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Chapter 1

Introduction

1.1 Newtonian mechanics

In newtonian mechanics the state of a mechanical system is described by a finite
number of real parameters. The set of all possible positions, of a material point for
example, is a finite dimensional smooth manifold M , called the configuration space.
A motion of the system is a smooth curve γ : I → M , where I ⊂ R is an open
interval. The velocity field of γ is smooth curve γ̇ : I → TM . The (total space of
the) tangent bundle TM of M is called the phase space.

According to Newton, the total force is a vector field F that acts on the points
of the configuration space. Locally, a motion is a solution of the second order
differential equation F = mẍ, where m is the mass. Equivalently, γ̇ is locally a
solution of the first order differential equation

(
ẋ
v̇

)
=

(
v

1

m
F (x, v, t)

)
.

Consider a system of N particles in R3 subject to some forces. If xi denotes the
position of the i-th particle then the configuration space is (R3)N and Newton’s law
of motion is

mi
d2xi
dt2

= Fi(x1, ..., xN , ẋ1, ..., ẋN , t), 1 ≤ i ≤ N,

wheremi is the mass and Fi is the force on the i-th particle. Relabeling the variables
setting q3i, q3i+1 and q3i+2 the coordinates of xi in this order, the configuration space
becomes Rn, n = 3N , and the equations of motion take the form

mj
d2qj

dt2
= Fj(q

1, ..., qn, q̇1, ..., q̇n, t), 1 ≤ j ≤ n

Suppose that the forces do not depend on time and are conservative. This means
that there is a smooth function V : Rn → R such that

Fj(q
1, ..., qn, q̇1, ..., q̇n) = −∂V

∂qj
, 1 ≤ j ≤ n.

3



4 CHAPTER 1. INTRODUCTION

For instantce, this is the case if N particles interact by gravitational attraction.
Rewritting Newton’s law as a system of first oder ordinary differential equations

dqj

dt
= vj , mj

d2vj

dt2
= −∂V

∂qj
, 1 ≤ j ≤ n,

or changing coordinates to pj = mjv
j we have

dqj

dt
=

1

mj
pj,

d2pj
dt2

= −∂V
∂qj

, 1 ≤ j ≤ n,

The solutions of the above system of ordinary differential equations are the integral
curves of the smooth vector field

X =

n∑

j=1

1

mj
pj

∂

∂qj
−

n∑

j=1

∂V

∂qj
∂

∂pj
.

Note that the smooth function

H(q1, ..., qn, p1, ..., pn) =
n∑

j=1

1

2mj
p2j + V (q1, ..., qn)

is constant along solutions, because

dH =
n∑

j=1

∂V

∂qj
dqj +

n∑

j=1

1

mj
pjdpj

and so dH(X) = 0. Actually, H completely determines X in the following sense.
Let

ω =

n∑

j=1

dqj ∧ dpj.

Then,

iXω =

n∑

j=1

dqj(X)dpj −
n∑

j=1

dpj(X)dqj =

n∑

j=1

1

mj
pjdpj +

n∑

j=1

∂V

∂qj
dqj = dH.

The smooth 2-form ω is closed and non-degenerate. The latter means that given
any smooth 1-form η the equation iY ω = η has a unique solution Y . Indeed, for
any smooth vector field Y we have

Y =

n∑

j=1

ω(Y,
∂

∂pj
)
∂

∂qj
−

n∑

j=1

ω(Y,
∂

∂qj
)
∂

∂pj

and so iY ω = 0 if and only if Y = 0.

Returning to Newtonian mechanics, we give the following definition.
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Definition 1.1. An (autonomous) newtonian mechamical system is a triple
(M,g,X), where M is a smooth manifold, g is a Riemannian metric on M and X
is a smooth vector field on TM such that π∗X = id. A motion of (M,g,X) is a
smooth curve γ : I → M such that γ̇ : I → TM is an integral curve of X. The

smooth function T : TM → R defined by T (v) =
1

2
g(v, v) is called the kinetic energy.

Examples 1.2. (a) Let M = R, so that we may identify TM with R2 and π with
the projection onto the first coordinate. If g is the euclidean riemannian metric on
R and

X = v
∂

∂x
+

1

m
(−k2x− ρv)

∂

∂v
, k > 0, ρ ≥ 0,

then obviously π∗X = id and a motion is a solution of the second order differential
equation

mẍ = −k2x− ρẋ.

This mechanical system describes the oscillator.
(b) The geodesic vector field G of a Riemannian n-manifold (M,g) defines a

newtonian mechanical system. Locally it has the expression

G =
n∑

k=1

vk
∂

∂xk
−

n∑

i,j,k=1

Γkijv
ivj

∂

∂vk

where Γkij are the Christofell symbols.

(c) The motion of a particle of unit mass on the unit circle S1 under the influence
of a vertical downward unit force is governed by Newton’s law which states

ẍ = − sinx

or equivalently (
ẋ
v̇

)
=

(
v

− sinx

)
, x mod 2π.

Here the phase space is the tangent bundle TS1 ∼= S1 × R and the corresponding
vector field can be lifted on the universal covering space R×R to the smooth vector
field

X(x, v) = v
∂

∂x
− sinx · ∂

∂v
,

which is invariant under horizontal translations by integer multiples of 2π. The force
acting is conservative with potential V (x) = − cosx. The mechanical energy

H(x, v) =
1

2
v2 − cos x

is a constant of motion.
We observe that H is a Morse function. Indeed, the critical points of H are the

points (nπ, 0), n ∈ Z, where H(2kπ, 0) = −1 and H((2k + 1)π, 0) = 1 for every
k ∈ Z. Moreover, the Hessian at the critical points is

D2H(nπ, 0) =

(
cosnπ 0

0 1

)
=

(
(−1)n 0

0 1

)
.
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Thus, (nπ, 0) is a non-degenerate critical point of H of Morse index 0 if n is even
and of Morse index 1 if n is odd. By the Morse Lemma, for every k ∈ Z there
exist an open neighbourhood Uk ⊂ ((2k − 1)π, (2k + 1)π)×R of (2kπ, 0) and ǫ > 0
such that H−1(c) ∩ Uk is a smooth simple close curve for −1 < ǫ < −1 + ǫ. Since
there are no critical values in the interval (−1, 1), for every −1 < c < 1 the level set
H−1(c) ∩ Uk is a smooth simple closed. The level set H−1(c) is a countable union
of smooth simple closed curves for |c| < 1. If c ≥ 1, then

H−1(c) = {(x,
√

2(c+ cos x)) : x ∈ R} ∪ {(x,−
√

2(c+ cos x)) : x ∈ R}.

The two graphs are disjoint if c > 1. If c = 1, they intersect transversally at the
points ((2k + 1)π, 0), k ∈ Z, by the Morse Lemma. The phase portrait of X is
depicted in the following picture.

Often a mechanical system has potential energy. This is a smooth function
V : M → R. Let gradV be the gradient of V with respect to the Riemannian
metric. If for every v ∈ TM we set

gradV =
d

dt

∣∣∣∣
t=0

(v + tgradV (π(v)),

then gradV ∈ X (TM) and π∗gradV = 0, since π(v + tgradV (π(v))) = π(v), for
every t ∈ R. Locally, if g = (gij) and (gij)

−1 = (gij), then

gradV =

n∑

i,j=1

gij
∂V

∂xi
∂

∂xj
and gradV =

n∑

i,j=1

gij
∂V

∂xi
∂

∂vj
.

Definition 1.3. A newtonian mechanical system with potential energy is a triple
(M,g, V ), where (M,g) is a Riemannian manifold and V : M → R is a smooth
function called the potential energy.

The corresponding vector field on TM is Y = G − gradV , where G is the
geodesic vector field. The smooth function E = T + V ◦ π : TM → R is called the
mechanical energy.
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Proposition 1.4. (Conservation of energy) In a newtonian mechanical system
with potential energy (M,g, V ) the mechanical energy is a constant of motion.

Proof. We want to show that Y (E) = 0. We compute locally, where we have

E =
1

2

n∑

i,j=1

gijv
ivj + V and

Y =
n∑

k=1

vk
∂

∂xk
−

n∑

k=1

( n∑

i,j=1

Γkijv
ivj +

n∑

i=1

∂V

∂xi
gik
)

∂

∂vk
.

Recall that

Γkij =
1

2

n∑

l=1

gkl
(∂gil
∂xj

+
∂gjl
∂xi

− ∂gij
∂xl

)
.

We can now compute

Y (E) =
n∑

k=1

vk
∂V

∂xk
+

1

2

n∑

i,j,k=1

∂gij
∂xk

vivjvk −
n∑

k=1

( n∑

i,j=1

Γkijv
ivj +

n∑

i=1

∂V

∂xi
gik
)
∂V

∂vk

−
n∑

k=1

( n∑

i,j=1

Γkijv
ivj +

n∑

i=1

∂V

∂xi
gik
)( n∑

i=1

gikv
i

)

=

n∑

k=1

vk
∂V

∂xk
−
( n∑

i=1

∂V

∂xi
gik
)( n∑

i=1

gikv
i

)
+

1

2

n∑

i,j,k=1

∂gij
∂xk

vivjvk

−
n∑

k=1

( n∑

r=1

grkv
r

)( n∑

i,j=1

1

2

n∑

l=1

gkl
(∂gil
∂xj

+
∂gjl
∂xi

− ∂gij
∂xl

)
vivj

)

=
1

2

n∑

i,j,k=1

∂gij
∂xk

vivjvk − 1

2

n∑

i,j,l=1

(∂gil
∂xj

+
∂gjl
∂xi

− ∂gij
∂xl

)
vivjvl = 0. �

A smooth curve γ : I → M is a motion of a newtonian mechanical system on
M with potential energy V if and only if γ satisfies the second order differential
equation

∇γ̇ γ̇ = −gradV

where ∇ is the Levi-Civita connection on M . In case V has an upper bound, then
a motion is a geodesic with respect to a new Riemannian metric on M , possibly
reparametrized. So, suppose that there exists some e > 0 such that V (x) < e for
every x ∈M . On M we consider the new Riemannian metric g∗ = (e− V )g. Let γ
be a montion with mechanical energy e, that is

1

2
g(γ̇(t), γ̇(t)) + V (γ(t)) = e
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for every t ∈ I. Since e > V (γ(t)), we have γ̇(t) 6= 0 for every t ∈ I. The function
s : I → R with

s(t) =
√
2

∫ t

t0

(e− V (γ(τ))dτ ,

where t0 ∈ I, is smooth and strictly increasing. Let γ∗ = γ ◦ s−1.

Theorem 1.5. (Jacobi-Maupertuis) If γ is a motion of the mechanical system
(M,g, V ) and V (x) < e for every x ∈M , then its reparametrization γ∗ is a geodesic
with respect to the Riemannian metric g∗ = (e− V )g.

Proof. It suffices to carry out the computation locally. The Christofell symbols of
the metric g∗ are given by the formula

∆k
ij = Γkij +

1

2(e − V )

(
−∂V
∂xi

δjk −
∂V

∂xj
δik +

n∑

l=1

∂V

∂xl
glkgij

)
.

If in the local coordinates we have γ = (x1, x2, ..., xn), then

dxk

ds
=
dxk

dt
· dt
ds

=
1√

2(e− V )
· dx

k

dt

and so
d2xk

ds2
=

1

2(e− V )2
· d

2xk

d2t
+

1

2(e− V )3
· dx

k

dt

n∑

l=1

∂V

∂xl
dxl

dt
.

Since
d2xk

d2t
= −

n∑

i,j=1

Γkij
dxi

dt

dxj

dt
−

n∑

l=1

∂V

∂xl
gkl

and
n∑

i,j=1

gij
dxi

dt

dxj

dt
= 2(e − V )

substituting we get

d2xk

ds2
+

n∑

i,j=1

∆k
ij

dxi

ds

dxj

ds
=

− 1

2(e− V )2

n∑

i,j=1

Γkij
dxi

dt

dxj

dt
− 1

2(e− V )2

n∑

l=1

∂V

∂xl
gkl +

1

2(e− V )3
dxk

dt

n∑

l=1

∂V

∂xl
dxl

dt

+
1

2(e− V )2

n∑

i,j=1

Γkij
dxi

dt

dxj

dt
− 1

4(e− V )3
dxk

dt

n∑

i=1

∂V

∂xi
dxi

dt
− 1

4(e− V )3
dxk

dt

n∑

j=1

∂V

∂xj
dxj

dt

+
1

4(e− V )3

( n∑

l=1

∂V

∂xl
gkl
)( n∑

i,j=1

gij
dxi

dt

dxj

dt

)
=

− 1

2(e− V )2

n∑

l=1

∂V

∂xl
gkl +

1

4(e − V )3

( n∑

l=1

∂V

∂xl
gkl
)( n∑

i,j=1

gij
dxi

dt

dxj

dt

)
= 0. �
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1.2 Lagrangian mechanics

Let (M,g, V ) be a newtonian mechanical system with potential energy V and let
L : TM → R be the smooth function L = T − V ◦ π, where T is the kinetic energy
and π : TM →M is the tangent bundle projection.

Theorem 2.1. (d’Alembert-Lagrange) A smooth curve γ : I → M is a motion of
the mechanical system (M,g, V ) if and only if

d

dt

( ∂L
∂vi

(γ̇(t))
)
=
∂L

∂xi
(γ̇(t))

for every t ∈ I and i = 1, 2..., n, where n is the dimension of M .

Proof. Suppose that in local coordinates we have γ = (x1, x2, ..., xn). Recall that γ
is a motion of (M,g, V ) if and only if

ẍk = −
n∑

i,j=1

Γkijẋ
iẋj −

n∑

l=1

∂V

∂xl
glk.

Since

L(γ̇) =
1

2

n∑

i,j=1

gij ẋ
iẋj − V (γ),

for every i = 1, 2,..., n we have

d

dt

( ∂L
∂vi

(γ̇(t))
)
− ∂L

∂xi
(γ̇(t)) =

d

dt

( n∑

j=1

gij ẋ
j

)
− 1

2

n∑

m,l=1

∂gml
∂xi

ẋmẋl +
∂V

∂xi
(γ(t)) =

n∑

j=1

n∑

l=1

∂gij
∂xl

ẋlẋj +
n∑

j=1

gij ẍ
j − 1

2

n∑

m,l=1

∂gml
∂xi

ẋmẋl +
∂V

∂xi
(γ(t)) =

n∑

m,l=1

(
∂gim
∂xl

− 1

2

∂gml
∂xi

)
ẋmẋl +

n∑

j=1

gij ẍ
j +

∂V

∂xi
(γ(t)).

Taking the image of the vector with these coordinates by (gij)
−1 = (gij), we see

that the equations in the statement of the theorem are equivalent to

0 =

n∑

i=1

gik
( n∑

m,l=1

(
∂gim
∂xl

− 1

2

∂gml
∂xi

)
ẋmẋl

)
+

n∑

j=1

gikgij ẍ
j +

n∑

i=1

∂V

∂xi
gik =

ẍk +

n∑

m,l=1

n∑

i=1

gik
(
∂gim
∂xl

− 1

2

∂gml
∂xi

)
ẋmẋl +

n∑

i=1

∂V

∂xi
gik =

ẍk +

n∑

m,l=1

Γkmlẋ
mẋl +

n∑

i=1

∂V

∂xi
gik. �
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Generalizing we give the following definition.

Definition 2.2. An autonomous Lagrangian system is a couple (M,L), whereM is
a smooth manifold and L : TM → R is a smooth function, called the Lagrangian. A
Lagrangian motion is a smooth curve γ : I → M which locally satisfies the system
of differential equations

d

dt

( ∂L
∂vi

(γ̇(t))
)
=
∂L

∂xi
(γ̇(t))

for t ∈ I and i = 1, 2..., n, where n is the dimension of M . These equations are
called the Euler-Lagrange equations.

The variational interpretation of the Euler-Lagrange equations is given by the
Least Action Principle due to Hamilton.

Theorem 2.3. (Least Action Principle) Let (M,L) be a Lagrangian system. A
smooth curve γ : [a, b] →M is a Lagrangian motion if and only if for every smooth
variation Γ : (−ǫ, ǫ)× [a, b] →M of γ with fixed endpoints, so that Γ(0, t) = γ(t) for
a ≤ t ≤ b, we have

∂

∂s

∣∣∣∣
s=0

∫ b

a
L(
∂Γ

∂t
(s, t))dt = 0.

Proof. It suffices to carry out the computations locally. We have

∂

∂s

∣∣∣∣
s=0

∫ b

a
L(
∂Γ

∂t
(s, t))dt =

∫ b

a

∂

∂s

∣∣∣∣
s=0

L(
∂Γ

∂t
(s, t))dt =

∫ b

a

[ n∑

i=1

∂L

∂xi
(γ̇(t))

∂Γ

∂s
(0, t) +

n∑

i=1

∂L

∂vi
(γ̇(t))

∂

∂s

∣∣∣∣
s=0

(
∂Γ

∂t
(s, t))

]
dt =

∫ b

a

[ n∑

i=1

∂L

∂xi
(γ̇(t))

∂Γ

∂s
(0, t) +

n∑

i=1

∂L

∂vi
(γ̇(t))

∂

∂t
(
∂Γ

∂s
(0, t))

]
dt =

∫ b

a

[ n∑

i=1

∂L

∂xi
(γ̇(t))

∂Γ

∂s
(0, t) +

d

dt

( n∑

i=1

∂L

∂vi
(γ̇(t))

∂Γ

∂s
(0, t)

)
−

n∑

i=1

d

dt

(
∂L

∂vi
(γ̇(t))

)
∂Γ

∂s
(0, t)

]
dt =

∫ b

a

n∑

i=1

[
∂L

∂xi
(γ̇(t))− d

dt

(
∂L

∂vi
(γ̇(t))

)]
∂Γ

∂s
(0, t)dt,

because
∂Γ

∂s
(0, a) =

∂Γ

∂s
(0, b) = 0 since the variation is with fixed endpoints. This

means that
∂

∂s

∣∣∣∣
s=0

∫ b

a
L(
∂Γ

∂t
(s, t))dt = 0

if and only if
d

dt

( ∂L
∂vi

(γ̇(t))
)
=
∂L

∂xi
(γ̇(t))
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for i = 1, 2..., n, because
∂Γ

∂s
(0, t) can take any value. �

Example 2.4. Consider a particle of charge e and mass m in R3 moving under
the influence of an electromagnetic field with electrical and magnetic components E
and B, respectively. The fields E and B satisfy Maxwell’s equations

curlE +
1

c

∂B

∂t
= 0, divB = 0,

curlB − 1

c

∂E

∂t
= 4πJ, divE = 4πρ

where c is the speed of light, ρ is the charge density and J is the charge current
density. By the Poincaré lemma, there exists a vector potential A = (A1, A2, A3)
such that B = curlA. So

curl(E +
1

c

∂A

∂t
) = 0

and there exists a scalar potential V : R3 → R such that

E = −gradV − 1

c

∂A

∂t
,

the gradient being euclidean.

Suppose the electromagnetic field does not depend on time and let L : R3 → R
be the Lagrangian

L(x, v) =
1

2
m〈v, v〉 + e(

1

c
〈A(x), v〉 − V (x)).

We shall describe only the first for i = 1 of the corresponding Euler-Lagrange
equations, the other two being analogous. The right hand side is

∂L

∂x1
= −e ∂V

∂x1
+
e

c
〈 ∂A
∂x1

, v〉.

The left hand side is

d

dt
(
∂L

∂v1
) = mv̇1 +

e

c
[v1

∂A1

∂x1
+ v2

∂A1

∂x2
+ v3

∂A1

∂x3
].

It follows that the first of the Euler-Lagrange equations takes the form

mv̇1 = −e ∂V
∂x1

+
e

c
[v2(

∂A2

∂x1
− ∂A1

∂x2
)− v3(

∂A1

∂x3
− ∂A3

∂x1
)].

The right hand side is the first coordinate of the vector e(E +
1

c
v ×B). Since the

other two equations are analogous and have the same form by cyclically permuting
indices, we conclude that the Euler-Lagrange equations give Lorentz’s equation of
motion

m
d2x

dt2
= e(E +

1

c

dx

dt
×B).
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We globalize the above situation as follows. Let (M,g) be a pseudo-Riemannian
n-manifold, A be a smooth 1-form on M and V : M → R a smooth function. The
Lagrangian

L(x, v) =
1

2
mg(v, v) +Ax(v)− V (x)

generalizes the motion of a charged particle of massm under the influence of an elec-
tromagnetic field. Let (U, x1, x2, ..., xn) be a local system of coordinates on M and
(π−1(U), x1, x2, ..., xn, v1, v2, ..., vn) be the corresponding local system of coordinates
on TM . In local coordinates L is given by the formula

L(x1, x2, ..., xn, v1, v2, ..., vn) =
1

2
m

n∑

i,j=1

gijv
ivj +

n∑

i=1

Aiv
i,

where (gij) is the matrix of the pseudo-Riemannian metric g and A =
∑n

i=1Aidx
i

on U . A smooth curve γ : I →M is a Lagrange motion if and only if it satisfies the
Euler-Lagrange equations. In our case the right hand side of the Euler-Lagrange
equations is

∂L

∂xk
(γ̇(t)) =

1

2
m

n∑

i,j=1

∂gij
∂xk

dxi

dt

dxj

dt
+

n∑

i=1

∂Ai
∂xk

dxi

dt
− ∂V

∂xk
,

and the left hand side

d

dt

( ∂L
∂vk

(γ̇(t))
)
= m

n∑

i,j=1

∂gik
∂xj

dxj

dt

dxi

dt
+m

n∑

i=1

gik
d2xi

dt2
+

n∑

i=1

∂Ak
∂xi

dxi

dt
.

So the Euler-Lagrange equations are equivalent to

n∑

i=1

(
∂Ai
∂xk

− ∂Ak
∂xi

)
dxi

dt
− ∂V

∂xk
= m

n∑

i=1

gik
d2xi

dt2
+m

n∑

i,j=1

(
∂gik
∂xj

− 1

2

∂gij
∂xk

)
dxi

dt

dxj

dt
.

On the other hand

dA(γ̇(t),
∂

∂xk
) =

n∑

i,j=1

∂Ai
∂xj

dxj ∧ dxi(γ̇(t), ∂

∂xk
) =

n∑

i=1

(
∂Ak
∂xi

− ∂Ai
∂xk

)
dxi

dt
.

Recall that the covariant derivative formula along γ gives

∇γ̇ γ̇ =

n∑

l=1

d2xl

dt2
∂

∂xl
+

n∑

i,j,l=1

Γlij
dxi

dt

dxj

dt

∂

∂xl

and so

g(m∇γ̇ γ̇,
∂

∂xk
) = m

n∑

l=1

glk
d2xl

dt2
+m

n∑

i,j,l=1

glkΓ
l
ij

dxi

dt

dxj

dt
.

Since
n∑

l=1

glkΓ
l
ij =

1

2

(
∂gik
∂xj

+
∂gjk
∂xi

− ∂gij
∂xk

)
,
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we get
n∑

i,j,l=1

glkΓ
l
ij

dxi

dt

dxj

dt
=

n∑

i,j=1

(
∂gik
∂xj

− 1

2

∂gij
∂xk

)
dxi

dt

dxj

dt
.

We conclude now that the Euler-Lagrange equations have the form

g(m∇γ̇ γ̇,
∂

∂xk
) = −dA(γ̇, ∂

∂xk
)− g(gradV,

∂

∂xk
), k = 1, 2, ..., n

or independently of local coordinates

m∇γ̇ γ̇ = −grad(iγ̇(dA))− gradV,

where the gradient is taken with respect to the pseudo-Riemannian metric g.

