0.

2. UA={z | JycA x € y}.

3. AUB={z|z€ AVz € B}.

4. a* =aU{a}.

5. Pow(A) = {z |z C A}.

6. {z€B|dx)}={z|z€BAo)}.
7.V=A{z|z =1z}
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If Ais a class and 6(x,y) is a formula in the language of set theory, that
may have parameters for sets and has at most the variables x,y occuring
free, then we may form a family of classes (Bga)aca, where for each a € A

B, ={y |0(a,y)}-

If (B,)aca is a family of classes then we may form the class

U Ba={y|3acAy € B.}.

a€A

3.2 Pairing

Here we introduce unordered and ordered pairs, cartesian products of classes
and relations and function between classes. We will only use the axioms of
Extensionality and Pairing.

The Pairing axiom asserts that for all sets a,b the class {a,b} is a set,
the unordered pair of @ and b. In particular, when ¢ = b we get that the
singleton {a} is a set.

Ordered Pairs

We define ordered pairs as usual. For sets a, b let

(a,6) = {{a},{a, b} }.

Proposition: 3.1
(a,b) = (c,d)=[a=c AN b=d].

Proof: The usual classical proof argues by cases depending, for example,
whether or not @ = b. This method is not available here as we cannot assume
that instance of the classical law of excluded middle. Instead we can argue
as follows. Assume that (a,b) = (c, d).

As {a} is an element of the left hand side it is also an element of the right
hand side and so either {a} = {c} or {a} = {¢,d}. In either case a = c.

As {a,b} is an element of the left hand side it is also an element of the
right hand side and so either {a,b} = {c} or {a,b} = {c,d}. In either case
b=corb=4d. If b=cthen a =c = bso that the two sets in (a,b) are
equal and hence {c} = {¢,d} giving ¢ = d and hence b = d. So in either case
b=d.

[

3-2



Notes on Constructive Set Theory Section 3

Cartesian Products of Classes
For classes A, B let A x B be the class given by
Ax B={z|3acATeB z = (a,b)}.

Relations and Functions between Classes

If R is a class of ordered pairs then we use aRb for (a,b) € R. If A, B are
classes and R C A x B such that

VreAdyeB xRy

then we will write
R:A>B

and if also
VyeBdxz€A zRy

then we write
R:A><B.

If
VeeAdlyeB xRy

then we use the standard notation
R:A— B,

and for each a € A we write R(a) for the unique b € B such that aRb and
let
{R(z) |z € A} ={y € B |3z € Aly = R(x)]}-

3.3 On Restricted Separation

If a is a set and ¢(z) is a restricted formula with only the variable x occuring
free, but with parameters for sets then, by Restricted Separation the class

{zrealo(x)}

is a set. We show that, given only the axioms of Extensionality and Pairing
and the Union-Replacement scheme, the scheme of Restricted Separation is
equivalent to the conjunction of the following three instances.

Emptyset: Syl.
Equality: (Va)(V0)(Sy)[Empty(y) A a = b).

Infimum: Va[VzeaVyer Empty(y) — Sy[Empty(y) A Vz€a y € z]].
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Proof of Restricted Separation We assume only the axioms of Exten-
sionality and Pairing, the Union-Replacement scheme and the axioms Emp-
tyset, Equality and Infimum.

By the Emptyset axiom we may form the set 0 = {y | L} and so the
set 1 = {0}. Let Q = Pow(1l). We think of the elements of Q as truth
values, with 0 representing falsity and 1 representing truth. In constructive
mathematics we cannot assert that those are the only truth values. Moreover
in constructive set theory we cannot even assert that the class of truth values
form a set.

For each class A C Q let

e VA={z|zel AN JycAzcy}=UA,
e NA={z |z el A VycAz € y}.

For each set a € Pow(Q2) the class \/ a is a set in Q by the Union axiom and
A\ ais a set in Q by the Infimum Axiom.
If 0 is a formula and ¢ € Q such that [# <> 0 € c| then, by Extensionality,
c is unique and we call ¢ the truth value of 6. For any formula 6 we use !0 to
abbreviate
e [0 < 0 € (]

Proposition: 3.2
1. If Vzea l¢(x) then Wrcap(z) and 'Frcap(x).
2. If '¢1 A '¢2 then

(a) N1 A 62

(b) [61V o]

(c) [1 — ¢2]
4. Ya¥b ![a = b].
5. Yavb l[a € b).

6. ¢ for each restricted formula ¢.

Proof:
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1. By the assumption, using Union-Replacement we get
Sclee Q@ A Jzecalp(z) + 0€ (]
So we may form the set
b={ce Q| Izcap(z) < 0€ ]}
This is in Pow(2) so that \/b, Ab € Q and
Vrcagp(z) <> 0 € /\b

and
dzecap(x) < 0 € \/b.

2. Let c1,co € Q) such that
¢i ~ 0€cq

for i = 1,2. Then ¢, = A{c1, 2} € Q and
[p1 A da] < 0 € cp
giving (i). Similarily ¢y = V{1, 2} € 2 and
[p1V do] <> 0€cy
giving (ii). For (iii) let ¢, = A{c2 | z € c1} € Q and
(01 = o] < 0€ c.,.
3. As0€Qand0=1 < 0€0and ¢ < [p—0=1].
4. This is just the Equality axiom.

5. a € b + Jyebla = y]. Hence, by 1 and 4, ![a € b].

6. By induction on the way a restricted formula is built up, using 4,5 for
atomic ¢, 2,3 for the connectives and 1 for the restricted quantifiers.

Lemma: 3.3 For each formula ¢(x)

Vzealp(z) — Szlz € a A ¢(x)].
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Proof: Assume that Vaz€a!é(z). Then for each x € a we may form the set
by, ={y |y =0 A ¢(x)} and hence, by Replacement, the set {(y,z) | y € b, }.
Hence, by Replacement again we may form the set

[ = {(:U,{(y,a;) | y e bx}) | (S CL}.

Note that f is a function with domain a such that for each z € a the value
f(z) is itself the constant function with value x defined on the set b,. Hence,
by Union-Replacement

{real|g@)}={z|zecand(@)}=Jran(f()

is a set.
[ |

Theorem: 3.4 FEvery instance of Restricted Separation can be proved in the
theory obtained from CZF, by replacing the Restricted Separation scheme by
the three azioms Emptyset, Equality and Infimum.

Proof: Let ¢(z) be a restricted formula. Then by part 6 of Proposition 3.2
Vzea l¢(z) and hence
Sz[z € a A ¢(x)].

3.4 Some Consequences of Union-Replacement

We now consider a few consequences of Union-Replacement.

Quotients

Let A be a set and let R be a subset of A x A that is an equivalence relation
on A. Then for each a € A we may form its equivalence class

[dlr = {2z € A zRy}

which is actually a set, by Restricted Separation. To see that xRy can be
given by a restricted formula observe that

zRy < (3z€ R)[z = (z,9)]
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where

z=(z,y) <= (Vu€2)u={z}Vu={z,y}

A (Fu € z)u={z} AN (Fu € 2)u={z,y}]
and

u = {z} = [r€u A (Vz€u)(z=1)]
u={z,y} <= [zcuAycun Vzeu(z=zVzey)

We may then use Replacement to form the quotient set of A with respect to
R.
A/R = {la]lr | a € A}.

If (Ba)aca is a family of classes and each B, is actually a set then we have
a family of sets and we may form the class

{B, | a€ A} ={z]|dacA z = B,}.

If Ais also a set then {B, | a € A} is a set, by Replacement and (J ., B, is
a set, by Union-Replacement.

The Union Axiom asserts that the class J A is a set for each set A. So,
using the Pairing axiom we get that the class A U B is a set whenever A, B
are sets and hence that {aq,...,a,} is a set whenever a4, ..., a, are sets for
n > 0.

Proposition: 3.5 If A, B are sets then so is the class A X B.
Proof: Let A,B be sets. Then, as
{a} x B ={(a,b) | b€ B}

is a set, by Replacement, so is

AxB=|]J({a} x B)

a€A

by Union-Replacement.
[ |
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Classes of Functions
Note that if A is a set and F' : A — B then, by Replacement,
F={(a,F(a)) | a € A}

is a set. If a is a set and B is a class then we may form the class *B of all
functions from a to B, given by

‘B=A{f|f:a— B}

3.5 The Natural Numbers

Recall from Subsection 2.3 that we defined Nat(x) to be Ja[Trans(a)A(Vy €
a)[Empty(y) V JzSucc(z,y) AN x € a]. Let N be the class {x | Nat(z)}
and let 0 = @ and S = {(n,n") | n € N}. Call a class A inductive if
0 € A and (Vz € A)[z" € A]l. Note that N is an inductive class and the
Strong Infinity axiom expresses that it is an inductive set. On the other
hand the Mathematical Induction scheme expresses that N is a subclass of
each inductive class and so is the smallest inductive class.
It is now easy to observe the following fundamental result.

Proposition: 3.6 The structure consisting of the class N with 0 and S is a
model of the Dedekind-Peano axioms for the natural numbers in the following
sense.

1. 0eN.

2. S:N—=N.

3. S(n) #0 forn €N,

4. S(n) =8(m)=n=m forn,meN.

5. 0€ AN (Vn € A)(S(n) € A) = N C A for each class A.

The first three can be proved without assuming either of the Strong Infinity
axiom or the Mathematical Induction scheme. The fifth is just the Mathe-
matical Induction Scheme and the fourth can be proved using Mathematical
Induction and the definition of S.

Theorem: 3.7 (Primitive Recursion - unparametrized) Let A be class,
ag € A and F : Nx A — A. Then there is a unique function H : N — A

such that
H(O) = Qy,
{ H(n%) =F(n,H(n)), forneN
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Proof: Call a set X good if, for some m € N, X : m™ — A such that
X (0) =ag and for all n € m X(n") = F(n,X(n)). Let

H= U{X | X is good}.

Then standard arguments, using mathematical induction show that H is the
required function. An easy mathematical induction show that any two good
functions agree where they are both defined. That

VneNda€A (n,a) € H
is proved by mathematical induction on n. For the base case observe that
Xo= {(0,61,0)} 0" = A

is good. For the induction step observe that if X : nt — A is good then so
is

Xt=XuU{(n",F(n,X(n)))}:n*t" — A.
As good functions agree where they are both defined H : N — A and H
agrees with every good function. It follows that H satisfies the above equa-

tions and is the unique function to do so.
|

Corollary: 3.8 The Dedekind-Peano axioms are categorical; i.e. any other
triple (N',0',S8") satisfying the five azioms is isomorphic to (N,0,5).

Corollary: 3.9 (Primitive Recursion - parametrized) Let A, B be classes
and let Fy : B — A and F; : B XN X A — A. Then there is a unique
H: B x A— A such that

{ H(b,0) = Fy(b),
H(b,n") = Fy(b,n,H(b,n)), forn e N.

Proof: By the theorem, for each b € B there is a unique h €Y A such that

h(0) = Fy(b),
(+) { h(n®) = Fy(b,n, h(n)), for n € N.

Let H be the class of all ((b,n),a) such that b € B and h(n) = a for some
h €N A. Then H : B x N — A has the desired properties.
|

Using this result we can give the usual primitive recursive definitions of the
standard arithmetical operations on N such as addition and multiplication.
It follows that we get an interpretation of Heyting Arithmetic.
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The Integers and Rationals

The ordered integral domain of integers and the ordered field of rationals can
be defined from N in CZF, in any of the standard ways and will have the
familiar properties. Moreover the sets N of natural numbers, Z of integers
and Q of rationals form discrete sets; i.e. equality on these sets is decidable,
and also the ordering relations on these sets are decidable. This is in contrast
to the situation for real numbers.

3.6 The Real Numbers

We assume given the ordered field of rational numbers and discuss the con-
structive set theoretical construction of the real numbers.

The real numbers are introduced to fill gaps in the ordered set of rationals.
So, for example, the real number /2 fills the gap between the rationals 7 on
the left such that r? < 2 and the rationals s on the right such that s? > 2.
This gap is infinitely small in the sense that for any rational € > 0 there is a
rational r on the left of the gap such that r + € is on the right of the gap. So
r is a rational approximation to v/2 with error < e. Exactly one real number
can fill such a gap. This idea of real numbers as objects that uniquely fill
infinitely small gaps leads to the Dedekind cut approach to the set theoretic
construction of the real numbers.

For each set X of rational numbers let

X< ={reQ|3IseX[r<s|}
X> ={reQ|3seX[r>s|.

Definition: 3.10 A two-sided Dedekind cut is a pair (X,Y) of sets X, Y of
rationals such that

1L.reXANseY=r<s,
2. X =X<AY =Y,
3. Ir € Xds € Y[s — r = €| for each rational € > 0.

Each of the two sides of a two-sided Dedekind cut determines the other side.

Proposition: 3.11 If (X,Y) is a two-sided Dedekind cut then Y = (Q—X)~
and X = (Q - Y)<.

In view of this we will focus just on the left side.

Definition: 3.12 A (left) cut is a set X of rationals such that X = X<
and, for each rational € > 0, there is r € X such thatr 4+ ¢ & X. Let Ry be
the class of all cuts.
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Proposition: 3.13 (X,Y) is a two-sided Dedekind cut iff X € Ry and Y =
Q—-X)~.

Proposition: 3.14 A set X of rationals is in Ry iff X = X<, Ir[r € X],
ds[s € (Q — X)] and

(Vr,s€Q)r<s=(re Xvs¢X)|.

Note that, classically, the last condition on the right hand side of the previous
proposition is redundant. In CZF, we cannot show that R, is a set. But if
we assume the impredicative Powerset axiom then it is a set.

Proposition: 3.15 If Pow(N) is a set then Ry is a set.

So, for example, in any topos with a natural numbers object we can form the
object R; of Dedekind reals and this is the main notion of real considered in
topos theory.

By contrast the usual approach to the reals in constructive mathematics
is to focus on Cauchy sequences of rationals. For example in the Bishop
approach a real number is defined to be a regular sequence; i.e. a family {r,}
of rationals r,, indexed by positive integers n > 0, such that for all n,m > 0,

T — 7| <n™t+m™L

Distinct regular sequences can represent equal real numbers. For regular
sequences {r,}, {r,},

{roy~{rl} <= |r,—rl|<2n !foralln>0.

Let R, be the class of all regular sequences. Although the Powerset axiom is
impredicative the Exponentiation axiom is predicative in constructive math-
ematics. On the assumption of this axiom R, is a set. In fact we have the
following result.

Proposition: 3.16 If "N is a set then R, is a set, so that we can form the
quotient set R,/ ~.

