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Introduction

The Adams spectral sequence is one of the most important tools in stable homotopy theory. It allows one
to pass from homological information to “homotopical” information. In principle, it somehow streamlines
and enhances the Serre spectral sequence computations of homotopy groups of spheres. Unlike the Serre
spectral sequence, the Adams spectral sequence deals with stable homotopy groups only. To emphasize this,
I will commit to working with spectra throughout the lecture. In addition to this, I will expand the definition
the Adams spectral sequence to generalized cohomology theories. There are hypotheses that we are going to
impose on our cohomology theories, which may seem a bit restrictive. However, they are not so bad, in light
of the fact that the theories of interest to us mostly adhere to them (maybe after some modifications).

I will mainly be concerned by the construction of the spectral sequence. Therefore, let the scarcity (or
maybe complete lack) of examples not discourage the audience. The approach is that of Haynes Miller’s in
[HRM]. It is referenced in [COCTALOS], which I am going to shamelessly copy here, along with [RGB].
The nice thing about the approach is that we do the necessary homological algebra over the spectra and
obtain the spectral sequence by a simple application of π∗ functor. Without further ado (I’ve already spent
enough time with this introduction), let us begin.

1. Definitions

I will assume that people know about spectra, their relation to (co)homology theories, and smash products
of spectra. Most of the information is in [ABB].

Definition 1.1. (i) A sequence of spectra A1 A2 . . . An is exact if the sequence of ho-
motopy functors it represents is exact.

(ii) A map A B is a monomorphism if ∗ A B is exact.

(iii) A map A B is an epimorphism if A B ∗ is exact.

(iv) A sequence A B C is short exact if ∗ A B C ∗ is exact.

Remark 1.2. Here the homotopy functor that represents A is the functor [A,−] (and not [−, A]). In
particular, we can conclude that any cofiber sequence is exact. These two notions in some sense are very
closely related.

The monomorphisms and epimorphisms end up being actually quite simple.

Lemma 1.3. If f : A B is mono, then there is a map g : C B, such that f ∨ g : A ∨ C B

is a weak equivalence. If g : A B is epi, then there is a homotopy section r : B A, i.e. gr ' 1, and

a map f : F A, such that r ∨ f : B ∨ F A is a weak equivalence.

Proof. Note that [ΣE,−] ∼= [E,Σ−1−], which implies that Σ preserves the exactness of sequences of
spectra. Then we look at the following cofiber sequence of spectra

A B C ΣA ΣB
f r ∂ −Σf

Note that −Σf is mono. Then we have an exact sequence

[C,ΣA] [ΣA,ΣA] [ΣB,ΣA]
∂∗ (−Σf)∗

(−Σf)∗ is surjective, forcing ∂∗ = 0. Thus, ∂ ' ∗. Then recall that the sequence B
r

C
∗

ΣA is a fiber

sequence. Then r : [C,B] [C,C] is surjective. Pick a lift for the identity and call it g : C B. This
is a homotopy section of r. Then we look at the exact triangle:

π∗(A) π∗(B)

π∗(C)

π∗(f)

π∗(r)

π∗(∂) π∗(g)
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Note that π∗(∂) = 0 and π∗(r) admits a section (namely, π∗(g)), and we observe that we have a split short
exact sequence. Thus, π∗(f ∨ r) = π∗(f)⊕ π∗(r) is an iso.

The statement about epis can be derived from the first part, by taking the fiber f : F A of g :
A B and then observing that f is mono.

Observe that the splitting is not natural, since it involved a choice of a lift.

Definition 1.4. A sequence of spectra is E-exact if the sequence becomes exact after smashing with E.
The rest of the (E-)notions from 1.1 are defined similarly.

Definition 1.5. A spectrum I is E-injective if for each E-mono f : A B, and each map g : A I,
there is an up to homotopy solution to the diagram

A

B

I
g

f
h

Remark 1.6. Miller’s approach in defining these notions is different. Fortunately, one can reconcile some
of the differences. Miller considers ring spectra right away, so let us do the same. From this point on we
will assume that E is a homotopy associative ring spectrum, with structure maps e : S E (unit) and

µ : E ∧ E E (multiplication), such that the following diagrams commute up to homotopy

S ∧ E E ∧ E E ∧ S

E

e ∧ 1 1 ∧ e

µ

E ∧ E ∧ E E ∧ E

E ∧ E E

µ ∧ 1

1 ∧ µ µ

µ

The diagram on left tells us that E is unital (up to homotopy), and the one on the right tells us that E is
(homotopy) associative.

Miller calls a spectrum I E-injective if it is a retract of E ∧ X for some spectrum X. Our notion
of E-injectivity implies this. For any spectrum X, the map e ∧ 1 : X E ∧ X is E-mono. Indeed,
1 ∧ e ∧ 1 : E ∧ X E ∧ E ∧ X admits a homotopy retraction, namely, the map µ ∧ 1. Then, by E-
injectivity of I, we obtain a homotopy retraction r : E ∧ I I. The implication goes the other way too.
To see this consider the diagram

A

B

E ∧A

E ∧B

E ∧ E ∧X

E ∧X

I

e ∧ 1

f

e ∧ 1

1 ∧ f

g

µ ∧ 1
r

h

1 ∧ (sg)

rh(e ∧ 1)

s

The map h exists, since E ∧ A E ∧ B is a mono. Just to check: rh(e ∧ 1)f = rh(1 ∧ f)(e ∧ 1) =
r(µ ∧ 1)(1 ∧ (sg))(e ∧ 1) = r(µ ∧ 1)(e ∧ (sg)) = rsg = g.