As in newtonian mechanical systems with potential energy, one can define the
notion of mechanical energy for Lagrangian systems also. In order to do this, we
shall need to define first the Legendre transformation. So let L : TM → R be a
Lagrangian and p ∈M , v ∈ TpM . The derivative

(L|TpM )∗v : Tv(TpM) ∼= TpM → R

can be considered as an element of the dual tangent space T ∗
pM .

Definition 2.5. The Legendre transformation of a Lagrangian system (M,L) is
the map L : TM → T ∗M defined by L(p, v) = (L|TpM )∗v . In other words, for every
w ∈ TpM we have

L(p, v)(w) = d

dt

∣∣∣∣
t=0

L(p, v + tw).

It is worth to note that L is not in general a vector bundle morphism, as it may
not be linear on fibers. For instance, if M = R and L(x, v) = ev (this Lagrangian
has no physical meaning), then L : TR → T ∗R ∼= R2 is given by L(x, v) = (x, ev),
which is not linear in the variable v.

Example 2.6. If L =
1

2
g − V is the Lagrangian of a newtonian mechanical system

with potential energy (M,g, V ), then for every p ∈ M and v, w ∈ TpM we have
L(p, v)(w) = g(v,w). Thus, in this particular case the Legendre transformation
L : TM → T ∗M is the natural isomorphism defined by the Riemannian metric.

Definition 2.7. The energy of a Lagrangian system (M,L) is the smooth function
E : TM → R defined by E(p, v) = L(p, v)(v) − L(p, v).

If (x1, x2, ..., xn) is a system of local coordinates on M with corresponding local
coordinates (x1, x2, ..., xn, v1, v2, ..., vn) on TM , then

E(x1, x2, ..., xn, v1, v2, ..., vn) =

n∑

i=1

∂L

∂vi
vi − L(x1, x2, ..., xn, v1, v2, ..., vn).
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In the case of a newtonian mechanical system with potential energy (M,g, V )
the above definition gives

E(p, v) = L(p, v)(v) − L(p, v) = g(v, v) − 1

2
g(v, v) + V (p) =

1

2
g(v, v) + V (p),

which coincides with the previous definition.

Example 2.8. We shall compute the Legendre transformation and the energy of
the Lagrangian system of example 2.4 using the same notation. Considering local
coordinates (x1, x2, ..., xn, v1, v2, ..., vn) on TM , we have

(L|TpM )(v1, v2, ..., vn) =
1

2
m

n∑

i,j=1

gijv
ivj +

n∑

i=1

Aiv
i − V (p).

Differentiating we get

(L|TpM )∗v = m
n∑

i,j=1

gijv
idvj −

n∑

i=1

Aidv
i.

We conclude now that

L(p, v)(w) = (L|TpM )∗v(w) = mg(v,w) +Ap(w).

The energy here is

E(p, v) = L(p, v)(v) − L(p, v) =
1

2
mg(v, v) + V (p),

and so does not depend on the 1-form A, which represents the magnetic field. This
reflects the fact that the magnetic field does not produce work.

Theorem 2.9. (Conservation of energy) In a Lagrangian system the energy is a
constant of motion.

Proof. Considering local coordinates on M , let γ = (x1, x2, ..., xn) be a Lagrangian
motion. Then

E(γ̇(t)) =

n∑

i=1

∂L

∂vi
dxi

dt
− L(γ̇(t))

and differentiating

d

dt
(E(γ̇(t))) =

n∑

i,j=1

(
∂2L

∂vi∂xj
dxi

dt

dxj

dt
+

∂2L

∂vi∂vj
dxi

dt

d2xj

dt2

)
+

n∑

i=1

∂L

∂vi
d2xi

dt2

−
n∑

i=1

∂L

∂xi
dxi

dt
−

n∑

i=1

∂L

∂vi
d2xi

dt2
=

n∑

i,j=1

(
∂2L

∂vi∂xj
dxi

dt

dxj

dt
+

∂2L

∂vi∂vj
dxi

dt

d2xj

dt2

)
−

n∑

i=1

∂L

∂xi
dxi

dt
.
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But from the Euler-Lagrange equations we have

∂L

∂xi
=

d

dt
(
∂L

∂vi
) =

n∑

j=1

(
∂2L

∂vi∂xj
dxj

dt
+

∂2L

∂vi∂vj
d2xj

dt2

)

and so substituting we get
d

dt
(E(γ̇(t))) = 0. �

Apart from the energy, one can have constants of motion from symmetries of
the Lagrangian.

Theorem 2.10. (Noether) Let (M,L) be a Lagrangian system and X a complete
smooth vector field on M with flow (φt)t∈R. If L((φt)∗p(v)) = L(v) for every v ∈
TpM , p ∈M and t ∈ R, then the smooth function fX : TM → R defined by

fX(v) = lim
s→0

L(v + sX(π(v))) − L(v)

s

is a constant of motion.

Proof. Considering local coordinates, let φt = (φ1t , φ
2
t , ..., φ

n
t ). Since L is (φt)∗

invariant, if γ = (x1, x2, ..., xn) is a Lagrangian motion, differentiating the equation
L((φs)∗γ(t)(γ̇(t))) = L(γ̇(t)) with respect to s, we have

n∑

i=1

∂L

∂xi

(
∂φis
∂s

)

s=0

+

n∑

i,j=1

∂L

∂vi

(
∂2φis
∂xj∂s

)

s=0

dxj

dt
= 0.

Since fX(v) is the directional derivative of L|Tπ(v)M in the direction of X(π(v)) and

X =
n∑

i=1

(
∂φit
∂t

)

t=0

∂

∂xi
,

we have

fX(γ̇(t)) =
n∑

i=1

∂L

∂vi

(
∂φis
∂s

)

s=0

.

Using now the Euler-Lagrange equations we compute

d

dt
(fX(γ̇(t))) =

n∑

i=1

d

dt

(
∂L

∂vi

)(
∂φis
∂s

)

s=0

+

n∑

i=1

∂L

∂vi
d

dt

(
∂φis
∂s

)

s=0

=

n∑

i=1

∂L

∂xi

(
∂φis
∂s

)

s=0

+
n∑

i,j=1

∂L

∂vi

(
∂2φis
∂xj∂s

)

s=0

dxj

dt
= 0. �

Examples 2.11. (a) Let (M,g, V ) be a newtonian mechanical system with potential
energy and X be a complete vector field, which is a symmetry of the system. Then
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fX(v) = g(v,X(π(v))). The restriction to a fiber of the tangent bundle of fX is
linear in this case.

(b) Let X be a complete vector field which we assume to be a symmetry of
the Lagrangian system of example 2.3. For instance, this is the case if the flow
of X preserves the pseudo-Riemannian metric on M and the 1-form A. Then the
Lagrangian is X-invariant and the first integral provided form Noether’s theorem
is fX(v) = mg(v,X) −A(X).

Let (M,L) be a Lagrangian system. Let (x1, ..., xn, v1, ..., vn) be a system of
local coordinates in TM coming from local coordinates (x1, ..., xn) on M and let
(q1, ..., qn, p1, ..., pn) be the corresponding local coordinates on T

∗M , so that xj = qj ,
1 ≤ j ≤ n. The local representation of the Legendre transformation is

L(x1, ..., xn,
n∑

j=1

vj
∂

∂xj
) = (x1, ..., xn,

n∑

j=1

∂L

∂vj
dxj).

The local forms
n∑

j=1

∂L

∂vj
dxj

over all charts on TM fit together and give a global smooth 1-form θL on TM . This
may be verified directly. Alternatively, we note that

L∗(

n∑

i=1

pidq
i) =

n∑

i=1

(pi ◦ L)d(xi ◦ L) =
n∑

i=1

∂L

∂vi
dxi.

The local 1-forms

n∑

i=1

pidq
i on T ∗M fit together to a global smooth 1-form θ on

T ∗M . Actually, θ is precisely the 1-form defined by

θa(v) = a(π∗a(v))

for v ∈ Ta(T
∗M) and a ∈ T ∗M , where π : T ∗M → M is the cotangent bundle

projection. Indeed,

θ|locally =
n∑

i=1

θ(
∂

∂qi
)dqi +

n∑

i=1

θ(
∂

∂pi
)dpi.

If now a = (q1, q2, ..., qn, p1, p2, ..., pn), then π∗a(
∂

∂pi
) = 0, and therefore θ(

∂

∂pi
) = 0.

Moreover,

θ(
∂

∂qi
) = a(π∗a(

∂

∂qi
)) = pi.

It follows that

θ|locally =
n∑

i=1

pidq
i.

The smooth 1-form θ is called the Liouville canonical 1-form on T ∗M .
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Remark 2.12. The 2-form dθL in local coordinates (x1, ..., xn, v1, ..., vn) on TM is
given by the formula

dθL|locally =

n∑

i,j=1

∂2L

∂xj∂vi
dxj ∧ dxi +

n∑

i,j=1

∂2L

∂vj∂vi
dvj ∧ dxi.

It follows that dθL is non-degenerate if and only if the vertical Hessian matrix

(
∂2L

∂vj∂vi

)

1≤i,j≤n

is everywhere invertible. A Lagrangian system is called non-degenerate if the vertical
Hessian of the Lagrangian is everywhere invertible.

1.3 The equations of Hamilton

A Lagrangian system (M,L) is called hyperregular if the Legendre transformation
L : TM → T ∗M is a diffeomorphism. For example a newtonian mechanical system
with potential energy and the system of example 2.4 are hyperregular.

Definition 3.1. In a hyperregular Lagrangian system as above, the smooth
function H = E ◦L−1 : T ∗M → R, where E is the energy, is called the Hamiltonian
function of the system.

Example 3.2. Let (M,g, V ) is a newtonian mechanical system with potential
energy. The Legendre transformation gives

qi = xi, pi =
∂L

∂vi
=

n∑

j=1

gijv
j.

The inverse Legendre transformation is given by

xi = qi, vi =

n∑

j=1

gijpj.

So we have

E =
1

2

n∑

i,j=1

gijv
ivj + V (x1, x2, ..., xn),

L =
1

2

n∑

i,j=1

gijv
ivj − V (x1, x2, ..., xn)

and therefore

H =
1

2

n∑

i,j=1

gijpipj + V (q1, q2, ..., qn).
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Theorem 3.3. (Hamilton) Let (M,L) be a hyperregular Lagrangian system on the
n-dimensional manifold M . A smooth curve γ : I → M is a Lagrangian motion if
and only if the smooth curve L◦ γ̇ : I → T ∗M locally solves the system of differential
equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, 2, ..., n.

Proof. In the local coordinates (x1, x2, ..., xn) of a chart on M the Legendre trans-
formation is given by the formulas

qi = xi, pi =
∂L

∂vi
, i = 1, 2, ..., n,

where (x1, x2, ..., xn, v1, v2, ..., vn) are the local coordinates of the corresponding
chart on TM . Inversing,

xi = qi, vi = yi(q1, q2, ..., qn, p1, p2, ..., pn), i = 1, 2, ..., n

for some smooth functions y1, y2,...,yn. From the definitions of the energy E and
the Hamiltonian H, we have

H = E ◦ L−1 =

n∑

j=1

pjy
j − L(q1, q2, ..., qn, y1, y2, ..., yn)

and differentiating the chain rule gives

∂H

∂pi
= yi +

n∑

j=1

pj
∂yj

∂pi
−

n∑

j=1

∂L

∂vj
∂yj

∂pi
= yi

∂H

∂qi
=

n∑

j=1

pj
∂yj

∂qi
− ∂L

∂xi
−

n∑

j=1

∂L

∂vj
∂yj

∂qi
= − ∂L

∂xi
.

If γ(t) = (x1(t), x2(t), ..., xn(t)) is a smooth curve in local coordinates on M , then

L(γ̇(t)) = (x1(t), x2(t), ..., xn(t),
∂L

∂v1
(γ̇(t)),

∂L

∂v2
(γ̇(t)), ...,

∂L

∂vn
(γ̇(t))).

Now γ is a Lagrangian motion if and only if

ẋi = vi and
d

dt

(
∂L

∂vi
(γ̇)

)
=
∂L

∂xi
(γ̇)

or equivalently

q̇i = ẋi = vi = yi =
∂H

∂pi
and

ṗi =
d

dt

(
∂L

∂vi
(γ̇)

)
=
∂L

∂xi
(γ̇) = −∂H

∂qi
. �
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The equations provided by Theorem 3.3 on T ∗M are Hamilton’s equations. The
cotangent bundle T ∗M is called the phase space of the Lagrangian system (M,L).

Corollary 3.4. The Hamiltonian is constant on solutions of Hamilton’s equations.

Proof. Indeed, if γ(t) = (q1(t), ..., qn(t), p1(t), ..., pn(t)) is the local form of a solution
of Hamilton’s equations then

dH(γ(t))(γ̇(t)) =

n∑

i=1

∂H

∂qi
q̇i(t)+

n∑

i=1

∂H

∂pi
ṗi(t) =

n∑

i=1

∂H

∂qi
∂H

∂pi
+

n∑

i=1

∂H

∂pi
(−∂H

∂qi
) = 0. �

The equations of Hamilton have a global formulation on T ∗M in the sense that
a solution is the integral curve of a smooth vector field defined globally on T ∗M .
Recall that the Liouville canonical 1-form θ on T ∗M has a local expression

θ|locally =
n∑

i=1

pidq
i.

Let ω = −dθ, so that

ω|locally =
n∑

i=1

dqi ∧ dpi.

Since for every smooth vector field Y on T ∗M we have

Y =
n∑

i=1

ω(Y,
∂

∂pi
)
∂

∂qi
−

n∑

i=1

ω(Y,
∂

∂qi
)
∂

∂pi

it follows that ω is a non-degenerate, closed 2-form on T ∗M . Thus, given a smooth
function H : T ∗M → R, there exists a unique smooth vector field X on T ∗M such
that iXω = dH, called the Hamiltonian vector field. Locally this global equation
takes the form

n∑

i=1

dqi(X)dpi −
n∑

i=1

dpi(X)dqi =

n∑

i=1

∂H

∂qi
dqi +

n∑

i=1

∂H

∂pi
dpi

and therefore dpi(X) = −∂H
∂qi

and dqi(X) =
∂H

∂pi
. These are precisely Hamilton’s

equations.
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Chapter 2

Basic symplectic geometry

2.1 Symplectic linear algebra

A synplectic form on a (real) vector space V of finite dimension is a non-degenerate,
skew-symmetric, bilinear form ω : V × V → R. This means that the map
ω̃ : V → V ∗ defined by ω̃(v)(w) = ω(v,w), for v, w ∈ V , is a linear isomorphism.
The pair (V, ω) is then called a symplectic vector space.

Lemma 1.1. (Cartan) Let V be a vector space of dimension n and ω be a skew-
symmetric, bilinear form on V . If ω 6= 0, then the rank of ω̃ is even. If dim ω̃(V ) =
2k, there exists a basis l1, l2,...,l2k of ω̃(V ) such that

ω =
k∑

j=1

l2j−1 ∧ l2j.

Proof. Let {v1, v2, ..., vn} be a basis of V and {v∗1 , v∗2 , ..., v∗n} be the corresponding
dual basis of V ∗. If aij = ω(vi, vj), i < j, then

ω =
∑

i<j

aijv
∗
i ∧ v∗j .

Since ω 6= 0, there are some 1 ≤ i < j ≤ n such that aij 6= 0. We may assume that
a12 6= 0, changing the numbering if necessary. Let

l1 =
1

a12
ω̃(v1) = v∗2 +

1

a12

n∑

j=3

a1jv
∗
j ,

l2 = ω̃(v2) = −a12v∗1 +
n∑

j=3

a2jv
∗
j .

The set {l1, l2, v∗3 , ..., v∗n} is now a new basis of V ∗. If ω1 = ω − l1 ∧ l2, then

ω̃1(v1) = a12l
1 − l1(v1)l

2 + l2(v1)l
1 = a12l

1 − 0− a12l
1 = 0,

21
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ω̃1(v2) = l2 − l1(v2)l
2 + l2(v2)l

1 = l2 − l2 + 0 = 0.

Thus, ω1 is an element of the subalgebra of the exterior algebra of V generated by
v∗3 ,,...,v

∗
n. If ω1 = 0, then ω = l1 ∧ l2. If ω1 6= 0, we repeat the above taking ω1

in the place of ω. So, inductively, we arrive at the conclusion, since V has finite
dimension. �

Corollary 1.2. If ω is a skew-symmetric, bilinear form of rank 2k of a vector
space, then k is the maximal positive integer such that ω ∧ ... ∧ ω 6= 0 (k times).

Proof. Indeed from Cartan’s lemma, the (k+1)-fold wedge product of ω with itself
is equal to 0 and the k-fold is ω ∧ ... ∧ ω = k! · l1 ∧ ... ∧ l2k 6= 0. �

By Cartan’s lemma, if (V, ω) is a symplectic vector space of finite dimen-
sion, there exists some n ∈ N such that dimV = 2n and there exists a basis
{a1, ..., an, b1, ..., bn} of V ∗ such that

ω = a1 ∧ b1 + a2 ∧ b2 + · · · + an ∧ bn.

This basis is dual to a basis {v1, ..., vn, u1, ..., un} of V which is called a sym-
plectic basis and is characterized by the properties ω(vi, vj) = ω(ui, uj) = 0 and
ω(vi, uj) = δij for 1 ≤ i, j ≤ n.

If W ≤ V , we set W⊥ = {v ∈ V : ω(w, v) = 0 for every w ∈ W}. Obviously,
W⊥ ≤ V and ω̃(W⊥) = {a ∈ V ∗ : a|W = 0}, since ω̃ is an isomorphism.

Lemma 1.3. Let (V, ω) be a symplectic vector space of dimension 2n and W1, W2,
W be subspaces of V . Then the following hold:

(a) dimW + dimW⊥ = dimV = 2n.
(b) W⊥⊥ =W .
(c) W1 ≤W2 if and only if W⊥

2 ≤W⊥
1 .

(d) W⊥
1 ∩W⊥

2 = (W1 +W2)
⊥.

(e) (W1 ∩W2)
⊥ =W⊥

1 +W⊥
2 .

Proof. (a) Since ω̃(W⊥) coincides with the anihilator ofW , its dimension is dimV −
dimW and W⊥ has the same dimension, because ω̃ is an isomorphism.

(b) Evidently, W ≤ W⊥⊥ and since dimW = dimW⊥⊥, by (a), we have W =
W⊥⊥.

(c) If W1 ≤ W2, then obviously W⊥
2 ≤ W⊥

1 . Conversely, if W⊥
2 ≤ W⊥

1 , then
from (b) we have W1 =W⊥⊥

1 ≤W⊥⊥
2 =W2.

(d) From (c) we have (W1 + W2)
⊥ ≤ W⊥

1 ∩ W⊥
2 and if v ∈ W⊥

1 ∩ W⊥
2 and

w1 ∈W1, w2 ∈W2, then

ω(v,w1 + w2) = ω(v,w1) + ω(v,w2) = 0 + 0 = 0.

Thus, v ∈ (W1 +W2)
⊥, which shows that (W1 +W2)

⊥ =W⊥
1 ∩W⊥

2 .
(e) From (b) and (d) we have (W1 ∩W2)

⊥ = (W⊥
1 +W⊥

2 )⊥⊥ =W⊥
1 +W⊥

2 . �
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Example 1.4. Let W be a vector space of dimension n. On W ×W ∗ consider the
skew-symmetric, bilinear form ω defined by

ω((w, a), (w′ , a′)) = a′(w)− a(w′).

If now ω̃(w, a) = 0, then 0 = ω((w, a), (w′ , 0)) = −a(w′) for every w′ ∈ W . Thus
a = 0. Similarly, 0 = ω((w, a), (0, a′)) = a′(w) for every a′ ∈ W ∗. Hence w = 0.
This shows that (W ×W ∗, ω) is a symplectic vector space.

Let (V, ω) be a symplectic vector space of dimension 2n. A subspace W ≤ V is
called

(i) isotropic, if W ≤W⊥, and then dimW ≤ n,

(ii) coisotropic, if W⊥ ≤W , and then dimW ≥ n,

(iii) Lagrangian, if W =W⊥, and then dimW = n, and

(iv) symplectic, if W ∩W⊥ = {0}, and then dimW is even.

For instance, in Example 1.4, the subspaces W × {0} and {0} × W ∗ are
Lagrangian. Obviously, any 1-dimensional subspace is isotropic.

Proposition 1.5. Every isotropic subspace of a symplectic vector space (V, ω) is
contained in a Lagrangian subspace.

Proof. Let W ≤ V be an isotropic subspace, which is not Lagrangian itself. There
exists v ∈ W⊥ \W . Then 〈v〉 is an isotropic subspace of V and therefore 〈v〉 ≤
〈v〉⊥ ∩W⊥. By Lemma 1.3(c), W ≤ 〈v〉⊥, and thus W ≤ 〈v〉⊥ ∩W⊥, since W is
isotropic. From Lemma 1.3(d) we have now

〈v〉+W ≤ 〈v〉⊥ ∩W⊥ = (〈v〉+W )⊥,

which means that 〈v〉+W is isotropic. Since dimV is finite, repeating this process
we arrive after a finite number of steps at a Lagrangian subspace. �

Corollary 1.6. Every symplectic vector space contains a Lagrangian subspace. �

The Lagrangian subspaces of a symplectic vector space can be characterized as
follows.

Proposition 1.7. Let W be a linear subspace of a symplectic vector space (V, ω) of
dimension 2n. The following assertions are equivalent.

(i) W is Lagrangian.

(ii) W is isotropic and dimW = n.

(iii) W is isotropic and has an isotropic complement in V .

Proof. Obviously, assertions (i) and (ii) are equivalent. To prove that they imply
(iii), we construct and isotropic complement of the Lagrangian subspace W . Let
v1 /∈W and U1 = 〈v1〉. Then U1 is isotropic and W ∩ U1 = {0}. Therefore,

W + U⊥
1 =W⊥ + U⊥

1 = V.



24 CHAPTER 2. BASIC SYMPLECTIC GEOMETRY

In the second step we choose v2 ∈ U⊥
1 such that v2 /∈W+U1 and put U2 = U1⊕〈v1〉.

Then U2 is isotropic, because

U2 = 〈v1, v2〉 ≤ U⊥
1 ∩ 〈v2〉⊥ = U⊥

2

andW∩U2 = {0}, so thatW+U⊥
2 = V . Inductively, if an isotropic subspace Uk−1 of

dimension k−1 has been defined such thatW∩Uk−1 = {0}, we put Uk = Uk−1⊕〈vk〉,
where vk ∈ U⊥

k−1 is such that vk /∈ W + Uk−1. Obviously, W ∩ Uk = {0}, so that

W + U⊥
k = V and

Uk = Uk−1 ⊕ 〈vk〉 ≤ U⊥
k−1 ∩ 〈vk〉⊥ = U⊥

k .

Since at each step the dimension increases by 1, we have dimUn = n and Un is a
Lagrangian complement of W in V .

For the converse it suffices to prove that (iii) implies W⊥ ≤W . Let v ∈W⊥. If
U is an isotropic complement of W in V , there exist unique w ∈W and u ∈ U such
that v = w + u. Since U is isotropic, we have

u = v − w ∈W⊥ ∩ U⊥ = (W + U)⊥ = V ⊥ = {0}.

Consequently, v = w ∈W . �

A linear map f : (V, ω) → (V ′, ω′) between symplectic vector spaces is called
symplectic if f∗ω′ = ω. Evidently, every symplectic linear map is injective.

Theorem 1.8. For every positive integer n there exists exactly one symplectic
vector space of dimension 2n, up to symplectic linear isomorphism.