In constructive set theory the elements of this quotient set are the equivalence
classes with respect to the equivalence relation. In Bishop’s approach to
constructive mathematics the quotient construction is treated in a different
way. In that approach each set A comes equipped with its equality relation
=4, which can be any defined equivalence relation. So, to form the quotient
of A with respect to an equivalence relation ~ on A, it is only necessary to
replace =4 by ~.

What is the relation between R, and R;? With each 7 = {r,} € R, we
can associate

X;={reQ|3In>0r<r,—n"]}.
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Proposition: 3.17 For each 7 € Ry, X; € Ry and, for ri,75 € Ry,
T~ Ty = Xy = Xp,.

Definition: 3.18 Let R, = {X; | 7 € Ry }.

Which elements of R; are in R.?

Proposition: 3.19 R, is the class of those sets X of rationals such that
X = X< and, for some [ : Q.o — X,

f(e) + e & X for all rational € > 0.

For any set A let D(A) be the class of decidable subsets of A, where a subset
X of Ais a decidable subset of A if

(Ve e A)jr e XV ¢ X].
Theorem: 3.20 The following are equivalent.
1. "N is a set.
2. D(N) is a set.
3. Ry is a set.
4. R, s a set.

In the Bishop approach to constructive mathematics it has been usual to
assume the axiom scheme of Dependent Choices, which implies the Countable
Choice Scheme ACy 4 for each class A, where

ACya If R: N> A then thereis f : N — A such that f C R.
Proposition: 3.21 (ACyy) R, =Ry.

When ACy 4 is not assumed then it is known to be consistent, even with
IZF, to assume that there are Dedekind reals that are not Cauchy reals. So
it is relevent to ask under what conditions, weaker than the assumption that
Pow(N) is a set, does the class Ry of Dedekind reals form a set. It turns out
that R; is a set in CZF. In fact it is enough, working in CZF, to assume
the special instance SubColl(N,N) of the Subset Collection Scheme.

Definition: 3.22 For sets A, B we define SubColl(A, B) to hold if there is
a set C' of subsets of B such that for every set R : A> B there is a set
B' € C such that R: A>=< B'.
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Proposition: 3.23 The Subset Collection Scheme implies
(VA)(VB)SubColl(A, B).
Theorem: 3.24
1. If ACyy and NN is a set then SubColl(N,N).
2. If SubColl(N,N) then Ry is a set.
3. If Ry is a set then R, is a set.

The proofs of parts 1 and 3 of this result are straightforward. We now give
an outline of the proof of 2. First note that a set X of rationals is a cut iff
X = X< and Rx : Qs > Q, where

Ry ={(,1) € Qo xQ|re X Ar+e¢g X}.
Call a set R : Qs¢ > Q a Cauchy relation if, for all (¢,7), (¢, ') € R,
[r —r'| < max(e, €).
The following result is straightforward to prove
Proposition: 3.25
1. If X is a Dedekind real then Rx is a Cauchy relation.

2. If R is a Cauchy relation then Xg is a Dedekind real, where

Xr={s€Q| (3(e,r) € R)[s<r— ¢}

3. If X is a Dedekind real and R s a Cauchy subrelation of Rx then
X = XR.

Because both Q and Q< are in one-one correspondence with N, the assump-
tion SubColl(N,N) implies that SubColl(Qso, Q). Using this it is not hard
to see that there is a set C' of Cauchy relations such that every Cauchy re-
lation has a subrelation in C. It follows from Proposition 3.25 that R¢ =
{Xg | R € C} so that, by Replacement, R? is a set.
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4 Exploiting Set Induction

In this section we generally assume only the axioms of Extensionality and
Pairing and the axiom schemes of Union-Replacement and Set Induction.
Note that we do not assume the scheme of Restricted Separation.

4.1 Transitive Closure

We show that for each set a there is a smallest set TC'(a) that is transitive
and has a as a subset.
Let TransClos(z,y) be the formula

z Cy A Trans(y) A Vz[z C z A Trans(z) =y C 2].
Proposition: 4.1 For all a
(%) Alb TransClos(a, b).

Proof: This will be proved by Set Induction on a. So we may assume as
induction hypothesis that

Vzea Ay TransClos(z,y).
By Replacement there is a set b such that
Yyly € b > Jz€a TransClos(z,y).

Let ¢ = aU|Jb. We show that TransClos(a,c).

That a C cis immediate from the definition of ¢. To see that ¢ is transitive
let z € ¢. We must show that x is a subset of c. As x € ¢, either z € a or
x € y for some y € b. Note that if y € b then y C |Jb C ¢. If € a then
TransClos(x,y) for some y € b so that x Cy C ¢. If x € y for some y € b
then x Cy C ¢, as Trans(y).

It remains to show that ¢ C z for each set z such that [a C z A Trans(z)].
By the definition of ¢, as a C z it is only necessary to show that | Jb C 2. So
let u € |Jb. Then u € y for some y € b. So TransClos(z,y) for some z € a.
Then z € z and hence z C z, as z is transitive. So, as TransClos(z,y) and
Trans(z), y C z. Asu €y, u € z.

We have now proved that TransClos(a,c). The uniqueness of ¢ is a con-
sequence of the definition of TransClos(z,y). If also TransClos(a, ') then
both ¢ C ¢ and ¢ C ¢ so that ¢ = ¢.
|

By this proposition for each a we can define T'C(a) to be the unique b such
that TransClos(a,b).
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Proposition: 4.2
1. [x€aVz Cal »>TC(z) CTC(a).
2. TC(a) = a U, TC(x).
We can now prove a convenient variant of Set Induction.

Proposition: 4.3 (7'C-Induction)
Va|VzeTC(a)f(x) — 0(a)] — Vab(a).
Proof: Let #'(z) be the formula YyeT'C(z)f(y). We will assume that
() Va[t'(a) — 0(a)]

and show that Vaf(a).

Claim: Vazea §'(z) — 0'(a).

Proof of Claim: Let Vzea 6'(z). Then
(1) VzeaVyeT C(x) 6(y)
and by (x),
(2) Vzea 0(z).

Now let z € TC(a). Then, by 2 of the previous proposition, ei-
ther z € a or z € TC(z) for some z € a. In either case 6(z).
Thus we have proved that 6'(a).

|

By the claim we may use Set Induction to get that Va#'(a) and hence, by
(%), we get that Yaf(a).
|
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4.2 Iterations of a monotone set operator

For any class Y of ordered pairs, for each set a let

YVe={y|(a,y) €Y}

and
Y€ = {y | Jzca (z,y) €Y} = J Y™

TEQ
Also let

Y ={y|Ja(ay) eY}=JV"
acV

Theorem: 4.4 Let ' be a monotone operation on sets; i.e. T'(X) is a set
for each set X such that for all sets X,Y

XCY >T(X)CI(Y).
Then there is a class J of ordered pairs having the following properties.

1. For each set a

(i J* = (%),

(11)g J* is a set.
2. Let'Y be a class such that for all sets X

XCY->IX)CQy.
Then
(a) J* CY for all a and hence J€* CY for all a.

(b) J*° C Y. Moreover, assuming Collection, J* is such a class Y
and so is the smallest such class.

Proof: We define J = {G | G is good} where we call a set G of ordered
pairs good if, for some transitive set X

(%) G ={(a,z) |a€e X ANz € T(G?).

1. The two parts (i), and (i), will be proved simultaneously by 7'C-
Induction. So, we assume as induction hypothesis that for allb € TC(a)
both (i), and (i), hold. So, as a C TC(a), J® is a set for each b € a so
that by Union-Replacement J€¢ is a set and hence so is I'(J€*). Note
that this shows that (i), — (4i),. Also, if b € a then = € a and hence
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J? is a set for each z € b, so that J€° is a set. It follows that G is a set

where

G= |J {1

beTC(a)U{a}

Note that G* = J® for each b € TC(a) so that G = J for all
b € TC(a) U {a}. So (x) holds, with X = TC(a) U {a} and so G is
good. It follows that I'(J€*) = G* C J°.
To see that J* C I'(J%) let x € J° Then z € G* for some good G.
So x € ['(G€*) C T'(J€9).

So we have proved (i), and so (i), as we have seen.

2. (a) An easy proof by Set Induction on a.

(b) The first part is an immediate consequence of (a). For the second
part let X be a subset of J®. Then Vze X3dalz € J%. So by
Collection there is a set b such that Vae XJacb[x € J°]. It follows
that X C J and hence I'(X) C I'(J) = J°.

4.3 The Natural Numbers again

Recall that in Subsection 3.5 we defined the class N = {z | Nat(z)} of natural
numbers, where Nat(x) is the formula Ja[Trans(a) A (Vy € a)[Empty(y) V
JzSucc(z,y) A x € a]. We observed there that N is an inductive class; i.e.
it has 0 = () as an element and is closed under the successor operation that
maps z to T = x U {z}. Here this observation makes use of the Emptyset
axiom to obtain that the class @) is a set. We now exploit Set Induction to
obtain the Mathematical Induction scheme, which just expresses that N is a
subclass of each Inductive class.

Proposition: 4.5 If A is an inductive class then N C A.

Proof: Let A be inductive; i.e. 0 =0 is a set in A and (Vz € A)[zT € A].
We prove by Set Induction that, for any z,

reEN=ze€A
The Induction Hypothesis is

(Vy € z)[y e N=y € A].
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So let x € N; i.e. x € X for some transitive set X such that
(Vy e X)ly=0V (3z€y)(y==2")]

As 2z € X either x =0 € A or else z = 2" for some z € z, in which case
z € X CN, as X is transitive, so that z € A by the Induction Hypothesis
and hence £ = 2zt € A. So x € A in either case.

[ |

Corollary: 4.6 The Emptyset aziom implies that N is the smallest inductive
class.

We now exploit Set Induction to show that the Strong Infinity axiom, that
N is a set, can be derived from the Emptyset axiom and the ordinary axiom
of Infinity:

da [3z x € a A Vz€adyca x € y|

Proposition: 4.7 Assuming the Emptyset axiom the Infinity axiom implies
that N s a set.

Proof: Let I' be the set operator such that for each set Y
LY)={0}u{y" [yeY}

Observe that, by Replacement, I'(Y) is a set. It follows that J* is a set for
each set a and hence that J€® is also a set for each set a. Observe that for
each set X C N we have I'(X) C N. Hence by part 2(a) of Theorem 4.4
J€% C N for all a. To show that N is a set it suffices to show the converse
inclusion for some a, as then N is equal to the set J€%. For that it suffices to
have J* C J€° for that a, as then J€° is a set Y satisfying 1,2 above.

So it suffices to find such a set a. Now let a be a set assumed to exist
by the Infinity axiom. We must show that ['(J€*) C J€* So let b € I'(J¢?).
Then either (i) b= 0 or (ii) b = z* for some z € J.

If (i) then, as by the choice of a there is z € a. So

b=0¢€T(J) = J* C Je°

If (ii) then, z € J® for some = € a. Now, by the choice of a, there is y € a
such that x € y. It follows that

b=zt €D(J¥) =J¥ C JS,

So, in either case b € J&%, as desired.
|
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4.4 Restricted Separation again

Recall that we have shown that all instances of the Restricted Separation
scheme can be derived using the Emptyset, Equality and Infimum axioms.
Here we exploit Set Induction to show that the Equality axiom can be derived
from the other two.

Proposition: 4.8 Assuming the Emptyset and Infimum azioms we can de-
rive the Equality aziom and hence all instances of the Restricted Separation
scheme.

Proof: Recall that only the proof of part 4 of Proposition 3.2 used the
Equality axiom. So we may use parts 1 and 2, the following consequence of
the Extensionality axiom and a double set induction on a, b to show that, for
all a, b, [a = b].

a=0b < Vrcadychlx = y] A VyebIzeca[z = y]
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5 Inductive Definitions

We will think of an inductive definition as a generalised notion of axiom
system. We may chacterise a (finitary) axiom system as follows. There are
objects, which we will call the statements of the axiom system, and there
are axioms and rules of inference. Each axiom is a statement and each
rule of inference has instances that consist of finitely many premisses and a
conclusion, both the premisses and conclusion being statements. So we may
think of an instance of a rule of inference as an inference step % where X
is the finite set of premisses and a is the conclusion. It is also convenient to
think of each axiom a as such a step where the set X of premisses is empty.
The theorems of an axiom system may be characterised as the smallest set
of statements that include all the axioms and are closed under the rules of
inference. Here, a set of statements is closed under a rule if, for each instance
of the rule, if the premisses are in the set then so is the conclusion. If we let
® be the set of steps determined by the axioms and the instances of the rules
then we may characterise the set of theorems as the smallest set of statements
such that for every step in @, if the premisses are in the set then so is the
conclusion. Our generalisation is to allow any objects to be statements and to
start from an arbitrary class of steps, with each step having a set of premisses
that need not be finite. So we are led to the following definitions.

5.1 Inductive Definitions of Classes

We define an inductive definition to be a class of ordered pairs. If ® is an
inductive definition and (X, a) € ® then we write

X
— &
a

and call % an (inference) step of ®, with set X of premisses and conclusion
a. For any class Y, if % ® for some subset X of Y then we will write

CK o.
a

The class Y is ®-closed if for all a

Y
C—® = aq€eY.
a

We define the class inductively defined by ® to be the smallest ®-closed class.
The main result of this section states that this class I(®) always exists.
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Theorem: 5.1 (Class Inductive Definition Theorem) For any induc-
tive definition ® there is a smallest ®-closed class 1(P).

This result will be proved in the axiom system consisting of Extensional-
ity, Set Induction, Pairing, Union-Replacement and Strong Collection. Note
that Union can be used instead of Union-Replacement as Replacement is a
consequence of Strong Collection.

The Proof

The proof involves the iteration of the following monotone operator on classes
until it closes up at its least fixed point which turns out to be the required
class I(®). For each class YV let

r(¥)={a| © ).

Note that I' is monotone; i.e. for classes Y7, Y5
Vi C Y, = I(Y7) CI(Ya).

As an inductive definition need not be finitary; i.e. it can have steps with
infinitely many premisses, we will need transfinite iterations of I' in general.
In classical set theory it is customary to use ordinal numbers to index itera-
tions. Here it is unnecessary to develop a theory of ordinal numbers and we
simply use sets to index iterations. This is not a problem as we can carry
out proofs by set induction. The following result gives us the iterations we
want.

Lemma: 5.2 There is a class J such that for each a,

=1 7).

TrEa

Proof: Call a set G of ordered pairs good if
(%) (a,y) € G =y € T'(G%).

where
G** ={y' | 3z€a (z,y') € G}.

Let J = |J{G | G is good}. We must show that for each a

Je = T(J).
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First, let y € J* Then (a,y) € G for some good set G and hence by
(%), above, y € T['(G€*). As G¢* C J€* it follows that y € T'(J€*). Thus
J* CT(J).