Another thing that may be somewhat unclear is Miller’s definition of E-exactness. By his definition,
A1 A2 . . . An is E-exact if we get an exact sequence when we apply the functor [−, I] for
E-injective spectra I. Our definition implies that of Miller. It suffices to look at the case n = 3. Suppose
we are given a map, f : A2 I, such that fj1 ' ∗, where jk denotes the map Ak Ak+1. Since,

E ∧ A1 E ∧ A2 E ∧ A3 is exact, we get a map g : E ∧ A3 E ∧ I, such that g(1 ∧ j2) = 1 ∧ f .
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Then we consider, rg(e ∧ 1) : A3 I, where r : E ∧ I I is the retraction of e ∧ 1 obtained in the
previous paragraph. This map extends f : rg(e∧ 1)j2 = rg(1∧ j2)(e∧ 1) = r(1∧ f)(e∧ 1) = r(e∧ 1)f = f .
I am not sure whether the implication goes in the other direction or not. At this point we know that our
assumptions provide us with a more general setting, and it is sufficient for our later discussion.

When people define injective objects after that they usually define resolutions.
Definition 1.7. An E-Adams resolution (or an E-resolution) of a spectrum X is an E-exact sequence

∗ X I0 I1 . . .
i0 i1 i2

such that Ij’s are E-injective.

Remark 1.8. In general, the fact that we have an E-exact sequence does not imply is+1is ' ∗. Indeed,

suppose we have the obvious map HZ HF2. (HG is the Eilenberg-MacLane spectrum for the abelian

group G.) Smashing it with HQ produces HQ ∧HZ HQ ∧HF2. The target spectrum is trivial, since
π∗(HQ ∧ HF2) = H∗(HF2;Q) = 0, so the map is forced to be trivial. However, in our setting, where the
target objects are E-injective the statement does follow through. Namely, suppose I is E-injective, and we
are given a map ν : A I, such that 1 ∧ ν : E ∧ A E ∧ I is null. If σ : I B is the cofiber of ν,
then 1 ∧ σ : E ∧ I E ∧ B is the cofiber of 1 ∧ ν ' ∗. This easily implies that 1 ∧ σ is mono, or that
σ is E-mono. Then we get a retraction r : B I. Thus, ν = rσν ' ∗. We conclude that in the above
sequence, is+1is ' ∗ for all s ≥ 0.

Whenever people define resolutions after that what they want to check is whether or not they lift maps.
Proposition 1.9. Given a diagram of form

∗ X I0 I1 . . .
i0 i1 i2

∗ Y J0 J1
. . .

j0 j1 j2

f f0 f1

where the horizontal sequences are E-exact, and f is any map, there is a lift of f to a map of resolutions.
Furthermore, this lift is unique up to chain homotopy.

Proof. Suppose we have lifted the map up to n-th level (regard f at level −1). Then we have a diagram

In−1 In In+1
in in+1

Jn−1 Jn Jn+1
jn jn+1

fn−1 fn fn+1

Note that jn+1fnin = jn+1jnfn−1 ' ∗. Then according to 1.6, there exists fn+1, such that fn+1in+1 =
jn+1fn.

For the second part of the proposition, it suffices to prove that there is contracting chain homotopy for
f ' ∗. Set h0 = ∗. Then suppose we have constructed the chain homotopy h up to level n. We have the
following diagram,

In−1 In In+1
in in+1

Jn−2 Jn−1 Jn
jn−1 jn

fn−1 fn
hn−1 hn

hn+1

We know that fn−1 = hnin + jn−1hn−1. Then we observe that (fn − jnhn)in = fnin − jnhnin = jnfn−1 −
jnfn−1 + jnjn−1hn−1 = ∗. This implies that there exist hn+1, such that fn = hn+1in+1 + jnhn.
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Another thing people would demand is the existence of resolutions. Let’s show that there are E-
resolutions. Here, we will definitely need that fact that E is an associative ring spectrum. The following
resolution is called canonical or standard.

Lemma 1.10. Let In = E∧(n+1) ∧X and let δi : In In+1 be the map 1∧i ∧ e ∧ 1∧(n+1−i) ∧ 1X , for
i ∈ {0, 1, . . . , n+ 1}. Then the sequence

∗ X I0 I1 . . .δ δ δ

where δ : In In+1 is the map
∑n+1
i=0 (−1)iδi, is an E-resolution.

Proof. It is fairly clear that In’s are injective. Thus, we need to show that the sequence is E-exact.
In fact what we are dealing with here is a cosimplicial spectrum, i.e. a functor ∆ Spec, where ∆ is
the category of simplicial objects and Spec is the category of spectra. This cosimplicial spectrum sends
[n] to E ∧ In−1 (regard, X = I−1). The coface maps are di = 1 ∧ δi, and codegeneracy maps are sj =

1∧(j−1) ∧ µ ∧ 1∧(n−j+1) ∧ 1X : In+1 In. It is rather tedious to check the cosimplicial identities, so I’ll
skip doing that. Here are the identities,

djdi = didj−1 (i < j)

sjdi = disj−1 (i < j)

= 1 (i = j, j + 1)

= di−1sj (i > j + 1)

sjsi = si−1sj (i > j).

The fact that δ2 = 0 follows formally from these identities. Now if we define ρ =
∑n
i=0(−1)isi, then another

tedious computation will reveal that ρδ + δρ = 1, i.e. that ρ is a contracting homotopy. The moral of the
“proof” is that the sequences constructed from cosimplicial objects give rise to exact sequences.

2. The Construction

Here is the plan. First we define the notion of an E-Adams tower, which should remind the audience
of Postnikov towers. This tower will give rise to an exact couple, which will produce the Adams spectral
sequence. Before constructing the exact couple, we will show that an E-Adams tower can be reconstructed
from an E-resolution.

Definition 2.1. A diagram of the following form

X X0 = I0 I1

X1 Σ−1I2

X2 Σ−2I3

..
.

i0 = ω0

ω1

ω2

g0

g1

g2

κ0

κ1

κ2

will be called a tower, if the sequences Xn+1 Xn Σ−nIn+1 are fiber sequences. We can derive a
sequence of the following form out of the tower:

∗ X I0 I1 . . .
i0 i1 i2

where in is the composition In ΣnXn In+1. If the resulting sequence is an E-resolution, then we
call the tower an E-Adams tower.