Proof. Let (V, ω) be a symplectic vector space of dimension 2n. It suffices to
construct a symplectic linear isomorphism from (V, ω) to the standard Example 1.4.
By Corollary 1.6, there exists a Lagrangian subspace W of V . By Proposition 1.7,
there exists a Lagrangian subspace U of V such that V =W ⊕U . Let F : U →W ∗

be the linear map defined by F (u)(w) = ω(w, u). Since W is Lagrangian, F is a
linear isomorphism. Therefore, f = id⊕ F : V →W ⊕W ∗ is a linear isomorphism.
Moreover,

F (u2)(w1)− F (u1)(w2) = ω(w1, u2)− ω(w2, u1) = ω(w1 + u1, w2 + u2)

for every w1, w2 ∈W and u1, u2 ∈ U , because W and U are Lagrangian. It follows
that f is symplectic. �

Example 1.9. Let h denote the usual hermitian product on Cn. As a real vector
space Cn ∼= R2n carries the symplectic structure

ω(z, w) = −Imh(z, w).

A real subspace W is isotropic if and only if h(w1, w2) ∈ R for every w1, w2 ∈ W .
Let J : Cn → Cn be multiplication by i. Then h(z, u) = h(J(z), J(u)) for every z,
u ∈ Cn and so W is isotropic if and omly if J(W ) is. Obviously, W ∩ J(W ) = {0},
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since W is a real subspace. It follows that W is Lagrangian if and only if
h(w1, w2) ∈ R for every w1, w2 ∈ W and Cn = W ⊕ J(W ). Thus, Cn is the
complexification of the real space W and the real and imaginary subspaces W and
J(W ), respectively, are Lagrangian.

Let (V, ω) be a symplectic vector space. A complex structure on V is a linear
automorphism J : V → V such that J2 = −id. It is said to be compatible with
the symplectic structure if it is symplectic and ω(v, J(v)) > 0 for all non-zero v ∈ V .

Theorem 1.10. On every symplectic vector space (V, ω) there exists a compatible
complex structure J and a positive definite inner product g given by the formula
g(u, v) = ω(u, J(v)) for every u, v ∈ V .

Proof. Let 〈, 〉 be any positive definite inner product on V . All adjoints below
are taken with respect to this inner product. Since ω is non-degenerate and skew-
symmetric, there exists a unique skew-symmetric linear automorphism A : V → V
such that ω(u, v) = 〈A(u), v〉 for every u, v ∈ V . So, At = −A and −A2 = AtA
is a positive definite self-adjoint linear automorphism of V , which has a unique
square root. This means that there exists a unique positive definite self-adjoint
linear automorphism B : V → V such that B2 = −A2. Let J = AB−1. Then

J t = (B−1)tAt = −B−1A = BA−1 = J−1,

which means that J is orthogonal. Moreover,

B2 = −A2 = AAt = JBBtJ t = JB2J−1 = (JBJ−1)2.

From the uniqueness of the square root of −A2 we get B = JBJ−1 and therefore
JB = BJ and J = AB−1 = B−1A. We conclude that A and B commute and

J2 = A(B2)−1A = A(−A2)−1A = −id.

Also,
ω(J(u), J(v)) = 〈A2B−1(u), AB−1(v)〉 = 〈−B(u), B−1A(v)〉

= 〈−u,BB−1A(v)〉 = 〈−u,A(v)〉 = 〈A(u), v〉 = ω(u, v)

for every u, v ∈ V . Finally, the formula g(u, v) = ω(u, J(v)) defines a positive defi-
nite inner product, because g(u, v) = 〈AJ−1(u), v〉 = 〈B(u), v〉 for every u, v ∈ V . �

Having a compatible complex structure J on a symplectic vector space (V, ω),
the latter becomes a complex vector space by setting i · v = J(v) for every v ∈ V .
Moreover, h = g − iω is a positive definite hermitian product on V . The triple
(V, ω, J) is called a Kähler vector space.

Returning to the proof of Theorem 1.10, we note that the compatible complex
structure J is a function of the initially chosen positive definite inner product. Every
compatible complex structure arises in this way, because ω(u, v) = g(J(u), v). If
we start with two positive definite inner products s1 and s2 on V which lead to
compatible complex structures J1 and J2, respectively, then the linear path st =
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(1 − t)s1 + ts2, 0 ≤ t ≤ 1, gives a path from J1 to J2. This shows that the space
J (V, ω) of the compatible complex structures is path connected. We shall prove
later that it is actually contractible.

2.2 The symplectic linear group

Recall that for every n ∈ N there exists only one symplectic vector space of dimension
2n (up to symplectic linear isomorphism). So we need only consider Rn×(Rn)∗ with
the canonical symplectic structure ω of Example 1.4. If 〈, 〉 denotes the euclidean
inner product on R2n, then Rn× (Rn)∗ can be identified with R2n ∼= Rn⊕Rn, where
the symplectic form is given by the formula

ω((x, y), (x′, y′)) = 〈x, y′〉 − 〈x′, y〉.

The complex structure J : R2n → R2n is the orthogonal transformation J(x, y) =
(−y, x) for x, y ∈ Rn. Then, J2 = −id and

ω((x, y), (x′, y′)) = 〈J(x, y), (x′, y′)〉.

A linear map f : R2n → R2n with matrix A (with respect to the canonical basis)
is symplectic if and only if

〈Jv,w〉 = ω(v,w) = ω(Av,Aw) = 〈JAv,Aw〉 = 〈AtJAv,w〉,

for every v, w ∈ R2n. So, f is symplectic if and only if AtJA = J . The set of
symplectic linear maps

Sp(n,R) = {A ∈ R2n×2n : AtJA = J}

is a Lie group, as a closed subgroup of GL(2n,R), and is called the symplectic group.
To see that Sp(n,R) is a Lie group in an elementary way which gives directly its

Lie algebra, let F : GL(2n,R) → so(2n,R) be the smooth map

F (A) = AtJA.

Then, Sp(n,R) = F−1(J) and it suffices to show that J is a regular value of F . The
derivative of F at A is F∗A(H) = HtJA + AtJH, H ∈ R2n×2n. Let A ∈ Sp(n,R)

and B ∈ so(2n,R). If H = −1

2
AJB, since AtJ = JA−1, then

HtJA+AtJH = −1

2
(JB)tJ + J(−1

2
JB) = −1

2
BtJ tJ − 1

2
J2B = B.

This shows that F∗A is a linear epimorphism. Hence Sp(n,R) is a Lie group with
Lie algebra

sp(n,R) = {H ∈ R2n×2n : HtJ + JH = 0}.
equipped with the usual Lie bracket of matrix groups and has dimension 2n2 + n.

Let h : Cn × Cn → C be the usual hermitian product defined by

h(u, v) = 〈u, v〉 − iω(u, v).
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If now A ∈ GL(2n,R), then identifying R2n with Cn we have
A ∈ U(n) if and only if h(Au,Av) = h(u, v) for every u, v ∈ R2n

if and only if 〈Au,Av〉 = 〈u, v〉 and ω(Au,Av) = ω(u, v) for every u, v ∈ R2n

if and only if A ∈ O(2n,R) ∩ Sp(n,R)
if and only if JA = AJ and 〈Au,Av〉 = 〈u, v〉 for every u, v ∈ R2n

if and only if A ∈ O(2n,R) ∩GL(n,C)
if and only if 〈AJu,Av〉 = 〈JAu,Av〉 = 〈Ju, v〉 for every u, v ∈ R2n

if and only if A ∈ Sp(n,R) ∩GL(n,C).
In other words,

O(2n,R) ∩ Sp(n,R) = O(2n,R) ∩GL(n,C) = Sp(n,R) ∩GL(n,C) = U(n).

Note that every element A ∈ Sp(n,R) preserves the volume and detA = 1. If λ is
an eigenvalue of A with multiplicity k ∈ N, then since

det(A− λI2n) = det(At − λI2n) = det(J−1(At − λI2n)J) =

det(A−1 − λI2n) = detA−1 · det(I2n − λA) = λ2n · det(A− 1

λ
I2n)

and λ 6= 0, because A is invertible, we conclude that
1

λ
is also an eigenvalue of A of

multiplicity k. Hence tha total multiplicity of all eigenvalues not equal to 1 or −1
is even. It follows that if −1 is an eigenvalue of A, it occurs with even multiplicity
and the same holds for 1, if it is an eigenvalue of A. Finally, if λ, µ are two real
eigenvalues of A and λµ 6= 1, then the corresponding eigenspaces are ω-orthogonal,
because if Ax = λx and Ay = µy, then

〈J(x), y〉 = ω(x, y) = ω(Ax,Ay) = 〈JA(x), A(y)〉 = λµ〈J(x), y〉

and therefore we must have ω(x, y) = 0.
There is a symplectic version of the well known polar decomposition for the

general linear groups. If A ∈ Sp(n,R), then

(At)tJAt = AJAt = AJJA−1J−1 = −J−1 = J

and
(AtA)tJAtA = AtAJAtA = AtJA = J

and therefore At and R = AtA are also symplectic. Also R is symmetric and
RJR = J or JR = R−1J and RJ = JR−1. Moreover, R is positive definite (with
respect to the euclidean inner product). So there exists a unique positive definite,
symmetric matrix S such that S2 = R, and S ∈ Sp(n,R), since

(−JS−1J)2 = −JS−2J = −(JS2J)−1 = −(JRJ)−1 = −(−R−1)−1 = R

and so −JS−1J = S, by uniqueness, or equivalently J = SJS, which means that
S ∈ Sp(n,R). This argument shows that the square root of any positive definite,
symmetric, symplectic matrix is also symplectic.

Now if U = AS−1, then

〈Ux,Uy〉 = 〈S−1x,RS−1y〉 = 〈S−1x, Sy〉 = 〈x, y〉
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for every x, y ∈ R2n, since S is symmetric. Therefore, U ∈ O(2n,R) ∩ Sp(n,R) =
U(n) and we get the polar decomposition A = US. Note that given such a
decomposition, we have At = SU−1 and so AtA = SU−1US = S2, which means
that S must be necessarily the unique square root of AtA. This implies the
uniqueness of the polar decomposition.

Lemma 2.1. If R is positive definite, symmetric, symplectic matrix, then
Ra ∈ Sp(n,R) for every real number a > 0.

Proof. From the spectral theorem, R2n is decomposed into a direct sum (actually
orthogonal with respect to the euclidean inner product) of the eigenspaces V (λ)
of R, where λ is a (necessarily real) eigenvalue of R. Since R is positive definite,
λ > 0 and V (λ) is the eigenspace of Ra corresponding to the eigenvalue λa. As we
saw above, if λ, µ are two eigenvalues of R and λµ 6= 1, then V (λ) and V (µ) are
ω-orthogonal. In particular, if λ 6= 1 then V (λ) is isotropic. In case λµ = 1, we have

ω(Ra(x), Ra(y)) = (λµ)aω(x, y) = ω(x, y)

for every x ∈ V (λ) and y ∈ V (µ). Since every vector of R2n is a sum of eigenvectors
of R, the conclusion follows. �

Corollary 2.2. The unitary group U(n) is a strong deformation retract of Sp(n,R).
In particular, Sp(n,R) is connected and the homogeneous space Sp(n,R)/U(n) is
contractible.

Proof. Recalling the polar decomposition of a symplectic matrix A, we see that
the map r : Sp(n,R) → U(n) defined by r(A) = A(AtA)−1/2 is a retraction. Also,
H : Sp(n,R)× [0, 1] → Sp(n,R) defined by

Hs(A) = A(AtA)−s/2, 0 ≤ s ≤ 1,

is a homotopy H : id ≃ j ◦ r rel U(n), where j : U(n) →֒ Sp(n,R) denotes the
inclusion. This homotopy rel U(n) descends to a homotopy on Sp(n,R)/U(n) and
so the latter is contractible. �

Proposition 2.3. The unitary group U(n) is a maximal compact subgroup of
Sp(n,R).

Proof. Let G be a compact subgroup of Sp(n,R) and µG denote the Haar measure
of G. Let

R =

∫

G
(AtA)dµG(A).

Since µG is right and left invariant, because G is compact, we have BtRB = R for
all B ∈ G. As above, S = R1/2 is symplectic and so SBS−1 ∈ Sp(n,R). Also,
SBS−1 ∈ O(2n,R), because

〈SBS−1(x), SBS−1(y)〉 = 〈BS−1(x), RBS−1(y)〉 = 〈S−1(x), BtRBS−1(y)〉
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= 〈S−1(x), RS−1(y)〉 = 〈S−1(x), S(y)〉 = 〈x, y〉

for every x, y ∈ R2n. Hence SGS−1 ≤ U(n), which proves the assertion. �

We recall that the group SU(n) is simply connected. This can be proved by
induction as follows. It is trivial for n = 1, since SU(1) is the trivial group. Assume
that n > 1 and SU(n− 1) is simply connected. The map p : SU(n) → S2n−1 which
sends A ∈ SU(n) to its first column is a fibration with fiber SU(n − 1). From the
homotopy exact sequence of p we get an exact sequence

{1} = π1(SU(n− 1)) → π1(SU(n)) → π1(S
2n−1) = {1}

and hence π1(SU(n)) = {1}.

Proposition 2.4. The determinant map det : U(n) → S1 induces an isomorphism
on fundamental groups.

Proof. The determinant map is a smooth submersion and therefore a fibration, since
U(n) is compact. Its fiber is SU(n) and from the homotopy exact sequence we get
the exact sequence

{1} = π1(SU(n)) → π1(U(n))
(det)♯−→ π1(S

1) → π0(SU(n)) = {1}. �

Corollary 2.5. π1(Sp(n,R)) ∼= Z. �

The symplectic group is related to the space of compatible complex structures of
a symplectic vector space. The standard complex structure J belongs to J (R2n, ω)
and the corresponding positive definite inner product is the euclidean.

Let I ∈ J (R2n, ω). If L a Lagrangian subspace, then I(L) is a Lagrangian com-
plement of L. Let {v1, ..., vn} be an orthonormal basis of L with respect to the posi-
tive definite inner product which corresponds to I. Then {v1, ..., vn, I(v1), ..., I(vn)}
is an orthonormal (with respect to the same inner product) symplectic basis. Hence
there exists A ∈ GL(2n,R) such that I = AJA−1.

The Lie group Sp(n,R) acts continuously on J (R2n, ω) by conjugation. We
shall use this action in order to prove essentialy that the latter is homeomorphic to
the space of positive definite, symmetric, symplectic matrices.

Theorem 2.6. The space J (R2n, ω) is homeomorphic to the homogeneous space
Sp(n,R)/U(n) and is therefore contractible.

Proof. Since the isotropy group of J is Sp(n,R) ∩ GL(n,C) = U(n), it suffices to
prove that the action of Sp(n,R) on J (R2n, ω) by conjugation is transitive. Let I ∈
J (R2n, ω) and let A ∈ O(2n,R) be such that I = AJA−1. Let g(v,w) = ω(v, I(w))
be the corresponding positive definite inner product and g̃ the positive definite inner
product which corresponds to J with respect to A∗ω. Then

g̃(v,w) = (A∗ω)(v, J(w)) = g(A(v), A(w))
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for every v, w ∈ R2n. There exists B ∈ GL(2n,R) such that

g̃(v,w) = 〈B(v), B(w)〉

for every v, w ∈ R2n. We can choose such B so that it commutes with J . In-
deed, if {v1, ..., vn, J(v1), ..., J(vn)} is a g̃-orthonormal and A∗ω-symplectic basis and
{u1, ..., un, J(u1), ..., J(un)} is a 〈, 〉-orthonormal and ω-symplectic basis, we can de-
fine B setting B(vj) = uj and B(J(vj)) = J(uj), 1 ≤ j ≤ n, and then B has the
desired properties. Now we have

ω(BA−1(v), BA−1(w)) = 〈JBA−1(v), BA−1(w)〉 = 〈BJA−1(v), BA−1(w)〉

= 〈BA−1I(v), BA−1(w)〉 = g̃(A−1I(v), A−1(w)) = g(I(v), w) = ω(v,w)

for every v, w ∈ R2n and therefore BA−1 ∈ Sp(n,R). Since (BA−1)I(BA−1)−1 = J ,
this proves that Sp(n,R) acts transitively on J (R2n, ω). �

As a last issue in this section we shall discuss the set of Lagrangian subspaces.
Let L(n) denote the set of all Lagrangian linear subspaces of R2n. A n-dimensional
subspace W ≤ R2n is Lagrangian if and only if ω is zero on W or equivalently
J(W ) is orthogonal to W with respect to the euclidean inner product 〈, 〉

Example 2.7. Let A ∈ Rn×n and let W = {(x,A(x)) : x ∈ Rn} be the graph of
A. Since W has dimension n, it is a Lagrangian subspace of R2n if and only if it is
isotropic or equivalently

0 = 〈(x,A(x)), J(y,A(y))〉 = 〈(x,A(x)), (−A(y), y)〉 = −〈x,A(y〉+ 〈A(x), y〉

for every x, y ∈ Rn. Hence W is Lagrangian if and only if A is symmetric.

Let W ≤ R2n be a Lagrangian subspace. Let B : W → Rn = Rn × {0} be an
orthogonal isomorphism (with respect to the euclidean inner product) and let

A :W ⊕ J(W ) = R2n → R2n = Rn ⊕ J(Rn)

be defined by A(v+ J(u)) = B(v)+ J(B(u)). Then, B = A|W and AJ = JA. Also,

ω(A(v + J(u)), A(v′ + J(u′))) = 〈JB(v)−B(u), B(v′) + JB(u′)〉

= 0 + 〈v, u′〉 − 〈u, v′〉 − 0 = ω(v + u, v′ + u′)

for every v, v′, u, u′ ∈ W , since J and B are orthogonal transformations. Thus,
A ∈ O(2n,R) ∩GL(n,C) = U(n) and U(n) acts transitively on L(n). The isotropy
group of the Lagrangian subspace Rn×{0} is the subgroup of U(n) consisting of real
matrices, that is O(n,R). Hence L(n) = U(n)/O(n,R) and so it has the structure
of a homogeneous smooth manifold of dimension

dimU(n)− dimO(n,R) = n+
2n(n− 1)

2
− n(n− 1)

2
=
n(n+ 1)

2
.

For every U ∈ U(n) and A ∈ O(n,R) we have det(UA) = detU · detA = ± detU .
So, we have a well defined smooth function (det)2 : L(n) → S1. Obviously, (det)2
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is a submersion, and therefore a fibration, since U(n) is compact. Let now U1,
U2 ∈ U(n) be such that (detU1)

2 = (detU2)
2. There exists A ∈ O(n,R) such that

detU1 = det(U2A) and therefore U1(U2A)
−1 ∈ SU(n) and

(U1(U2A)
−1)U2A ·O(n,R) = U1 · O(n,R).

Consequently, the group SU(n) acts transitively on each fiber of (det)2 with isotropy
group SO(n,R). This shows that each fiber of (det)2 is diffeomorphic to the homo-
geneous space SU(n)/SO(n,R), which is simply connected, since SU(n) is simply
connected and SO(n,R) is connected, by the homotopy exact sequence of the fibra-
tion

SO(n,R) →֒ SU(n) → SU(n)/SO(n,R).

From the homotopy exact sequence of the fibration

SU(n)/SO(n,R) →֒ L(n)
(det)2−→ S1

we have the exact sequence

{1} = π1(SU(n)/SO(n,R)) → π1(L(n)) → Z → π0(SU(n)/SO(n,R)) = {1}.

It follows that (det)2 induces an isomorphism π1(L(n)) ∼= Z, and therefore also an
isomorphism on singular cohomology ((det)2)∗ : Z ∼= H1(L(n);Z). The cohomology
class ((det)2)∗(1) is called the Maslov class.

2.3 Symplectic manifolds

A symplectic manifold is a pair (M,ω), where M is a smooth manifold and ω is
a closed 2-form on M such that (TpM,ωp) is a symplectic vector space for every

p ∈M . Necessarily then M is even dimensional and if dimM = 2n, then
1

n!
ωn is a

volume 2n-form on M . So M is orientable and ω determines in this way an orien-
tation. However, not every orientable, even-dumensional, smooth manifold admits
a symplectic structure. If (M,ω) is a compact, symplectic manifold of dimension
2n, then ω defines a real cohomology class a = [ω] ∈ H2(M ;R) and the cohomology
class an = a ∪ · · · ∪ a ∈ H2n(M ;R) is represented by ωn = ω ∧ · · · ∧ ω. So, an 6= 0
and the symplectic form ω cannot be exact. It follows that if M is an orientable,
compact, smooth manifold such that H2(M ;R) = {0}, then M admits no symplec-
tic structure. For example, the n-sphere Sn cannot be symplectic for n > 2, as well
as the 4-manifold S1 × S3.

A smooth map f : (M,ω) → (M ′, ω′) between symplectic manifolds is called
symplectic if f∗ω′ = ω. If f is also a diffeomorphism, it is called symplectomorphism.
In this way symplectic manifolds form a category. The product of two symplectic
manifolds (M1, ω1) and (M2, ω2) is the symplectic manifold

(M1 ×M2, π
∗
1ω1 + π∗2ω),

where πj :M1 ×M2 →Mj, j = 1, 2, are the projections.



32 CHAPTER 2. BASIC SYMPLECTIC GEOMETRY

Example 3.1. For every positive integer n, the space R2n is a symplectic manifold,
by considering on each tangent space TpR

2n ∼= R2n the canonical symplectic vector
space structure. If dx1, dx2,..., dxn, dy1, dy2,..., dyn are the canonical basic differ-
ential 1-forms on R2n, then the canonical symplectic manifold structure is defined
by the 2-form

n∑

i=1

dxi ∧ dyi.

Example 3.2. Another simple example is the 2-shpere with its standard area
2-form ω given by the formula ωx(u, v) = 〈x, u × v〉 for u, v ∈ TxS

2 and x ∈ S2,
where × denotes the exterior product in R3. With this area 2-form the total
area of S2 is 4π. More generally, let M ⊂ R3 be an oriented surface. The Gauss
map N : M → S2 associates to every x ∈ M the outward unit normal vector
N(x) ⊥ TxM . Then, as in the case of S2, the formula ωx(u, v) = 〈N(x), u × v〉 for
u, v ∈ TxM defines a symplectic 2-form on M .

Example 3.3. The basic example of a symplectic manifold is the cotangent bundle
T ∗M of any smooth n-manifold M with the symplectic 2-form ω = −dθ, where θ is
the Liouville canonical 1-form on T ∗M . Recall the locally ω is given by the formula

ω|locally =

n∑

i=1

dqi ∧ dpi

and compare with Example 3.1.

Another important example of a symplectic manifold is the complex projective
space, which is an example of a Kähler manifold.

Example 3.4. For n ≥ 1 let CPn denote the complex projective space of complex
dimension n and π : Cn+1 \ {0} → CPn be the quotient map. Recall that there is a
canonical atlas {(Vj , φj) : 0 ≤ j ≤ n}, where Vj = {[z0, ..., zn] ∈ CPn : zj 6= 0} and

φj [z0, ..., zn] = (
z0
zj
, ...,

zj−1

zj
,
zj+1

zj
, ...,

zn
zj

).

The quotient map π is a submersion. To see this note first that φ0◦π : π−1(V0) → Cn

is given by the formula

(φ0 ◦ π)(z0, ..., zn) = (
z1
z0
, ...,

zn
z0

).

Let z = (z0, ..., zn) ∈ π−1(V0) and v = (v0, ..., vn) ∈ TzC
n+1 ∼= Cn+1 be non-zero.

Then v = γ̇(0), where γ(t) = z + tv, and

(φ0 ◦ π ◦ γ)(t) =
(
z1 + tv1
z0 + tv0

, ...,
zn + tvn
z0 + tv0

)

so that

(φ0 ◦ π ◦ γ)′(0) =
(
v1
z0

− z1v0
z20

, ...,
vn
z0

− znv0
z20

)
.