For the converse inclusion let y € I'(J€*). Then % ® for some set Y C
J€. Tt follows that Vy'€Ydzeca y' € J* so that

Vy'€Y3G | G is good and y' € G*].
By Strong Collection there is a set Z of good sets such that
Vy'eY 3GeZ ' € G<°.

Let G = {(a,y)} UUZ. Then JZ is good and, as I ® and ¥ C G, G'is
good. As (a,y) € G we get that y € J* Thus I'(J€*) C J°.
|

We can now prove the theorem. It only remains to show that J* is the
smallest ®-closed class. Our argument follows the lines of the proof of part
2 of Theorem 4.4.

To show that J*® is ®-closed let % ® for some set Y C J*°. Then
Vy'eYdx y' € J*. So, by Collection, there is a set a such that

Vy'eYdzea y' € J%

i.e. Y C J Hence y € I'(J€*) = J* C I. Thus J* is ®-closed.

Now let I be a ®-closed class. We show that J*° C I. It sufices to show
that J* C I for all a. We do this by Set Induction on a. So we may assume,
as induction hypothesis, that J* C I for all z € a. It follows that J* C I

and hence
J*=T(J) CT'(I)Cl,
the inclusions holding because I' is monotone and [ is ®-closed.

Call an inductive definition ® local if I'(X) is a set for all sets X.
Proposition: 5.3 If ® is local then both J* and J€* are sets for each set a.

Proof: We show that J is a set for each set a by Set Induction on a. The
induction hypothesis is that J* is a set for each = € a. It follows that J€* is

a set by Union-Replacement. So, by the assumption, J* = I'(J€?) is a set.
|
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Note that we could use the alternative construction of Theorem 4.4 to get this
result, thereby avoiding the need for Lemma 5.2 which uses Strong Collection.
The two constructions of classes J are easily seen to give (extensionally) the
same class.

Examples

Let A be a class.

1. H(A) is the smallest class X such that for each set a that is an image
of a set in A
a € Pow(X)=a€ X.

Note that H(A) = I(®) where ® is the class of all pairs (a, a) such that
a is an image of a set in A.

2. If R is a subclass of A x A such that R, = {z | zRa} is a set for each
a € A then W f(A, R) is the smallest subclass X of A such that

Vace AR, C X =a€ X].

Note that W f(A, R) = I(®) where ® is the class of all pairs (R,, a)
such that a € A.

3. If B, is a set for each a € A then W, 4B, is the smallest class X such
that
a€cA& f:B,—»X = (a,f) € X.

Note that W,c4 = I(®) where @ is the class of all pairs (ran(f), (a, f))
such that a € Aand f: B, = V.

5.2 The Regular Extension Axiom

A class A is transitive if VacA a C A. A regular set is a transitive set A such
that
VacA SubColl(a, A, A),

where SubColl(a, b, c) abbreviates
Vr ([r:a>=b — 3Jbec(r:a>=<"b'].
The Regular Extension Aziom (REA) is as follows.

Every set is a subset of a regular set
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Proposition: 5.4 The Subset Collection Scheme is equivalent to the axiom
VaVb3c SubColl(a, b, c).
Proposition: 5.5 The Subset Collection Scheme is a consequence of REA.

The following weakened notion may also be useful. We call a transitive set
A weakly reqular if

VacAVr [[r:a>A] — Jb€Ar:a>1).
The weakly Regular Extension Aziom (wREA) is as follows.

Every set is a subset of a weakly regular set

5.3 Inductive definitions of Sets

We define a class B to be a bound for ® if whenever % ® then X is an image
of a set b € B; i.e. there is a function from b onto X. We define ® to be
(regular, weakly regular) bounded if

1. {y | % ®} is a set for all sets X,
2. ® has a bound that is a (regular, weakly regular) set.

Proposition: 5.6 Assuming Fxponentiation, every bounded inductive defi-
nition ® is local; i.e. T'(X) is a set for each set X.

Proof: Let B be a bound for ®. If % ® then for some b € B there is a
surjective f : b — Y. So if X is a set then

ran()
Yy

re) = Jty|

fec

o}

where C = |J,.5 *b. By Exponentiation and Union-Replacement C' is a set.
As @ is bounded {y | %(f) ®} is always a set, so that, by Union-Replacement
['(X) is a set.

|

The following result does not seem to need any form of Collection.

Theorem: 5.7 (Set Definition Theorem) If ® is a weakly reqular bounded
local inductive definition then there is a smallest ®-closed class I(®) which
18 a set.
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Proof: Let A be a weakly regular bound for ®. Then, as ® is local, we may
apply Proposition 5.3 to get that J€4 is a set. As J€4 C Y for any ®-closed
class Y it suffices to show that J<4 is ®-closed.

So let % ® with X a subset of J€4. Then, as A is a bound for ®, there
is Z € A and surjective f : Z — X. So Vz € Z f(z) € J¢ and hence
Vz € Zda € A f(z) € J*. As A is a weakly regular set and Z € A there
is b € A such that Vz € Zda € b f(z) € J* Hence X C [J,, J* so that
€D (U,e J*) = J° C JA
[ |

Corollary: 5.8 Assume the Exponentiation Aziom and wREA.
1. Every bounded ® s weakly regular bounded.
2. If A is a set then

(a) H(A) is a set,

(b) if RC Ax A such that R, = {x | xRa} is a set for each a € A
then W f(A, R) is a set.

(¢) if By is a set for each a € A then Wye By is a set.

5.4 Tree Proofs

We may relativise the notion of theorem for an axiom system to a set, X, of
assumptions treated as additional axioms. The set of theorems relative to X
is then the smallest set of statements of the axiom system that include the
axioms, are closed under the rules of inference and also include the assump-
tions from X. We generalise this idea to inductive definitions. Let I(®, X)
be the smallest ®-closed class that has X as a subclass. This exists as it can
be defined as I(®y) where

Oy = dU ({0} x X).

We will give another characterisation of I(®,X) in terms of a suitable no-
tion of proof. These will be well-founded trees having two kinds of nodes,
assumption nodes that will always be leaves and step nodes.

We define the class P of proto-proofs to be the smallest class Y such that
for any a

1. (0,a) €Y,
2. If Z is a subset of Y then (1,a,Z) € Y.
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For each proto-proof p € P we can define its conclusion concl(p) as follows.

{ concl((0, a)) =a
concl((1,a,72)) =a

For each set Z C P of proto-proofs let
7(Z) = {concl(p) |p € Z}.

By recursion on p € P we can define the sets ass(p) of assumptions of p and
steps(p) of steps of p using the following equations.

{ ass((0,a)) = {a}
ass((1,a, %)) :Upezass(p)

{ steps((0,a)) =0
steps((1,a,Z)) ={(7(Z),a)} UU,ez steps(p)

Theorem: 5.9 For any class ® of ordered pairs and any class X
I(®,X) =19, X),
where
I'(®, X) = {concl(p) | p € P & ass(p) C X & steps(p) C ®}.
Proof: Let

P = {p € P | concl(p) € I(steps(p),ass(p))}.

Claim 1: peP=pel
We will show this by P-induction. So we must show that for all a

1. (0,a) € P,
2. if Z € Pow(P') then (1,a,Z2) € P'.

For 1: Let p=(0,a). Then

concl(p)
steps(p)
ass(p)

Il
~— =

SopeP asac€ I(0,{a}).
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For 2: Let p=(1l,qa,Z) with Z € Pow(P'). Then

concl(p) =a
steps(p) = {(7(2),a)} UlUy ez steps(p')
ass®) = Uye, ass(v)

As Z € Pow(P)
Vp'eZ [concl(p') € I(steps(p'), ass(p'))];
But
Vp'eZ | steps(p') C steps(p) and ass(p') C ass(p) |.

It follows that 7(Z) C I(steps(p), ass(p)). As (1(Z),a) € steps(p)
we get that concl(p) = a € I(steps(p),ass(p)); i.e. p € P as
required.

Claim 2: I'(®,X) C I(®, X).
Let a € I'(®, X). Then a = concl(p) for some p € P such that ass(p) C
X and steps(p) C ®. By claim 1 p € P’ so that

concl(p) € I(steps(p),ass(p))-
It follows that a = concl(p) € I(®, X), as required.

Claim 3: X C I'(®,X) and I'(®, X) is ®-closed.
If a € X then a = concl(p), where p = (0,a) € P with ass(p) = {a} C
X and steps(p) = 0 C ®, so that a € I'(D, X).

To see that I'(®, X) is ®-closed let i ® with ¥ C I'(®, X). Let R be
the class of all pairs (a,p) such that p € P, concl(p) = a, ass(p) C X
and steps(p) C ®. Then

YacY dp aRp.
By Strong Collection there is a set Z such that
YacYdpeZ aRp AN VpeZdacY aRp.

It follows that Z € Pow(P) and 7(Z) =Y so that p = (1,y,Z) € P so
that y = concl(p) € I'(®, X).
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Claim 4: Let I’ be a class such that X C I'" and I' is ®-closed. Then
I'(®,X)C I'.
We must show that

VpeP Va [aRp = a € I'].
We will do this by induction on p € P. So we must show that

1. if p=(0,a) then aRp = a € I,
2. ifp=(1,a,Z), with Z € Pow(P) such that

Vp'eZ Vd' [o'Rp' = o' € I'],
then aRp = a € I'.

For 1: if p=(0,a) and aRp then a € ass(p) C X C I'so that a € I'.
For 2: let p=(1,a,Z), with Z € Pow(P) such that
Vp'eZ Vd' [d'Rp' = d' € I'],
and let aRp. Then @ ® and 7(Z) C I' so that a € I'.

By claims 3 and 4 we get that I(®, X) C I'(®, X), so that with claim 2 we
are done.

Theorem: 5.10 Let A be a reqular set such that 2 € A. For any class ® of
ordered pairs such that ® C A and any class X

I(@aX) = ]A(Can)a
where
I4(®,X) = {concl(p) | p€ (PN A) & ass(p) C X & steps(p) C @}.

Moreover PN A = P4 is a set, where P4 is the smallest class Y satisfying
the conditions 1,2, used in defining P, for all a,Z € A.

Proof: Trivially I4(®,X) C I'(®,X) C I(®, X). To show that I(®, X) C
I4(®, X) it suffices to show that X C I4(®, X) and I4(P, X) is P-closed.
This can be done along the lines of the proof of claim 3 in the previous proof,
using the assumption that A is a regular set instead of Strong Collection.
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For the last part, that P4 C (PN A) follows from the fact that Y = (PN A)
satisfies the conditions 1,2, used in defining P, for all a, Z € A. To show that
(PN A) C Py it is enough to show that Y = {p | p € A — p € P4} satis-
fies the conditions 1,2, used in defining P. Finally observe that P4, = (V)
where U is a weakly regular bounded local inductive definition, so that by

Theorem 5.7 P4 is a set.
[ |

5.5 The Set Compactness Theorem

Theorem: 5.11 (In CZF + REA) Let A be a set and let & be an inductive
definition that is a subset of Pow(A) x A. Then there is a set B of subsets
of A such that for all classes X and all a

a€l(®,X) = FYeB[Y C X &ac (DY)

Proof: By REA let A’ be a regular set such that {2} UAU ® C A'. Let
B = {ass(p) | p € Pa & steps(p) C ®}. By Theorem 5.10 and Replacement,
B is a set and if a € I(®,X) then a € I4(®P,X) so that a = concl(p) for
some p € P4 such that ass(p) C X and steps(p) C . Now let Y = ass(p).
Then Y € B, Y C X and a € I(®,Y), as desired.

|
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6 \/-Semilattices

6.1 Closure Operations on a po-class

Given a class A a partial ordering of A is a subclass < of A x A satisfying
the standard axioms for a partial ordering; i.e.

1. a<aforall a €A,
2. [a<bAb<c—a<eg,

. [a<bAb<a]—>a=,

A po-class is a class A with a partial ordering <.
Let A be a po-class. Then f: A — A is monotone if

<y = flz) < fy)

We define ¢ : A — A to be a closure operation on A if it is monotone and for
alla € A

a < c(c(a)) < c(a).

Note that, for a closure operation ¢ on A, if ¢ € A then
cla) <a < cla) =a < Fyeila = c(y)].

We call a subclass C of A a closure class on A if for each a € A there is
@ € C such that

VAN
ol

1. a

2. a

IA
<

—a<yforallyeC.

Proposition: 6.1 There is a one-one correspondence between closure op-
erations and closure classes on a po-class A. To each closure operation
c: A — A there corresponds the closure class C = {a | c(a) = a} of fized
points of c. Conversely to each closure class C' there corresponds the closure
operation ¢ which associates with each a € A the unique @ € C satisfying 1,2
above. These correspondences are inverses of each other.
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Example: Let A be a set. Then Pow(A) is a class that is a po-class,
when partially ordered by the subset relation on Pow(A).

Let ® be an inductive definition that is a subset of Pow(A) x A. We call
® an inductive definition on A. Let

Ce ={X € Pow(A) | X is ®-closed}.

Then Cg is a closure class on Pow(A) whose associated closure operation
cg : Pow(A) — Pow(A) can be given by

ce(X) =I1(P,X)

for all sets X C A.

Which closure operations arise in this way? Call a monotone operation
f: Pow(A) — Pow(A) set-based if there is a subset B of Pow(A) such that
whenever a € f(X), with X € Pow(A), then there is Y € B such that
Y C X and a € f(Y). We call B a baseset for f.

Theorem: 6.2 Let ¢ : Pow(A) — Pow(A), where A is a set. Then ¢ = cq
for some inductive definition ® on A if and only if ¢ is a set-based closure
operation on Pow(A).

Proof: Let ¢ = cgp, where @ is an inductive definition on the set A.
That c is a closure operator is an easy consequence of its definition. That it
is set-based is the content of Theorem 5.11. For the converse, let ¢ be a set
based closure operator on Pow(A), with baseset B and associated closure
class C. Let ® be the set of all pairs (Y, a) such that Y € B and a € ¢(Y).
This is a set by Union-Replacement, as B = | Jy.5({Y'} x c(Y)). It is clearly
an inductive definition on A. It is easy to check that for any set X C A X
is ®-closed if and only if X € C, which will give us the desired result that
C=Coqp-

6.2 Set-generated \/-Semilattices

Let S be a po-class. If X C S and a € S then a is a supremum of X if for
allz € S

VyeXy <z] <> a <z

Note that a supremum is unique if it exists. The supremum of a subclass X
of S will be written \/ X. A po-class is a \/-semilattice if every subset has
a supremum.
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Let S be a \/-semilattice . A subset G is a generating set for S if for
every a € S

Go={z€G|z<a}

isaset and a = \/ G,. An \/-semilattice is set-generated if it has a generating
set.