Remark 2.2. One thing that we can infer from any tower, is the fact is+1is ' ∗. It follows from the
following sequence,
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In ΣnXn In+1 Σn+1Xn+1 In+2

The part of the sequence that is labeled green is a fiber sequence, hence the composition is null.

Proposition 2.3. Every E-resolution gives rise to an E-Adams tower.
Proof. Suppose that we have an E-resolution of X as in 2.1. We can break this resolution into short

exact sequences,

X

I0

C1

I1

C2

C3

I2 . . .
i0

ρ1

i1

σ1

i2

ρ2

i3

ρ3

σ2

We define ρ1 to be the cofiber of i0, and let σ1 be an induced map, such that σ1ρ1 = i1. One can easily
show that ρ1 is E-epi and σ1 is E-mono. Now if we show that i2σ1 ' ∗, we can iterate the construction and
inductively construct the short exact sequence decomposition. Since, i2σ1ρ1 ' ∗, we conclude that i2σ1 ' ∗,
for ρ1 is E-epi and I2 is E-injective.

Now we construct the E-Adams tower inductively. Suppose that we have constructed the tower up
to the level n − 1, and it satisfies the following properties: (a) κn−1 = (Σ−n+1σn)λn−1, where λn−1 :

Xn Σ−n+1Cn; (b) λn−1ωn−1 ' ∗. Now let Xn be the fiber of κn−1 (we don’t really have a choice here).
Define λn via the following diagram:

Xn

Σ−nCn+1

Xn−1

Σ−n+1Cn Σ−n+1In

λn

gn−1

λn−1

κn−1

∂

Thus, we can define κn to be (Σ−nσn+1)λn. We are left to construct ωn, such that λnωn ' ∗. Note,

κn−1ωn−1 = (Σ−n+1σn)λn−1ωn−1 ' ∗. This implies that there is a map ω : X Xn, such that ωn−1 =
gn−1ω. Then let us look at the diagram,

X Xn Σ−nCn+1

Xn−1 Σ−n+1Cn

Σ−nIn

ω

ψ
∂

gn−1

λn

λn−1

∂

Σ−nρn+1

Notice that ∂λnω = λn−1gn−1ω = λn−1ωn−1 ' ∗. Thus, there is ψ, such that λnω = (Σ−nρn+1)ψ. Define
ωn to be ω − ∂ψ. Let’s check: λnωn = λn(ω − ∂ψ) = λnω − λn∂ψ = λnω − (Σ−nρn+1)ψ = 0. This finishes
the inductive step of the construction of the tower. One can easily check that associated sequence to this
tower is the one that we started off with.

Notice that we can extract another sequence from the E-Adams tower:

X = C0 Σ−1C1 Σ−2C2
. . .

γ0 γ1 γ2

All the maps are the boundary maps of the appropriate cofiber sequences. We will refer to this sequence as
the associated inverse sequence. Note that after smashing this sequence with E all the maps become trivial.
Note also that the cofiber of γn is Σ−nIn. This sequence is what Ravenel calls an E-Adams resolution in
[RGB].

Suppose we are given an E-Adams tower. To get the spectral sequence we construct an exact couple,
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D D

E

i

jk

where D =
⊕

s,t πt−s(Xs), E =
⊕

s,t πt(Is) are double graded groups. The maps are defined as follows,

i : Ds+1,t+1 = πt−s(Xs+1)
πt−s(gs)

πt−s(Xs) = Ds,t

j : Ds,t = πt−s(Xs)
πt−s(κs)

πt−s(Σ
−sIs+1) = Es+1,t

k : Es+1,t = πt−s(Σ
−sIs+1)

πt−s(∂s)
πt−s(ΣXs+1) = Ds+1,t

It is not difficult at all to understand that we have an exact couple here. Thus, we obtain a spectral sequence
(Er, dr), which we call the Adams spectral sequence.

Remark 2.4. Before going into the next section let us comment on the grading of the differentials. With
care and the use of induction one can show that in r-th derived couple the maps have the following grading:
ir : Ds+1,t+1

r Ds,t
r , jr : Ds,t

r Es+r,t+r−1
r and kr : Es,tr Ds,t

r . Thus, dr : Es,tr Es+r,t+r−1
r .

Note that Es,t = πt(Is) = 0 if s < 0, which implies that Es,tr = 0 if s < 0. If r > s, the differentials entering
into Es,tr are all clearly 0. Thus, we see that E

s,t
s+1 ⊃ E

s,t
s+2 ⊃ . . . , and Es,t∞ =

⋂
r>s E

s,t
r . Notice also that Es,tr

may not ever stabilize to Es,t∞ .

There is an alternate exact couple that gives rise to the same spectral sequence. This exact couple actually
arises from the associated inverse sequence. We’ll write Kn = Σ−nCn. Replace D with F =

⊕
s,t πt−s(Ks).

The maps are defined as follows:

i : Fs+1,t+1 = πt−s(Ks+1)
πt−s(γs)

πt−s(Ks) = Fs,t

j : Fs,t = πt−s(Ks)
πt−s(λs)

πt−s(Σ
−sIs) = Es,t

k : Es,t = πt−s(Σ
−sIs)

πt−s(Σ−sρs+1)
πt−s(ΣKs+1) = Fs+1,t

where ρs was defined in the proof of 2.3. There are maps from νs : Ks Xs, such that κsνs = Σ−s(σs+1),
gsνs+1 = γsνs and (Σ−s+1ρs)νs = ∂s. This produces a map between the exact couples that induces the
identity map on the E1-page. We will use this exact couple to prove statements about the convergence of the
Adams spectral sequence.

3. A Homological Algebra Detour

Before we embark onto our journey to investigate the properties of the Adams spectral sequence, I would
like to pause to discuss some of the homological algebra machinery that we may need. Most of the discussion
is taken from [RGB, A.1.1., A.1.2], and we make some use of [MLH].