2.3. SYMPLECTIC MANIFOLDS 33

This implies that v ∈ Ker π∗z if and only if [v0, ..., vn] = [z0, ..., zn]. In other words
Ker π∗z = {λz : λ ∈ C}. Obviously, for every (ζ0, ..., ζn) ∈ Cn there exists v =
(v0, ..., vn) ∈ Cn+1 such that

ζj =
vj
z0

− zjv0
z20

.

Since similar things hold for any other chart (Vj , φj) instead of (V0, φ0), this shows
that π is a submersion.

The inclusion S2n+1 →֒ Cn+1\{0} is an embedding and so its derivative at every
point of S2n+1 is a linear monomorphism. For every z ∈ S2n+1 we have

Ker(π|S2n+1)∗z = Kerπ∗z ∩ TzS2n+1 = {λz : λ ∈ C and Reλ = 0}

which is a real line. On the other hand, π−1(π(z))∩S2n+1 is the trace of the smooth
curve σ : R → S2n+1 with σ(t) = eitz for which σ(0) = z and σ̇(0) = iz. Therefore
Ker(π|S2n+1)∗z is generated by σ̇(0).

Let h be the usual hermitian product on Cn+1. If

Wz = {η ∈ TzCn+1 : h(η, z) = 0},

then π∗z|Wz :Wz → T[z]CP
n is a linear isomorphism for every z ∈ Cn+1\{0}. Indeed,

for every v ∈ TzC
n+1 there are unique λ ∈ C and η ∈ Wz such that v = λz + η.

Obviously,

λ =
h(v, z)

h(z, z)
, η = v − h(v, z)

h(z, z)
· z.

The restricted hermitian product on Wz can be transfered isomorphically by π∗z on
T[z]CP

n. If now

g[z](v,w) = Re h((π∗z |Wz)
−1(v), (π∗z |Wz)

−1(w))

for v, w ∈ T[z]CP
n, then g is Riemannian metric on CPn called the Fubini-Study

metric. If z ∈ S2n+1, then Wz = {v ∈ TzS
2n+1 : 〈v, σ̇(0)〉 = 0}.

Each element A ∈ U(n + 1) induces a diffeomorphism Ã : CPn → CPn. More-
over, A(Wz) = WA(z) for every z ∈ Cn+1 \ {0} and therefore Ã is an isometry of
the Fubini-Study metric. In this way, U(n + 1) acts on CPn by isometries. The
action is transitive and so CPn is a homogeneous Riemannian manifold with re-
spect to the Fubibi-Study metric. Indeed, U(n + 1) acts transitively on S2n+1,
because if z ∈ S2n+1, there exist E1, . . . En ∈ Cn+1 such that {E1, . . . En, z} is an
h-orthonormal basis of Cn+1. The matrix U with columns E1, . . . , En, z is an ele-
ment of U(n + 1) such that U(ej) = Ej for 1 ≤ j ≤ n and U(en+1) = z. This last
equality shows that U(n+ 1) acts transitively on CPn.

The isotropy group of [en+1] = [0, . . . , 0, 1] consists of all A ∈ U(n+1) such that
λA(en+1) = en+1 for some λ ∈ S1. This means that

λA =

(
B 0
0 1

)

for some B ∈ U(n). Since Ã = λ̃A, this implies that the isotropy group of [en+1]
is U(n), considered as a subgroup of U(n + 1) as above, and therefore CPn is
diffeomorphic to the homogeneous space U(n+ 1)/U(n).
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If A ∈ U(n + 1), then detA ∈ S1 and taking a ∈ S1 such that an = detA we

have a−1A ∈ SU(n+ 1) and Ã = ã−1A. Hence SU(n + 1) acts also transitively on
CPn and CPn is diffeomorphic to SU(n + 1)/U(n), if we identify U(n) with the
subgroup of SU(n+ 1) consisting of matrices of the form

(
B 0
0 1

detB

)

for B ∈ U(n). If A ∈ SU(n+1) belongs to the isotropy group of [en+1] and λA has

the above form, then detB = λn+1 and putting B′ =
1

λ
B, we have now

A =

(
B′ 0
0 1

λ

)

where detB′ = λ. Therefore A ∈ U(n), as a subgroup of SU(n+ 1).
The scalar multiplication with the imaginary unit i defines a linear automor-

phism J : Wz → Wz such that J2 = −id and h(Jv, Jw) = h(v,w) for every v,
w ∈ Wz. Conjugating with π∗z|Wz , we get a linear automorphism J[z] of T[z]CP

n

depending smoothly on [z], which is a linear isometry, such that J2
[z] = −id. In other

words, the Fubini-Study metric is a hermitian Riemannian metric.
If we set ω[z](v,w) = g[z](J[z]v,w) for v, w ∈ T[z]CP

n, then

ω[z](w, v) = g[z](J[z]w, v) = g[z](v, J[z]w) = −g[z](J[z]v,w) = −ω[z](v,w).

So we get a differential 2-form on CPn, which is obviously non-degenerate since J[z]
is a linear isomorphism. To see that ω is symplectic, it remains to show that it is
closed. This will be an application of the following general criterion.

Proposition 3.5. (Mumford’s criterion) Let M be a complex manifold and G be
a group of diffeomorphisms of M which preserve the complex structure J of M
and a complex hermitian metric h on M . If Jz ∈ ρz(Gz) for every z ∈ M , where
ρz : Gz → AutC(TzM) is the isotropic linear representation of the isotropy group
Gz, then the 2-form ω(., .) = Re h(J., .) is closed.

Proof. Since every g ∈ G leaves J and h invariant, it leaves ω invariant and therefore
dω also. For g ∈ Gz and v, w, u ∈ TzM we have

(dω)z(ρz(g)u, ρz(g)v, ρz(g)w) = (dω)z(u, v, w)

because ρz(g) = g∗z. Since Jz ∈ ρz(Gz), there exists g ∈ Gz such that Jz = ρz(g)
and so

(dω)z(u, v, w) = (dω)z(Jzu, Jzv, Jzw) = (dω)z(J
2
z u, J

2
z v, J

2
zw)

= −(dω)z(u, v, w).

Hence dω = 0. �

In the case of CPn we apply Mumford’s criterion for G = SU(n+1), since CPn

is diffeomorphic to the homogeneous space SU(n+ 1)/U(n). The isotropy group of
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[z] ∈ CPn is G[z]
∼= U(Wz). Indeed, recall that Wen+1 = Cn × {0} and as we saw

above there exists A ∈ U(n + 1) such that A(en+1) = z. Then, G[z] = ÃG[en+1]Ã
−1

and A(Wz) = Wen+1 . Since every element of G[z] is a C-linear, the isotropic linear
representation ρ[z] : SU(n + 1)[z] → U(n) is precisely the above group isomorphism
G[z]

∼= U(Wz). It follows that J[z] = iIn ∈ U(Wz), because it is just multiplication by
i, and by Mumford’s criterion the non-degenerate 2-form ω[z](v,w) = g[z](J[z](v), w)
for v, w ∈ T[z]CP

n, z ∈ CPn is closed and hence symplectic.

This concludes the description of the symplectic structure of complex projective
spaces. The complex projective space is an example of a Kähler manifold. The class
of Kähler manifolds is important in Differential Geometry, Symplectic Geometry
and Mathematical Physics. They will be descussed briefly in a subsequent section.

Having in mind the symplectic structure of the complex projective space we
give the following.

Definition 3.6. An almost symplectic structure on a smooth manifold M of
dimension 2n is non-degenerate, smooth 2-form on M . An almost complex structure
on M is a smooth bundle endomorphism J : TM → TM such that J2 = −id.

The following proposition leads to vector bundle obstructions for a compact
manifold to be symplectic.

Proposition 3.7. A smooth manifold M of dimension 2n has an almost complex
structure if and only if it has an almost symplectic structure.

Proof. Let J be an almost complex structure on M . Let g0 be any Riemannian
metric on M and g be the Riemannian metric defined by

g(v,w) = g0(v,w) + g0(Jv, Jw)

for v, w ∈ TpM , p ∈M . Then,

g(Jv, Jw) = g0(Jv, Jw) + g0(J
2v, J2w) = g0(Jv, Jw) + g0(−v,−w) = g(v,w).

The smooth 2-form ω defined by

ω(v,w) = g(Jv,w)

is non-degenerate, because ω(v, Jv) > 0 for v 6= 0.

The proof of the converse is similar to the proof of Theorem 1.10, where now
linear maps are replaced by vector bundle morphisms. Suppose that ω is an almost
symplectic structure on M and let again g be any Riemannian metric on M . There
exists a smooth bundle automorphism A : TM → TM (depending on g) such
that ω(v,w) = g(Av,w) for all v, w ∈ TpM , p ∈ M . Since ω is non-degenerate
and skew-symmetric, A is an automorphism and skew-symmetric (with respect to
g). Therefore, −A2 is positive definite and symmetric (with respect to g). So,
it has a unique square root, which means that there is a unique smooth bundle
automorphism B : TM → TM such that B2 = −A2. Moreover, B commutes with
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A. Then, J = AB−1 is an almost complex structure on M . �

Remark 3.8. In the proof of the converse statement in Proposition 3.7 we have
used the easily proved fact that if ωt, t ∈ R, is a family of symplectic bilinear forms
on R2n, and gt, t ∈ R, is a family of positive definite inner products all depending
smoothly on t, then following the proof of Theorem 1.10 we end up with a smooth
family of corresponding compatible complex structures Jt, t ∈ R, on R2n. This
guarantees the smoothness of the almost complex structure J on M .

If (M,ω) is a symplectic manifold, an almost complex structure J on M is
called compatible with ω if gx(u, v) = −ω(J(u), v), for u, v ∈ TxM , x ∈ M ,
is a Riemannian metric on M preserved by J . As the proof of Proposition 3.7
shows, any symplectic manifold carries compatible almost complex structures.
As we commented after the proof of Theorem 1.10, if J0 and J1 are two almost
complex structures compatible with ω, there exists a smooth family Jt, 0 ≤ t ≤ 1,
of compatible almost complex structures from J0 to J1. Actually the arguments
used to prove Theorem 2.6 can be globalized to prove that the space J (M,ω)
of compatible almost complex structures is contractible. This is important for
uniqueness of invariants arising from a compatible almost complex structure.

Example 3.9. Let M ⊂ R3 be an oriented surface with Gauss map N : M → S2.
An almost complex structure J on M can be defined by the formula

Jx(v) = N(x)× v

for v ∈ TxM , x ∈M , since

J2
x(v) = N(x)× (N(x)× v) = 〈N(x), v〉N(x) − 〈N(x), N(x)〉v = −v.

Recall from Example 3.2 that the symplectic 2-form ω on M is defined by

ωx(u, v) = 〈N(x), u × v〉 = 〈N(x)× u, v〉 = 〈Jx(u), v〉.

So J is compatible with ω.

Example 3.10. Not every almost complex manifold is symplectic. We shall con-
struct an almost complex structure on the 6-sphere S6 using the exterior product
in R7, defined from the Cayley algebra of octonions, in the same way as we did in
the previous Example 3.9. As we know S6 carries no symplectic structure. It is still
unknown whether S6 can be made a complex manifold.

As a vector space the (non-associative) Cayley algebra of the octonions is iso-
morphic to R8. Each octonion a = (ar, a0, a1, a2, a3, a4, a5, a6) can be written as

a = ar · 1 +
6∑

j=0

ajej

where {e0, e1, e2, e3, e4, e5, e6} is the canonical basis of R7. The first component ar is
the real part and can be considered a real number, and the second is the imaginary
part, which is a vector ~a ∈ R7.
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The multiplication is defined as

(ar + ~a) · (br +~b) = arbr − 〈~a,~b〉+ ar~b+ br~a+
∑

i 6=j

aibjei · ej

where 〈, 〉 is the euclidean inner product and ei · ej is given by the following multi-
plication table

e0 e1 e2 e3 e4 e5 e6
e0 −1 e2 −e1 e4 −e3 e6 −e5
e1 −e2 −1 e0 −e5 e6 e3 −e4
e2 e1 −e0 −1 e6 e5 −e4 −e3
e3 −e4 e5 −e6 −1 e0 −e1 e2
e4 e3 −e6 −e5 −e0 −1 e2 e1
e5 −e6 −e3 e4 e1 −e2 −1 e0
e6 e5 e4 e3 −e2 −e1 −e0 −1

If ~a, ~b ∈ R7 are considered as purely imaginary octonions, then

~a ·~b = −〈~a,~b〉+
∑

i 6=j

aibjei · ej .

Letting the imaginary part be

~a×~b =
∑

i 6=j

aibjei × ej

where ei × ej = ei · ej for i 6= j and ei × ei = 0, we get a skew-symmetric, bilinear
product × : R7 × R7 → R7 with the additional properties:

(i) 〈~a×~b,~c〉 = 〈~a,~b× ~c〉 and
(ii) ~a× (~b× ~c) + (~a×~b)× ~c = 2〈~a,~c〉~b− 〈~b,~c〉~a− 〈~b,~a〉~c

for every ~a, ~b, ~c ∈ R7. From (ii) follows that ~a×~b is orthogonal to both ~a, ~b and
(iii) ~a× (~a×~b) = 〈~a,~b〉~a− 〈~a,~a〉~b.
Identifying TxS

6 with a linear subspace of R6 for every x ∈ S6 as usual, we can
define Jx : TxS

6 → TxS
6 to be the linear automorphism given by Jx(v) = x× v and

then
J2
x(v) = x× (x× v) = −〈x, x〉v = −v.

Since J depends smoothly on x ∈ S6, it is an almost complex structure on S6.

The tangent bundle of a symplectic manifold (M,ω), or more generally of an
almost complex manifold, is the realification of a complex vector bundle. This
situation is a particular case of a symplectic vector bundle. A symplectic vector
bundle (E,ω) over a smooth manifold M is a real smooth vector bundle p : E →M
with a symplectic form ωx on each fiber Ex = p−1(x) which varies smoothly with
x ∈ M . In other words, ω is a smooth section of the bundle E∗ ∧ E∗, where E∗ is
the dual bundle. Two symplectic vector bundles (E1, ω1) and (E2, ω2) over M are
isomorphic if there exists a smooth vector bundle isomorphism f : E1 → E2 such
that f∗(ω2) = ω1.
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Let (E,ω) be a 2n-dimensional symplectic vector bundle over M and let U ⊂M
be an open set over which the bundle is trivial. This is equivalent to saying that
there exist smooth sections e1, e2,. . . , e2n : U → p−1(U) ⊂ E such that the set
{e1(x), . . . , e2n(x)} is a basis of the fiber Ex for every x ∈ U . If {e∗1(x), . . . , e∗2n(x)}
is the dual basis of E∗

x, there are smooth functions aij : U → R, 1 ≤ i < j ≤ 2n,
such that

ω|p−1(U) =
∑

i<j

aije
∗
i ∧ e∗j .

Let x0 ∈ U . Since ωx0 6= 0, we may assume that a12(x0) 6= 0 and so a12(x) 6= 0 for x
in a smaller neighbourhood of x0. Continuing now in the same way as in the proof
of Cartan’s Lemma 1.1, we end up with an open neighbourhood V of x0 such that
(p−1(V ), ω|p−1(V )) is isomorphic to V × R2n equiped with the standard symplectic
form on the fiber R2n. This implies that the structure group of every symplectic vec-
tor bundle (E,ω) can be reduced from GL(2n,R) to the symplectic group Sp(n,R).
Since Sp(n,R) is connected and U(n) is a maximal compact subgroup of Sp(n,R),
it follows from the Iwasawa decomposition and the reduction theorem for fiber bun-
dles that the structure group of a symplectic vector bundle can be further reduced
to U(n). Hence every symplectic vector bundle is a complex vector bundle. As in
the case of symplectic vector spaces, one can define compatible complex structures
on (E,ω) and the corresponding space J (E,ω). The same arguments show that
J (E,ω) is not empty and contractible. So every symplectic vector bundle has a
complex structure which is well-defined up to homotopy.

Returning to the case of a symplectic manifold (M,ω) of dimension 2n, the tan-
gent bundle ofM can be considered as a complex vector bundle of complex dimension
n to which correspond Chern classes ck ∈ H2k(M ;Z), 1 ≤ k ≤ n. The Chern classes
are related to the Pontryagin classes of the tangent bundle ofM through polynomial
(quadratic) equations, which can serve as obstructions to the existence of a symplec-
tic structure on M , since not every compact, orientable, smooth 2n-manifold has
cohomology classes satisfying these equations. For instance, using these equations
and Hirzebruch’s Signature Theorem, one can show that the connected sum CP 2#
CP 2 cannot be a symplectic manifold.

2.4 Local description of symplectic manifolds

Even though we have defined the symplectic structure in analogy to the Riemannian
structure, their local behaviour differs drastically. In this section we shall show that
in the neighbourhood of any point on a symplectic 2n-manifold (M,ω) there are
suitable local coordinates (q1, ..., qn, p1, ..., pn) such that

ω|locally =

n∑

i=1

dqi ∧ dpi.

This shows that in symplectic geometry there are no local invariants, in contrast to
Riemannian geometry, where there are highly non-trivial local invariants. In other
words, the study of symplectic manifolds is of global nature and one expects to use
mainly topological methods.
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The method of proof of the local isomorphy of all symplectic manifolds, we shall
present, is based on Moser’s trick.

Lemma 4.1. (Moser) Let M and N be two smooth manifolds and F :M ×R → N
be a smooth map. For every t ∈ R let Xt :M → TN be the smooth vector field along
Ft = F (., t) defined by

Xt(p) =
∂

∂s

∣∣∣∣
s=t

F (p, s) ∈ TFt(p)N.

If (ωt)t∈R is a smooth family of k-forms on N , then

d

dt
(F ∗

t ωt) = F ∗
t (
dωt
dt

+ iXtdωt) + d(F ∗
t iXtωt).

If moreover Ft is a diffeomorphism for every t ∈ R, then

d

dt
(F ∗

t ωt) = F ∗
t (
dωt
dt

+ iXtdωt + diXtωt).

Note that if Ft is not a diffeomorphism then Xt is not in general a vector field
on N . The meaning of the symbol F ∗

t iXtωt will be clear in the proof.

Proof. (a) First we shall prove the formula in the special case M = N = P ×R and
Ft = ψt, where ψt(x, s) = (x, s + t). Then

ωt = ds ∧ a(x, s, t)dxk + b(x, s, t)dxk+1,

where
a(x, s, t)dxk =

∑

i1<i2<...<ik

ai1i2...ik(x, s, t)dx
i1 ∧ dxi2 ∧ ... ∧ dxik

and similarly for b(x, s, t)dxk+1. So ψ∗
t ωt = ds∧ a(x, s+ t, t)dxk + b(x, s+ t, t)dxk+1

and
d

dt
(ψ∗

t ωt) = ds ∧ ∂a

∂s
(x, s+ t, t)dxk +

∂b

∂s
(x, s+ t, t)dxk+1

+ds ∧ ∂a

∂t
(x, s + t, t)dxk +

∂b

∂t
(x, s + t, t)dxk+1,

Obviously,

ψ∗
t (
dωt
dt

) = ds ∧ ∂a

∂t
(x, s+ t, t)dxk +

∂b

∂t
(x, s+ t, t)dxk+1. (1)

On the other hand Xt =
∂

∂s
. So iXtωt = a(x, s, t)dxk and

d(iXtωt) =
∑

i1<i2<...<ik

dai1i2...ik(x, s, t) ∧ dxi1 ∧ dxi2 ∧ ... ∧ dxik =

∑

i1<i2<...<ik

(
∂ai1i2...ik

∂s
(x, s, t)ds ∧ dxi1 ∧ dxi2 ∧ ... ∧ dxik+
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∑

j /∈{i1<i2<...<ik}

∂ai1i2...ik
∂xj

dxj ∧ dxi1 ∧ dxi2 ∧ ... ∧ dxik
)
.

We shall write for brevity

d(iXtωt) =
∂a

∂s
(x, s, t)ds ∧ dxk + dxa(x, s, t)dx

k+1.

So

ψ∗
t (d(iXtωt)) =

∂a

∂s
(x, s + t, t)ds ∧ dxk + dxa(x, s + t, t)dxk+1. (2)

Using the symbol dx in the same way, we have

dωt = −ds ∧ dxa(x, s, t)dxk +
∂b

∂s
(x, s, t)ds ∧ dxk+1 + dxb(x, s, t)dx

k+2,

and thus

ψ∗
t (iXtdωt) = −dxa(x, s + t, t)dxk+1 +

∂b

∂s
(x, s + t, t)dxk+1. (3)

Summing up now (1), (2) and (3) we get

ψ∗
t (
dωt
dt

) + ψ∗
t d(iXtωt) + ψ∗

t (iXtdωt) =
d

dt
ψ∗
t ωt.

(b) The general case follows from part (a) using the decomposition Ft = F ◦ ψt ◦ j,
where j : M → M × R is the inclusion j(p) = (p, 0) and ψt is the same as in part
(a). Now we have

Xt(p) =
∂

∂s

∣∣∣∣
s=t

F (p, s) = F∗(p,t)

(
∂

∂s

)

(p,t)

.

If each Ft is a diffeomorphism, then Xt is a vector field on N and iXtωt is defined.
If not, the term F ∗

t (iXtωt) has the following meaning. By definition,

F ∗
t (iXtωt)p(v1, ..., vk−1) = (ωt)Ft(p)(Xt(p), (Ft)∗p(v1), ..., (Ft)∗p(vk−1)) =

(ωt)F (p,t)(F∗(p,t)

(
∂

∂s

)

(p,t)

, F∗(p,t)(v1, 0), ..., F∗(p,t)(vk−1, 0)) =

(F ∗ωt)(p,t)(

(
∂

∂s

)

(p,t)

, (v1, 0), ..., (vk−1, 0)) = (i∂/∂sF
∗ωt)(p,t)((v1, 0), ..., (vk−1, 0)) =

j∗ψ∗
t (i∂/∂sF

∗ωt)p(v1, ..., vk−1)

for v1,...,vk−1 ∈ TpM . Therefore, F ∗
t (iXtωt) = j∗ψ∗

t (i∂/∂sF
∗ωt) and similarly

F ∗
t (iXtdωt) = j∗ψ∗

t (i∂/∂sd(F
∗ωt)). Since j

∗ does not depend on t, we have

d

dt
(F ∗

t ωt) = j∗
d

dt
(ψ∗

t F
∗ωt)
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and applying part (a) to F ∗ωt we get

d

dt
(F ∗

t ωt) = j∗ψ∗
t (
d(F ∗ωt)

dt
) + j∗ψ∗

t (i∂/∂sd(F
∗ωt)) + j∗d(ψ∗

t i∂/∂s(F
∗ωt)) =

j∗ψ∗
t F

∗(
dωt
dt

) + F ∗
t (iXtdωt) + d(F ∗

t (iXtωt)) =

F ∗
t (
dωt
dt

) + F ∗
t (iXtdωt) + d(F ∗

t (iXtωt)). �

Corollary 4.2. Let X be a smooth vector field on a smooth manifold M . If ω is a
differential form on M , then LXω = iXdω + diXω.

Proof. If X is complete and (φt)t∈R is its flow, we apply Lemma 4.1 for Ft = φt,
M = N and ωt = ω and we have

LXω =
d

dt

∣∣∣∣
t=0

φ∗tω = iXdω + diXω.

If X is not complete, then M has an open covering U such that for every U ∈ U
there exists some ǫ > 0 and a local flow map φ : (−ǫ, ǫ) × U → M of X. Again we
apply Lemma 4.1 for Ft = φt on U this time to get the desired formula on every
U ∈ U , hence on M . �

We are now in a position to prove the main theorem of this section.