Example:  For each set A the po-class Pow(A) is a set-generated \/-
semilattice with set G = {{a} | a € A} of generators.

Theorem: 6.3 Let C be a closure class on an \/-semilattice S. Then C' is
a \/-semilattice, when given the partial ordering induced from S. If S is set-
generated then so is C. Moreover every set-generated \/-semilattice arises in
this way from a closure class C' on a \[-semilattice Pow(A) for some set A.

Proof: Let ¢ be the closure operator associated with the closure class C on
the \/-semilattice S. It is easy to check that C' has the supremum operation
V€ given by \/¢ X = ¢(\/ X) for each subset X of C. Now assume that S
has a set G of generators. Let

G = {c(z) |z € G}.
We show that G¢ is a set of generators for C. For each a € C let
Gg ={ye G|y <a}.
We must show that G¢ is a set and a = \/C G¢. Observe that
GY ={c(z) |z €GAc(z) <a}

={c(z) |z € GAz <a}
={c(z) |z € G,}

so that G¥ is a set. Also observe that \/° G = ¢(\/{c(z) | = € G,}). Tt
follows first that o = \/{z | z € G} < V{c(z) | z € G,} < \V°GY and
second that \/¢ GS = \/{c(z) | z € G,} < a, as if z € G, then z < a so that
¢(z) < a. So we get that a = \/¢ GC.

Finally suppose that S is a set-generated \/-semilattice , with set G' of
generators. Let ¢ : Pow(G) — Pow(G) be given by

C(X) = G\/X
for all X € Pow(G). Then it is easy to observe that c is a closure operation
on Pow(G). If C is the associated closure class then the function C — S
that maps each X € C to\/ X € S is an isomorphism between C and S with

inverse the function that maps each a € S to G, € C.
[ |
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6.3 Set Presentable \/-Semilattices

Given a generating set G for S a subset R of G x Pow(G) is a relation set
over G for S if for all (a, X) €GxPow(G)

a<\/X & IV CX[(aY)eR].

A set presentation of S is a pair (G, R) consisting of a generating set G for
S and a relation set R over G for S.

Definition: 6.4 A set presentable \/-semilattice is a \/-semilattice that has
a set presentation.

Example:  For each set A the po-class Pow(A) is a set presentable \/-
semilattice with set G = {{a} | a € A} of generators and relation set

R={({a},{{a}}) [ a € A}.

Theorem: 6.5 If S = Pow(A), for some set A and C' is a closure class then
C' is set-presentable if and only if the closure operation associated with C' is
set-based.

Proof: Assume that S = Pow(A), for some set A, and that ¢ is the closure
operation on S associated with C. Also assume that B C S is a baseset for
c. Then forall X C Aand alla € A

(%) a€c(X) + YeB[Y CXAac€clY).
Now let A’ be a regular set such that BUG C A’ and let
R={(Q,2) | QeGANZ e AANQ Cc(UZ)AZ C G}.

Claim 1: R is a set.
Proof: First observe that 7 = {Z € A" | Z C G} is a set. Also,
for each Z € T we may form the set UZ so that ¢(UZ) is also a set
and hence S; = {Q € G | @ C ¢(UZ)} is a set. Hence, by Union-
Replacement R = |, (S, x {Z}) is a set.
|

Now let X € Pow(G) and @ € C.
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Claim 2: ZC XAQRZ — QCVX.
Proof: Let Z C X AQRZ. Then @ C ¢(UZ) C ¢(UX) and hence
QCVX.
|

Claim 3: QC\/ X — 3Z[Z C X AQRZ].
Proof: Let Q C\/ X. Then by (x) there is Y € B such that

Y CUXAQCeY).
AsY CuUX
YyeY3AQ'eX y € Q.
As A" is regular, Y € A" and X C A’ there is Z € A’ such that
B(yeY,Q'€Z)[ye @ NQ € X ].

SoY CUZ and Z C X so that @Q C ¢(UZ) and Z C X C G and hence
also QRZ.
[ |

It follows from these claims that (G, R) is a set presentation of C.

Now let (G, R) be a set presentation of a \/-semilattice S. We show that
S is isomorphic to a set presentable \/-semilattice obtained from an inductive
definition as above. Let ® be the converse relation to R; i.e. it is the set
of all pairs (X, a) such that aRX. Then ® is an inductive definition that is
a subset of Pow(G) x G. Observe that there is a one-one correspondence
between the class C of subsets X of G that are ®-closed and the elements of
S given by the function C' — S mapping X — \/ X and its inverse function
S — C mapping a — G, = {r € G | x < a}. This is easily seen to be an
isomorphism of the po-classes.
[ |
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6.4 \/-congruences on a \/-semilattice

Let S be a \/-semilattice . We define an equivalence relation s on S to be
a \/-congruence on S if, for each set I, if z;,y; € S such that z; ~ y; for all

1 € I then
\V/ixi ~ \V/Zh“

el el
A preorder < on S is a \/-congruence pre-order on S if for each subset X of
S and each a € S

\/Xja — VzeX [z < al.

Proposition: 6.6 There is a one-one correspondence between \/-congruences
and \/-congruence pre-orders on S. To each \/-congruence = there corre-
sponds the \/-congruence pre-order < where

r2y & \Hzy}ry

Conversely to each \/-congruence pre-order < corresponds the \/-congruence
~ where

TRy & [t2yAy Lz
These correspondences are inverses of each other.

Proposition: 6.7 Ifc: S — S is a closure operation on S and we define ~
by

zRy < c(z)=cy)
for all x,y € S then = is a \/-congruence on S.

Proof: The relation ~ is obviously an equivalence relation on S. Now
suppose that z; & y; for all ¢ € I, where I is a set. So ¢(z;) = ¢(y;) for all
i €1l. Let x = \/,.; 7 and y = \/,.; 4. Note that, as y; < c(y;) = c(x;) for

alli e I,
y=\uv<Vew) =\ c).

i€l el icl

el

As z; < z for each ¢ € I and c is monotone, y < \/,.; c(z;) < c¢(x) and hence
c(y) < ¢(x). Similarily ¢(x) < ¢(y) so that ¢(z) = ¢(y). Thus we have shown
that ~ is a \/-congruence on S.

|

6-6



Notes on Constructive Set Theory Section 6

Proposition: 6.8 Let < be a \/-congruence preorder on S = Pow(A), where
A is a set. Then the associated \/-congruence = comes from a closure oper-
ation c, as in the previous theorem, provided that for every X € S the class
{a € A|{a} X X} is a set. Then we can define c¢(X) to be that set.
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7 Regarding the Subset Collection Scheme

In this section we study some of the consequences of the Subset Collection
Scheme as well as equivalent axioms. The Subset Collection schema easily
qualifies as the most intricate axiom of CZF. 'To explain this axiom in
different terms, we introduce the notion of fullness (cf. [Acz78]).

Definition: 7.1 For sets A, B let 4B be the class of all functions with do-
main A and with range contained in B. Let mv(4B) be the class of all sets
R C A x B satisfying Yue AFveB (u,v)€R. A set C is said to be full in
mv(4B) if C C mv(#B) and

VRemv(*B)3SeC S C R.

The expression mv(4B) should be read as the collection of multi-valued
functions from the set A to the set B.
Additional axioms we shall consider are:

Exponentiation: VzVydzz = "y.

Fullness: VaVydz “z full in mv(*y)”.

Proposition: 7.2 (i) CZF, + Strong Collection - Subset Collection <«»
Fullness.

(i) CZF, + Subset Collection - Exponentiation.

Proof: (i): For “—” let ¢(x,y,u) be the formula yeu A z€B (y =
(x,z)). Using the relevant instance of Subset Collection and noticing that
for all R € mv(4B) we have Voz€A JycA x B ¢(x,y, R), there exists a set C
such that VRemv(4B)35eC S C R.

“7": Let C be full in mv(*B). Assume Vz€A3ye Bo(z,y,u). Define
Y(z,w,u) == yeBlw = (z,y) N ¢(z,y,u)]. Then Vze AFwy(z,w,u).
Thus, by Strong Collection, there exists v C A x B such that

Ve€AJyeB [(z,y)ev A é(z,y,u)] N VeeAVyeB [(z,y)ev — ¢(z,y,u)].

As C'is full, we find weC with w C v. Consequently, Vr€ AJycran(w)p(z, y, u)
and Vyeran(w)3z€A ¢(z,y,u), where ran(w) := {v: 3z (2, v)ew}.

Whence D := {ran(w) : weC} witnesses the truth of the instance of
Subset Collection pertaining to ¢.

(i) Let C be full in mv(4B). If now f€4B, then 3ReC R C f. But then
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R = f. Therefore B = {feC : f is a function}.
|

As the next result will show, Fullness does not entail that, given sets A and
B, mv(4B) is always a set.

Proposition: 7.3 (i) CZF, - VAVB (mv(“B) is a set) <+ Powerset.
(ii) CZF does not prove VAYB (mv(4B) is set).

Proof: (i): We argue in CZF,. It is obvious that Powerset implies that
mv(4B) is a set for all sets A, B. Henceforth assume the latter. Let C be
an arbitrary set and D = mv(“{0,1}). By our assumption D is a set. To
every subset X of C' we assign the set X* := {(u,0)| ueX} U {(z,1)] zeC'}.
As a result, X* € D. For every SeD let pr(S) be the set {ueC| (u,0) € S}.
We then have X = pr(X*) for every X C C, and thus

Pow(C) = {pr(S)| SeD}.

Since {pr(S)| SeD} is a set by Replacement, Pow(S) is a set as well.

(ii): The strength of CZF + Powerset exceeds that of second order arith-
metic whereas CZF has only the strength of a small fragment of second order

arithmetic.
[ |

Remark 7.4 On page 623 ofTvD88|, a different rendering of Fullness is
introduced:

Fullness™*  VAVB3C Vremv(“B) ran(r)eC.

Proposition 8.9, page 623 of [TvD88] claims that Subset Collection implies
Fullness™® on the basis of CZF. That this is not correct can be seen as
follows. Let A, B be arbitrary sets. For R €€ mv(4B) let R? be the set
{{u, {u,v))| (u,v) € R}. Then R* € mv(*(A x B)) and ran(R?%) = R.
By Fullness™ there exists a set C such that ran(S) € C for all S €
mv(4(A x B)). Consequently mv(4B) C C and thus mv(4B) is a set by
Ag Separation. The latter collides with Proposition 7.3 (ii).

Let EM be the principle of excluded third, i.e. the schema consisting of
all formulae of the form ¢ V —¢. The first central fact to be noted about
CZF is:
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Proposition: 7.5 CZF + EM = ZF.

Proof: Note that classically Collection implies Separation. Powerset follows

classically from Exponentiation.
[ |
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8 Choice Principles

The axiom of choice does not have an unambiguous status in constructive
mathematics. On the one hand it is said to be an immediate consequence
of the constructive interpretation of the quantifiers. Any proof of Vzea Jye
b ¢(x,y) must yield a function f : a — b such that Va€a Iyeb ¢(x, f(x)). This
is certainly the case in Martin-Lof’s intuitionistic theory of types. On the
other hand, from the very earliest days, the axiom of choice has been criti-
cised as an excessively non-constructive principle even for classical set theory.
Moreover, it has been observed that the full axiom of choice cannot be added
to systems of constructive set theory without yielding constructively unac-
ceptable cases of excluded middle (see [Dia] and Proposition 8.2). Therefore
one is naturally led to the question: Which choice principles are acceptable
in constructive set theory? As constructive set theory has a canonical in-
terpretation in Martin-Lof’s intuitionistic theory of types this interpretation
lends itself to being a criterion for constructiveness. We will consider set-
theoretic choice principles as constructively justified if they can be shown to
hold in the interpretation in type theory. Moreover, looking at constructive
set theory from a type-theoretic point of view has turned out to be valuable
heuristic tool for finding new constructive choice principles.

In this section we will study differing choice principles and their deductive
relationships. To set the stage we present Diaconescu’s result that the full
axiom of choice implies certain forms of excluded middle.

8.1 Diaconescu’s result

Restricted Excluded Middle, REM, is the schema ¢ V —¢ where ¢ is a
restricted formula.

Recall that Pow(z) := {u: u C z}, and Powerset is the axiom Vz3y y =
Pow(z).

Proposition: 8.1 (i) CZF, + Ezponentiation + REM F Powerset.

(i) The strength of CZF ¢+ Ezponentiation+REM ezceeds that of classical
type theory with extensionality.

Proof: (i): Set 0:=0, 1 := {0}, and 2 := {0, {0}}.

Suppose v C 1. On account of REM we have 0 € u V 0¢u. Thus
v =1V u = 0; and hence u€2. This shows that Pow(1) C 2. As a
result, Pow(1) = {u€2: u C 1}, and thus Pow(1) is a set by Restricted
Separation.
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Now let  be an arbitrary set, and put b := ¥(Pow(1)). Exponentiation
ensures that b is a set. For v C z define f, € b by

folz) == {yel: zev},

and put

c = {{zex: g(2) =1} : geb}.
c is a set by Strong Collection. Observe that Vwec (w C z). For v C z it
holds v = {z€x : f,(2) = 1}, and therefore vec. Consequently, Pow(z) =
{vec: v C z} is a set.

(il): By means of w many iterations of Powerset (starting with w) we can
build a model of intuitionistic type theory within CZF, + Exponentiation +
REM. The Godel-Gentzen negative translation can be extended so as to
provide an interpretation of classical type theory with extensionality in in-
tuitionistic type theory (cf. [Myh74]).

In particular, CZF, + Exponentiation + REM is stronger than classical
second order arithmetic (with full Comprehension).

[

The Axiom of Choice, AC, asserts that for all sets A and functions
F with domain A such that Vi€ AJye F(i) there exists a function f with
domain A such that VieA f(i)eF (3).

Proposition: 8.2 Let CZF, be CZF( + Ezxponentiation.
(i) CZF; + full Separation + AC = ZFC.
(i) CZF, + AC - REM.

(11i) CZF; + AC I Powerset.

(iv) The strength of CZF| + AC ezceeds that of classical type theory with
extensionality.

Proof: (i): Let ¢ be an arbitrary formula. Put

X = {new:n=0V [n=1A4¢},
Y = {new:n=1V [n=0A¢]}.

X and Y are sets by full Separation. We have

Vz € {X,Y} Fkew (kez).
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Using AC, there is a choice function f defined on {X,Y} such that
Vz e {X,Y}[f(z)ew A f(2)€],

in particular, f(X)€X and f(Y)€Y. Next, we are going to exploit the
important fact

Vn,mew (n =mV n #m). (1)
AsVz € {X,Y}[f(z)ew], we obtain
fX)=f¥) Vv f(X)# (V)

by (1). If f(X) = f(Y), then ¢ by definition of X and Y. So assume
f(X) # f(Y). As ¢ implies X =Y (this requires Extensionality) and thus
f(X) = f(Y), we must have —¢. Consequently, ¢ V =¢. Thus (i) follows
from the fact that CZF; + EM = ZF.