We begin by defining the notion of a Hopf algebroid. Start with a commutative ring k, and two associative,
commutative k-algebras A and Γ. The pair (A,Γ) along with maps ηL, ηR : A Γ (left and right units),

ε : Γ A (counit), ∆ : Γ Γ⊗AΓ (comultiplication) and c : Γ Γ (conjugation), will be called a Hopf
algebroid if η,∆ are A-bimodule maps, with respect A-bimodule structure of Γ given by the multiplication,
(ηL · 1 · ηR) : A⊗k Γ⊗k A Γ, and if the following diagrams commute,

A

A

Γ

ε

ηL

ηR
Γ⊗A Γ

Γ

Γ

∆

ε⊗ 1

1⊗ ε
Γ⊗A Γ⊗A Γ Γ⊗A Γ

Γ⊗A Γ Γ⊗A Γ

∆⊗ 1

1⊗∆ ∆

∆
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Γ Γ

Γ

c

c

A Γ

Γ

ηL

ηR c

Γ ΓΓ⊗k Γ

Γ⊗A Γ

A AΓ

∆
ε ε

ηL ηR

c · 1 1 · c

In the last diagram, we require the existence of dashed maps that make the diagram commute. A graded Hopf
algebroid is simply a Hopf algebroid, such that A and Γ are graded, A is concentrated in dimension 0, and
all the structure maps are grading preserving. A graded Hopf algebroid is connected if ε is an isomorphism
on degree 0. We will often write Γ for the Hopf algebroid at hand, of course, keeping A in mind all the time.

Remark 3.1. One can observe that Hopf algebroids are cogroupoid objects in the category of associative,
commutative k-algebras. One can backtrack and understand that this observation can be taken as the
definition Hopf algebroids. For (slightly) more detail, see [RGB, A.1.1].

Definition 3.2. A left Γ-comodule M , is a left A-module along with a comultiplication map ψ :

M Γ⊗AM , which is left A-linear, and such that the following diagrams commute,

M Γ⊗AM

Γ⊗AM Γ⊗A Γ⊗AM

ψ

ψ 1⊗ ψ

ψ ⊗ 1

M

M

Γ⊗AM
ψ

ε⊗ 1

A map of left Γ-comodules is a left A-linear map f : M N , such that the follwoing diagram commutes,

M N

Γ⊗AM Γ⊗A N

f

ψ ϕ

1⊗ f

The notions of right Γ-comodules and right Γ-comodule maps are defined similarly.

Note that left Γ-comodules form an additive category. However, it is not always true that this category
is abelian, due to lack of kernels. The following proposition shows that the category will be abelian under
certain constraint.

Proposition 3.3. If Γ is flat as a right A-module, then the category of left Γ-comodules is abelian.
Proof. The functor Γ ⊗A − is exact. Then if f : M N is a Γ-comodule map, then we have the

following commutative diagram,

0 ker f M N cokerf 0

0 Γ⊗A ker f Γ⊗AM Γ⊗A N Γ⊗A cokerf 0

f

ψ ϕ

1⊗ f

The induced maps are uniquely determined and are left A-linear, since Γ ⊗A − can be viewed as a functor
from the category of left A-modules to itself. A trivial check will show that ker f and cokerf with respective
comultiplications are the kernel and cokernel of f in the category of left Γ-comodules.

Remark 3.4. Since A is commutative, then there is a canonical equivalence between left and right
A-modules, and the functor Γ⊗A − turns into −⊗A Γ modulo a natural isomorphism that comes from the
conjugation on Γ. Thus, Γ is left A-flat iff it is right A-flat. In a situation like this, we will call Γ flat over A.

We would like to show that there are enough injective Γ-comodules. We start off with a general lemma.
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Lemma 3.5. Suppose A and B are abelian categories. Let G : A B : F be an adjunction, where F
and G are additive, and G is exact and faithful. Then if B has enough injectives, then so does A.

Proof. Let A be an object in A. Then there is a monomorphism i : G(A) I, where I is injective in

B. Then we have an adjoint map i∗ : A F (I). We’ll show two things: i) i∗ is mono, ii) F (I) is injective

in A. We have an exact sequence ker i∗ A F (I), then G(ker i∗) G(A) I is exact. Thus,

G(ker i∗) G(A) is null, and so is ker i∗ A, implying that ker i∗ = 0. F (I) is injective iff the functor

[−, F (I)] : A Ab sends monos to epis. The fact that this is the case follows from the following diagram

A B

Ab

G

[−, F (I)] [−, I]

which commutes up to a natural isomorphism.

Proposition 3.6. The pair G : Γ − Comod A −Mod : F , where G is the forgetful functor and
F (N) = Γ⊗A N , with comultiplication ∆⊗ 1, is an adjoint pair.

Proof. We will give the natural transformations required by the adjunction, and leave it to the reader

to verify that they are inverses of each other. The maps are θ : HomA[M,N ] HomΓ[M,Γ ⊗A N ] : φ –
θ(f) = (1⊗ f)ψ and φ(g) = (ε⊗ 1)g.

Corollary 3.7. The category of left Γ-comodules has enough injectives.

Remark 3.8. We could have developed the discussion in a highly general setting. This is all part of
what MacLane calls relative homological algebra. We will stick to left Γ-comodules in our discussion. To see
a discussion on relative homological algebra, see [MLH, Ch. IX]. We will make a use of relative homological
algebra later on in this section, when we develop the notion of relative Ext.

Thus, we are in a position of defining derived functors. We define ExtsΓ(M,−) to be the s-th de-
rived functor of HomΓ(M,−). We can assemble these abelian groups into a single graded abelian group,
ExtΓ(M,N) =

⊕
s ExtsΓ(M,N). Observe that Ext0

Γ(M,N) = HomΓ(M,N). We also write Ext+
Γ (M,N) =⊕

s>0 ExtsΓ(M,N). Note that if we are working in a graded setting ExtΓ(M,N) inherits another grading
from the grading in the category. The reason for the introduction of this graded Ext is the fact that it
becomes a graded ring if N is a comodule algebra over Γ, and M is projective over A. N is a comodule
algebra if it has a commutative, associative A-algebra structure, and the comultiplication ϕ is an A-algebra
map. However, in order to talk about this structure we need to learn about resolutions by relative injectives.