Theorem 4.3. (Darboux) Let ω0 and ω1 be two symplectic 2-forms on a smooth
2n-manifold M and p ∈ M . If ω0(p) = ω1(p), there exists an open neighbourhood
U of p in M and a diffeomorphism F : U → F (U) ⊂ M , where F (U) is an open
neighbourhood of p, such that F (p) = p and F ∗ω1 = ω0.

Proof. Let ωt = (1− t)ω0+ tω1, 0 ≤ t ≤ 1. Since ωt(p) = ω0(p) = ω1(p), there exists
an open neighbourhood U1 of p diffeomorphic to R2n such that ωt|U1 is symplectic
for every 0 ≤ t ≤ 1. By the lemma of Poincaré, there exists a 1-form a on U1 such
that ω0 − ω1 = da on U1 and a(p) = 0. For every 0 ≤ t ≤ 1 there exists a smooth
vector field Yt on U1 such that iYtωt = a. Obviously, Yt(p) = 0 and the above hold

for every −ǫ < t < 1 + ǫ, for some ǫ > 0. Now Ȳ = (
∂

∂s
, Ys) is a smooth vector

field on (−ǫ, 1 + ǫ) × U1. If φt is the flow of Ȳ , then φt(s, x) = (s + t, ft(s, x)),
for some smooth ft : (−ǫ, 1 + ǫ)× U1 → M . Therefore, φt(0, x) = (t, Ft(x)), where
Ft : U1 → Ft(U1) is a diffeomorphism. Since φt(0, p) = (0, p), that is Ft(p) = p, there
exists an open neighbourhood U of p such that Ft is defined on U and Ft(U) ⊂ U1

for every 0 ≤ t ≤ 1. Obviously, Yt =
∂Ft
∂t

and so from Lemma 4.1 we have

d

dt
(F ∗

t ωt) = F ∗
t (
dωt
dt

+ iYtdωt + diYtωt) = F ∗
t (ω1 − ω0 + 0 + da) = 0.
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Hence F ∗
t ωt = F ∗

0 ω0 = ω0 for every 0 ≤ t ≤ 1, since F0 = id. �

Corollary 4.4. Let (M,ω) be a symplectic 2n-manifold and p ∈ M . There exists
an open neighbourhood U of p and a diffeomorphism F : U → F (U) ⊂ R2n such
that

ω|U = F ∗
( n∑

i=1

dxi ∧ dyi
)
.

Proof. Let (W,ψ) be a chart of M with p ∈ W , ψ(W ) = R2n and ψ(p) = 0.
Then the 2-form ω1 = (ψ−1)∗ω on R2n is symplectic. Composing with a linear
transformation if necessary, we may assume that ω1(0) = ω0(0), where ω0 is the
standard symplectic 2-form on R2n. By Darboux’s theorem, there exists an open
neighbourhood V of 0 in R2n and a diffeomorphism φ : V → φ(V ) with φ(0) = 0
and φ∗ω1 = ω0. It suffices to set now F = (ψ−1 ◦ φ)−1. �

At this point we cannot resist the temptation to use Moser’s trick in order to
prove the following result, also due to J. Moser.

Theorem 4.5. (Moser) Let M be a connected, compact, oriented, smooth n-
manifold and ω0, ω1 be two representatives of the orientation. If

∫

M
ω0 =

∫

M
ω1,

there exists a diffeomorphism f :M →M such that f∗ω1 = ω0.

Proof. For every 0 ≤ t ≤ 1 the n-form ωt = (1− t)ω0+ tω0 is a representative of the
orientation, that is a positive volume element of M . Since

∫

M
(ω0 − ω1) = 0,

there exists a (n − 1)-form a on M such that ω0 − ω1 = da. There exists a unique
smooth vector field Xt on M such that iXtωt = a. As in the proof of Darboux’s
theorem, there exists a smooth isotopy F :M × [0, 1] →M with F0 = id and

Xt =
∂Ft
∂t

,

because M is compact. Again from Lemma 4.1 we have

d

dt
(F ∗

t ωt) = F ∗
t (ω1 − ω0 − 0 + da) = 0.

Hence F ∗
t ωt = ω0 for every 0 ≤ t ≤ 1. �
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2.5 Lagrangian submanifolds

Let (M,ω) be a symplectic manifold and j : L → M be an immersion. If j∗ω = 0,
then L is called an isotropic immersed submanifold of M . In other words, j∗x(TxL)
is an isotropic linear subspace of Tj(x)M for every x ∈ L. Analogously, L is called a
coisotropic (respectively symplectic) immersed submanifold if j∗x(TxL) is coisotropic
(respectively symplectic) for every x ∈ L. The same terms are used for (embedded)
submanifolds of M and for subbundles of TM restricted to submanifolds of M with
the obvious definitions.

A submanifold L ⊂ M is called Lagrangian if it is isotropic and there exists an
isotropic subbundle E of TM |L such that TM |L = TL⊕ E.

Proposition 5.1. If (M,ω) is a symplectic manifold and L ⊂ M is a submanifold

of M , then L is Lagrangian if and only if L is isotropic and dimL =
1

2
dimM .

Proof. The direct assertion is obvious. For the converse, let L be isotropic of
dimension half the dimension of M . Then TxL has an isotropic complement in
TxM for every x ∈ L. There exists an compatible almost complex structure J on
M and so gx(u, v) = −ωx(Jx(u), v), u, v ∈ TxM , x ∈M , is a Riemannian metric on
M . If E = J(TL), then E is a complementaty to TL smooth isotropic subbundle
of TM |L. �

For example, the real projective space RPn is a Lagrangian submanifold of the
complex projective space CPn with its standard symplectic structure.

Example 5.2. Recall that the standard symplectic 2-form on the cotangent bundle
T ∗M of a smooth manifold M is defined as ω = −dθ, where θ is the Liouville
canonical 1-form defined by θa(v) = a(π∗a(v)) for v ∈ TaT

∗M , a ∈ T ∗M ,, where
π : T ∗M → M is the cotangent bundle projection. We observe that if a is any
smooth 1-form on M , then a∗θ = a. Indeed, for every v ∈ TxM , x ∈M we have

(a∗θ)x(v) = ax(π∗ax(a∗x(v))) = ax((π ◦ a)∗x(v)) = ax(v).

It follows that da = a∗(dθ) = −a∗ω.
Let now L = a(M) = {(x, ax) : x ∈ M} ⊂ T ∗M be the graph of a. It is

clearly a submanifold of T ∗M diffeomorphic to M of dimension half the dimension
of T ∗M . Since a∗ω = −da, we conclude that L is a Lagrangian submanifold
of T ∗M if and only if a is closed. If a is closed and j : L → T ∗M is the
inclusion, then d(j∗θ) = 0. Since a maps M diffeomorphically onto L, this
implies that M is covered by open sets U ⊂ M for which thare are smooth
functions fU : U → R such that a|U = dfU . Each such function fU is called a
generating function for the Lagrangian submanifold L. In the trivial case a = 0,
we have thatM is a Lagrangian submanifold of T ∗M considered as the zero-section.

The main theorem of this section is a result of A. Weinstein and B. Kostant,
which reduces the local studies in a neighbourhood of a Lagrangian submanifold
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to the case of the zero-section of its cotangent bundle. It can be considered a
generalization of Darboux’s theorem.

First we shall need the following.

Lemma 5.3. Let (M,ω) be a symplectic manifold and L ⊂ M be a Lagrangian
submanifold. There are open neighbourhoods U of L in M and V of L in T ∗L
for which there exists a diffeomorphism f : U → V such that f |L = id and
f∗(−dθ|L) = ω|L, where θ is the Liouville canonical 1-form on T ∗L.

Proof. Let E be an isotropic complement of TL in TM |L. Let ψ : E → T ∗L
be the vector bundle morphism defined by ψ(v)(u) = ω(u, v). If ψ(v) = 0, then
v ∈ (TL)⊥ = TL and so v ∈ E ∩ TL = {0}. This implies that ψ is an isomorphism
of vector bundles over L. Since E is complementary to TL, ψ induces a diffeomor-
phism f : U → V ⊂ T ∗L of an open neighbourhood U of L in M onto an open
neighbourhood V of L in T ∗L, by the tubular neighbourhood theorem.

E T ∗L

L U

ψ

f

Obviously, f∗|TL = id and f∗|E = ψ. Taking into account the splittings TM |L =
TL⊕ E and T (T ∗L)|L ∼= TL⊕ T ∗L we have

f∗(−dθ)((v1, v2), (w1, w2)) = −dθ((v1, ψ(v2)), (w1, ψ(w2)))

= ψ(w2)(v1)− ψ(v2)(w1) = ω(v1, w2)− ω(w1, v2) = ω((v1, v2), (w1, w2)),

for every (v1, v2), (w1, w2)) ∈ TL⊕ E, since L is Lagrangian. �

Theorem 5.4. (Weinstein) Let M be a smooth manifold and L ⊂ M be an
embedded submanifold. Let ω0, ω1 be two symplectic 2-forms on M such that
ω0|L = ω1|L, meaning that ω0(v,w) = ω1(v,w) for every v, w ∈ TxM and x ∈ L.
Then, there esists an open neighbourhood U of L in M and a diffeomorphism
f : U → f(U) ⊂M onto an open neighbourhood f(U) of L in M such that f |L = id
and f∗ω1 = ω0.

Proof. By the tubular neighbourhood theorem, we may assume that there exists a
smooth strong deformation retraction φ :M × [0, 1] →M , that is φ0 :M → L ⊂M
is a smooth retraction of M onto L, φ1 = id and φt(x) = x for all x ∈ L and
0 ≤ t ≤ 1, where φt = φ(., t). For any smooth k-form σ on M we have

σ − φ∗0σ =

∫ 1

0

d

dt
(φ∗tσ)dt =

∫ 1

0
φ∗t (iXtdσ)dt+ d

∫ 1

0
φ∗t (iXtσ)dt,

by Moser’s Lemma 4.1, where Xt =
∂

∂s

∣∣∣∣
s=t

φ(., s).
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If we put now

I(η) =

∫ 1

0
φ∗t (iXtη)dt

for every smooth form η on M , we get

σ − φ∗0σ = I(dσ) + dI(σ).

In other words, I is a cochain homotopy of the deRham cochain complex of M into
itself between the identity and the induced cochain map by φ0.

Now we set σ = ω1 − ω0 and ωt = ω0 + tσ = (1 − t)ω0 + tω1. By assumption,
σ|L = 0 and so φ∗0σ = 0. Also, σ = dI(σ), since σ is closed. Furthermore, Xt(x) = 0
for x ∈ L, because φt(x) = x for all 0 ≤ t ≤ 1 and so I(σ)|L = 0. Obviously,
ωt|L = ω0|L = ω1|L and ωt|L is non-degenerate for all 0 ≤ t ≤ 1. By compactness
of [0, 1], there is an open neighbourhood of L on which ωt is non-degenerate for all
0 ≤ t ≤ 1. On this neighbourhood there exists a smooth 1-parameter family of
smooth vector fields Zt, 0 ≤ t ≤ 1, such that

iZtωt = −I(σ)

and Zt|L = 0. There exists a smaller neighbourhood of L on which the flow of each
Zt is defined at least on the interval [−2, 2]. Thus, the time-1-map ft of the flow of
Zt is defined in this neighbourhood of L and ft|L = id for all 0 ≤ t ≤ 1. Now we
have

f∗1ω1 − f∗0ω0 =

∫ 1

0

d

dt
(f∗t σ)dt =

∫ 1

0
[f∗t σ + df∗t (iZtωt)]dt

=

∫ 1

0
f∗t (σ + diZtωt)dt =

∫ 1

0
f∗t (σ − dI(σ))dt = 0.

Consequently, ω0 = (f1 ◦ (f0)−1)∗ω1 and if we put f = f1 ◦ f−1
0 , then f |L = id and

f∗ω1 = ω0. �

Corollary 5.5. (Kostant) Let (M,ω) be a symplectic manifold and L ⊂ M be a
Lagrangian submanifold. There exists an open neighbourhood U of L in M and a
diffeomorphism h : U → V of U onto an open neighbourhood V of L in T ∗L such
that h|L = id and h∗(−dθ) = ω, where θ is the Liouville canonical 1-form on T ∗L.

Proof. This is a combination of Lemma 5.3 and Weinstein’s Theorem 5.4. �

2.6 Hamiltonian vector fields and Poisson bracket

Let (M,ω) be a symplectic 2n-manifold. A smooth vector field X on M is called
Hamiltonian if there exists a smooth function H :M → R such that iXω = dH. In
other words,

ωp(Xp, vp) = vp(H)

for every vp ∈ TpM and p ∈ M . We usually write X = XH and obviously XH =
ω̃−1(dH).
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If M = T ∗Rn ∼= R2n with the canonical symplectic 2-form

ω =

n∑

i=1

dqi ∧ dpi,

we have ω̃(
∂

∂qi
) = dpi and ω̃(

∂

∂pi
) = −dqi. Thus,

XH = ω̃−1

( n∑

i=1

∂H

∂qi
dqi +

n∑

i=1

∂H

∂pi
dpi

)
=

n∑

i=1

(
∂H

∂pi
· ∂

∂qi
− ∂H

∂qi
· ∂

∂pi

)
.

So the integral curves of XH are the solutions of Hamilton’s differential equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, 1 ≤ i ≤ n.

According to Darboux’s theorem, this is true locally, with respect to suitable local
coordinates, on every symplectic 2n-manifold.

A smooth vector field X on M is called symplectic or locally Hamiltonian if
LXω = d(iXω) = 0. In this case the lemma of Poincaré implies that every point
p ∈M has an open neighbourhood V diffeomorphic to R2n for which there exists a
smooth function HV : V → R such that iXω|V = dHV . From Lemma 4.1, we have

d

dt
φ∗tω = φ∗t (d(iXω)),

and φ∗0ω = ω, where φt is the flow of X. Thus X is locally Hamiltonian if and only
if its flow consists of symplectomorphisms.

A locally Hamiltonian vector field may not be Hamiltonian. As a simple example,
letM = S1×S1 equiped with the volume element ω such that π∗ω = dx∧dy, where
π : R2 →M is the universal covering projection. The smooth vector field

X = π∗(
∂

∂x
)

is locally Hamiltonian, since locally π∗(iXω) = dy. But if j : S1 → M is the
embedding j(z) = (1, z), then j∗(iXω) is the natural generator of H1

DR(S
1) ∼= R

and thus it is not exact. Therefore iXω is not exact.
Two elementary properties of Hamiltonian vector fields are the following.

Proposition 6.1. The smooth function H : M → R is a first integral of the
Hamiltonian vector field XH .

Proof. Indeed XH(H) = dH(XH) = ω(XH ,XH) = 0. �

Proposition 6.2. Let (M1, ω1) and (M2, ω2) be two symplectic manifolds. A
diffeomorphism f :M1 →M2 is symplectic if and only if f∗(XH◦f ) = XH for every
open set U ⊂M2 and smooth function H : U → R.
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Proof. The condition XH(f(p)) = f∗p(XH◦f (p)) for every p ∈ f−1(U) is equivalent
to

ω2(f(p))(XH (f(p)), f∗p(v)) = ω2(f(p))(f∗p(XH◦f (p)), f∗p(v))

for every v ∈ TpM , since ω2 is non-degenerate and f is a diffeomorphism. Equiva-
lently,

dH(f(p))(f∗p(v)) = (f∗ω2)(p)(XH◦f (p), v)

or

iXH◦f
ω1 = d(H ◦ f) = f∗(dH) = iXH◦f

(f∗ω2)

on f−1(U). This is true, if f is symplectic. Conversely, if this holds, then
for every p ∈ M1 and u, v ∈ TpM1 there exists an open neighbourhood U of
f(p) in M2 and a smooth function H : U → R such that u = XH◦f (p). So,
ω1(p)(u, v) = (f∗ω2)(p)(u, v) for every u, v ∈ TpM1. This means that f∗ω2 = ω1. �

If (M,ω) is a symplectic manifold and F , G ∈ C∞(M), then the smooth function

{F,G} = iXG
iXF

ω ∈ C∞(M)

is called the Poisson bracket of F and G. From Proposition 6.2 we obtain the
following.

Corollary 6.3. Let (M1, ω1) and (M2, ω2) be two symplectic manifolds. A diffeo-
morphism f :M1 →M2 is symplectic if and only if

f∗{F,G} = {f∗(F ), f∗(G)}

for every open set U ⊂M2 and F , G ∈ C∞(U).

Proof. Suppose first that f is a symplectomorphism and F , G ∈ C∞(U), where
U ⊂M2 is an open set. Then

{F,G}(f(p)) = ω2(f(p))(XF (f(p)),XG(f(p)))

= ω2(f(p))(f∗p(XF◦f (p)), f∗p(XG◦f (p))) = (f∗ω2)(p)(XF◦f (p),XG◦f (p))

= ω1(p)(XF◦f (p),XG◦f (p)) = {F ◦ f,G ◦ f}(p).
Conversely, if {F,G}(f(p)) = {F ◦ f,G◦ f}(p) for every p ∈ f−1(U) and every open
set U ⊂M2 and F , G ∈ C∞(U), then

(f∗ω2)(p)(XF◦f (p),XG◦f (p)) = ω1(p)(XF◦f (p),XG◦f (p)).

But for every p ∈ M1 and u, v ∈ TpM1 there exists an open set V ⊂ M1 with
p ∈ V and F , G ∈ C∞(f(V )) such that XF◦f (p) = u and XG◦f (p) = v. So
(f∗ω2)(p)(u, v) = ω1(p)(u, v). This means f∗ω2 = ω1. �

Corollary 6.4. Let X be a complete Hamiltonian vector field with flow (φt)t∈R
on a symplectic manifold M . Then φ∗t {F,G} = {φ∗t (F ), φ∗t (G)} for every F ,
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G ∈ C∞(M). If X is not complete, the same is true on suitable open sets.

Corollary 6.5. Let X be a complete Hamiltonian vector field with flow (φt)t∈R on
a symplectic manifold (M,ω). Then

X{F,G} = {X(F ), G} + {F,X(G)}

for every F , G ∈ C∞(M). If X is not complete, the same is true on suitable open
sets.

Proof. From Corollary 6.4 we have

X{F,G} =
d

dt

∣∣∣∣
t=0

φ∗t {F,G} =
d

dt

∣∣∣∣
t=0

{φ∗t (F ), φ∗t (G)} =
d

dt

∣∣∣∣
t=0

ω(Xφ∗t (F ),Xφ∗t (G))

= ω(
d

dt

∣∣∣∣
t=0

Xφ∗t (F ),XG) + ω(XF ,
d

dt

∣∣∣∣
t=0

Xφ∗t (G)).

But

ω̃(
d

dt

∣∣∣∣
t=0

Xφ∗t (F )) =
d

dt

∣∣∣∣
t=0

ω̃(Xφ∗t (F )) =
d

dt

∣∣∣∣
t=0

dφ∗t (F )

= d(
d

dt

∣∣∣∣
t=0

φ∗t (F )) = dX(F ) = ω̃(XX(F )),

which means that
d

dt

∣∣∣∣
t=0

Xφ∗t (F ) = XX(F ).

Consequently,

X{F,G} = ω(XX(F ),XG) + ω(XF ,XX(G)) = {X(F ), G} + {F,X(G)}. �

It is obvious that for a symplectic manifold (M,ω) the Poisson bracket

{, } : C∞(M)× C∞(M) → C∞(M)

is bilinear and skew-symmetric. Form Corollary 6.5 follows now that it satisfies the
Jacobi identity. Indeed, if F , G, H ∈ C∞(M) then

{F,G} = (iXF
ω)(XG) = dF (XG) = XG(F )

and thus {{F,G},H} = XH({F,G}). Consequently,

{{F,G},H} = {XH(F ), G} + {F,XH (G)} = {{F,H}, G} + {F, {G,H}}.

This is the Jacobi identity and so the (C∞(M), {, }) is a Lie algebra.

There is a Leibniz formula for the product of two smooth functions with respect
to the Poisson bracket, because if F , G, H ∈ C∞(M), then

{F ·G,H} = XH(F ·G) = F ·XH(G) +G ·XH(F ) = F · {G,H} +G · {F,H}.
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Proposition 6.6. Let XH be a Hamiltonian vector field with flow φt on a symplectic
manifold M . Then

d

dt
(F ◦ φt) = {F ◦ φt,H} = {F,H} ◦ φt

for every F ∈ C∞(M).

Proof. By the chain rule, for every p ∈M we have

d

dt
(F ◦ φt)(p) = (dF )(φt(p))XH (φt(p)) = {F,H}(φt(p))

= {F ◦ φt,H ◦ φt}(p) = {F ◦ φt,H}(p),
since H is a first integral of XH . �

Corollary 6.7. A smooth function F : M → R on a symplectic manifold M
is a first integral of a Hamiltonian vector field XH onM if and only if {F,H} = 0. �

Let sp(M,ω) and h(M,ω) denote the linear spaces of the symplectic and
hamiltonian vector fields, respectively, of the symplectic manifold (M,ω). We shall
conclude this section with a few remarks about these spaces.

Proposition 6.8. If X, Y ∈ sp(M,ω), then [X,Y ] = −Xω(X,Y ). In particular,
[XF ,XG] = −X{F,G} for every F , G ∈ C∞(M).

Proof. Indeed, i[X,Y ] = [LX , iY ] and therefore

i[X,Y ]ω = LX(iY ω)− iY (LXω) = d(iX iY ω) + iX(d(iY ω))− 0 =

d(ω(Y,X)) + 0 = −iXω(X,Y )
ω.

Since ω is non-degenerate the result follows. �

Proposition 6.8 implies that sp(M,ω) and h(M,ω) are Lie subalgebras of the
Lie algebra of smooth vector fields of M . Moreover, h(M,ω) is an ideal in sp(M,ω)
since [sp(M,ω), sp(M,ω)] ⊂ h(M,ω). If M is connected, we have two obvious short
exact sequences of Lie algebra homomorphisms

0 → R → C∞(M)
r→ h(M,ω) → 0,

where r(F ) = −XF for every F ∈ C∞(M), and

0 → h(M,ω) → sp(M,ω) → H1
DR(M) → 0,

which do not split in general. The first makes (C∞(M), {, }) a central extension of
h(M,ω). In the second, we consider in H1

DR(M) the trivial Lie bracket.

Proposition 6.9. Let (M,ω) be a compact, connected, symplectic 2n-manifold and
ωn = ω ∧ ω ∧ ... ∧ ω (n times).
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(a) If X, Y ∈ X (M), then ω(X,Y )ωn = −n · iXω ∧ iY ω ∧ ωn−1.
(b) If F , G ∈ C∞(M), then

∫

M
{F,G}ωn = 0.

(c) The set C∞
0 (M,ω) = {F ∈ C∞(M) :

∫

M
Fωn = 0} is a Lie subalgebra of

(C∞(M), {, }) and C∞(M) = R⊕ C∞
0 (M,ω).

(d) The short exact sequence of Lie algebra homomorphisms

0 → R → C∞(M)
r→ h(M,ω) → 0

splits.

Proof. (a) Since

0 = iX(iY ω ∧ ωn) = ω(X,Y )ωn − iY ω ∧ iXωn

and iXω
n = n · iXω ∧ ωn−1, we conclude that

ω(X,Y )ωn = n · iY ω ∧ iXω ∧ ωn−1.

(b) Using (a) and the fact that ωn−1 is closed, we have

{F,G}ωn = ω(XF ,XG)ω
n = −n · iXF

ω ∧ iXG
ω ∧ ωn−1 =

−n · dF ∧ dG ∧ ωn−1 = −n · d(FdG ∧ ωn−1).

The conclusion follows now from Stokes formula.
(c) From (b) follows immediately that C∞

0 (M,ω) is a Lie subalgebra of
(C∞(M), {, }). Moreover, every F ∈ C∞(M) can be written as

F =
1

vol(M)

∫

M
Fωn +

(
F − 1

vol(M)

∫

M
Fωn

)
.

