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3 kinds of sameness for categories

Equality C
Isomorphism C =
Equivalence C

I
U999

1

e most properties of categories invariant under equivalence
e we can only substitute equals for equals
e in set-theoretic foundations these notions are worlds apart

In this talk:

Define categories in the Univalent Foundations for which all
three coincide
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Univalent Foundations

What are the Univalent Foundations?

e Intensional Martin-L6f Type Theory
~ Types as Spaces interpretation, i.e. Homotopy Type Theory
+ Univalence Axiom



The 4 kinds of judgments of type theory

Contexts & judgements

r sequence of variable declarations
X1 Ay X s Ao(Xq), .., Xn o An(X)
A A is well-formed type in context I
lra:A term ais of type Ain context I
r-A=8B types A and B are convertible
N-a=»b:A ais convertible to b in type A

In particular: dependent type B over A

x: AF B(x)



Conventions for contexts and judgments

Reasoning in type theory

e means deducing judgments from judgments,
¢ according to inference rules.

Conventions: We
e omitleading lin T, (x : A) F B(x)
e omit leading - when context is empty
¢ handle context casually: “for (any) x : A...”

e say “if ...then ...” for describing inference rules



How to do mathematics in type theory?

Math. activity how to do it in type theory

define a class of objects give a name to a valid type
define a property give a name to a valid type
define a specific object  give a name to a valid term
construct an object construct a term of the defining type
prove a property construct a term of the defining type

(all relative to some context)



What do types represent?

e Traditionally, types were considered to represent sets.

¢ In Homotopy Type Theory, types are modelled by spaces:
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What do types represent?

e Traditionally, types were considered to represent sets.

¢ In Homotopy Type Theory, types are modelled by spaces:
e PI-A

e fl-a:A
e )-b:A



Interpretation of dependent type

Interpret the type family x : A+ B(x)

as a fibration, ie. as the projection from the total space
>_(x.4) B(X) to the indexing space A

Z(X:A) B(x)

pry




Introducing new concept = introducing new type

A type is specified by 4 inference rules:
© Type former: declaring a new type
® Term former: way to construct terms of this type

©® Elimination: way to use terms of type @ to construct
other terms

O Computation: what if @ followed by @

Example (Function types)

© if Aand B are types, then A — B is a type

Qif I (x:AFbXx):B then TFMb(x):A—B
®iff:A— Banda: A, then fGa: B

O \x.b(x)@a = b[x = g



Example: dependent sum

Dependent sum > ., B(x)

Corresponds to the total space } . B(x) of a fibration:

@if I (x:AFB(x) then TFY, ,B(x)isatype

@®if a:Aandb:B(a) then (ab):>, . ,B(x)

®if p:>,1B(x) then fst(p): Aand snd(p) : B(fst(p))
O fst(a,b)=a and snd(a,b)=>b

Remark
If B does not depend on x in @ , we obtain A x B.



Interpretation of > -types

Z(X:A) B(x) <
B(a)




Example: Dependent Product

@if Ix:AFB(x) then TF][,.4B(x)

@ if x: Al b(x):B(x) then + Ax.b(x):]],.4B(x)
©if f:[[,4B(x)anda:A then f@a: B(a)

O \x.b(x)@a = b[x:= g

Remark

e If B does not depend on x in @ , we obtain A — B.

e We do not distinguish between constructing
e aterm f:]],.,B(x)

e aterm b(x) : B(x) in context x : A



Interpretation of dependent product

Interpret the dependent product [],., B(x)

as the space of sections from A to the total space }_,.4) B(X)

> (x:a) B(X)

Pr h > $: [LeaB(x)

a A




Martin-L6f TT and its Homotopy Interpretation

Type theory Notation Interpretation

Inhabitant a:A ais a point in space A

Dependenttype x: At B(x) fibration >_, 4 B(x) = A

Sigma type > xaB(x)  total space of a fibration
Product type [1.4B(x) space of sections of a fibration
Coproducttype A+ B disjoint union

Identity type lda(a, b) space of paths p: a~~ b

e other types as needed (type N of naturals, empty type)



Rules of the identity type

O (x,y) : Ax Al lda(x,y)
®if a:A then refl(a):lda(a, a)

(x,y : A)(p:d(x,y)) - C(x,y,p) x: Al c(x): C(x,x,refl(»
(X, ¥ : A), (p:1d(x,y)) = J(c, x, ¥, p) - C(x, ¥, p)
O J(c, a a,refl(a)) = c(a)

The Identity elimination rule @ says:

To define a function of type

II II cxvy.p

(x.y:A) (p:ld(x,y))

it suffices to specify its image on (x, x, refl(x)).