Definition 3.9. A relatively injective Γ-comodule is a direct summand of Γ⊗AN , for some left A-module
N . A relatively injective resolution of M is a an exact sequence of form

0 M I0 I1 I2 . . .

such that Ii’s are relatively injective and the sequence is split-exact over left A-modules.

These resolutions do behave like injective resolution. However, we first show that there are enough
relatively injectives in Γ − Comod. The notion of “enough” is used to accommodate the existence of
relatively injective resolutions.

Lemma 3.10. Given any left Γ-comodule M , there exists a relatively injective I and a monomorphism

M I that is split over A.
Proof. Actually this is really simple. We can take I = Γ⊗AM and the monomorphism to be ψ coming

from the Γ-comodule structure of M . Clearly, I is relatively injective. The map ε ⊗ 1 : Γ ⊗A M M
provides us with a retraction of ψ over left A-modules.

Here is another lemma that somehow justifies the use of the nomenclature “injective” for relative injectives.

Proposition 3.11. Suppose i : M N is a monomorphism of left Γ-comodules, and f : M I is

any left Γ-comodule map, and I is relatively injective. Then there is a map g : N I, such that gi = f .
Conversely, any I with the lifting property given as above has to be relatively injective.
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Proof. The converse statement is easy. As in the previous lemma the Γ-comodule structure map ι :
I Γ⊗A I is split over A. Thus, we obtain a retraction r : Γ⊗A I I of ι, which proves the statement.

Now let’s show the direct statement. Suppose that j : I Γ⊗AR is an inclusion and π : Γ⊗AR I
is a corresponding projection, that comes from relative injectiveness of I. Here, of course, R is just a left
A-module. So, we obtain a map jf : M Γ ⊗A R. If we take the adjoint of this map with respect to
the adjunction in 3.6, then we get left A-module map (jf)∗ : M R. Let s : N M be the splitting

of i over A. Thus, we have a map (jf)∗s : N R. Take the adjoint of this map and compose it with

π, then we get π((jf)∗s)∗ : N I. This is in fact the lift that we are looking for. The reader may
verify the validity of the following derivation: π((jf)∗s)∗i = π(1 ⊗ (jf)∗)s∗i = π(1 ⊗ (jf)∗)(1 ⊗ s)ϕi =
π(1⊗ (jf)∗)(1⊗ s)(1⊗ i)ψ = π(1⊗ (jf)∗)ψ = πjf = f .

The reader can easily verify the following proposition.
Proposition 3.12. Given a diagram of form

0 M I0 I1 . . .
i0 i1 i2

0 N J0 J1
. . .

j0 j1 j2

f f0 f1

where the horizontal sequences are relatively injective resolutions, and f is any map of left Γ-comodules, there
is a lift of f to a map of resolutions. Furthermore, this lift is unique up to chain homotopy.

Proof. This is an easy consequence of 3.11.

Remark 3.13. One ought to notice some the similarities between proofs presented in section 1 to the
ones presented just above. In fact, we will see later that the relative injective resolutions have nice interaction
with the Adams spectral sequence.

The previous discussion allows us to define relative derived functors. To be specific, given a left exact
functor F : Γ − Comod C, where C is some abelian category, we define R̃nF (N) = Hn(I), where
I denotes a relatively injective resolution of N , and call them relative right derived functors. A standard

argument shows that everything is well-defined. We’ll write Ẽxt
n

Γ(M,−) for R̃nHomΓ(M,−). Again, we

can assemble these groups into a single one: ẼxtΓ(M,N) =
⊕

n Ẽxt
n

Γ(M,N). The group Ẽxt
+

Γ (M,N) is

defined similarly. The graded group ẼxtΓ(M,N) is not necessarily the same as ExtΓ(M,N). Even though
the injectives are relatively injective, an injective resolution may not be relatively injective resolution, since
the maps may not split over A.

Proposition 3.14. If M is projective as a left A-module, then ẼxtΓ(M,N) ∼= ExtΓ(M,N).
Proof. It will suffice to show that relative injectives are HomΓ(M,−) acyclic if M is projective over A.

Suppose I is a relative injective. Suppose I is a direct summand of Γ ⊗A L for some A-module L. Then
Ext+

Γ (M, I) is a direct summand of Ext+
Γ (M,Γ⊗AL). Thus, it will suffice to show that Ext+

Γ (M,Γ⊗AL) = 0
for all A-modules L. Let I denote an injective resolution of L, i.e. H+(I) = 0 and H0(I) = L. Then from 3.5,
3.6 we know that Γ⊗A I is an injective resolution of Γ⊗A L. Thus, Ext+(M,Γ⊗A L) = H+(HomΓ(M,Γ⊗A
I)) = HomΓ(M,H+(Γ⊗A I)) = HomΓ(M,Γ⊗A H+(I)) = 0.

The advantage of looking at Ẽxt is that it provides manageable ways of computing Ext. It will make
the discussion on the E2-page of the Adams spectral sequence much easier. Before stating and proving the
proposition, we need a minor definition. Given two left Γ-comodules M and N , we can take their tensor
product over A, M ⊗AN , where the right A-module structure of N is given in the obvious way. We can give
M ⊗AN left Γ-comodule structure via the comultiplication M ⊗AN (Γ⊗AM)⊗A (Γ⊗AN) Γ⊗A
(M ⊗A N), where the middle tensor product in the middle term is taken with respect to left A-module
structure, and the last map sends (α⊗m)⊗ (β ⊗ n) to (αβ)⊗ (m⊗ n).

Proposition 3.15. Suppose we are given four left Γ-comodules M1, M2, N1 and N2. Then there is
natural external product map

^: ẼxtΓ(M1, N1)⊗A ẼxtΓ(M2, N2) ẼxtΓ(M1 ⊗AM2, N1 ⊗A N2).

Proof. Let Ii denote a relatively injective resolution for Ni, where i ∈ {1, 2}. We claim that I1 ⊗A I2 is
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a split resolution for N1 ⊗AN2, i.e. it is split acyclic as an A-module complex and H0(I1 ⊗A I2) = N1 ⊗N2.