(d) If we define j : h(M,ω) → C∞(M) by

j(XF ) = −F +
1

vol(M)

∫

M
Fωn,

then {j(XF ), j(XG)} = {F,G} = j(−X{F,G}) = j([XF ,XG]), by Proposition 6.8,
and therefore j is a Lie algebra homomorphism. Obviously, r ◦ j = id. �

2.7 The characteristic line bundle of a hypersurface

Let (M,ω) be a symplectic 2n-manifold. If J is a compatible almost complex struc-
ture and g the corresponding Riemannian metric on M so that ω is given by the
formula ω(u, v) = g(J(u), v) for all u, v ∈ TM , then for every smooth function
H :M → R the corresponding Hamiltonian vector field is XH = −J(gradH), where
gradH denotes the gradient vector field of H with respect to the Riemannian metric
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g. As we know, the orbits of XH lie on the level sets of H. If c ∈ R is a regular value
of H and S = H−1(c) 6= ∅, then S is a submanifold of M of codimension 1. An
important observation is that the unparametrised orbits of XH on S depend only
on S and not on XH , i.e. not on the Hamiltonian H. Note that XH |S is a nowhere
vanishing tangent vector field on S, because c is a regular value of H.

An embedded smooth submanifold of codimension 1 in M will be called a hy-
persurface in the sequel. Let S be a hypersurface in M such that S = H−1

j (cj),
where cj ∈ R is a regular value of the smooth function Hj : M → R for j = 1, 2.
Since gradHjis g-orthogonal to S for both j = 1, 2, there exists a smooth func-
tion λ : S → R \ {0} such that gradH2(x) = λ(x)gradH1(x) and therefore
XH2(x) = λ(x)XH1(x) for every x ∈ S. Let γ : I → S be an integral curve of
XH1 and let h : I → R be the smooth function defined by

h(s) =

∫ s

0

1

λ(γ(t))
dt.

Then σ = γ ◦ h−1 is an integral curve of XH2 , because

σ̇ =
1

h′ ◦ h−1
(γ̇ ◦ h−1) = (λ ◦ γ ◦ h−1) ·XH1 ◦ (γ ◦ h−1) = XH2 ◦ (γ ◦ h−1) = XH1 ◦ σ.

This shows that the two Hamiltonian vector fields have the same unparametrised
orbits on S.

The above imply that given a hypersurface S in M , there exists a (real) line
bundle LS ⊂ TS which gives the direction of every Hamiltonian vector field having
S as a regular hypersurface of constant energy. Such a line bundle can be described
without reference to any Hamiltonian function as follows. Since S has dimension
2n − 1, the restriction of ωx on TxS is degenerate for every x ∈ S. The linear
subspace

Lx = {u ∈ TxS : ωx(u, v) = 0 for every v ∈ TxS}
of TxS has dimension 1, because if v ∈ TxM \ TxS is any non-zero vector, then
ωx(., v) : Lx → R is a linear isomorphism. The line bundle LS with fiber Lx over
x ∈ S is called the characteristic line bundle of the hypersurface S. A characteristic
of S is a leaf of the 1-dimensional foliation to which LS is tangent. If H : M → R
is a smooth function and c ∈ R a regular value of H such that S = H−1(c), then
obviously XH(x) ∈ Lx for every x ∈ S.

Lemma 7.1. If S is a compact hypersurface in M such that LS is orientable (or
equivalently trivial), then there exists an open neighbourhood U of S and a smooth
function H : U → R such that S = H−1(c) for some regular value c ∈ R of H.

Proof. Let NS be the normal bundle of S in M with fiber

Nx = {u ∈ TxM : g(u, v) = 0 for every v ∈ TxS}

over x ∈ S. If u ∈ Lx, then ω(u, v) = 0 for every v ∈ TxS or equivalently J(u) ∈ Nx.
Obviously, the almost complex structure J induces a vector bundle isomorphism
LS ∼= NS. Since LS is assumed to be orientable, hence trivial, the same is true for
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NS. Let s be a nowhere vanishing smooth section of NS and let ψ : (−ǫ, ǫ)×S →M
be the smooth map defined by

ψ(t, x) = expx(ts(x)),

where exp is the exponential map of the compatible Riemannian metric g and ǫ > 0
is such that ψ is defined. Since S is assumed to be compact, there exists some
ǫ > 0 such that ψ maps (−ǫ, ǫ)× S diffeomorphically onto an open neighbourhood
U of S. If now H : U → R is the smooth function defined by H(ψ(t, x)) = t, then
S = H−1(0) and 0 is a regular value of H. �

The proof of the preceding lemma motivates the following.

Definition 7.2. A parametrised family of hypersurfaces in M modelled on a
compact hypersurface S ⊂ M is a smooth diffeomorphism ψ : I × S → U ,
where I ⊂ R is an open interval containing zero and U is a relatively compact
neighbourhood of S in M such that ψ(0, x) = x for x ∈ S.

Example 7.3. Let H : R2n → R be a smooth function such that 0 is a regular
value of H and S = H−1(0) 6= ∅ is compact. Let φ be the local flow of the
euclidean gradient vector field of H. There exists some ǫ > 0 such that φ|(−ǫ,ǫ)×S
is a parametrised family of hypersurfaces in R2n modelled on S. Instead of R2n we
could have taken any symplectic manifold and then φ would be the local flow of
the gradient vector field of H with respect to a compatible Riemannian metric.

Summurizing, the above mean that for a compact hypersurface S ⊂ M the
characteristic line bundle LS is orientable if and only if its normal bundle NS in M
is orientable if and only if S is orientable if and only if there exists a parametrised
family of hypersurfaces in M modelled on S if and only if there exists a relatively
compact open neighbourhood of S in M and a smooth function H : U → R such
that S = H−1(c) for some regular value c ∈ R of H.



Chapter 3

Examples of symplectic

manifolds

3.1 The geometry of the tangent bundle

In this section we shall study the geometry of the tangent bundle of a Rieman-
nian manifold. Its structure is useful in Riemannian Geometry and when studying
mechanical problems within the framework of newtonian mechanics.

Let M be a smooth n-dimensional manifold and let p : TM →M be its tangent
bundle. There exists a canonical subbundle V of T (TM), which is just V = Kerp∗,
and is called the vertical subbundle. In other words, for each u ∈ TM the fiber Vu
is the tangent space to the fiber TxM of TM at u, where x = p(u).

It would be desirable to have a canonical complementary to V subbundle of
T (TM). Unfortunately, this is impossible. In order to construct a complementary
subbundle, we must use a Riemmanian metric on M . So from now on we assume
that M is a Riemannian manifold with metric g. Tne corresponding Levi-Civita
connection ∇ induces the connection map K : T (TM) → TM which is defined as
follows. Let u ∈ TxM , x ∈ M . Let W be a normal neighbourhood of x in M ,
that is W = expx(U), where U is a star-shaped open neighbourhood of 0 ∈ TxM
and expx|U : U → W is a diffeomorphism. Let τ : p−1(W ) → TxM be the smooth
map which sends each v ∈ TyM , y ∈ W to its parallel translation at x along the
unique geodesic in W form y to x. For w ∈ TxM , we let R−w : TxM → TxM be the
translation by the vector −w. The connection map Ku : Tu(TM) → TxM is defined
by

Ku(ξ) = (expx ◦R−u ◦ τ)∗u(ξ).

Obviously, this is a well-defined linear map. An alternative definition in terms of
covariant differentiation is given by the following.

Proposition 1.1. Let z : (−ǫ, ǫ) → TM , ǫ > 0, be a smooth curve such that
z(0) = u and ż(0) = ξ. If γ = p ◦ z : (−ǫ, ǫ) →M and X is the smooth vector field
along γ such that z(t) = (γ(t),X(t)) ∈ Tγ(t)M , |t| < ǫ, then

Ku(ξ) = ∇γ̇(0)X.

53
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Proof. The definition of the connection map and the chain rule imply that

Ku(ξ) = (expx ◦R−u ◦ τ)∗z(0)(ż(0)) =
d

dt

∣∣∣∣
t=0

(expx ◦R−u ◦ τ ◦ z).

Since (expx ◦R−u ◦ τ ◦ z)(t) = expx(τ(z(t)) − u), we get

Ku(ξ) = (expx)∗0
( d
dt

∣∣∣∣
t=0

τ(X(t))
)
= ∇γ̇(0)X

since (expx)∗0 is the identity. �

The horizontal subbundle H of T (TM) is now the one whose fiber at u ∈ TM
is Hu = KerKu.

It is evident that horizontal curves in TM , that is smooth curves tangent to H,
correspond to parallel vector fields along curves in M . To be more precise, given
u ∈ TxM and γ : (−ǫ, ǫ) → M a smooth curve with γ(0) = x and γ̇(0) = u, let
X(t), |t| < ǫ, be the parallel transport of u along γ. Let also σ : (−ǫ, ǫ) → TM be
the smooth curve σ(t) = (γ(t),X(t)). Then σ(0) = (x, u) and if ξ = σ̇(0), we have

u = γ̇(0) = p∗u(σ̇(0)) = p∗u(ξ).

This shows that p∗u(Hu) = TxM , since Ku(ξ) = ∇γ̇(0)X = 0.
Moreover, p∗u|Hu : Hu → TxM is an isomorphism. Indeed, let ξ ∈ Tu(TM) be

such that p∗u(ξ) = 0. There exists a vertical smooth curve z : (−ǫ, ǫ) → TxM ⊂
TM such that z(0) = u and ż(0) = ξ. Thus, γ = p ◦ z takes the constant value
γ(t) = x for all |t| < ǫ and therefore (ix ◦ τ)∗u(ξ) = ξ, where ix : TxM →֒ TM
denotes the inclusion. Since (expx ◦ R−u)∗u is an isomorphism, we conclude that
if ξ ∈ Hu, then ξ = 0. The above argument also shows that Hu ∩ Vu = {0} and
Ku|Vu : Vu → TxM is also an isomorphism. Hence Tu(TM) = Hu ⊕ Vu and the
linear map ju : Tu(TM) → TxM ⊕ TxM given by

ju(ξ) = (p∗u(ξ),Ku(ξ))

is a isomorphism.
If now X ∈ TxM , the horizontal lift of X to u ∈ TM is the unique vector

Xh ∈ Hu such that p∗u(X
h) = X. The vertical lift of X is the unique vector

Xv ∈ Vu such that Xv(f̃) = X(f) for all smooth functions f , where f̃ is the smooth
function on TM with f̃(u) = u(f).

Using the above decomposition of T (TM) as the Whitney direct sum of two
subbundles, we can define a Riemannian metric 〈, 〉 on TM such that H and V
become orthogonal subbundles and the tangent bundle projection p : TM → M
becomes a Riemannian submersion. This Riemannian metric is called the Sasaki
metric and is defined by

〈ξ, ζ〉u = g(p∗u(ξ), p∗u(ζ)) + g(Ku(ξ),Ku(ζ)).

It is worth to note that the geodesic vector field G : TM → T (TM) has a very
simple expression under the isomorphism ju, u ∈ TM . If γu denotes the geodesic
with γu(0) = x and γ̇u(0) = u, then

G(u) =
d

dt

∣∣∣∣
t=0

γ̇u(t).
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Since γ̇u(t) is the parallel transport of u along γu, is follows that p∗u(G(u)) = u and
Ku(G(u)) = 0. Therefore, ju(G(u)) = (u, 0).

The following proposition will be used later.

Proposition 1.2. Let ∇ denote the Levi-Civita connection of the Sasaki metric on
TM . Then, ∇ξG ∈ V for every ξ ∈ H.

Proof. Let u ∈ TxM , x ∈ M and let {E1(x), E2(x), · · · , En(x)} be an orthonormal
basis of TxM . Let W be a normal neighbourhood of x. For every y ∈ W there
exists a unique geodecic arc in W joining y and x. Transporting parallely along
this geodesic we obtain an orthonormal frame {E1, E2, · · · , En} on W such that
(∇Ei

Ej)(x) = 0 for all 1 ≤ i, j ≤ n. The set {Eh1 , Eh2 , · · · , Ehn} of the horizontal lifts
is orthonormal with respect to the Sasaki metric and spans H|p−1(W ). It suffices to

prove that ∇Eh
j
G ∈ V for every 1 ≤ j ≤ n.

Since the geodesic vector field is horizontal and ju(G(u)) = (u, 0), we have

G(u) =
n∑

i=1

g(Ei(p(u)), u)E
h
i

and therefore

∇Eh
j
G =

n∑

i=1

Ehj (g(Ei(p(u)), u))E
h
i +

n∑

i=1

g(Ei(p(u)), u)∇Eh
j
Ehi .

Since the tangent bundle projection p : TM → M is a Riemannian submersion we
have

∇Eh
j
Ehi =

(
∇Ej

Ei
)h

+
1

2
[Ehj , E

h
i ]
v

and so (∇Eh
j
Ehi )(x) is vertical (recall that [E

h
j , E

h
i ]
v(x) depends only on the values

Ehj (x) and Ehi (x)). This implies that the second term in the above expression of

(∇Eh
j
G)(x) is vertical. As far as the first term is concerned, for each 1 ≤ j ≤ n let

γj : (−ǫ, ǫ) → M , ǫ > 0 be a smooth curve such that γj(0) = x and γ̇j(0) = Ej(x).
Let Xj(t), |t| < ǫ be the parallel transport of u along γj . Then

Ehj (x)(g(Ei(p(u)), u)) =
d

dt

∣∣∣∣
t=0

g(Ei(γj(t)),Xj(t)) = g(∇Ej(x), u) = 0. �

The splitting ju permits to define an almost complex structure J on TM by
setting

Ju(ξ
h, ξv) = (−ξv, ξh),

where ju(ξ) = (ξh, ξv). Obviously, J interchanges H and V . Also, Ju preserves the
Sasaki metric, because

〈Ju(ξ), Ju(ζ)〉 = g(p∗u(Ju(ξ)), p∗u(Ju(ζ))) + g(Ku(Ju(ξ)),Ku(Ju(ζ)))

= g(−ξv,−ζv) + g(ξh, ζh) = 〈ξ, ζ〉.
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Lemma 1.3. If {E1, E2, · · · , En} is a local frame on M , then [Ehi , J(E
h
j )] = 0 for

all 1 ≤ i, j ≤ n.

Proof. Let u ∈ TxM , x ∈ M and γj : (−ǫ, ǫ) → M , ǫ > 0, be an integral curve
of Ej through x. Let Xj(t), |t| < ǫ be the parallel transport of u along γj . Let
Zij : (−ǫ, ǫ)× (−ǫ, ǫ) → TM be the smooth map defined by

Zij(t, s) = (γi(t), sEj(γi(t)) +Xi(t)).

Then,
∂Zij
∂s

(t, s) = J(Ehj (Zij(t, s))),

∂Zij
∂t

(0, s) = Ehi (Zij(0, s))

and
∂Zij
∂t

(t, 0) = Ehi (Zij(t, 0)).

For every smooth function f defined locally on TM we have now

[Ehi , J(E
h
j )](u)(f) =

∂

∂t

(
∂(f ◦ Zij)

∂s

)
(0, 0) − ∂

∂s

(
∂(f ◦ Zij)

∂t

)
(0, 0) = 0. �

Using the Sasaki metric and the almost complex structure J we can define a
symplectic 2-form Ω on TM by the formula

Ωu(ξ, ζ) = 〈Ju(ξ), ζ〉 = g(p∗u(ξ),Ku(ζ))− g(Ku(ξ), p∗u(ζ)).

We shall use Proposition 1.2 and Lemma 1.3 to prove that Ω is precisely the sym-
plectic 2-form which corresponds to the standard symplectic 2-form on T ∗M under
the Legendre transformation defined by the Riemannian metric g. Recall that this
is the natural vector bundle isomorphism L : TM → T ∗M induced by g. Now we
can compute for u ∈ TxM , x ∈M and L(x, u) = (x, a) that

(L∗θ)u(ξ) = θ(L∗u(ξ)) = a((π ◦ L)∗u(ξ)) = a(p∗u(ξ)) = g(p∗u(ξ), u) = 〈ξ,G(u)〉,

where π : T ∗M → M is the cotangent bundle projection and θ is the Liouville
canonical 1-form on T ∗M .

Proposition 1.4. Ω = L∗(−dθ).

Proof. We put A = L∗θ for simplicity and observe that

dA(ξ, ζ) = ξ(A(ζ))− ζ(A(ξ)) −A([ξ, ζ]) = ξ〈ζ,G〉 − ζ〈ξ,G〉 − 〈[ξ, ζ], G〉

= 〈∇ξζ,G〉+ 〈ζ,∇ξG〉 − 〈∇ζξ,G〉 − 〈ξ,∇ζG〉 − 〈[ξ, ζ], G〉 = 〈ζ,∇ξG〉 − 〈ξ,∇ζG〉,
since the Levi-Civita connection is symmetric.

Let now {E1, E2, · · · , En} be a local orthonormal frame on M . The set

{Eh1 , Eh2 , · · · , Ehn , J(Eh1 ), J(Eh2 ), · · · , J(Ehn)}
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is a local orthonormal frame on TM . Since each J(Ehi ) is vertical, so is also
[J(Ehi ), J(E

h
j )] for all 1 ≤ i, j ≤ n. The fact that the geodesic vector field G

is horizontal implies that dA|V ×V = 0 from the above expression of dA, and
Proposition 1.2 implies that dA|H×H = 0. Therefore it suffices to prove that
dA(Ehi , J(E

h
j )) = −Ω(Ehi , J(E

h
j )), 1 ≤ i, j ≤ n. From Lemma 1.3 we get

dA(Ehi , J(E
h
j )) = −J(Ehj )(A(Ehi )) = −J(Ehj )(〈Ehi , G〉),

because J(Ehj ) is vertical.
Let u ∈ TxM , x ∈ M and the frame {E1, E2, · · · , En} be defined on a normal

neighbourhood of x as in the proof of Proposition 1.2. The curve γj : (−ǫ, ǫ) → TM
defined by γj(t) = (x, tEj(x) + u), |t| < ǫ, is an integral curve of J(Ehj ) and so

(dA)u(E
h
i , J(E

h
j )) = − d

dt

∣∣∣∣
t=0

g(Ei(x), tEj(x) + u) = −δij .

On the other hand, from the definition of Ω we have

Ωu(E
h
i , J(E

h
j )) = 〈J(Ehi ), J(Ehj )〉 = 〈Ehi , Ehj 〉 = δij . �

The tangent space Tu(TM), for u ∈ TxM , x ∈ M , can be described in terms of
Jacobi fields along the geodesic γu with γu(0) = x and γ̇u(0) = u. Let ξ ∈ Tu(TM)
and z : (−ǫ, ǫ) → TM , ǫ > 0, be a smooth curve such that z(0) = u and ż(0) = ξ.
If (φt)t∈R is the geodesic flow, i.e. the flow of G (assuming that the metric g is
complete), then F : (−ǫ, ǫ) × R → M defined by F (s, t) = p(φt(z(s)) is a variation
of the geodesic γu(t) = p(φt(u)) through geodesics and therefore the variational field

Iξ(t) =
∂F

∂s
(0, t)

is a Jacobi field along γu with initial conditions Iξ(0) = p∗u(ξ) and

DIξ
dt

(0) =
D

dt

(
∂F

∂s

)
(0, 0) =

D

ds

(
∂F

∂t

)
(0, 0) =

DX

dt
(0, 0) = Ku(ξ),

from Proposition 1.1, where φt(z(s)) = (p(φt(z(s))),X(s, t)).
If we denote the vector space of Jacobi fields along γu by I(u), then the map

iu : Tu(TM) → I(u) defined by iu(ξ) = Iξ is a linear isomorphism, because Keriu =
Hu ∩ Vu = {0} and both vector spaces have dimension 2n.

The geodesic vector field G on TM is the Hamiltonian vector field of the kinetic

energy H(x, v) =
1

2
gx(v, v) with respect to Ω. Indeed, let z : (−ǫ, ǫ) → TM , ǫ > 0,

be a smooth curve such that z(0) = u and ż(0) = ξ. Let γ = p ◦ z and X be the
smooth vector field along γ with z(t) = (γ(t),X(t)). Then,

Ωu(G(u), ξ) = g(p∗u(G(u)),Ku(ξ)) = g(u,Ku(ξ))

and on the other hand

(dH)u(ξ) =
d

dt

∣∣∣∣
t=0

1

2
g(X(t),X(t)) = g(∇γ̇(0)X,X(0)) = g(Ku(ξ), u).
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This shows that dH = iGΩ. Therefore, the geodesic flow leaves Ω invariant.

Proposition 1.5. Let u ∈ TM , ξ ∈ Tu(TM) and t ∈ R. Then,

(φt)∗u(ξ) = (Iξ(t),
DIξ
dt

(t)) ∈ Tφt(u)(TM) ∼= Hφt(u) ⊕ Vφt(u).

Proof. Using the above notations we have

Iξ(t) =
∂

∂s

∣∣∣∣
s=0

p(φt(z(s))) = (p ◦ φt)∗u(ξ) = p∗φt(u)((φt)∗u(ξ))

and
DIξ
dt

(t) =
D

dt

(
∂F

∂s

)
(0, t) =

D

ds

∣∣∣∣
s=0

(
d

dt
p(φt(z(s)))

)

=
D

ds

∣∣∣∣
s=0

φt(z(s)) = Kφt(u)((φt)∗u(ξ)).

It follows that

ju((φt)∗u(ξ)) = (Iξ(t),
DIξ
dt

(t)). �

Corollary 1.6. Ωu(ξ, ζ) = g(−DIξ
dt

(t), Iζ(t)) + g(Iξ(t),
DIζ
dt

(t)) for all t ∈ R (as-

suming that the metric g is complete). �

3.2 The manifold of geodesics

Let (M,g) be a complete Riemannian n-manifold. A unit speed geodesic γ : R →M
is called periodic of period ℓ > 0 if γ(t + ℓ) = γ(t) for every t ∈ R and ℓ is the
smallest positive real number with this property. In this case the length of γ is
ℓ. If every geodesic of M is periodic of the same period ℓ, then (M,g) is called
a Cℓ-manifold and its metric a Cℓ-metric. The geodesic flow of a Cℓ-manifold is
periodic and there exists a smooth free action of S1 on the unit tangent bundle
T 1M of M whose orbit space is smooth (2n − 2)-manifold CM . Also the quotient
map q : T 1M → CM is a principle S1-bundle. The manifold CM is called the
manifold of oriented geodesics of M .

Example 2.1. The sphere Sn, n ≥ 2, equiped with the usual euclidean Rie-
mannian metric is a C2π-manifold. From the uniuqeness of geodesics follows
that the orienred geodesics on Sn are in one-to-one correspondence with the ori-
ented 2-dimensional linear subspaces of Rn+1. Therefore, CSn is diffeomorphic to
SO(n+1,R)/SO(2,R)×SO(n−1,R). The same space is the manifold of geodesics
of the real projective space RPn with its standard Riemannian metric which is a
Cπ-manifold and is doubly covered by Sn.

The manifold of geodesics of any Cℓ-metric on S2 can be determined from the
honotopy exact sequence

· · · → π1(S
1) → π1(T

1S2) → π1(CS
2) → {1}
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of the fibration q : T 1S2 → CS2. Recall that T 1S2 is diffeomorphic to RP 3

and so π1(T
1S2) ∼= Z2. It follows that π1(CS

2) is either trivial or isomor-
phic to Z2. However, we shall show shortly that the manifold of geodesics carries
a symplectic structure and is therefore orientable. Hence CS2 is diffeomorphic to S2.