(ii): If ¢ is restricted, then X and Y are sets by Restricted Separation.
The rest of the proof of (i) then goes through unchanged.

(iii) follows from (ii) and Proposition 8.1,(i).

(iv) follows from (ii) and Proposition 8.1,(ii).
[

8.2 Constructive Choice Principles

The weakest constructive choice principle we consider is the Axiom of
Countable Choice, AC_, i.e. whenever F' is a function with with do-
main w such that Vicw Fy€F (i), then there exists a function f with domain
w such that View f(i)eF (i).

A mathematically very useful axiom to have in set theory is the Depen-
dent Choices Axiom, DC, i.e., for all formulae 1, whenever

(Vaea) (Fyca) ¥(z,y)

and bg€a, then there exists a function f :w — a such that f(0) = by and

(Vnew) (f(n), f(n +1)).

The restriction of DC to Ay formulas will be denoted by Ay-DC.
Even more useful in constructive set theory is the Relativized Dependent
Choices Aziom, RDC.> It asserts that for arbitrary formulae ¢ and 1,
In Aczel [Acz82], RDC is called the dependent choices axiom and DC is dubbed the

axiom of limited dependent choices. We deviate from the notation in [Acz82] as it deviates
from the usage in classical set theory texts.
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whenever

Va[p(z) — y(d(y) A ¥(z,y))]

and ¢(bg), then there exists a function f with domain w such that f(0) = by
and

(Vrew)[o(f(n)) A (f(n), f(n+1))].

A restricted form of RDC is Ay-RDC: For all Ag-formulae 6 and v, when-
ever

(Vaz€a)[0(z) — (Fyea)(0(y) A P(z,y)]

and bp€a A ¢(by), then there exists a function f : w — a such that f(0) = by
and

(Vnew)[0(f(n)) A (f(n), f(n+1))].

Letting ¢(x) stand for z€a A 6(x), one sees that Ay,-RDC is a consequence
of RDC.

Proposition: 8.3 (i) CZF,+ Ay,-DCH AC,,.
(ii) CZF, F Ay-DC « Ay-RDC.
(iii) CZF, - RDC — DC.

Proof: (i): If z is an ordered pair {x,y) let 1°!(z) denote z and 2"¢(z) denote
Y.

Suppose F' is a function with domain w such that Vicw 3z € F(i). Let
A = {(i,u)| i€w AN ueF(i)}. Ais a set by Union, Cartesian Product and
restricted Separation. We then have

VreAJyeA 1% (y) = 1°%(x) + 1.

Pick zo€ F(0) and let ay = (0,z¢). Using Ay-DC there exists a function
g : w — A satisfying ¢(0) = ag and

View [g(i)ed A 1%%(g(i + 1)) = 1%(g(2)) + 1]

Letting f be defined on w by f(i) = 2"%(g(4)) one gets View f(i)eF (7).
(ii)) We argue in CZFj + Ay-DC to show Ag-RDC. Assume

Vrea[d(z) — Jyca(o(y) A ¥(z,y))]

and ¢(by), where ¢ and ¢ are Ag. Let 6(z,y) be the formula ¢(z) A ¢(y) A
Y(z,y) and A = {z€a| ¢(x)}. Then 0 is Ay and A is a set by Ay Separation.
From the assumtions we get Vo € Ady € Af(x,y) and by € A. Thus, by
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DC, there is a function f with domain w such that f(0) = by and Vne€
wO(F(n), f(n+1)). Hence we get Vn € w[p(n) A $(f(n), f(n+1).

The other direction is obvious.

(iii) follows by specializing the formula ¢(z) to x € a in the schema
RDC.
|

The relationship between Ay-RDC and DC is dealt with in the next lemma.
Lemma: 8.4 (CZF, + Strong Collection) Ag-RDC implies DC.
Proof: Assume (Vze€a) (Jyca) ¢(z,y) and by€a. Then

(Vaea) (32) [(Fyea) (z = (z,y) A ¢(z,9))]-

Using strong collection there exists a set S such that
(Vz€a) (32€S) (Fyea) [z = (z,y) N ¥(z,y)] and

(v2€8) ('ea) (Fy'ea) (= = (', ) A (', ). @)
In particular we have (Vz€a) (Jy€a) (z,y) € S. Employing Ay-RDC (with
¢(z) and ¥(z,y) being z€a and (z,y) € S, respectively) there exists a func-
tion f :w — a such that f(0) = by and (Vnew) (f(n), f(n+1)) € S. By (2)

we get (Vnew) ¥(f(n), f(n+1)).
|

Proposition: 8.5 (CZF, + RDC + Collection)
Suppose VrIyp(x,y). Then for every set a there exists a transitive set A
such that acA and
VeeAdyeA é(z,y).

Moreover, for every set d there exists a function f : w — A such that f(0) = d
and Ynew ¢(f(n), f(n+1).

Proof: The assumption yields that Yz €b3yd(x,y) holds for every set b.
Thus, by Collection and the existence of the transitive closure of a set, we
get

Vb3c[f(b,c) A Tran(c)],

where (b, ¢) is the formula VzebJyec ¢(z, y). Employing RDC there exists
a function g with domain w such that ¢g(0) = {d} and Vnew 6(g(n), g(n+1)).
Obviously A = J,., 9(n) satisfies our requirements.

The existence of the function f follows from the latter since RDC entails
DC.
|
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8.3 The Presentation Axiom

The Presentation Axiom is an example of a principle inspired by the inter-
pretation in type theory.

A set B is a base if every relation R with domain B extends a function
with domain B.

The Presentation Axiom, PA, is the statement that every set has a
presentation, where a presentation of a set A is a function with range A
whose domain is a base.

Using the above terminolgy, AC,, expresses that w is a base whereas AC
amounts to saying that every set is a base.

Proposition: 8.6 CZF, + Strong Collection+ PA - DC

Proof: Assume (Vz€A) (Jy€A)(z,y) and bye A. By PA there exists a
base B and a function h : B — A such that A is the range of h. As a result,

YueB FveB y(h(u), h(v)).

Using Strong Collection there exists a relation R C B x B with domain B
such that

VueB FveB [(u, v)eR A Y(h(u), h(v))]
and

VueBYveB[{u,v)eR — P (h(u), h(u))].

Since B is a base there exists a function g : B — A such that ¢ C R. Pick
ug € B such that h(ug) = by. Now define f' : w — B by f'(0) = up and
f'(n+1)=g(f'(n)). By induction on w one easily verifies

Vnew (h(f'(n)), h(f'(n +1))).

Thus, letting f(n) = h(f'(n)) one obtains a function f : w — A satisfying

2(0) = by and Vnewy(f(n), f(n+ 1)).

Proposition: 8.7 CZF, + Erponentiation + PA - Fullness.
Proof: Let A, B be sets. By Exponentiation, 4B is a set as well. On account

of PA, 4B is full in mv(A, B).
|

8-6



Notes on Constructive Set Theory Section 8

Corollary: 8.8 CZF, + Ezponentiation + PA + Strong Collection proves
Subset Collection.

Proof: This follows from the previous Proposition and Proposition 7.2.
|
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9 Principles that ought to be avoided in CZF

In the previous section we saw that the unrestricted Axiom of Choice implies
undesirable form of excluded middle. There are several other well known
principles provable in classical set theory which also imply versions of ex-
cluded middle. Among them are the Foundation Axiom and Linearity of
Ordinals.

Foundation Schema: 3z¢(z) — Jzx[d(x) A Yyex—o(y)] for all formulae
o.

Foundation Axiom: Vz[Jy(yex) — Jy(yex A Vzey z¢x)].

Linearity of Ordinals We shall conceive of ordinals as transitive sets
whose elements are transitive too.

Let Linearity of Ordinals be the statement formalizing that for any two
ordinals o and (3 the following trichotomy holds: a€f V a = 8V f€a.

Proposition: 9.1 (i) CZF + Foundation Schema = ZF.
(i) CZF + Separation + Foundation Axiom = ZF.
(#i) CZF + Foundation Axiom - REM.
(iv) CZF + Foundation Axiom - Powerset.

(v) The strength of CZF +Foundation Axiom ezceeds that of classical type
theory with extensionality.

Proof: (i): For an arbitrary formula ¢, consider
Sy = {rew: =1V [z =0A ¢}

We have 1€S5,;. By the Foundation Schema, there exists xo€Sy4 such that
Vyexy y¢S,. By definition of Sy, we then have

If 2o = 1, then 0¢S,, and hence —¢. Otherwise we have zg = 0 A ¢; thus ¢.
So we have shown EM, from which (i) ensues.
(ii): With full Separation Sy is a set, and therefore the Foundation Axiom
suffices for the previous proof.
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(iii): For restricted ¢, Sy is a set be Restricted Separation, and thus
¢V —¢ follows as in the proof of (i).

(iv) follows from (iii) and Proposition 8.1,(i).

(v) follows from (iii) and Proposition 8.1,(ii).
|

Proposition: 9.2 (i) CZF + “Linearity of Ordinals” - Powerset.
(#i) CZF + “Linearity of Ordinals” H REM.

(#ii) CZF + “Linearity of Ordinals” 4+ Separation = ZF.

Proof: (i): Note that 1 is an ordinal. If uw C 1, then u is also an ordinal
because of Vzeu z = 0. Furthermore, one readily shows that 2 is an ordinal.
Thus, by Linearity of Ordinals,

Vu C 1[ue2Vu =2V 1€eu).
The latter, however, condenses to Yu C 1 [u€2]. As a consequence we have,
Pow(1) = {u€2: u C 1},

and thus Pow(1) is a set. Whence, proceeding onwards as in the proof of
Proposition 8.1,(i), we get Powerset.
(ii): Let ¢ be restricted. Put

a:={ncw: n=0A ¢}

« is a set by Restricted Separation, and « is an ordinal as « C 1. Now, by
Linearity of Ordinals, we get

acl V a=1.

In the first case, we obtain o = 0, which implies —¢ by definition of a. If
a = 1, then ¢. Therefore, ¢ V —¢.

(iii): Here o := {n€w : n = 0 A ¢} is a set by Separation. Thus the
remainder of the proof of (ii) provides ¢ V —¢.
|
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10 Large sets in constructive set theory

The first large set axioms proposed in the context of constructive set theory
was the Regular Extension Aziom, REA, which Aczel introduced to accom-
modate inductive definitions in CZF (cf. [Acz78], [Acz86]).

Definition: 10.1 A set C is said to be regular if it is transitive, inhabited
(i.e. Ju u € C) and for any ueC and R € mv(*C') there exists a set v € C
such that

Vezeu Jyev (z,y)eR A Yyev dxeu (x,y)ER.

We write Reg(C) to express that C' is regular.
REA is the principle

Vz 3y (zey A Reg(y)).

Definition: 10.2 There are interesting weakend notions of regularity.
A transitive inhabited set C is weakly reqular if for any ueC and R €
mv (*C') there exists a set v € C such that

Vzeu Iyev (x, y)ER.

We write wReg(C) to express that C' is regular. The weakly Regular Exten-
sion Aziom (WREA) is as follows.

Every set is a subset of a weakly regular set.

A transitive inhabited set C is functionally regular if for any u€C' and
function f : v — C, ran(f) € C. We write fReg(C) to express that C is
functionally regular. The weakly Regular Extension Aziom (WREA) is as
follows.

FEvery set is a subset of a functionally reqular set.

Lemma: 10.3 (CZF,) If A is reqular then A is weakly regular and func-
tionally reqular.

Proof: Obvious.
[ |

Lemma: 10.4 (CZF,) If A is functionally reqular and 2 € A, then A is
closed under Pairing, that is Vr,y € A {z,y} € A.

Proof: Given z,y € A define a function g : 2 — A by ¢(0) = z and ¢g(1) = y.
Then {z,y} =ran(g) € A.
|
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Proposition: 10.5 CZF, + REA - Fullness

Proof: Let A, B be sets. Using REA iteratively there exists a regular set
Z such that 2,4, B,Ax (Ax B) € Z. Let C = {S€Z| S € mv(*B)}. S is
a set by Ay Separation. We claim that C is full in mv(“B). To see this let
R e mv(“B). Let

R = {(z,(z,y))| x€A A (z,y) € R}.

2 € Z guarantees that Z is a model of Pairing and thus R* € mv(4Z).
Employing the regularity of Z there exists S*€Z such that

VozeA32eS™ ((z,2)€R™) N VzeS™ €A ((z, 2)€S™).

As a result, S* C R and S* € mv(“B). Moreover, S* € C.
|

Corollary: 10.6 CZF, + Strong Collection + REA F Subset Collection

Proof: By Proposition 10.5 and Proposition 7.2.
|

Lemma: 10.7 (CZF, + Strong Collection) Assume that A is a regular set,
beA and VxebIycA ¢(z,y). Then there exists a set c€A such that

Vzebyec op(x,y) N Vyecdzebo(z,y).

Proof: Vzeb3dycA¢(z,y) implies Veeb3z y(z, z), with ¥(z, 2) being the
formula Jye A ¢(z,y) A z = (x,y). Using Strong Collection there exists a
set R such that

Voeb3zeR p(x,z) A VzeR Jxeby)(x, z).

Thus R € mv(’A). Owing to the regularity of A there exists a set c€A such
that
Vaebdyec (x, y)eR N VyecIxzeb (z,y)ER.

As a consequence we get VzebJyec d(z,y) N YyecIzebo(x,y).
|
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10.1 Some metamathematical results about REA

Lemma: 10.8 On the basis of ZFC, a set B is reqular if and only if B is
functionally reqular.

Proof: Obvious.
[ |

Proposition: 10.9 ZFC - REA.

Proof: The axiom of choice implies that arbitrarily large regular cardinals
exists and that for each regular cardinal k, H (k) is a regular set. Given any
set b let p be the cardinality of b. Then the next cardinal after u, pt, is
regular and b € H(u").

[ |

Proposition: 10.10 (i) CZF + AC,, does not prove that H(w U {w}) is
a set.

(#i) CZF does not prove REA.

Proof: It has been shown by Rathjen (cf. [RG94]) that CZF + AC,, has the
same proof-theoretic strength as Kripke-Platek set theory, KP. The proof-
theoretic ordinal of CZF + AC,, is the so-called Bachmann-Howard ordinal

¢Q1 EQi+1- Let

T:=CZF + AC, + HwU {w}) is a set.