Let I be a relatively injective resolution for N1 ⊗A N2. Then there is a map α : I1 ⊗A I2 I, unique up
to chain homotopy. Then if ν1 : M1 I1

n and ν2 : M2 I2
m, represent two elements of Ẽxt(M1, N1)

and Ẽxt(M2, N2), respectively. Then we have an element α(ν1 ⊗ ν2) : M1 ⊗A M2 In+m. The element

of Ẽxt(M1 ⊗A M2, N1 ⊗A N2) that it represents is precisely [ν1] ^ [ν2]. A tedious check can verify that
everything is well-defined.

Now let’s go back to lemma 3.10. The proof of this lemma not only tells us about the existence relatively
injective resolutions, it also gives us a recipe of constructing relatively injective resolutions. In what follows
we will use the bar notation instead of the tensor product.

Definition/Proposition 3.16. Let M be a left Γ-comodule. Define the complex DΓ(M) as follows:

Dn
Γ(M) = Γ⊗ Γ

⊗n ⊗M , where Γ ⊂ Γ is the kernel of ε, and with the differential ∂ : Dn
Γ(M) Dn+1

Γ (M)

∂(γ0|γ1| . . . |γn|m) =

n∑
k=0

(−1)k(γ0| . . . |∆(γk)| . . . |m) + (−1)n+1γ0| . . . |ψ(m),

where we use bars instead of tensor product signs. All the tensors are taken over A. The complex D∗Γ(M) is
well defined, and is a relatively injective resolution of M , called the cobar resolution.

Proof. The first “problem” with the definition is that ∂ defines a map from Γ⊗Γ
⊗n⊗M to Γ⊗(n+2)⊗M .

We need to show that it lands in Γ⊗ Γ
⊗n+1 ⊗M . The observation to make here is that Γ⊗ Γ

⊗n+1 ⊗M is
the kernel of the map σn : Γ⊗ Γ⊗n+1 ⊗M

⊕n
k=1 Γ⊗ Γ⊗n ⊗M , where

σn(γ0| . . . |γn|m) =
⊕
k

γ0| . . . |ε(γk)| . . . |γn|m.

We now have to verify that σn∂ = 0. The computation is straightforward, but tedious, so is left to the reader.
The second thing that we must verify is whether or not the differentials are Γ-comodule maps. This is

easy to verify, the main ingredient being the coassociativity of Γ.
Finally, to show that the DΓ(M) is a relatively injective resolution we have to notice that it comes from

a cosimplicial object in Γ-comodules. We can write it as D•. We set D0 = M and Dn = Γ⊗ Γ⊗(n−1) ⊗M if
n > 1. The face maps dk : Dn Dn+1 and the degeneracy maps are sk : Dn Dn−1:

dk(γ0| . . . |γn|m) =

{
γ0| . . . |∆(γk)| . . . |γn|m if k 6= n

γ0| . . . |γn|ψ(m) if k = n

sk(γ0| . . . |γn|m) = γ0| . . . |ε(γk)| . . . |γn|m.

One can check that this is a simplicial set. The maps dk induce the differentials and sk induce the contracting
homotopy. In fact, over Dn

Γ(M) the only non-vanishing sk is s0.

For any Γ-comodule M , we can construct a complex called the cobar complex, CΓ(M), such that its
cohomology is equal to the relative Ext. We will define the cobar complex to be HomΓ(A,DΓ(M)). From the

previous discussion it follows right away that the cohomology of this complex ought to give us ẼxtΓ(A,M) =
ExtΓ(A,M). However, there is a way of expressing the cobar complex, which we will use in the next section.
It is also useful for certain computations.

Proposition 3.17. The A-module CnΓ (M) is isomorphic to Γ
⊗n ⊗M , and the differentials are defined

as in definition 3.15.

Proof. This is really the adjunction in proposition 3.7: CnΓ (M) = HomΓ(A,Γ⊗Γ
⊗n⊗A) ∼= HomA(A,Γ

⊗n⊗
A) ∼= Γ

⊗n ⊗A.

From this point of view one can also easily see that the graded A-algebra structure on ExtΓ(A,M), if M
is a Γ-comodule algebra, is the same as the A-algebra structure induced from the natural A-algebra structure
on CΓ(M), obtained by concatenation.

If we have any Γ-comodule, M , we can impose a natural A-algebra structure on ẼxtΓ(M,M)

_: ẼxtΓ(M,M)⊗A ẼxtΓ(M,M) ẼxtΓ(M,M).

10



Let ν : M In and µ : M Im represent elements of ẼxtΓ(M,M). Then we define [µ] _ [ν] via the
following diagram

Im . . .

M . . . In

In+m

M

µ µ̃

ν

Namely, [µ] _ [ν] is the class of µ̃ ◦ ν. One can easily verify that the definition is valid. We will refer to this
as the Yoneda algebra structure. Generally speaking it is hard to determine the Yoneda structure; however,
in one case we can determine it, and in fact, we get something quite nice!

Proposition 3.18. The multiplications _ and ^ agree on ẼxtΓ(A,A). Furthermore, they are commu-
tative.

Proof. Applying an Eckmann-Hilton argument for these two products will yield the result. Notice that
1 : A A yields the identity for _ and ^. We are left to demonstrate that

(κ ^ λ) _ (ν ^ µ) = (µ _ λ) ^ (ν _ κ).

Let us denote the degrees of the symbols above by their Latin equivalents. Let I be a relatively injective
resolution of A. We will abuse the notation by identifying elements with the representing maps. Then

(κ ^ λ) _ (ν ^ µ) = κ̃ ^ λ ◦ (ν ^ µ) = κ̃ ^ λ ◦α ◦ (ν⊗µ) = α ◦ (κ̃⊗ λ̃) ◦ (ν⊗µ) = α ◦ ((κ̃ ◦ ν)⊗ (λ̃ ◦µ)) =
α ◦ ((κ _ ν)⊗ (λ _ µ)) = (µ _ λ) ^ (ν _ κ).