The manifold of geodesics CM of a Cℓ-manifold M can be given a natural sym-
plectic structure. Recall from Proposition 1.4 that TM has a symplectic structure
Ω = −dA, where A is the pullback of the Liouville canonical 1-form on T ∗M under
the natural bundle isomorpsism L : TM → T ∗M defined by the Riemannian metric
g. Let η = A|T 1M . Recall also that T 1M = H−1(1/2), where H : TM → R is the
kinetic energy. Let (ψt)t∈R be the smooth flow on TM defined by ψt(u) = etu. Its
infinitesimal generator Y is the smooth vector field on TM which in local coordinates
(q1, . . . , qn, v1, . . . , vn) on TM is represented as

Y |locally =
n∑

k=1

vk
∂

∂vk
.

Since dH(Y ) = 2H, it follows that Y is transverse to T 1M .
In local coordinates we have

A|locally =

n∑

i,j=1

gijv
jdqi,

where g = (gij) is the local form of the Riemannian metric. Therefore,

dA =
n∑

i,j=1

gijdv
j ∧ dqi +

n∑

i,j,k=1

∂gij
∂qk

vjdqk ∧ dqi.

A simple calculation shows that iY (dA) = A and so d(iY Ω) = Ω or equivalently
LY Ω = Ω. We compute now that

A ∧ (dA)n−1 = (−1)niY Ω ∧ Ωn−1 =
(−1)n

n
iY Ω

n.

Since Ωn is a volume form on TM and Y is transverse to T 1M , we conclude that
η ∧ (dη)n−1 is a volume form on T 1M . Also, iGdη = 0, because the geodesic vector
field G is the Hamiltonian vector field of the kinetic energy, i.e. iGΩ = dH. Finally,
iGη = 1, because A(G) = 〈G,G〉 = 2H, where 〈, 〉 is the Sasaki metric on TM .

Since the geodesic flow leaves the symplectic 2-form Ω on TM invariant, ifM is a
Cℓ-manifold, there exists a unique closed 2-form ω on CM such that q∗ω = −Ω|T 1M ,
where q : T 1M → CM is the quotient map as above. Actually, the restriction of
the geodesic flow on T 1M leaves η invariant, because LGη = diGη + iGdη = 0.
So, the subbundle Kerη of T (T 1M) is also left invariant under the geodesic flow.
Since iGη = 1, we have a splitting T (T 1M) = 〈G〉 ⊕Kerη and the derivative of the
quotient map q∗u : Kerηu → Tq(u)CM is a linear isomorphism for every u ∈ T 1M .

Proposition 2.2. The induced closed 2-form ω on CM is symplectic.
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Proof. Let X ∈ Tq(u)CM be such that ω(X, .) = 0. If X̃ = (q∗u)
−1(X), then

−Ωu(X̃, .) = (dη)u(X̃, .) = 0 on Kerηu. Since

Ωu(G(u), X̃) = (iGΩ)u(X̃) = (dH)u(X̃) = 0

and
Ωu(Y (u), X̃) = (iY Ω)u(X̃) = −Au(X̃) = −ηu(X̃) = 0,

it follows that Ωu(X̃, .) = 0 on Tu(TM) and therefore X̃ = 0, because Ω is
symplectic. Hence X = 0. �

The tangent space Tq(u)CM can be described through Jacobi fields along the
geodesic γu with γu(0) = x and γ̇u(0) = u, where u ∈ T 1

xM . We shall use the
notations of the previous section. Let ξ ∈ Tu(T

1M) and let z : (−ǫ, ǫ) → T 1M ,
ǫ > 0, be a smooth curve such that z(0) = u and ż(0) = ξ. If γ = p ◦ z and
z(t) = (γ(t),X(t)), then ‖X(t)‖ ∈ T 1M for all |t| < ǫ. Therefore,

g(Ku(ξ), u) = g(∇γ̇(0)X,X(0)) = 0.

This implies that Tu(T
1M) = {ξ ∈ Tu(TM) : g(Ku(ξ), u) = 0}. Also we have

g(Iξ(t), γ̇u(t)) = g(
DIξ
dt

(0), γ̇u(0))t + g(Iξ(0), γ̇u(0))

= g(Ku(ξ), u) + g(p∗u(ξ), v),

for all |t| < ǫ. Combining the above, we conclude that g(Iξ(t), γ̇u(t)) = g(p∗u(ξ), v)
for every ξ ∈ Tu(T

1M). Since KerAu = {ξ ∈ Tu(TM) : g(p∗u(ξ), u) = 0}, it follows
that iu(Kerηu) is the linear subspace I

⊥(u) of I(u) consisting of normal Jacobi fields
along γu. Thus, the chain of linear isomorphisms

Tq(u)CM
(q∗u)−1

−→ Kerηu
iu−→ I⊥(u)

gives a natural identification of Tq(u)CM with I⊥(u).

3.3 Kähler manifolds

Let M be a complex manifold of complex dimension n. If φ : U → φ(U) ⊂ Cn

and ψ : V → φ(V ) ⊂ Cn are two holomorphic charts with U ∩ V 6= ∅, then
ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V ) is a biholomorphism and (ψ ◦ φ−1)∗z is C-linear
for every z ∈ φ(U ∩ V ). This implies that multiplication by i in Cn lifts to a well
defined almost complex structure J : TM → TM on M , where TM denotes the
tangent bundle of M as a real smooth 2n-manifold. If φ = (z1, z2, ..., zn) is a system
of holomorphic local coordinates on U and we write zj = xj + iyj , 1 ≤ j ≤ n, then

{ ∂

∂x1
, ...,

∂

∂xn
,
∂

∂y1
, ...,

∂

∂yn
}

is a basis at each tangent space TzM for z ∈ U and

J(
∂

∂xj
) =

∂

∂yj
, J(

∂

∂yj
) = − ∂

∂xj
1 ≤ j ≤ n.
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A Riemannian metric g on M is called hermitian if it is J-invariant, that is
gz(Jz(u), Jz(v)) = gz(u, v) for every u, v ∈ TzM , z ∈M . For instance the euclidean
Riemannian metric on Cn is hermitian. The proof of Proposition 3.7 of Chapter 2
shows that on a complex manifold there are always hermitian Riemannian metrics.

If g is a hermitian Riemannian metric, the smooth 2-form ω defined by

ω(u, v) = g(J(u), v)

is non-degenerate and is called the fundamental 2-form of g. In this way each tangent
space becomes a Kähler vector space and carries the positive definite hermitian
product h = g − iω, which is J-sesquilinear. We extend h C-bilinearly to the
complexified tangent bundle TCM = TM ⊗R C = T ′M ⊕ T ′′M , where T ′M is the
eigenspace of the eigenvalue i and T ′′M is the eigenspace of the eigenvalue −i of
J . So h(J(u), v) = ih(u, v) and h(u, J(v)) = −ih(u, v), but h(iu, v) = ih(u, v) =
h(u, iv).

Let now

∂

∂zj
=

1

2
(
∂

∂xj
− i

∂

∂yj
) ∈ T ′M |U and

∂

∂z̄j
=

1

2
(
∂

∂xj
+ i

∂

∂yj
) ∈ T ′′M |U .

We have

h(
∂

∂zj
,
∂

∂zk
) =

1

4

[
h(

∂

∂xj
,
∂

∂xk
)− ih(

∂

∂xj
,
∂

∂yk
)− ih(

∂

∂yj
,
∂

∂xk
)− h(

∂

∂yj
,
∂

∂yk
)

]
= 0

and similarly

h(
∂

∂z̄j
,
∂

∂z̄k
) = 0.

Also

h(
∂

∂zj
,
∂

∂z̄k
) =

1

4

[
h(

∂

∂xj
,
∂

∂xk
) + ih(

∂

∂xj
,
∂

∂yk
)− ih(

∂

∂yj
,
∂

∂xk
) + h(

∂

∂yj
,
∂

∂yk
)

]

=
1

2

[
h(

∂

∂xj
,
∂

∂xk
) + ih(

∂

∂xj
,
∂

∂yk
)

]
=

1

2

[
h(

∂

∂xj
,
∂

∂xk
) + ih(

∂

∂xj
, J(

∂

∂xk
))

]

=
1

2

[
h(

∂

∂xj
,
∂

∂xk
) + h(

∂

∂xj
,
∂

∂xk
)

]
= h(

∂

∂xj
,
∂

∂xk
).

It follows that as a tensor h has a local expression

h =
n∑

j,k=1

hjkdz
j ⊗ dz̄k

where hjk = h(
∂

∂xj
,
∂

∂xk
), 1 ≤ j, k ≤ n, and dzj = dxj + idyj , dz̄j = dxj − idyj .

In order to find a local expression of the fundamental 2-form ω we compute

ω(
∂

∂xj
,
∂

∂xk
) = −Imh(

∂

∂xj
,
∂

∂xk
) = −Imhjk

and

ω(
∂

∂xj
,
∂

∂yk
) = g(J(

∂

∂xj
),

∂

∂yk
) = g(

∂

∂yj
,
∂

∂yk
) = Reh(

∂

∂yj
,
∂

∂yk
)
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= Reh(
∂

∂xj
,
∂

∂xk
) = Rehjk.

Therefore,

ω(
∂

∂zj
,
∂

∂z̄k
) =

1

4

[
ω(

∂

∂xj
,
∂

∂xk
) + iω(

∂

∂xj
,
∂

∂yk
)− iω(

∂

∂yj
,
∂

∂xk
) + ω(

∂

∂yj
,
∂

∂yk
)

]

=
1

2
[−Imhjk + iRehjk] =

i

2
hjk.

Hence

ω|locally =
i

2

n∑

j,k=1

hjkdz
j ∧ dz̄k.

Note that this local expression agrees with the fact that ω is a real 2-form, because
the matrix (hjk)1≤j,k≤n is hermitian and therefore

ω̄ = − i

2

n∑

j,k=1

h̄jkdz̄
j ∧ dzk = i

2

n∑

j,k=1

hkjdz
k ∧ dz̄j = ω.

The fundamental 2-form ω need not be closed. For example, let 0 < λ < 1 and
T : Cn \{0} → Cn \{0} be the biholomorphism T (z) = λz. Then T generates a free
and properly discontinuous action of Z whose orbit space Mλ = Cn \ {0}/Z inherits
the structure of a complex manifold which makes the quotient map a holomorphic
covering map. Writing each z ∈ Cn \ {0} in the form z = rζ, where r > 0 and
ζ ∈ S2n−1, we see that the action is k · (r, ζ) = (λkr, ζ), k ∈ Z. It follows that Mλ is
diffeomorphic to S1 × S2n−1, which in this way has a complex structure. However
H2(S1 × S2n−1;R) = 0, by Künneth’s formula, and thus S1 × S2n−1 admits no
symplectic structure. Hence the fundamental 2-form of any hermitian Riemannian
metric on S1 × S2n−1 is not closed.

Recall that the exterior differential of ω is given by

dω(X,Y,Z) = Xω(Y,Z) + Y ω(Z,X) + Zω(X,Y )

−ω([X,Y ], Z)− ω([Y,Z],X) − ω([Z,X], Y )

for any smooth vector fields X, Y , Z on M . Let ∇ be the Levi-Civita connection
of the hermitian Riemannian metric g. Then,

Xω(Y,Z) = g(∇X(JY ), Z) + g(JY,∇XZ)

= g((∇XJ)Y,Z) + g(J(∇XY ), Z) + g(JY,∇XZ)

= g((∇XJ)Y,Z)− g(∇XY, JZ) + g(JY,∇XZ)

and

ω([X,Y ], Z) = g(J(∇XY ), Z)− g(J(∇YX), Z) = −g(∇XY, JZ) + g(∇YX,JZ).

Permuting cyclically and substituting we get

dω(X,Y,Z) = g((∇XJ)Y,Z) + g((∇Y J)Z,X) + g((∇ZJ)X,Y ).
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This implies that in case J is parallel with respect to ∇, i.e. ∇J = 0, then dω = 0
and ω is symplectic. We shall prove that this sufficient condition is also necessary.
We shall use the following.

Lemma 3.1. Let M be a complex manifold with corresponding almost complex
structure J and let g be a hermitian Riemannian metric on M with Levi-Civita
connection ∇. Then, J(∇XJ) = −(∇XJ)J and ∇XJ is skew-adjoint with respect
to g for every smooth vector field X on M .

Proof. For every smooth vector field Y on M we have

J(∇XJ)Y + (∇XJ)JY = J(∇X(JY )− J(∇XY )) +∇X(J
2Y )− J(∇X(JY )) = 0.

This proves the first assertion. To prove the second, for every pair of smooth vector
fields Y , Z on M we differentiate the equality g(JY,Z) + g(Y, JZ) = 0 in the
direction of X to get

0 = g(∇X(JY ), Z) + g(JY,∇XZ) + g(∇XY, JZ) + g(Y,∇X(JZ)

= g((∇XJ)Y,Z) + g(J(∇XY ), Z) + g(JY,∇XZ)

+g(∇XY, JZ) + g(Y, (∇XJ)Z) + g(Y, J(∇XZ))

= g((∇XJ)Y,Z) + g(Y, (∇XJ)Z),

which means that ∇XJ is skew-adjoint with respect to g. �

Proposition 3.2. Let M be a complex manifold with corresponding almost complex
structure J and let g be a hermitian Riemannian metric on M with Levi-Civita con-
nection ∇. The corresponding fundamental 2-form ω is closed if and only if ∇J = 0.

Proof. From the above only the converse needs proof. If X, Y , Z are smooth vector
fields on M , from Lemma 3.1 we have

g((∇XJ)Y, JZ) = −g(J(∇XJ)Y,Z) = g((∇XJ)(JY ), Z) = −g(JY, (∇XJ)Z).

So,

dω(X,Y, JZ)+dω(X,JY,Z) = g((∇XJ)Y, JZ)+g((∇Y J)(JZ),X)+g((∇JZJ)X,Y )

+g((∇XJ)(JY ), Z) + g((∇JY J)Z,X) + g((∇ZJ)X,JY )

= 2g((∇XJ)Y, JZ) + g((∇Y J)(JZ),X) + g((∇JY J)Z,X)

−g((∇JZJ)Y,X) − g((∇ZJ)(JY ),X)

= 2g((∇XJ)Y, JZ) + g((∇Y J)(JZ) + (∇JY J)Z − (∇JZJ)Y − (∇ZJ)(JY ),X).

However, again from Lemma 3.1 we have

(∇Y J)(JZ) + (∇JY J)Z − (∇JZJ)Y − (∇ZJ)(JY )

= (∇JY J)Z − J(∇Y )Z + J(∇ZJ)Y − (∇JZJ)Y
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= ∇JY (JZ)− J(∇JY Z)−∇JZ(JY ) + J(∇JZY )− J(∇Y J)Z + J(∇ZJ)Y

= [JY, JZ]− J(∇JY Z −∇JZY + (∇Y J)Z − (∇ZJ)Y )

= [JY, JZ]− J(∇JY Z −∇JZY +∇Y (JZ)− J(∇Y Z)−∇Z(JY ) + J(∇ZY ))

= [JY, JZ]− J([Y, JZ] + [JY,Z]− J [Y,Z])

= [JY, JZ]− [Y,Z]− J [Y, JZ]− J [JY,Z].

The tensor NJ(Y,Z) = [Y,Z] + J [Y, JZ] + J [JY,Z]− [JY, JZ] vanishes identically
on M , because locally

NJ
( ∂

∂xj
,
∂

∂xk
)
= NJ

( ∂

∂xj
,
∂

∂yk
)
= NJ

( ∂

∂yj
,
∂

∂yk
)
= 0

for every 1 ≤ j, k ≤ n. Cosequently,

dω(X,Y, JZ) + dω(X,JY,Z) = 2g((∇XJ)Y, JZ).

It is now obvious that if dω = 0, then ∇XJ = 0 for every smooth vector field X on
M , since J : TM → TM is a vector bundle automorphism. �

Remark 3.3. The tensor NJ which appeared in the proof of Proposition 6.2
is called the Nijenhuis tensor and can be defined if we have an almost complex
structure J on a smooth manifold M . If J comes from a complex structure on
M , then J is called integrable and NJ = 0. According to a famous theorem of
Newlander and Nirenberg the converse also holds. More precisely, if J is an almost
complex structure on a smooth manifold M and NJ = 0, then J is integrable and
M admits a structure of complex manifold.

A hermitian Riemannian metric g on a complex manifold M is called Kähler
if its corresponding fundamental 2-form is closed and therefore symplectic. A
complex manifold is called Kähler if it admits a Kähler metric.

Example 3.4. The euclidean Riemannian metric on Cn is hermitian and its corre-
sponding fundamental 2-form is the standard symplectic 2-form

i

2

n∑

j=1

dzj ∧ dz̄j =
n∑

j=1

dxj ∧ dyj .

So Cn is a Kähler manifold.

Example 3.5. Let a1, a2,..., a2n ∈ Cn be linearly independent over R and
L = a1Z + a2Z + · · · + a2nZ. The quotient group Cn/L is the orbit space of
the holomorphic action of the group generated by the translations of Cn by aj ,
1 ≤ j ≤ n and topologically is a 2n-torus. It inherits a unique complex structure
such that the quotient map p : Cn → Cn/L becomes a holomorphic covering map
and is called a complex torus. Since translations are isometries of the euclidean
metric on Cn, the latter induces a hermitian Riemannian metric on Cn/L so that
p becomes a local isometry. If ω is the corresponding fundamental 2-form, then
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p∗ω is the standard symplectic 2-form on Cn. Since p is a local diffeomorphism and
p∗(dω) = d(p∗ω) = 0, it follows that ω is closed. Therefore the complex torus Cn/L
is a Kähler manifold.

Example 3.6. The Fubini-Study metric on the complex projective space CPn

is by its definition a hermitian Riemannian metric, whose fundamental 2-form is
closed by Mumford’s criterion. Therefore CPn is a Kähler manifold.

Example 3.7. Let D ⊂ Cn be a bounded, open, connected set and let

A2(D) = {f ∈ L2(D) : f holomorphic}

where L2 is considered with respect to the Lebesgue measure µ and equality of
functions in L2(D) means equality almost everywhere. We equip A2(D) with the
L2-inner product and norm, and call it the Bergman space of D.

Let A ⊂ D be a compact set and 0 < r < inf{‖z − w‖ : z ∈ A,w ∈ ∂D}. Then
S(z, r) ⊂ A for every z ∈ A. For every z ∈ A and f ∈ A2(D) the mean value
property of holomorphic functions and Hölder’s inequality imply that

|f(z)| = 1

µ(S(z, r))

∣∣∣∣
∫

S(z,r)
fdµ

∣∣∣∣ ≤
1

µ(S(z, r))
(µ(S(z, r)))1/2‖f‖L2(S(z,r))

≤ (µ(S(z, r)))−1/2‖f‖L2(D) =

(
πn

Γ(n+ 1)

)−1/2

r−n‖f‖L2(D).

So there is a constant c > 0 depending only on A and n such that

|f(z)| ≤ c‖f‖L2(D)

for every z ∈ A and f ∈ A2(D). It follows easily from this inequality that A2(D) is
a closed linear subspace of L2(D) and therefore is a separable Hilbert space itself.
Also, if we take A to be a singleton {z} ⊂ D, it implies that the evaluation of
f ∈ A2(D) at z is a continuous linear functional. From the Riesz representation
theorem, there exists a unique Kz ∈ A2(D) such that

f(z) =

∫

D
f(ζ)Kz(ζ)dµ(ζ)

for every f ∈ A2(D). The Bergman kernel is the function K : D × D → C with
K(z, ζ) = Kz(ζ). Note that K(ζ, .) = Kζ ∈ A2(D) for every ζ ∈ D and thus

K(ζ, z) =

∫

D
K(ζ, t)K(z, t)dµ(t) = K(z, ζ).

In particular, the Bergman kernel K(z, ζ) is holomorphic with respect to z.

It is almost impossible to calculate the Bergman kernel explicitly, unlessD is very
symmetric. In general it can be constructed from any countable orthonormal basis
of A2(D). Sometimes a suitable orthonormal basis can be chosen, which enables
explicit calculation.
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Let {φj : j ∈ N} be an orthonormal basis of A2(D). For every z ∈ we have

Kz(ζ) =

∞∑

j=1

(∫

D
Kz(t)φj(t)dµ(t)

)
φj(ζ) =

∞∑

j=1

φj(z)φj(ζ)

and the convergence is uniform on compact subsets of D. Thus,

K(z, ζ) =

∞∑

j=1

φj(z)φj(ζ).

The convergence is uniform on compact subsets of D ×D. In order to prove this it
suffices to prove that

K(z, z) =

∞∑

j=1

|φj(z)|2

uniformly on compact subsets of D, because 2|φj(z)φj(ζ)| ≤ |φj(z)|2 + |φj(ζ)|2. Let
A ⊂ D be a compact set and 0 < r < inf{‖z − w‖ : z ∈ A,w ∈ ∂D}. We put

Ar =
⋃

z∈A

S(z, r). As above, there is a constant c > 0 depending on n and r, hence

on A, such that

|f(z)|2 ≤ c

∫

S(z,r)
|f |2dµ ≤ c

∫

Ar

|f |2dµ

for every z ∈ Ar and every f ∈ A2(D). Since

∞∑

j=1

∫

Ar

|φj(ζ)|2dµ(ζ) =
∫

Ar

K(ζ, ζ)dµ(ζ)

it follows that

K(z, z) =

∞∑

j=1

|φj(z)|2

uniformly on Ar, hence also on A.

Note that we have K(z, z) ≥ 0 and the equality holds if and only if φj(z) = 0
for all j ∈ N. This would mean however that f(z) = 0 for every f ∈ A2(D). This
contradiction shows that K(z, z) > 0 for every z ∈ D.

Let now h be the complex hermitian metric on D defined by

h =

n∑

j,k=1

∂

∂zj
∂

∂z̄k
logK(z, z)dzj ⊗ dz̄k.

The hermitian Riemannian metric g = Reh is called the Bergman metric on D. We
shall prove that g is a Kähler metric. First we extend g to complex vector fields of
M , that is smooth sections of TCM . Locally, a complex vector field has the form

n∑

j=1

X ′
j

∂

∂zj
+

n∑

j=1

X ′′
j

∂

∂z̄j
.
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Let ∇ be the Levi-Civita connection of the Bergman metric. For convenience we
shall use the notation

Zj =
∂

∂zj
and Zj∗ =

∂

∂z̄j
.

Let Γmjk, Γ
m∗

jk , Γmj∗k,..., Γ
m∗

j∗k∗ be defined by

∇Zj
Zk =

n∑

m=1

ΓmjkZm +

n∑

m=1

Γm
∗

jk Zm∗

and the similar equations for ∇Zj∗
Zk, ∇Zj

Zk∗ and ∇Zj∗
Zk∗ . Since ∇ is a symmetric

connection, Γmjk = Γmkj etc. Note that

gjk = Reh(
∂

∂zj
,
∂

∂zk
) = 0, gj∗k∗ = Reh(

∂

∂z̄j
,
∂

∂z̄k
) = 0

and

gjk∗ = Reh(
∂

∂zj
,
∂

∂z̄k
) =

1

2

∂

∂zj
∂

∂z̄k
logK(z, z).

If α, β, γ, δ are any indices, with or without a star, we have

∑

δ

gαδΓ
δ
βγ =

1

2
(Zβgαγ + Zγgαβ − Zαgγβ)

from which follows that Γm
∗

jk = Γmj∗k = Γm
∗

jk∗ = Γmj∗k∗ = 0 for all 1 ≤ j, k,m ≤ n.

Indeed, choosing α, β, γ to be non-starred indices we get Γm
∗

jk = 0, and if we choose
them all starred, then Γmj∗k∗ = 0. Choosing α, β, γ to be j∗, j∗, k, respectively, we

get Γmj∗k = 0, and j, j, k∗, respectively, we get Γm
∗

jk∗ = 0.