Leibniz principle

Using @ , one can construct:
Leibniz principle
Given a dependent type x : A- C(x) and a, b : A, a function

subst, : 1d(a, b) — (C(a) — C(b))
substa a(refl(a)) .= (t — t)

Leibniz principle says:

If there is p : Ida(a, b), then no type x : A+ C(x) can
“distinguish” a and b.



Set-theoretic interpretation of Id type

Using @ , one can construct terms of the following types:
“Setoid” structure
refl(x) : 1da(x, x)
()" < 1da(x, ) = lda(y, x)
_*_:lda(x,y) = Ida(y, z) — lda(x, 2)

Set-theoretic interpretation of p : Ida(a, b)

e aand b are interpreted as being equal in A
e justified by Leibniz principle and “setoid” structure
e in this model only existence of p : Id(a, b) matters

But terms of Id type have an interesting structure of their own!



Id types are not trivial

Higher identity types

There is also an identity type for each pair of identity terms

P, q : 1da(x,y) = Idigex.)(P; Q)

But what higher identity terms can we construct?

Theorem (Hofmann & Streicher '95)

Given a type A, one can not construct a term of type

H Idld(x,x)(pa refl(x))
x:A,p:ld(x,x)



The higher groupoid structure of Id types

Higher Groupoid laws hold: one can construct terms of type

e Idig(xx(p*p~", refl(x)) Idig(x,x) (0" * p, refl(x))

o Idig(x,y) (P * refl(y), p) Idig(x,y) (refl(x) x p, p)

e associativity up to higher Id term
In general, Id terms of height n satisfy groupoid laws wrt Id
terms of height n+ 1:

Theorem (Lumsdaine, Garner & van den Berg)

The terms belonging to the iterated identity types of any type A
form an oco-groupoid.



Interpretation: identity type as path space

e Fortwo terms a b : A of a type A, there is a type Id(a, b)
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Interpretation: identity type as path space

e Fortwo terms a b : A of a type A, there is a type Id(a, b)
e terms p, q : Id(a, b) are interpreted as paths p,q: a~ b

Mixing syntax and semantics

e Callaterm p:ld(a,b) a “path from ato b”, write p: a~ b
e Say a and b are homotopic if there is a path p: a ~ b.



The homotopy interpretation of identity types

Interpretation of the operations on paths:

Type theory Interpretation Notation
refl constant path on a refl(a)
inverse path reversal p~!
concat path concatenation pxq
higher identity type paths between paths pa==>q

“continuous deformations”



Non-trivial loop spaces

Interpretation of Hofmann & Streicher’s theorem

Given a type A, one can not construct a term of type

H g (x,x) (P refl(x))
x:Ap:ld(x,x)

le. it is (equi-)consistent to have a type A

p

(e




Non-trivial loop spaces

Interpretation of Hofmann & Streicher’s theorem

Given a type A, one can not construct a term of type

H g (x,x) (P refl(x))
x:Ap:ld(x,x)

le. it is (equi-)consistent to have a type A with non-trivial path
spaces.

p

=




Summary: homotopy is not equality

Homotopy is not like (set-theoretic) equality

e paths, unlike equality proofs, are mathematical objects
e we care about how two points are homotopic

However, homotopy has some properties of equality:

Homotopy is a proof-relevant equality in type theory

the substitution principle

higher groupoidal operations: refl, inverse, concatenation

we use vocabulary of equality (“equal”, “unique”)
but are aware of the differences with set-theoretic equality



A model of MLTT in simplicial sets

Types-as-spaces intuition is made precise by a model of MLTT:

e The category sSET of simplicial sets is Quillen-equivalent
to the category TOP of topological spaces.

e There is a model of MLTT in simplicial sets [Voevodsky].
e This model satisfies an additional property: univalence

e This suggests adding univalence as an additional axiom
(UA) to MLTT.

Remark

Traditional set-theoretic models of MLTT do not satisfy
univalence and thus are not models of MLTT + UA.
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Type theory vs. set theory

Set theory Type theory
Logic Types
AV, =,V 3 X, 4+, = [ D0
Sets Logic
Xv_'_a_)vnvz /\7\/5:>7_'7V7E|
X € Ais a proposition Xx: Ais a typing judgment




Propositions as some types

e In set theory, propositions and sets are separate entities.
¢ In type theory, propositions are specific types.

Definition (Proposition)

A type A is a proposition if all its inhabitants are homotopic, ie.
if one can construct a term of type

isProp(A) := [[ [ 1da(x. y)

X:A y:A



Remarks about propositions

Proving a proposition P means constructing aterm p: P.

p : Pis called a proof of the proposition P.

“Being a proposition” is a proposition, ie. one can prove

isProp(isProp(A))

Intuitively, a proposition is either empty or a singleton.