4. The E2-Page & The Convergence

In order to have a nice spectral sequence with nice E2-page and decent convergence, we need some
assumptions on our ring spectrum. We will state the assumptions later. Under the assumptions on the ring
spectrum, we can show that E-completion of spectra exist and the functor Ext makes sense. All we need to
know is that HFp and BP satisfy those conditions. We’ll talk about the conditions later.

Definition 4.1. If we have a sequence

X0 X1 X2
. . .

f0 f1 f2

then the homotopy limit of the sequence, holim Xs, is the fiber of the following map
∏
Xi

∏
Xj, where

(j − 1)-th component of the map is pj−1 − fjpj.

Definition 4.2. An E-Adams tower is simple if the associated inverse sequence has a trivial homotopy

limit, i.e. holim Kn ' ∗.

Definition 4.3. An E-completion of a spectrum X is another spectrum X̂, with a map X X̂ that
induces an isomorphism on E∗-homology, and X̂ has a simple E-Adams tower.

Before stating the main theorem, let me mention something about E∗E that we will need. If we assume
that E∗E is flat over π∗(E), then the pair (π∗(E), E∗E) is a graded Hopf algebroid. This assumption on E∗E
will be referred to as flatness of E. To specify the Hopf algebroid structure, we need to provide the structure
maps – ηL, ηR : π∗(E) E∗E, ∆ : E∗E E∗E⊗π∗(E)E∗E, ε : E∗E π∗(E), and c : E∗E E∗E.
We can define some of these maps right away: ηL = π∗(e ∧ 1), ηR = π∗(1 ∧ e), ε = π∗(µ), and c = π∗(τ),

where τ : E ∧ E E ∧ E denotes the twist map. To define ∆ we’ll need the following lemma, which will
also be used later.

Lemma 4.4. There is a natural map

E∗E
⊗n ⊗π∗(E) E∗(X) π∗(E

∧(n+1) ∧X),
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which an isomorphism.
Proof. We will define the map in due course. Actually, let’s look at the case n = 1. We define

m : E∗E ⊗π∗(E) E∗(X) π∗(E
∧2 ∧X),

so that if α ∈ π∗(E∧E), β ∈ π∗(E∧X), then m(α⊗β) = (1∧µ∧1)(α∧β). This map is an isomorphism for
the following reason. The functors E∗E⊗π∗(E)E∗(−) and π∗(E

∧2∧−) = (E∧E)∗(−) are homology theories
that agree on S0 via m (m can be thought of as a map between homology theories). Thus, they ought to be
naturally isomorphic via m. Note that we implicitly used the flatness of E to conclude that E∗E⊗π∗(E)E∗(−)
is a homology theory. The construction of the rest of the isomorphisms is done via induction.

We define ∆ as π∗(1 ∧ e ∧ 1) : π∗(E ∧E) = E∗E π∗(E ∧E ∧E) ∼= E∗E ⊗π∗(E) E∗E. It is a routine
check to verify the axioms of Hopf algebroid.

Theorem 4.5. If E is flat, and X has an E-completion, the Adams spectral sequence (Er, dr) for X

converges to π∗(X̂) and

E
s,t
2 = Exts,tE∗E

(π∗E,E∗(X)),

where Exts,tΓ (M,−) denotes the t-th graded piece of the s-th derived functor of HomΓ(M,−) over the category
of graded left Γ-comodules.

We will discuss the filtration of π∗(X̂) in due course.

Remark 4.6. We can show that E2-page has the above-mentioned form after a discussion on “uniqueness”
of Adams spectral sequence. Recall that we have constructed the Adams spectral sequence from the E-Adams
tower, and there could be lots of them, and in principle, they may give us different spectral sequences.
Theorem 3.5 hints us that starting from E2-page, the spectral sequences must be isomorphic. This is what
we mean by “uniqueness” of the spectral sequence. Let T1

X and T2
X be two E-Adams towers for X. These

two towers have corresponding E-resolutions, R1
X and R2

X for X. Lifting the identity, provides us with a

chain homotopy equivalence ρ : R1
X R2

X . We can lift this map to a map of towers τ : T1
X T2

X . This

induces a map between the corresponding spectral sequences, τ∗ : E
(1)
∗ E

(2)
∗ . Now lets see what τ∗ does

on E1-page. The differentials are easy to compute:

E
s,t
1 E

s+1,t
1D

s,t
1

πt(Is) πt(Is+1)πt−s(Xs+1)

d1 = πt(js+1)

The induced maps between the E1-pages are, πt(ρs) : πt(I
(1)
s ) πt(I

(2)
s ). Since ρ is chain homotopy

equivalence, then so is πt(ρ∗) for all t. Thus, πt(ρ∗) induces an isomorphism on cohomology of πt(I
(k)
∗ ).

However, E
(k)
2

s,t = Hs(πt(I
(k)
∗ )). A similar discussion proves that any map X Y induces a natural map

between the spectral sequences, “modulo E1-page”. This statement applies in general and no assumptions
were needed on E other than the ones made in section 2.

From the previous remark we can conclude that we can use any E-resolution to compute E2-page of the
Adams spectral sequence. We will use the one that we already know of, i.e. the canonical resolution. The
E1-page look as follows, Es,∗1 = π∗(Is) = π∗(E

∧(s+1) ∧X) = E∗E
⊗s ⊗π∗(E) E∗(X). After some examination

one realizes that the sequences we get on E1-page

0 E∗(X) E∗E ⊗π∗(E) E∗(X) E∗E
⊗2 ⊗π∗(E) E∗(X) . . .

is the cobar complex. The cohomology of this complex is known to beH∗(CE∗E(E∗(X))) = Ext∗,∗E∗E
(π∗(E), E∗(X))

for section 3.