Another theory which has proof-theoretic ordinal ¥q,eq, 1 is the intuition-
istic theory of arithmetic inductive definitions ID?. We aim at showing that
T proves the consistency of IDi. The latter implies that 7" proves the consis-
tency of CZF + AC,, as well, yielding (i), owing to Godel’s Incompleteness
Theorem.

Let Ly(P) be the language of Heyting arithmetic augmented by a new
unary predicate symbol P. The language of ID? comprises Ly4 and in
addition contains a unary predicate symbol I, for each formula ¢(u, P) of
Lya(P) in which P occurs only positively. The axioms of ID! comprise
those of Heyting arithmetic with the induction scheme for natural numbers
extended to the language of ID’ plus the following axiom schemes relating
to the predicates I:

(IDg) V[, 1) = Is(x)]
(ID;) Va [p(z, ) = ()] = Vo [ly(z) = ()]
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for every formula 1, where ¢(x,) arises from ¢(x, P) by replacing every
occurrence of a formula P(t) in ¢(z, P) by ¥(t).

Arguing in T we want to show that ID® has a model. The domain of
the model will be w. The interpretation of ID? in T is given as follows. The
quantifiers of IDi are interpreted as ranging over w. The arithmetic constant
0 and the functions +1,+, - are interpreted by their counterparts on w. It
remains to provide an interpretation for the predicates I, where ¢(u, P) is
a P positive formula of Lya(P). Let ¢(u,v)* be the set-theoretic formula
which arises from ¢(u, P) by, firstly, restricting all quantifiers to w, secondly,
replacing all subformulas of the form P(t) by t€v, and thirdly, replacing the
arithmetic constant and function symbols by their set-theoretic counterparts.
Let

Dy(4) = {aew| d(z, A)}

for every subset A of w, and define a mapping = — I'{ by recursion on
H(wU{w}) via

T2 =Ty(|JT4).

uce
Finally put
= \J
z€H(wU{w})

It is obvious that the above interpretation validates the arithmetic axioms of
ID]. The validity of the interpretation of (1Dj) follows from

Ty(13) C I3, (3)
Let HC = H(w U {w}). Before we prove (3) we show
rg Iy (4)

for a € HC, where I's* = (J ¢, ['5. (4) is shown by Set Induction on a. The
induction hypothesis then yields, for xz€a,

€x T €a
;2 C Iy Izt
Thus, by monotonicity of the operator I'y,
Py(I57) = T C Ty(IS%) = T,

and hence T'g® C I'§, confirming (4).
To prove (3) assume n € T'y(I3). Then @(n,J,cne )" by definition of
I's. Now, since |J,cpe I'§ occurs positively in the latter formula one can

show, by induction on the built up of ¢, that
¢(n,I'g)" ()
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for some ¢ € HC. The atomic cases are obvious. The crucial case is when
od(n,v)* is of the form Vk € wip(k,n,v). Inductively one then has

Vk € w3y € HCOY(k,n, 7).
Employing Strong Collection, there exists R € mv(“HC) such that
Vk € wIy[(k,y) € R A ¢(k,n,TY).

Using AC,, there exists a function f : w — HC such that Vk € w (k, f(k)) €
R and hence
Yk € wip(k,n, TLP).

Let b = ran(f). It follows from (4) that F(J;(k)) C Fg, and thus, by positivity
of the occurrence of P in ¢ we get,

Vk € wip(k,n,TY))".
The validity of the interpretation of (1D3) can be seen as follows. Assume
View [¢(i, X) — i€X], (6)

where X is a definable class. We want to show [ ; C X. It suffices to show
I'4 C X for all a € HC. We proceed by induction on a€HC'. The induction
hypothesis provides I's® C X. Monotonicity of I'y yields I'y(I'§*) = I'y C
['4(X). By (4) it holds I';(X) C X. Hence I'y C X.

We have now shown within 7' that ID? has a model. Note also that,
arguing in 7', this model is a set as the mapping ¢(u, P) — I} is a function
when we assume a coding of the syntax of ID%. As a result, by formalizing
the notion of truth for this model, T’ proves the consistency of ID’, estab-
lishing (i).

(ii) It has been shown by Rathjen (cf. [RG94]) that CZF + REA is of
much greater proof-theoretic strength than CZF. However, (ii) also follows
from (i) as REA implies that H(w U {w}) is a set.
|

ZF proves fREA, though this is not a triviality. Here we shall draw on
[Je82], where it was shown that ZF proves that H(w U {w}) is a set.

Proposition: 10.11 ZF - fREA

Proof: Every set x is contained in a transitive set A. Thus if we can show
that H(A) is a set we have found a set comprising x which is functionally
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regular. The main task of the proof is therefore to show that H(A) is a set.
Let o = [J{rank(u)| u€ A}. Let k = (a™)* (where p* denotes the least
cardinal bigger than p). We shall show that rank(s) < « for every s € H(A),
and thus

H(A) C V.. (7)

For aset X let J" X be the n-fold union of X, i.e., | J° X = X, and J""' X =
UWU" X). Note that

rank(X) = {rank(u)| u € TC(2)} = | J{rank(u)| u € | J'X}.

new

Let © be the set of all non-empty finite sequences of ordinals < ™. We shall
define a function F' on H(A) X w x O such that for each s € H(A), if F;
denotes the function Fs(n,t) = F(s,n,t), then Fy maps w x © onto rank(s).
Since there is a bijection between © and o, we then have rank(s) < x, and
thus s € V,. We define the function F' by recursion on n. For each n, we
denote by F! the function FI'(t) = F(s,n,t). For n = 0 we let for each
s € H(A) and each 8 < o™,

F°({8)) = the Bth element of {rank(u)| ucs}

if the set {rank(u)| u€s} has order-type > 3, and F?(t) = 0 otherwise. Since
there exists b€ A and g : b — H(A) such that s = ran(g), the order type
of {rank(z)| z€s} is an ordinal < o', and hence F? maps © onto the set
{rank(z)| z€s}.

Forn =1, s € H(A), and Sy, /1 < at we let

F!({Bo, B1)) = the Bith element of {F°({By))| ues},

if it exists, and F}(t) = 0 otherwise. In general, let

E'MY({Boy -y Bat1)) = the Buyith element of {F({Bo, - ., Ba))| uest,

if it exists, and F"™'(¢t) = 0 otherwise. For each s € H(A) and each
(Bo, - - -, Bn) € O, the order-type of the set is an ordinal < a*. F™*! maps ©
onto the set

{E({Bos---»Bn)) w€s A (Boy---,Bn) Eat x - x at}.

It follows by induction that for each n and for each s € H(A), the function F}
maps O onto the set {rank(u)| v € |J" s}. For each s € H(A), F; therefore
maps w X © onto the set {rank(u)| u € TC(s)}.
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This concludes the proof of (7). Finally, by Separation, it follows that
H(A) is a set.
|

Proposition: 10.12 Let HC = H(w U {w}). If ZF is consistent, then ZF
does not prove that HC' is weakly reqular.

Assume that ZF is consistent. Let T be the theory ZF plus the assertion
that the real numbers are a union of countably many countable sets. By
results of Feferman and Levy it follows that 7" is consistent as well (see [FL]
or [Je73], Theorem 10.6). In the following we argue in 7" and identify the
set of reals, R, with the set of functions from w to w. Working towards a
contradiction, assume that HC' is weakly regular. Let R = (J, ., Xn, where
each X, is countable and infinite. By induction on n€w one verifies that
ne€ HC for every n€w, and thus w € HC. If f : w — w define f* by
f*(n) = (n, f(n)). Then f*:w — HC as HC is closed under Pairing, and
hence f = ran(f*) € HC. As a result, R C HC and, moreover, X,, € HC
since each X, is countable. Furthermore, {X,,| new} € HC.
For each X, let

Gn={f:w— X,| fis 1-1 and onto}.
Note that G, C HC. Define R € mv({X=| "€} HC) by
(Xn, f) e Riff f € G,.
By weak regularity there exists B € HC such that
Vnew 3feB (X, f) € R.

Now pick g : w — B such that B = ran(g). For every x € R define J(z) as
follows. Select the least n such that € X, and then pick the least m such
that (X, g(m)) € R, and let

J(z) = (n, (g(m))~"(2)),
where (g(m)) ! denotes the inverse function of g(m). It follows that
JR—=wxw

is a 1-1 function, implying the contradiction that R is countable.
[ |
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Definition: 10.13 A class A is said to be | J-closed if for all z€A, |Jz € A.
A class A is said to be closed under Exponentiation (Ezp-closed) if for all
x, yeA, Ty € A.

Proposition: 10.14 (ZF) If A is a functionally regular | J-closed set with
2 € A, then the least ordinal not in A, o(A), is a regular ordinal.

Proof: If f : & — o(A), where o < 0(A), then a€A and thus ran(f) € A,
and hence | Jran(f) € A. Since ran(f) is a set of ordinals, | Jran(f) is an
ordinal, too. Let 8 = |Jran(f). Then S€A. Note that S+ 1 € A as well
since 2 € A entails that A is closed under Pairing and 5+ 1 = [J{5,{5}}.
Since f: a — B+ 1 this shows that o(A) is a regular ordinal.

|

Corollary: 10.15 If ZF is consistent, then so is the theory

ZF + HC is not | J-closed.

Proof: This follows from Proposition 10.14 and Propostion 10.12.
[ |

Corollary: 10.16 I[fZFC+Vadk > a(k is a strongly compact cardinal)
15 consistent, then so is the theory ZF plus the assertion that there are no
(J-closed functionally regular sets containing w.

Proof: By the previous Proposition, the existence of a functionally regular
set A with we A would yield the existence of an uncountable regular ordi-
nal. By [Gi], however, all uncountable cardinals can be singular under the
assumption that ZFC +Va 3k > a(k is a strongly compact cardinal)
is a consistent theory.

[ |

The consistency assumption of the previous Proposition might seem exag-
gerated. It is, however, known that the consistency of

ZF + A1l uncountable cardinals are singular

cannot be proved without assuming the consistency of the existence of some
large cardinals. It was shown in [DJ] that if 8; and Y, are both singular one
can obtain an inner model with a measurable cardinal.
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One is naturally led to consider strengthenings of the notion of of a regular
set, for instance that the set should also be | J-closed and Exp-closed. It has
been shown that adding these strengthened version of REA to CZF does
not yield more proof-theoretic strength than CZF + REA.

Proposition: 10.17 The theories CZF + REA and
CZF +Vz3A[Reg(A) N A |-closed and Ezp-closed|

have the same proof-theoretic strength.

Proof: See [R01], Theorem 4.7.
|

The next result shows, however, that these strengthenings of REA are not
provable in CZF + REA.

Proposition: 10.18 If ZF is consistent, then CZF + REA does not prove
that there ezists a reqular set containing w which is Exp-closed and | J-closed.

Proof: For a contradiction assume
CZF + REA - JA[Reg(A) A weA AN A is Exp-closed and (J-closed.

Then ZFC would prove this assertion. In the following we work in ZFC. By
Proposition 10.14 k¥ = 0o(A) is a regular uncountable cardinal. We claim that
k is a limit cardinal, too. Let p < k and F': 2 — 1 be a surjective function.
Suppose k < p. Then let X = {g €” 2 — 2| F(g) < k}. Note that

{F(9)lgeX} =«

since F is surjective. Since A is Exp-closed we have "2 € A. Define a
function G : 2 — 2 by G(h) = 1 if h€ X, and G(h) = 0 otherwise. Then
G € A. Further, define j : G — A by j({(h,i)) = F(h)ifi =1, and j({h,1)) =
0 otherwise. Then ran(j) € A. However, ran(j) = {F(g)| g X} U {0} = &,
yielding the contradiction xek.

As aresult, u < k and therefore x cannot be a successor cardinal. Conse-
quently we have shown the existence of a weakly inaccessible cardinal. But
that cannot be done in ZFC providing ZF is consistent.

[ |
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10.2 Inaccessibility

The background theory for this section will be CZFOS which is CZF; plus
Strong Collection and Subset Collection.

Definition: 10.19 Let INAC be the principle
Vo 3y (z€y A Reg(y) and y is a model of CZF}),

i.e. the structure (y, €[ (y x y)) is a model of CZF}.
We say that a set is set-inaccessible if it is regular and a model of CZFg
and write INAC(y) for ‘y is set-inaccessible’.

Remark 10.20 As it makes perfect sense to study notions of largeness in
set theories without or with restricted Set Induction, we have formalized set-
inaccessibility by requiring that y is a model of CZF(‘? rather than CZF.
On the other hand, if one assumes Set Induction in the background theory
than INAC(y) readily implies that y is a model of Set Induction as well,
and hence y = CZF.

The formalization of the notion of inaccessibility in Definition 10.19 is
somewhat akward as it is very syntactic in that it requires a satisfaction
predicate for formulae interpreted over a set. An alternative and more ‘alge-
braic’ characterization will be given in the next section.

Viewed classically inaccessible sets are closely related to inaccessible car-
dinals. Let V, denote the ath level of the von Neumann hierarchy.

Proposition: 10.21 (ZFC) I is set-inaccessible if and only if I = Vi for
some strongly inaccessible cardinal k.

Proof: This is a consequence of the proof of [RGP], Corollary 2.7.
[ |

Proposition: 10.22 Let EM denote the principle of excluded middle. The
theories CZF~ + INAC + EM and

ZFC + Va3k (a < k A K is a strongly inaccessible cardinal)
have the same proof theoretic strength.

Proof: [CR00], Lemma 2.10.
|
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10.3 A nicer rendering of set-inaccessibility

Definition: 10.23 Let Q := {z : = C {0}}. Q is the class of truth values
with 0 representing falsity and 1 = {0} representing truth. Classically one
has 2 = {0, 1} but intuitionistically one cannot conclude that those are the

only truth values.
For a C Q define

/\a = {z€l: (Vuea)reu}
\/a = {z€l: (Juea)zeu} (= Ua).
A class B is \-closed if for all acB, whenever a C , then A a € B.

Definition: 10.24 For sets a,b let “b be the class of all functions with do-
main ¢ and with range contained in b. Let mv(®b) be the class of all sets
r C a x b satisfying Yu€a Jveb (u, v)€r. A set c is said to be full in mv(°b)
if ¢ C mv(*b) and
Vremv (“b) dsecs C 7.
The expression mv(?b) should be read as the collection of multi-valued

functions from a to b.
The Fullness axiom is the assertion

VaVvb 3¢ C mv(*b) [Vremv (*b) Isecs C r].

Lemma: 10.25 (CZF,) If I is set-inaccessible, then for all A, B € I there
exists C € I such that C is full in mv(“B).