All operations on types are available for propositions: they
correspond to logical operations via the Curry-Howard
isomorphism



Curry-Howard

Logic is embedded in type theory via Curry—Howard

e proving P = Q amounts to giving a function P — Q
e proving Vx : A.P(x) amounts to constructing a function

Ax : Ap(x): ] P(x)
X:A

e proving 3x : A.P(x) amounts to constructing a pair

(a, p(a)) > P(x)
Xx:A

! Some more work is actually required for 3, since
propositions are not sufficiently closed under >_.



Sets in Univalent Foundations

Definition (Sets)
Atype Ais a setif forany x, y : A, the type Id(x, y) is a
proposition:

isSet(A) := [] isProp(ld(x, y))
x y:A

e Points of a set are equal in a unique way, if they are.
e Sets correspond to discrete spaces.



About the use of the word “unique”

Definition
We call the point a : A unique if any point x : A is homotopic
to g, ie. if we can construct a term of type

[T 1d(x, a)
X:A

A type A with a unique point a : A is called “contractible”:
Definition

We call A contractible if we can construct a term of type

isContr(A) := > [] d(x,a)

(@A) (x:A)



Homotopy levels

Homotopy levels: the complete picture

isContr(A) := > [] ld(x,a)

(@A) (x-A)

isProp(A) := [] isContr(ld(x, y))
X,y:A

isSet(A) := [ isProp(ld(x, y))
x,y:A

isofhlevel,1(A) := H isofhlevel,(1d(x, y))
X,y:A

But we will not need the higher levels.
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Dependent types as maps to a universe

Types are stratified in universes

We suppose
e having a sequence of universes (/,)ncn (2 la Russell)
e any type Ais a point of some universe A : U,

Implicit universe polymorphism: omit the index n

A dependent type x : A+ B(x)

isamap B: A—U.



Univalence : isomorphic types are equal

The universe U is a type

o thus can consider Idy (A, B)
e but no way to construct non-trivial path A ~~ B

Univalence: paths are isomorphisms

e |dea: any path p : A~ B corresponds to an isomorphism
f:-A— B

e impose this correspondance as an axiom
e can construct isomorphism f : A — B for suitable Aand B



Isomorphism of types

Definition (Isomorphism of types)

A function f : A — B is an isomorphism of types if there are

g:B—-A

0 H d(g(f(a)).a) e H 1d(7(g(b)), b)

together with a coherence condition 7 : [],.,Id (f(nx), e(fX)>

..ie. if we can construct a term of type

islso(f) := > Z S I Id( )

(9:B—A) (n:_) (e_) (x:A)



Isomorphism of types Il

Lemma

For any f : A— B, the type islso(f) is a proposition. In
particular, the inverse g is unique, if it exists.

Definition (Type of isomorphisms from A to B)

Iso(A, B) := > islso(f)
f:A—B

Example (Leibniz principle)
For any p: Id(a, b), the substitution function
subst, p(p) : C(a) — C(b)

is an isomorphism with inverse substy, 5(p~).



The Univalence Axiom

Definition (From paths to isomorphisms)

idtoisoa g : Id(A, B) — Iso(A, B)
refl(A) — (x — x,p)

Univalence Axiom

univalence : | islso(idtoisoa )
A BU

In particular, Univalence gives a map backwards:

isotoids g : Iso(A, B) — Id(A, B)



Consequences of Univalence

e Propositional extensionality
(P+ Q)—1d(P,Q)
e Function extensionality:

[]1da(fx, gx) = Ida5(f, 9)
X:A

and its dependent variant

¢ Quotient types exist (cf. later)
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Categories in Univalent Foundations — Take |

A naive definition of categories

A category C is given by
e atype Cy of objects
e forany a, b: Cy, a type C(a, b) of morphisms
e operations: identity & composition

id: [[c(aa) (o): J] c(b c)xc(ab)—cC(ac)

a:Cy a,b,c:Cy
e axioms: unitality & associativity for any suitable f, g, h:
unital: [  (idpof~ f)x (foida~ f)
a,b:Cy,f:C(a,b)

assoc: [[ (hog)of~ ho(gof)
a,b,c,d,f,g,h



Coherence for associativity — Mac Lane’s pentagon

Problem with above definition: two ways to associate a
composition of four morphisms from left to right:

(foh)o(gof)
((ioh)og)of
; jo(ho (g )

(fo(hog))of /
Ty

io((hog)of)



Coherence for associativity — Mac Lane’s pentagon

Problem with above definition: two ways to associate a
composition of four morphisms from left to right:

(foh)o(gof)
((ioh)og)of
; jo(ho (g )

(fo(hog))of /
Ty

io((hog)of)

Would need to ask for higher coherence ~==> , aa=> efc



Categories in Univalent Foundations — Take |l

Definition (Category in UF)
A category C is given by
e atype Cy of objects
e forany a,b:Cq, a C(a, b) of morphisms
e operations: identity & composition
e axioms: unitality & associativity

For this definition of category, all the postulated paths are
trivially coherent.