Now we’ll discuss the convergence of the Adams spectral sequence. Recall that X X̂ induces an
isomorphism on E∗-homology. This implies that E ∧X E ∧ X̂ is an equivalence. The map X X̂
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induces a (natural) map between the canonical resolutions. Thus, we obtain a map from one spectral sequence

to the other one E∗ Ê∗. On page 1, the map looks as follows, Es,t1 = πt(E
∧(s+1) ∧X) πt(Ê

∧(s+1) ∧
X̂) = Ê

s,t
1 . This is clearly an isomorphism. Therefore, E∗ Ê∗ is an isomorphism. If we pick any two

resolutions of X and X̂, respectively, we are guaranteed by 3.6, that their spectral sequences are isomorphic,
in a natural way, starting from page 2. Thus, we will study the convergence of the spectral sequence of X̂.

It will be convenient to phrase the convergence in terms of proposition. There, we will also specify the
filtration of π∗(X̂).

Proposition 4.7. Suppose X̂ has a simple E-Adams tower. Then

Es,t∞
∼= imπt−s(Ks)/imπt−s(Ks+1)

where the images are taken in πt−s(X̂), and
⋂

imπ∗(Kn) = 0.

Proof. We first show that the intersection of the filtration pieces is 0. Let X̂ K1 K2 . . . be

the inverse sequence associated to a simple E-Adams tower of X̂. Then, by definition, holim Kn = ∗. This

implies, among other things, that lim π∗(Kn) = 0. We will write for the Ln for
⋂

imπ∗(Kn+r) ⊂ π∗(Kn).

Then we have a sequence, L0 L1 L2 . . . , where the maps are the restrictions of π∗(γs)’s. These
restrictions are surjective. We are trying to show that L0 = 0. Suppose that x0 ∈ L0. Then there is x1 ∈ L1,
such that it maps to x0. Similarly, there is an element x2 ∈ L2, that maps to x1. If we continue this way, we

obtain an element (x0, x1, x2 . . . ) of lim π∗(Kn). However, this element must be 0, since the inverse limit is
trivial. This implies that x0 = 0.

I’ll define a map η : Es,t∞ Gs,t/Gs+1,t+1, where Gs,t = imπt−s(Ks) ⊂ πt−s(X̂). Let [α] ∈ Es,t∞ , where
α ∈ Es,t is an element that represents [α]. We would like to show that k(α) = 0. Notice that if r > s, then
dr([α]) = 0. Recall that dr = jrkr; thus, kr([α]) = k(α) ∈ ker jr = im ir. If we take into account the grading
we can show that k(α) ∈ imπt−s−1(Ks+r) ⊂ πt−s−1(Ks+1). Thus, k(α) ∈

⋂
r>s imπt−s−1(Ks+r) = 0, which

shows the claim.
Thus, by exactness of the sequence Fs,t Es,t Fs+1,t, we see that there is β ∈ Fs,t, such that

j(β) = α. There is a quotient map ϕ : Fs,t Gs,t Gs,t/Gs+1,t+1. Thus, we define η([α]) = ϕ(β). We
need to show that the definition is independent of the choice of α and β. This is equivalent to stating that
if [α] = 0, then for any lift β of α, ϕ(β) = 0. I would like to show first that in this case the choice of β does
not matter. Choose β, such that j(β) = α. Then j(β − β) = 0, which implies that β − β ∈ im i, implying
that ϕ(β) = ϕ(β). The fact that [α] = 0 implies that [α] ∈ im dr for some r ≤ s. One can show by induction
that the set of α’s in Es,t that satisfy this property is j(h−1(k(Es−r,t−r+1))), where the maps are shown in
the diagram:

Es−r,t−r+1

Es,t

πt−s(Ks−r+1)

πt−s(Ks)

k

h

j

Thus, we can find γ ∈ Es−r,t−r+1 and β ∈ πt−s(Ks), such that h(β) = k(γ) and j(β) = α. Then ih(β) =

ik(γ) = 0, implying that ϕ(β) = 0, since πt−s(Ks) πt−s(X) factors through ih.
Now suppose that [α] 6= 0. If η([α]) = 0, then there is a maximal r, such that the image of β, λ, in

πt−s(Ks−r+1) that is nonzero. Then i(λ) = 0. That means there is γ ∈ Es−r,t−r+1, such that k(γ) = λ. This
implies that dr([γ]) = [α], thus, contradicting the non-triviality of [α]. This shows that η is injective.

Now let’s show that η is surjective. Suppose we are given α = j(β) ∈ Es,t. This equivalent to saying
that k(α) = 0. If α survives (i.e. is a cycle) up till (r − 1)-th page, then kr([α]) = k(α) = 0. This implies
that dr([α]) = 0. Thus, α is cycle on r-th page as well. This proves that α defines a class in Es,t∞ . Clearly,
η([α]) = ϕ(β), which proves the surjectiveness.

The convergence may look a bit weird. However, it ends up being nice in the cases we may be interested
in. Actually, one thing we need is the existence of the E-completion. These assumptions are taken from
[RGB], and they guarantee the existence of the E-completion.

Assumptions 4.8. (a) E is commutative and associative.
(b) E is connective, i.e. πr(E) = 0 for r < 0.

(c) The map µ∗ : π0(E)⊗ π0(E) π0(E) is an isomorphism.
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(d) Let θ : Z π0(E) be the unique ring homomorphism, and let R ⊂ Q be the largest subring to which
θ extends. Then Hr(E;R) is finitely generated over R for all r.

Theorem 4.9. If X is connective and E satisfies the conditions in 3.8, then X̂ = XG, if π0(E) = G for

the cases G = Q, Z(p), and Z. If G = Fp and π∗(X) are finitely generated, then X̂ = XZp, where Zp denotes
the p-adic integers.

Proof. [ABB, 14.6, 15.∗].

Let me comment on the Adams spectral sequence for E = HFp. The E2-page, is that of classical
Adams spectral sequence, Ext∗,∗Ap∗

(Fp, H∗(X;Fp)). Where Ap∗ is the dual Steenrod algebra. If X is finite

CW-spectrum, the spectral sequence converges to π∗(X)⊗ Zp, which is π∗(X) modulo the non-p-torsion.
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