Proof: Let I be a regular model of CZF. We first show:

VAel “I N mv(21) is full in mv(41)”; (8)
VA, BeI3Cel I &= “C is full in mv(“B)”. 9)

To prove (8), let A and R € mv(“I). Then R is a subset of A x I such that
for all z€A there is y€I such that zRy. Let R’ be the set of all (z, (z,y))
such that xRy. Then R’ € mv(4I) also, as I is closed under Pairing. Hence,
as I is regular, there is S€I such that Vo€ A3z€S xRz AVzeSAx€ A xR 2.
Hence S € (I N mv(#I)) and S is a subset of R. So (8) is proved. (9) is
just stating that I = ”Fullness”, which follows from 7.2 since I is a model
of CZF,.

To prove (A), let A, BEIl and choose C€I as in (9). It follows that
C C mv("B) and:

VR'eI[R € mv(“B) — 3RyeC (Ry C R))].
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So to complete the proof of (A) it suffices, given R € mv(4B) to find a
subset R’ of R such that R’ € (I N mv("B)), as then we can get RycC, as
above, a subset of R’ and hence of R.

But, as B is a subset of I, R € mv(4]) so that, by (8), there is a subset
R’ of R such that R'e(I N mv(4I)). Tt follows that R’ € (I N mv(#B)) and
we are done.

Proposition: 10.26 (CZF;)g) I is set-inaccessible if and only if the following
are satisfied:

1. I is a reqular set,
2. wel,

. (Vael) |J a€l,

3

4. I is \-closed,
5. (Va,b € I)[{z€l : acb} € I].
6

. (Va,b € I)(3cel) [c is full in mv(*D)].

Proof: Firstly, suppose that I is set-inaccessible. Then (1)—(5) are obvious.
(6) follows from Lemma 10.25.

Now assume that (1)-(6) hold. The regularity of I implies that I is
a model of Strong Collection and (6) implies that I is a model of Subset
Collection by Proposition 7.2 providing that I is a model of the remaining
axioms of CZF5. By (2) I is a model of Infinity. By (5) and the transitivity
of I we have 2 ={0,1} € I. If a,bel let f : 2 — I be the function defined
by f(0) = a and f(1) = b. The range of f is {a, b}. Regularity of I implies
that the range of f is in I and thus {a,b} € I. The latter shows that I is a
model of Pairing. By (3), I is a model of Union. It remains to verify that
I is a model of Restricted Separation. Firstly, we will show that for every
restricted formula 6 which only contains parameters from I there exists a set
c € NI such that

f < Oec. (10)

The proof of (10) follows the proof of Proposition 3.2. We proceed by induc-
tion on the construction of §. Note that, by Extensionality, ¢ is unique.
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If # is of the form a € b, then the claim follows from (5). Due to Exten-
sionality we can consider = as a defined symbol since ¢ = b < (Vz€az €
b A Vzebzea).

Next we address the propositional connectives. Let ¢q, co€2N 1 such that

¢i > 0€eg;.
Then cp := N{c1,c2} € QN T (by (4)) and
[¢1 A ¢2] < OEC/\.

Similarly ¢y, = \{c1,e2} € QNI (by (3)) and [¢p; V ¢o] <> 0€cy. Let
¢, = N{c2: z€c1} € Q. As c,, is the range of the function z — ¢, with
domain ¢y, regularity of I implies c_,€I. Moreover,

[¢1 — ¢2] — 0€c_,.

Set ¢, := A{0: z€ci}. As 0€Q NI, the above shows c,€Q N I. As
0 =1 < 0€0 and —¢; <> [¢1 — 0 = 1], it follows that —¢; > Occ-.

Finally, we address the bounded quantifiers. Suppose that a€l and that
for all x €a there exists a ¢, € 2N I such that ¢(z) <> x€c,. Let f be
the function with domain @ such that f(z) = ¢,. Let b be the range of
f. As f : a — I, the regularity of I implies beI. By (3) and (4) we get
Ab, Vb e QnI. Moreover,

(Vz€a)p(z) + 0e/\ b,
(Fz€a)p(z) < 06\/6,

concluding the proof of (10).

No let @ € I and let ¢(x) be a restricted formula with all parameters in
I. Then for every x€a there exists exactly one set c,€l such that c¢,€€2 and
¢(z) > 0€c,. For each set z€a let d, be the function with domain ¢, such
that d,(u) = = for uec,. Regularity of I implies that ran(d,) (the range of
d;) is in I. Let g be the function with domain a satisfying g(x) = ran(d,).
Then g : a — I and, by the regularity of I, we get ran(g)€l. As

{z€a : ¢(z)} = {z€a: 0cc,} = {z€a : z€ran(d,)} = Uran(g)

we get {z€a : ¢(x)} € 1.
|
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Corollary: 10.27 (CZF) I is set-inaccessible if and only if the following
are satisfied:

1. I is a reqular set,

2. wel,

3. (Vael) | ael,

4. T is N\-closed,

5. (Ya,b € I)(3cel) [c is full in mv(*D)].

Proof: In the presence of Set Induction for restricted formulas, clause (5)
of Proposition is not needed in the proof of (10). If 6 is the formula a = b,
one uses a double Set Induction on a,b and the equivalence

a=b < ((Vzea)3yeb)z =y] A (Vzeb)(Fyea)[z = y))

to show (10). If @ is the formula a€b one uses the equivalence achb <+ (Jye

bla =y.
|

10.4 Mahloness in constructive set theory

This section introduces the notion of a Mahlo set and explores some of its
CZF provable properties.

Recall that in classical set theory a cardinal k is said to be weakly Mahlo
if the set {p < K : p is regular} is stationary in k. A cardinal y is strongly
Mabhlo if the set {p < Kk : p is a strongly inaccessible cardinal} is stationary
in p.

Definition: 10.28 A set M is said to be Mahlo if M is set-inaccessible and
for every R € mv(Y M) there exists a set-inaccessible I € M such that

VeelIdyel (z,y) €R.

Proposition: 10.29 (ZFC) A set M is Mahlo if and only if M =V, for
some strongly Mahlo cardinal p.

Proof: This is an immediate consequence of Proposition 10.21.
[ |
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Lemma: 10.30 (CZF}) If M is Mahlo and R € mv(M M), then for every
a € M there exists a set-inaccessible I € M such that a € I and

VeelIdyel (x,y) €R.

Proof: Set S := {(z,{a,y)): (z,y) € R}. Then S € mv(™®M) too. Hence
there exists I € M such that Vo € I3y € I {x,y) € S. Now pick ¢ € I. Then
(c,d) € S for some d € I. Moreover, d = {a,y) for some y. In particular,
ac€l.

Further, for each x € I there exists u € I such that (z,u) € S. As a
result, u = (a,y) and (x,y) € R for some y. Since u € I implies y € I, the
latter shows that Vo € I3y € I (x,y) € R.
|

Lemma: 10.31 (CZF}) Let M be Mahlo. If Vo€ M Iye M é(z,vy), then
there exists S € mv(M M) such that

Voy [(z,y) € S — ¢(z,y)].

Proof: The assumption yields VeeM 3zeM 1)(z, z), where

Y(v,2) = FYeM (z = (z,y) A ¢(z,y)).

By Strong Collection there exists a set S such that VaxeM 3z€S ¢(x, z) and
VzeS dzeM )(x,z). As aresult, S € mv(M¥ M) and VzeM JyeM (z,y) € S.
Moreover, if {x,y) € S, then yeM and ¢(x,y) holds.

|

Corollary: 10.32 (CZF}) Let M be Mahlo. If Vx€eM IyeM ¢(x,y), then
for every a € M there exists a set-inaccessible I € M such that a € I and

Ve e [Ty €1 ¢(x,y).

Proof: This follows from Lemma 10.31 and Lemma 10.30.
[ |

In a paper from 1911 Mahlo [Mall] investigated two hierarchies of regular
cardinals. In view of its early appearance this work is astounding for its
refinement and its audacity in venturing into the higher infinite. Mahlo
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called the cardinals considered in the first hierarchy m,-numbers. In modern
terminology they are spelled out as follows:

k is 0-weakly inaccessible iff k is regular;
k is (o + 1)-weakly inaccessible iff & is a regular limit of a-weakly inaccessibles

K is A-weakly inaccessible iff k is a-weakly inaccessible for every o < A

for limit ordinals A\. Mahlo also discerned a second hierarchy which is gen-
erated by a principle superior to taking regular fixed-points. Its starting
point is the class of pp-numbers which later came to be called weakly Mahlo
cardinals.

A hierarchy of em strongly a-inaccessible cardinals is analogously de-
fined, except that the strongly 0-inaccessibles are the strongly inaccessible
cardinals.

In classical set theory the notion of a strongly Mahlo cardinal is much
stronger than that of a strongly inaccessible cardinal. This is e.g. reflected
by the fact that for every strongly Mahlo cardinal ;4 and o < p the set
of strongly a-inaccessible cardinals below p is closed and unbounded in u
(cf.[Ka], Ch.I,Proposition 1.1). In the following we show that similar relations
hold true in the context of constructive set theory as well.

Definition: 10.33 An ordinal is a transitive set whose elements are transi-
tive too. We use letters «, (3,7, to range over ordinals.
Let A, B be classes. A is said to be unbounded in B if

VzeB JyeA (xzey N yEB).

Let Z be set. Z is said to be a-set-inaccessible if Z is set-inaccessible and
there exists a family (X3)geq of sets such that for all fea the following hold:

e Xj3 is unbounded in Z.
e X3 consists of set-inaccessible sets.
o VyeXgVyel X, is unbounded in y.

The function F' with domain « satisfying F'(5) = Xp will be called a wit-
nessing function for the a-set-inaccessibility of Z.

Corollary: 10.34 (CZF) If Z is a-set-inaccessible and (€ «, then Z is
B-set-inaccessible.

Lemma: 10.35 (CZF) If Z is set-inaccessible, then Z is a-set-inaccessible
iff for all yea the y-set-inaccessibles are unbounded in Z.
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Proof: One direction is obvious. So suppose that for all yea the ~y-set-
inaccessibles are unbounded in Z. By 10.34 this implies that for all f€a the
[-set-inaccessibles are unbounded in Z; thus

VeaVreZIueZ (x€u A u is [-set-inaccessible).

Using Strong Collection, there is a set S such that S consists of triples
(B,u,z), where f€a, x€u€ Z and u is [-set-inaccessible, and for each
f€a and z€Z there is a triple (8, u, z)€S. Put

Sg = {u:dzeZ (B, u,z)eS}.

Again by Strong Collection there exists a set F of functions such that for
pea) and any u€Sp there is a function feF witnessing the [-set-inaccessi-
bility of u, and, conversely, any f€F is a witnessing function for some u€Sg
for some Bea. Now define a function F' with domain « via

F(B) = Ss U | J{f(B): feF;Bedom(f)}.

As Sj is unbounded in Z, so is F'(f). Let yeF' () and suppose yef. If yeSp,
then there is an f€F witnessing the [B-set-inaccessibility of y, thus f(v) is
unbounded in y and a fortiori F'(y) is unbounded in y.

Now assume that ye f(3) for some feF. As f [/ witnesses the [S-set-

inaccessibility of y, f(y) is unbounded in y, thus F'(vy) is unbounded in y.
|

The preceding lemma shows that the notion of being a-set-inaccessible
is closely related to Mahlo’s 7,-numbers. To state this precisely, we recall
the notion of k being a-strongly inaccessible (for ordinals « and cardinals )
which is defined as a-weak inaccessibility except that x is also required to be
a strong limit, i.e. Vp < k (2° < k).

Corollary: 10.36 (ZFC) Let Z = V,, be set-inaccessible. Then k is a-
strongly inaccessible iff Vi, is a-set-inaccessible.

Theorem: 10.37 (CZF) Let M be Mahlo. Then for every acM, the set of
a-set-inaccessibles is unbounded in M.

Proof: We will prove this by induction on «. Suppose this is true for all
Bea. By the regularity of M we get

VozeM JyeM [zcy A Vpea Jz€y z is [-set-inaccessible]. (11)
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Using Lemma 10.31 and Lemma 10.28, we conclude that for every acM there
exists a set-inaccessible /€M such that a€l and

Vael yel (xey N VPea Iz€y z is B-set-inaccessible).

Hence the (-set-inaccessibles are unbounded in I and, by Lemma 10.35, I

is a-set-inaccessible. As a result, the a-set-inaccessibles are unbounded in
M.
|

Corollary: 10.38 (CZF) Let M be Mahlo. If ao€ M, then M is a-set-
inaccessible.

Proof: Follows from Theorem 10.37 and Lemma 10.35.
[ |
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11 Intuitionistic Kripke-Platek Set Theory

One of the fragments of ZF which has been studied intensively is Kripke-
Platek set theory, KP. Its standard models are called admissible sets. One
of the reasons that this is a truly remarkable theory is that a great deal of set
theory requires only the axioms of KP. An even more important reason is
that admissible sets have been a major source of interaction between model
theory, recursion theory and set theory. KP arises from ZF by completely
omitting the Powerset axiom and restricting Separation and Collection to
absolute predicates (cf. [BaT75]), i.e. Ay formulas. These alterations are
suggested by the informal notion of ‘predicative’. The intuitionistic version
of KP, IKP, arises from CZF by omitting Subset Collection and replacing
Strong Collection by Aq Collection, i.e.,

Vzea Iy ¢(x,y) — JzVeea Iyez ¢(z, y)

for all Ay formulae ¢.
By IKP, we denote the system IKP bereft of Set Induction.

11.1 Basic principles

The intent of this section is to explore which of the well known provable
consequences of KP carry over to IKP.

Proposition: 11.1 (IKPy) If A, B are sets then so is the class A x B.

Proof: First note that the proof of the uniqueness of ordered pairs in Propo-
sition 3.1 is a IKP, proof. Further, the existence proof of the Cartesian
product given in Proposition 3.5 requires only Ay Collection.

|

Definition: 11.2 The collection of ¥ formulae is the smallest collection
containing the Ay formulas closed under conjunction, disjunction, bounded
quantification and unbounded existential quantification.

Given a formula ¢ and a variable w not appearing in ¢, we write ¢* for
the result of replacing each unbounded quantifier 4z and Vz in ¢ by drzcw
and Vz€w, respectively.

Lemma: 11.3 For each ¥ formula the following are intuitionistically valid:

(i) ¢* N uCv— @Y,
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(i) ¢* — o.

Proof: Both facts are proved by induction following the inductive definition
of ¥ formula.
[ |

Theorem: 11.4 (The ¥ Reflection Principle). For all ¥ formulae ¢ we have
the following:
IKP, - ¢ «> Jag®.

(Here a is any set variable not occurring in ¢; we will not continue to make
these annoying conditions on variables explicit.) In particular, every % for-
mula is equivalent to a 31 formula in IKPy.

Proof: We know from the previous lemma that Jda ¢* — ¢, so the axioms
of IKPy come in only in showing ¢ — da ¢®. proof is by induction on ¢, the
case for Ay formulae being trivial. We take the three most interesting cases,
leaving the other two to the reader.