Isomorphism in a category

Definition (Isomorphism in a category)

A morphism f : C(a, b) is an isomorphism if there are

g:C(b,a)

n:gof~idg e:fog~idp

Put differently, we define

islso(f) := > ((gO f~ida) x (fo g~ idb))
g:C(b,a)



Isomorphism in a category |l

Lemma
For any f : C(a, b), the type islso(f) is a proposition.

Definition (The type of isomorphisms)

Iso(a, b) := ) islso(f)

f:C(a,b)



What about categories as objects?

Definition (Functor)

A functor F from C to D is given by
e amap Fy: Cy — Dy
o forany a,@ : Cp,amap Fy : C(a,d) — D(Fa, Fa)
e preserving identity and composition

Definition (Isomorphism of categories)

A functor F is an isomorphism of categories if
e Fy is an isomorphism of types and
e F, 4 is an isomorphism of types (a bijection) for any a, &,

islsoOfCats(F) := ( . ) x ( I1 )

a,a’:Cy



Isomorphisms of categories

Lemma
“Being an isomorphism of categories” is a proposition.

Definition (Type of isomorphisms of categories)

C=D:= ) islsoOfCats(F)
F:C—D



Natural transformations

Definition (Natural transformation)

Let F, G: C — D be functors. A natural transformation
a: F — Gisgiven by

e for any a: Cy a morphism a4 : D(Fa, Ga) s.t.

e forany f:C(a,b), Gf o ag ~ ap o Ff

The type of natural transformations F — G is a set.
Definition (Functor category D)

e objects: functors from C to D
e morphisms from F to G: natural transformations



Equivalence of categories

Definition (Left Adjoint)
A functor F : C — D is a left adjoint if there are
e G:D—~C
e n:1c— GF
e c:FG—1p
e + higher coherence data.



Equivalence of categories

Definition (Equivalence of categories)

A left adjoint F is an equivalence of categories if » and e are
isomorphisms.

Lemma
“F is an equivalence” is a proposition.

Definition

C~D:= ) isEquivOfCats(F)
F:C—D
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From paths to isomorphisms

Definition (From paths to isomorphisms, univalent categories)

For objects a, b : Cy we define

idtoisoap : (@~ b) — Iso(a, b)
refl(a) — id,

We call the category C univalent if, for any objects a, b : Cy,
idtoiso, p : (@~ b) — Iso(a, b)

is an isomorphism of types.

¢ In a univalent category, isomorphic objects are equal.
e ‘C is univalent”is a proposition, written isUniv(C).



Examples of univalent categories

Set (follows from the Univalence Axiom)

categories of algebraic structures (groups, rings,...)
¢ made precise by the Structure Identity Principle (P. Aczel)

full subcategories of univalent categories

functor category DC, if D is univalent (see below)

if C is univalent, then the category of cones of shape
F:7—=Cis
~ limits (limiting cones) in a univalent category are unique



1 kind of sameness for univalent categories

Equality C~D
Isomorphism cC=D
Equivalence C~D

Theorem
For univalent categories C and D, these three are equivalent
as types.

In particular, we can substitute a univalent category with an
equivalent one.
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Rezk completion

e “Being univalent”is a proposition
~ Inclusion from univalent categories to categories

Theorem

The inclusion of univalent categories into categories has a left
adjoint (in bicategorical sense),

Cr 5, the Rezk completion of C .



Rezk completion Il

Any functor F : C — D with D univalent factors uniquely:

c e ¢

éH!
VF :

~

D (univalent)

The functor 7 is the unit of the adjunction; it is
o fully faithful and
e essentially surjective.



Construction of the Rezk completion

e C := full image subcat. of Set®” of Yoneda embedding
o Cis univalent

e let e : C — C be the Yoneda embedding (into C):

o fully faithful
o essentially surjective (by definition)

e precomposition _o H : CB — ¢4 is an equivalence—and
hence an isomorphism—of categories if

e His essentially surjective
e Cis univalent

e the object function thus is an isomorphism of types

_oH:(C)o = (€™



Special case of Rezk completion: Quotienting

Specialise: category ~» groupoid ~ equivalence relation

Theorem

Univalent Foundations admits quotients, i.e. anymap f: S — R
such that s ~ s' = f(s) = f(§') factors uniquely via S:

S_ " .8

;3!

R

e More direct construction of set-level quotients by
Voevodsky: “type of equivalence classes”



Mechanization in Coq

Rezk Completion mechanized in Cog+UA+TypelnType

e approx. 4000 lines of code
¢ based on Voevodsky’s library “Foundations”

Design choices for the implementation (same for Foundations)

e Goal: make maths in UF accessible for mathematicians
~ stick to that part of syntax with clear semantics

« Restriction to basic type constructors ([[, >_,...)
e Coercions and notations as in mathematical practice
¢ No automation: no type classes, no automatic tactics
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