Case 1. ¢ is ¢y A 6. By induction hypothesis, IKP; - ¢ <+ da1* and
IKPy - 0 < Ja0°. Let us work in IKP,, assuming ) A . Now there are
ai,as such that ¢, 62, so let a = a; U as. Then 9® and # hold by the
previous lemma, and hence ¢®.

Case 2. ¢ is Yu € v(u). The inductive assumption yields IKP, +
Y(u) > Jap(u)*. Again, working in IKP, assume Yu€v ¢ (u) and show
Ja Vuewv 1) (u)?. For each u€wv there is a b such that ¢ (u)®, so by Ay Collection
there is an aq such that Yuev Ibcagth(u)®. Let a = |Jag. Now, for every uew,
we have 3b C a9)(u)?; so Vuevi)(u)?, by the previous lemma.

Case 3. ¢ is Fu(u). Inductively we have IKPy F w(u) <> 3by(u)’.
Working in IKPy, assume Ju(u). Pick ug such ¢(ug) and b such that
Y(ug)®. Letting a = bU {up} we get up€a and 1)(ug)? by the previous lemma.
Thence Ja Fu€a 1 (u)®.

[ |

In Platek’s original definition of admssible set he took the > Reflection Prin-
ciple as basic. It is very powerful, as we’ll see below. Ay Collection is easier
to verify, however.

Theorem: 11.5 (The Strong 3 Collection Principle). For every ¥ formula
¢ the following is a theorem of IKPy: If Vx€a yd(x,y) then there is a set b
such that Vx€a Jyeb ¢(x,y) and YyebIx€a d(x,y).
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Proof: Assume that
Veeadyeb o(x,y).

By X Reflection there is a set ¢ such that
Vzea Fyec ¢(z,y)°. (12)
Let

b= {yec|drea d(z,y)}, (13)

by Ay Separation. Now, since ¢(z,y)¢ — ¢(x,y) by 11.3, (12) gives us
Vaea Jyeb ¢(x,y), whereas (13) gives us Vyeb Iz€a ¢(z,y).
|

Theorem: 11.6 (X Replacement). For each ¥ formula ¢(x,y) the following
is a theorem of IKPy: If Vx€a3ly ¢(x,y) then there is a function f, with
dom(f) = a, such that Vzca é(z, f(x)).

Proof: By X Reflection there is a set d such that
Vaca Iyed ¢(x, y)?.

Since ¢(z,y)? implies ¢(z,y) we get Vo €aIlyedd(x,y)?. Thus, defining
f = {{x,y) € a xd|¢(z,y)?} by Ay Separation, f is a function satisfying
dom(f) = a and Vz€a ¢(z, f(z)).

|

The above is sometimes unuseable because of the uniqueness requirement
3! in the hypothesis. In these situations it is usually the next result which
comes to the rescue.

Theorem: 11.7 (Strong ¥ Replacement). For each ¥ formula ¢(x,y) the
following is a theorem of IKPy: If Vx€a Iy ¢(z,y) then there is a function
f with dom(f) = a such that forall x€a, f(zx) is inhabited and Vr€aVye

f(z) o(z,y).

Proof: By Strong ¥ Collection there is a b such that Vz€a Jyeb ¢(z,y) and
Vyeb3zca ¢(x,y). Hence, by ¥ Reflection, there is a d such that

Vz€aIyebp(z,y)? and VycbIzca d(z,y)".
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For any fixed x€a there is a unique set ¢, such that

o = {yeb| ¢(z,y)"}

by Ay Separation and Extensionality; so, by X Replacement, there is a func-
tion f with domain a such that f(z) = ¢, for each z€a.
[ |

One principle of KP that is not provable in IKP is A; Separation. This
is the principle that whenever Vz€a [¢(z) <> 9(x)] holds for a ¥ formula
¢ and a II formula 1 then the class {x €a|¢(z)} is a set. The reason is
that classically Vz€a[d(z) <> 1(x)] entails Vx€a[p(z) V —p(x)] which is
classically equivalent to a ¥ formula.

11.2 Y Recursion in IKP

The mathematical power of KP resides in the possibility of defining ¥ func-
tions by €-recursion and the fact many interesting functions in set theory
are definable by ¥ Recursion. Moreover the scheme of Ay Separation allows
for an extension with provable 3 functions occurring in otherwise bounded
formulae.

Proposition: 11.8 (Definition by ¥ Recursion in IKP.) If G is a total
(n+2)-ary ¥ definable class function of IKP, i.e.

IKP - VZyz3u G(Z,y, 2) = u
then there is a total (n + 1)—ary ¥ class function F of IKP such that®
IKP - VZy[F(Z,y) = G(Z,y, (F(Z, 2)|z € y))].
Proof: Let ®(f,Z) be the formula
[f is a function|A[dom(f) is transitive|]A[Vy € dom(f) (f(y) = G(Z,y, f | v))].

Set
Y(,y, f) = [®(f,7) ANy € dom(f)].
Claim IKP F VZ y3\fy(Z,y, f)-

Proof of Claim: By € induction on y. Suppose Yu €y 3Ig(Z,u,g). By
Strong Y Collection we find a set A such that Yu € ydge Ay(Z,u,g) and

S(F(&,2)|z€y) = {{:F(@2)):2€y}
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Vge AJueyy(Z,u,g). Let fo = J{g: g € A}. By our general assumption
there exists a ug such that G(Z,y, (fo(u)|u € y)) = up. Set f = foU{{y,uo)}-
Since for all g € A, dom(g) is transitive we have that dom( fy) is transitive. If
u € y, then u € dom(fy). Thus dom(f) is transitive and y € dom(f). We
have to show that f is a function. But it is readily shown that if go, g1 € A,
then Vz € dom(go) N dom(g1)[go(xz) = ¢1(z)]. Therefore f is a function.
This also shows that Vw € dom(f)[f(w) = G(Z,w, f | w)], confirming the
claim (using Set Induction).
Now define F' by

F(@y)=w = 3fW(@y, f) A fly) =w]

Corollary: 11.9 There is a X function TC of IKP such that
IKP + Va[TC(a) = a U U{TC(x) 1 x € a}l.

Proposition: 11.10 (Definition by TC—Recursion) Under the assumptions
of Proposition 11.8 there is an (n+ 1)—ary X class function F' of IKP such
that

IKP - VZy[F(Z,y) = G(Z,y, (F(Z,z)|z € TC(y)))].

Proof: Let 6(f,Z,y) be the X formula
[f is a function]A[dom(f) = TC(y)|A[Vu € dom(f)[f(u) = G(Z,u, f | TC(u))]].

Prove by €-induction that Vy3!f 0(f,Z,y). Suppose Yu € ylg 0(g,Z,u).
By Strong Collection we find a set A such that Vu e y3dge A 0(g, 7, u) and
Vge AJueyb(g,7,u). By assumption, we also have

Vu € y3'z3g3alb(g, Z,u) A G(Z,u,9) =a A z = {(u,a)].
Again by Strong Collection there is a function A such that dom(h) = y and
Vu€ydg[0(g,7,u) AG(Z,u,g) = h(u)].

Now let f = (U{g:9g € A}) Uh. Then 6(f,Z,y).
|
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Definition: 11.11 Let 7" be theory whose language comprises the language
of set theory. Let ¢(x1,...,Z,,y) be a 3 formula such that

THEVYzy.. Ve, Ay éd(z1,. .., Tn, Y)-

Let £ be a new n-ary function symbol and define £ by:

Vo, .. Ve, Vylf(z1,...,2,) =y < &(T1,-. ., Zn,Y)].
f is then called a ¥ function symbol of T.

It is an important property of classical Kripke-Platek set theory that 3 func-
tion symbols can be treated as though they were atomic symbols of the basic
language, thereby expanding the notion of Ay formula. The usual proofs of
this fact employ A; Separation (cf. [Ba75], 1.5.4). As this principle is not
available in IKP some care has to be exercised in obtaining the same results
for IKP, and IKP.

Proposition: 11.12 (Extension by ¥ Function Symbols) Let T' be one of
the theories IKPy or IKP. Suppose T + VZ3ly ®(Z,y), where ® is a X
formula. Let Te be obtained by adjoining a Y function symbol Fg to the
language, extending the schemata to the enriched language, and adding the
aziom VT ®(Z, Fo(Z)). Then Te is conservative over T.

Proof: We define the following translation * for formulas of T:

¢* = ¢ if Fg does not occur in ¢
(Fo(Z) =y)* = (Z,y)

If ¢ is of the form t = = with ¢ = G(4,...,t) such that one of the terms
t1,...,t; is not a variable, then let

(t=x) = ;... Jzg[(th=21)" AN A (g = z)" AN (G(21, ..., 2%) = )]

The latter provides a definition of (¢ = x)* by induction on ¢. If either ¢ or s
contains Fg, then let

(tes) = Jadyllt=x)"A(s=y)* Az €y,
(t=s) = JaFylt=2)"A(s=y)* ANz =1y],
—p)t = ¢t
(po01)* = o¢p0¢7, if Ois A,V, or —
(Fzo)® = Fxo”
(Vzo)* = Vo'
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Let T, be the restriction of 7%, where Fy is not allowed to occur in the Ay
Separation Scheme and the A, collection Scheme. Then it is obvious that
Ty F ¢ implies T F ¢*. So it remains to show that T}, proves the same theo-
rems as Tg. In actuality, we have to prove Ty F JzVy [y € <> y € a A ¢(a)]
for any Ay formula ¢ of T. We proceed by induction on ¢.

L. ¢(y) =t(y) € s(y)- Now
Te FVy€eadlz[(z =t(y)) AVy € alu(u = s(y))].

Using ¥ Replacement we find functions f and g such that

dom(f) = dom(g) = a and Yy € a[f(y) = t(y) A g(y) = s(y)].

Therefore {y € a : ¢(y)} = {y € a : f(y) € g(y)} exists by Ay
Separation in Ty .

2. ¢(y) = t(y) = s(y). Similar.

3. &(y) = ¢o(y)de1(y), where O is any of A,V,—. This is immediate by
induction hypothesis.

4. ¢(y) = Vu€et(y) do(u,y). We find a function f such that dom(f) =a
and Yy €a f(y) = t(y). Inductively, for all b € a, {u € [Jran(f) :
¢o(u,b)} is a set. Hence there is a function g with dom(g) = a and
Vb € ag(b) = {u € Uran(f) : ¢o(u,b)}. Then {y € a: ¢(y)} ={y €
a:Vu e f(y)(ueg(y))}-

5. ¢(y) = Fuet(y) do(u,y). With f and g as above, {y € a : ¢(y)} =
{yea:Tuefly)(uegy)}

Remark 11.13 The proof of Proposition 11.12 shows that the process of
adding defined function symbols to IKP or IKP, can be iterated. So if e.g.
Te FVZ3y ¢(Z,y) for a Ay formula of T, then also Tp + {VZ3y ¢ (Z, Fy(Z))}
will be conservative over 7.
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11.3 Inductive Definitions in IKP

Here we investigate some parts of the theory of inductive definitions which
can be developed in IKP.

An inductive definition ® is a class of pairs. Intuitively an inductive
definition is an abstract proof system, where (x, A) € ® means that A is a
set of premises and x is a ®-consequence of these premises.

® is a X inductive definition if ® is a X definable class.

A class X is said to be ®-closed if A C X implies a € X for every pair
(a,A) € ©.

Theorem: 11.14 (IKP) For any ¥ inductive definition ® there is a smallest
®-closed class I(®); moreover, I(®) is a X class as well.

Proof: Call a set relation G good if whenever (z,y) € G there is a set A
such that (y, A) € ® and

Vue AJv € x (v,u) € G.

Call a set ®-generated if it is in the range of some good relation. Note that
the notion of being a good set relation and of being a ®-generated set are
both ¥ definable.

To see that the class of ®-generated sets is ®-closed, let A be a set of
®-generated sets, where (a, A) € ®. Then

Vy € A3G[G is good A Jz ((z,y) € G)].
Thus, by Strong X Collection, there is a set C' of good sets such that
Yy € A3G € C 3z ((z,y) € G).

Letting Go = JC U {{(b,a)}, where b = {u: Jy(u,y) € JC}, Gy is good
and (b, a) € Gy. Thus a is ®-generated. Whence I(®) is ®-closed. Now if X
is another ®-closed class and G is good, then by set induction on x it follows
that (x,y) € G implies y € X, so that I(®) C X.

[ |

Theorem: 11.15 (IKP) Let ® be a ¥ inductive definition. For any class
X define
Fe(X)={y|FA((y,A) e ® N AC X)}.

Then there exists a unique Y class K such that

K* = To| JK™) (14)

zTEa
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holds for all sets b, where K* = {u| (a,u) € K}. Moreover, it holds I(®) =
U, K°.

Proof: Uniqueness is obvious by Set Induction on a. Let I' = I's. Note that
" is monotone, i.e., if X C Y then I'(X) C I'(Y). Define

K = U{G| G is a good set}.

We first show (14).

"C”: Let z€ K° Then there exists a good set G such that {a,z) € G.
Hence z € T'({Uye, G°). Since Jpe G® C Upe, K and T' is monotone we get
2 € T(Upeq K°)-

?D": Let 2 € I'({Upe, K°)- Then there exists a set A C [ J,, K? such that
(2, A) € ®. Furthermore

VueAJG [G is good A Jz€a(x,u) € GJ.
Hence, using Strong ¥ Collection, there exists a set Z such that
VueAdG € Z |G is good A Jx€a(x,u) € G]

and, moreover, all sets in Z are good. Put

Go=JZ U {{a,2)}.

Then A C e, Gb. We claim that G is good. To see this let (c,w) €
Go. Then (3G € Z{c,w) € G) V (c,w) = (a,z). Thus (3G € Zw €
I'Uge. G*) V w € I'(A), and hence w € I'(U,. G§), showing that Gy is
good. Now, since z€G§ and Gy is good it follows z € K.

Using (14) one shows by set induction on a that K* C I(®), yielding
U, K C I(®). For the reverse inclusion it suffices to show that |J,, K* is
®-closed. Solet z € I'(|J, K*). Then there exists a set A C |J, K such that
(2, Ay € ®. Since YueA3Jzu € K*, by ¥ Collection we can find a set b such
that Yue A3z € bu € K*. Whence A C [J,, K’. Consequently we have
z € T'(U,ep K°) = K® by (14), showing that [J, ., K® is ®-closed.
|

The section K® of the above class will be denoted by T'%.

Corollary: 11.16 (IKP) If for every set x, T's(x) is a set then the assign-
ment b — T defines a X function.

Proof: Obvious.
[ |
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