Since Γm
∗

jk = 0, we have ∇Zj
Zk ∈ T ′M and thus J(∇Zj

Zk) = i∇Zj
Zk =

∇Zj
(JZk), which implies that (∇Zj

J)Zk = 0. Similarly, from Γmj∗k∗ = 0, we get

(∇Zj∗
J)Zk∗ = 0. Since Γmj∗k = Γm

∗

jk∗ = 0 and ∇ is symmetric, it follows that

Γmj∗k = Γm
∗

j∗k = 0 and so ∇Zj∗
Zk = 0. Therefore,

∇Zj∗
(JZk) = i∇Zj∗

Zk = 0 = J(∇Zj∗
Zk).

Similarly ∇Zj
Zk∗ = 0 and ∇Zj

(JZk∗) = J(∇Zj
Zk∗) = 0. By linearity, these show

that ∇XJ = 0 for every smooth vector field X. It follows from Proposition 3.2 that
the Bergamn metric g is Kähler.

In the case of the unit ball D2n the functions zα, where α is a multiindex, form
an orthonormal basis of A2(D2n). Using this orthonormal basis one can calculate

K(z, ζ) =
n!

πn
1

(1− 〈z, ζ〉)n+1

where 〈, 〉 is the standard hermitian product on Cn. An easy calculation shows that

hjk(z) =
∂

∂zj
∂

∂z̄k
logK(z, z) =

n+ 1

(1− ‖z‖2)2 [z̄
jzk + (1− ‖z‖2)δjk]

for z = (z1, z2, ..., zn).
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In the particular case n = 1 this formula becomes

g11 = h11 =
2

(1− |z|2)2 .

So, the Bergman metric on the unit disc D2 coincides with the Poincaré hyperbolic
metric.

3.4 Coadjoint orbits

Let G be a Lie group with Lie algera g and identity element e. The action of G
on itself by conjugation, i.e. ψg(h) = ghg−1, g ∈ G, fixes e and induces the adjoint
linear representation Ad : G→ Aut(g) defined by

Adg(X) = (ψg)∗e(X) =
d

dt

∣∣∣∣
t=0

g(exp tX)g−1.

Example 4.1. The Lie group SO(3,R) is compact, connected and its Lie algebra
so(3,R) is isomorphic to the Lie algebra of skew-symmetric linear maps of R3 with
respect to the Lie bracket [A,B] = AB −BA, A, B ∈ R3×3.

On the other hand, the map ̂ : R3 → so(3,R) defined by

v̂ =




0 −v3 v2
v3 0 −v1
−v2 v1 0




where v = (v1, v2, v3), is a linear isomorphism and v̂ ·w = v×w, for every v, w ∈ R3.
This actually characterizes ̂ . So we have

(ûv̂−v̂û)w = û(v×w)−v̂(u×w) = u×(v×w)−v×(u×w) = (u×v)×w = (û× v)w.

Thus, ̂ is a Lie algebra isomorphism of the Lie algebra (R3,×) onto so(3,R).
Using this isomorphism we can describe the exponential map of SO(3,R).

Let w ∈ R3, w 6= 0, and {e1, e2, e3} be an orthonormal basis of R3 such that
e1 = w/‖w‖. The matrix of ŵ with respect to this basis is

ŵ = ‖w‖



0 0 0
0 0 −1
0 1 0


 .

For t ∈ R let γ(t) be the rotation around the axis determined by w through the
angle t‖w‖, that is

γ(t) =



1 0 0
0 cos t‖w‖ − sin t‖w‖
0 sin t‖w‖ cos t‖w‖


 .

Then,

γ̇(t) =



0 0 0
0 −‖w‖ sin t‖w‖ −‖w‖ cos t‖w‖
0 ‖w‖ cos t‖w‖ −‖w‖ sin t‖w‖


 = γ(t)ŵ = (Lγ(t))∗I3(ŵ) = Xŵ(γ(t)),
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where Lγ(t) denotes the left translation on SO(3,R) by γ(t) andXŵ the left invariant
vector field on SO(3,R) corresponding to ŵ. In other words, γ is an integral curve
of Xŵ with γ(0) = I3. It follows that exp(tŵ) = γ(t) for every t ∈ R.

For every A ∈ SO(3,R) and v ∈ R3 we have now

AdA(v̂) =
d

dt

∣∣∣∣
t=0

A(exp(tv̂))A−1 =
d

dt

∣∣∣∣
t=0

Aγ(t)A−1 = Aγ(0)v̂A−1 = Av̂A−1.

Thus,

AdA(v̂)w = Av̂(A−1w) = A(v ×A−1w) = Av × w

for every w ∈ R3, since detA = 1. Hence AdA(v̂) = Âv, and identifying R3 with
so(3,R) via ̂ we conclude that AdA = A.

Let now ad = (Ad)∗e : g → TeAut(g) ∼= End(g), that is

adX = (Ad)∗e(X) =
d

dt

∣∣∣∣
t=0

Adexp(tX)

for every X ∈ g. If we denote by XL the left invariant vector field corresponding to
X and (φt)t∈R its flow, then for every Y ∈ g ∼= T0g we have

adX(Y ) =
d

dt

∣∣∣∣
t=0

Adexp(tX)(Y ) =
d

dt

∣∣∣∣
t=0

(ψexp(tX))∗e(Y ) =

d

dt

∣∣∣∣
t=0

(Rexp(−tX) ◦ Lexp(tX))∗e(Y ) =
d

dt

∣∣∣∣
t=0

(Rexp(−tX))∗ exp(tX) ◦ (Lexp(tX))∗e(Y ) =

d

dt

∣∣∣∣
t=0

(Rexp(−tX))∗ exp(tX)(YL(exp(tX)) =
d

dt

∣∣∣∣
t=0

(φ−t)∗φt(e)(YL(φt(e)) = [X,Y ],

since φt(g) = g exp(tX) = Rexp(tX)(g) for every g ∈ G, where R denotes right
translation.

As usual, the adjoint representation induces a representation Ad∗ : G→ Aut(g∗)
on the dual of the Lie algebra defined by Ad∗g(a) = a ◦ Adg−1 , a ∈ g∗, which is
called the coadjoint representation of G.

Example 4.2. Continuing from Example 4.1, we shall describe the coadjoint rep-
resentation of SO(3,R). The transpose of the linear isomorphism ̂ induces an
isomorphism from so(3,R)∗ to (R3)∗ and the latter can be identified naturally with
R3 via the euclidean inner product. The composition of these two isomorphisms
gives a way to identify so(3,R)∗ with R3 and then, for every v, w ∈ R3 we have
v̂∗(ŵ) = 〈v,w〉, where v̂∗ is the dual of v̂ and 〈, 〉 is the euclidean inner product.
Now

Ad∗A(v̂
∗)(ŵ) = v̂∗(AdA−1(ŵ)) = 〈v,A−1w〉 = 〈Av,w〉,

for every A ∈ SO(3,R), since the transpose of A is A−1. This shows that Ad∗A = A
via the above identification. Note that the orbit of the point v̂∗ ∈ so(3,R)∗ ∼= R3 is
the set {Av : A ∈ SO(3,R)}, which is the sphere of radius ‖v‖ centered at 0.
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The orbit Oµ of µ ∈ g∗ under the coadjoint representation is an immersed
submanifold of g∗, since the action is smooth. If Gµ is the isotropy group of µ, then
the map Ad∗. (µ) : G/Gµ → Oµ taking the coset gGµ to µ ◦ Adg−1 is a well defined,
injective, smooth immersion of the homogeneous space G/Gµ onto Oµ ⊂ g∗. If the
Lie group G is compact, then Oµ is an embedded submanifold of g∗ and the above
map an embedding. If however G is not compact, Oµ may not be embedded.

Lemma 4.3. If µ ∈ g∗, then the tangent space of Oµ is

TµOµ = {µ ◦ adX : X ∈ g}.

Proof. Let γ : R → G be a smooth curve with γ̇(0) = X. For instance, let γ(t) =
exp(tX), in which case γ(t)−1 = exp(−tX). Then µ(t) = µ ◦ Adγ(t)−1 is a smooth
curve with values in Oµ ⊂ g∗ and µ(0) = µ. If Y ∈ g, then µ(t)(Y ) = µ(Adγ(t)−1(Y ))
for every t ∈ R and defferentiating at 0 we get

µ′(0)(Y ) = µ(ad(−X)(Y )) = −µ(adX(Y )),

taking into account the natural identification Tµg
∗ ∼= g∗. �

Example 4.4. In the case of the Lie group SO(3,R), for every v, w ∈ R3 ∼= so(3,R)
and µ ∈ R3 ∼= so(3,R)∗ we have

µ(adv̂(ŵ)) = 〈µ, v × w〉 = 〈µ× v,w〉.

It follows that TµOµ = {µ× v : v ∈ R3}, which is indeed the orthogonal plane to µ,
i.e. the tangent plane of the sphere of center 0 and radius ‖µ‖ at µ.

The proof of Lemma 4.3 shows that for every X ∈ g, the fundamental vector
field Xg∗ of the coadjoint action induced by X is given by the formula

Xg∗(µ) =
d

dt

∣∣∣∣
t=0

Ad∗exp(tX)(µ) = −µ ◦ adX .

Obviously, TµOµ = {Xg∗(µ) : X ∈ g}. Note that if X, X ′ ∈ g are such that
Xg∗(µ) = X ′

g∗(µ), then

−µ([X,Y ]) = Xg∗(µ)(Y ) = X ′
g∗(µ)(Y ) = −µ([X ′, Y ])

for every Y ∈ g. So there is a well defined 2-form ω− on the coadjoint orbit O = Oµ

such that

ω−
µ (Xg∗(µ), Yg∗(µ)) = −µ([X,Y ])

for every µ ∈ O and X, Y ∈ g. We call ω− the Kirillov 2-form on O.
The Kirillov 2-form ω− is non-degenerate, because if ω−

µ (Xg∗(µ), Yg∗(µ)) = 0 for
every Yg∗(µ) ∈ TµO, then Xg∗(µ)(Y ) = −µ([X,Y ]) = 0 for every Y ∈ g. This means
Xg∗(µ) = 0. In order to prove that ω− is symplectic, it remains to show that it is
closed. For this we shall need a series of lemmas.
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First note that Adg[X,Y ] = [Adg(X),Adg(Y )] for every X, Y ∈ g and g ∈ G.

Lemma 4.5. (Adg(X))g∗ = Ad∗g ◦Xg∗ ◦ Ad∗g−1 for every X ∈ g and g ∈ G.

Proof. Let γ : R → G be a smooth curve γ̇(0) = X. For instance γ(t) = exp(tX),
and then

Adg(X) =
d

dt

∣∣∣∣
t=0

gγ(t)g−1.

Therefore,

(Adg(X))g∗(µ) =
d

dt

∣∣∣∣
t=0

Ad∗gγ(t)g−1(µ) =
d

dt

∣∣∣∣
t=0

(Ad∗g ◦Ad∗γ(t) ◦ Ad∗g−1)(µ)

= (Ad∗g ◦Xg∗ ◦ Ad∗g−1)(µ). �

Lemma 4.6. The Kirillov 2-form is Ad∗-invariant.

Proof. Let µ ∈ g∗ and ν = Ad∗g(µ), g ∈ G. By Lemma 4.5,

(Adg(X))g∗(ν) = Ad∗g(Xg∗(µ)).

Thus, for every X, Y ∈ g we have

((Ad∗g)
∗ω−)µ(Xg∗(µ), Yg∗(µ)) = ω−

ν ((Adg(X))g∗(ν), (Adg(Y ))g∗(ν))

= −ν([Adg(X),Adg(Y )]) = −ν(Adg[X,Y ]) = −µ([X,Y ])

= ω−
µ (Xg∗(µ), Yg∗(µ)). �

For every ν ∈ g∗ we have a well defined 1-form νL on G such that

(νL)g = ν ◦ (Lg−1)∗g ∈ T ∗
gG.

Moreover, νL is left invariant, because for every h ∈ G we have

(L∗
hνL)g = (νL)Lh(g) ◦ (Lh)∗g = ν ◦ ((Lg−1h−1)∗hg ◦ (Lh)∗g)

= ν ◦ (Lg−1h−1 ◦ Lh)∗g = νL(g).

Obviously, iXL
νL is constant and equal to ν(X) for every X ∈ g.

Let ν ∈ O and φν : G → O be the submersion φν(g) = Ad∗g(ν). The 2-form
σ = φ∗νω

− on G is left invariant, because

L∗
gσ = (φν ◦ Lg)∗ω− = (Ad∗g ◦ φν)∗ω− = φ∗ν((Ad

∗
g)

∗ω−) = φ∗νω
− = σ

for every g ∈ G, since ω− is Ad∗-invariant and φν ◦ Lg = Ad∗g ◦ φν .

Lemma 4.7. For every X, Y ∈ g we have σ(XL, YL) = −νL([XL, YL]).

Proof. First we observe that

(φ∗νω
−)e(X,Y ) = ω−

ν ((φν)∗e(X), (φν)∗e(Y )) = ω−
ν (Xg∗(ν), Yg∗(ν)) = −ν([X,Y ]).
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Therefore,

σ(XL, YL)(e) = (φ∗νω
−)e(X,Y ) = −ν([X,Y ]) = −νL([XL, YL])(e).

Since the smooth functions σ(XL, YL), −νL([XL, YL]) : G → R are left invariant
and take the same value at e, they must be identical. �

Note that

(dνL)(XL, YL) = XL(νL(YL))− YL(νL(XL))− νL([XL, YL]) = −νL([XL, YL]),

since the functions νL(YL) = iYLνL and νL(XL) = iXL
νL are constant.

Lemma 4.8. The 2-form σ is exact and σ = dνL.

Proof. Since σ is left invariant, for any two smooth vector fields X, Y on G we have

σ(X,Y )(g) = (L∗
g−1σ)g(X(g), Y (g)) = σe((Lg−1)∗g(X(g)), (Lg−1)∗g(Y (g)))

= σ(X ′
L, Y

′
L)(e) (setting X ′ = (Lg−1)∗g(X(g)) and similarly for Y ′)

= (dνL)(X
′
L, Y

′
L)(e) (by Lemma 4.7)

= (dνL)g((Lg)∗e(X
′), (Lg)∗e(Y

′)) (since νL is left invariant)

= (dνL)g(X(g), Y (g)) = (dνL)(X,Y )(g). �

Proposition 4.9. The Kirillov 2-form ω− on O is closed and therefore symplectic.

Proof. By Lemma 4.8, d(φ∗νω
−) = dσ = d(dνL)) = 0. Hence φ∗ν(dω

−) = 0. But φ∗ν
is injective, since φν is a submersion. It follows that dω− = 0. �

Corollary 4.10. Every orbit of the coadjoint action of a Lie group G on its dual
Lie algebra g∗ has even dimension. �

We shall end this section with a couple of illustrating examples.

Example 4.11. As we saw in Example 4.2, if µ ∈ so(3,R)∗ ∼= R3, then Oµ is the
sphere centered at 0 with radius ‖µ‖. Let v, w ∈ so(3,R) ∼= R3. Then vR3 = µ×v ∈
TµOµ and wR3 = µ × w ∈ TµOµ. Hence the Kirillov 2-form on Oµ is given by the
formula

ω−
µ (vR3 , wR3) = −〈µ, v × w〉.

Since Oµ is a sphere, its area element is given by the formula

dA(v,w) = 〈N, v × w〉,

where N is the outer unit normal vector. It follows that

dA(µ × v, µ× w) = 〈 1

‖µ‖µ, (µ × v)× (µ× w)〉 = 〈 1

‖µ‖µ, 〈µ, µ × w〉v − 〈v, µ × w〉µ〉
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= −‖µ‖〈v, µ × w〉 = ‖µ‖〈µ, v × w〉,
where we have used the property (a× b)× c = 〈a, c〉b− 〈b, c〉a of the vector product
in R3. This shows that

ω− = − 1

‖µ‖dA.

Example 4.12. The connected Lie group of the orientation preserving affine trans-
formations of R is represented as a group of matrices by

G = {
(
a b
0 1

)
: a > 0, b ∈ R}.

Its Lie algebra is

g = {
(
x y
0 0

)
: x, y ∈ R} ∼= R2

with Lie bracket [A,B] = AB − BA. The exponential map is computed as follows.
Let x, y ∈ R with x 6= 0. Let γ : R → G be the smooth curve defined by

γ(t) =

(
etx y

x(e
tx − 1)

0 1

)
.

Then γ(0) = I2 and

γ′(t) =

(
xetx yetx

0 0

)
=

(
etx y

x(e
tx − 1)

0 1

)(
x y
0 0

)
= (Lγ(t))∗I2

(
x y
0 0

)
.

This shows that if

W =

(
x y
0 0

)
,

then exp(tW ) = γ(t). If now

A =

(
a b
0 1

)
,

then

AdA(W ) =
d

dt

∣∣∣∣
t=0

Aγ(t)A−1 = AWA−1 =

(
x ay − bx
0 0

)
.

So the orbit of W under the adjoint action is the line

{
(
x t
0 0

)
: t ∈ R},

when x 6= 0. If x = 0 and y > 0, it is the upper half-line, and if y < 0 it is the
lower half-line. We see now that the adjoint representation cannot be equivalent (in
any sense) to the coadjoint representation, since the orbits of the latter have even
dimension. In the sequel, we shall find the orbits of the coadjoint representation
and the Kirillov 2-form.
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Let µ ∈ g∗ ∼= R2, the isomorphism given by euclidean inner product. This means
that if µ = (α∗, β∗), then µ(W ) = α∗x+ β∗y. So,

Ad∗A−1(µ)(W ) = µ(AdA(W )) = α∗x+ β∗(ay − bx) = (α∗ − β∗b)x+ β∗ay

which implies that Ad∗A−1(α∗, β∗) = (α∗ − β∗b, β∗a). Therefore,

Oµ = {(α∗ − β∗b, β∗a) : a > 0, b ∈ R}

for µ = (α∗, β∗), as before.
If β∗ 6= 0, then for β∗ > 0 the coadjoint orbit Oµ is the open upper half plane

and for β∗ < 0 it is the open lower half plane. For β∗ = 0 we have Oµ = {(α∗, 0)}.
In the case β∗ 6= 0, the Kirillov 2-form ω− on Oµ satisfies

ω−
µ ((W1)g∗ , (W2)g∗) = −µ([W1,W2]) = −µ

(
0

x1y2 − x2y1

)
= β∗(x2y1 − x1y2),

where

Wj =

(
xj yj
0 0

)
, j = 1, 2,

since

[W1,W2] =

(
0 x1y2 − x2y1
0 0

)
.

Consequently, ω− = −β∗dα∗ ∧ dβ∗.

3.5 Homogeneous symplectic manifolds

Let g be a (real) Lie algebra and let Λk(g), k ≥ 0, denote the vector space of all
skew-symmetric covariant k-tensors on g. For every k ≥ 0, let δ : Λk(g) → Λk+1(g)
be the linear map defined by

(δω)(X0,X1, ...,Xk) =
∑

i<j

(−1)i+jω([Xi,Xj ],X0, ..., X̂i, ..., X̂j , ...,Xk).

For k = 0, we have δ = 0, and for k = 1 we have

(δω)(X0,X1) = −ω([X0,X1]).

A standard computation shows that δ ◦ δ = 0. Let Zk(g) = Λk(g) ∩ Kerδ and
Bk(g) = Λk(g) ∩ Imδ. The quotient Hk(g) = Zk(g)/Bk(g) is called the Lie algebra
k-cohomology of g. Obviously, H0(g) = {0}.

Let G be a Lie group with Lie algebra g. Then Λ1(g) = g∗. For every k ≥ 0
the space Λk(g) can be identified in the obvious way with the vector space of
left invariant differential k-forms on G. The adjoint representation induces a left
action Ad∗ on Λk(g), which for k = 1 is just the coadjoint representation. So
Ad∗g(θ) = (Adg−1)∗θ, for θ ∈ Λk(g). It is evident that Zk(g) is an Ad∗-invariant
subspace.
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Lemma 5.1. Let G be a Lie group with Lie algebra g. If H1(g) = {0} and
H2(g) = {0}, then the Ad∗- actions of G on g∗ and Z2(g) are isomorphic.

Proof. Since H2(g) = {0}, for every θ ∈ Z2(g) there exists µ ∈ g∗ such that δµ = θ.
On the other hand, since H1(g) = {0}, we have Z1(g) = B1(g) = δ(Λ0(g)) = 0.
Thus, if δµ = 0, then µ = 0. It follows that δ : g∗ → Z2(g) is an isomorphism. It is
obvious that δ is Ad∗-equivariant. �

Let now (M,ω) be a symplectic manifold, G a Lie group and φ : G×M →M a
smooth, symplectic action. Let φg = φ(g, .) and φp = φ(., p) for g ∈ G and p ∈ M .
Then, φg ◦ φp = φp ◦Lg and φφg(p) = φp ◦Rg. The closed 2-form (φp)∗ω on G is left
invariant, because

(Lg)
∗((φp)∗ω) = (φp ◦ Lg)∗ω = (φg ◦ φp)∗ω = (φp)∗((φg)

∗ω) = (φp)∗ω,

since φg is a symplectomorphism. Let Ψ : M → Z2(g) be the smooth map defined
by

Ψ(p) = ((φp)∗ω)e.

Since (φp)∗ω is left invariant, Ψ is equivariant. Indeed,

((φφg(p))∗ω)e = ((φp ◦Rg)∗ω)e = (R∗
g((φ

p)∗ω))e = (Adg−1)∗((φp)∗ω)e.

In case the action is transitive, then Ψ(M) is precisely one orbit in Z2(g). Recall
that if the action is transitive, then M is diffeomorphic to the homogeneous space
G/H, where H is the isotropy group of any point of M .

Proposition 5.2. Let G be a Lie group with Lie algebra g. If H1(g) = {0}
and H2(g) = {0}, then for every θ ∈ Z2(g) there exists a homogenous symplectic
G-manifold M such that Ψ(M) = Oθ, where Oθ is the orbit of θ under the
Ad∗-action of G on Z2(g).

Proof. Let θL denote the left invariant 2-form on G defined by θ. According to
Lemma 5.1, there exists a unique µ ∈ g∗ such that δµ = θ. Let Gµ be the isotropy
group of µ under the coadjoint representation. Then,

Gµ = {g ∈ G : Ad∗gµ = µ} = {g ∈ G : (Lg−1 ◦Rg)∗µL = µL}

= {g ∈ G : (Rg)
∗µL = µL}.

If X ∈ g, the flow (ψt)t∈R of XL is given by the formula

ψt(g) = g exp(tX) = Rexp(tX)(g).

It follows that the Lie algebra of Gµ is gµ = {X ∈ g : LXL
µL = 0}. But iXL

µL is a
constant function, and therefore LXL

µL = iXL
(dµL) = iXL

θL. So,

gµ = {X ∈ g : iXL
θL = 0}.

Let Hθ be the connected component of Gµ wich contains e. The Lie algebra of Hθ

is gµ, and of course Hθ is a closed Lie subgroup of G. Recall that the homogeneous
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spaceM = G/Hθ becomes a smooth manifold in a unique way such that the quotient
map π : G → M is smooth and it has local cross sections. In particular π is a
submersion.

Every g ∈ G is contained in the domain U of a chart (U, x1, x2, ..., xm) of
G, where m = dimG, which maps U diffeomorphically onto Rm, such that
(π(U), x1, x2, ..., xn) is a chart onM , wherem−n = dimHθ, and in these local coor-
dinates π(x1, x2, ..., xm) = (x1, x2, ...., xn). There are smooth functions aij : U → R,
1 ≤ i < j ≤ m, such that

θL|U =
∑

1≤i<j≤m

aijdx
i ∧ dxj .

The tangent space of the submanifold gHθ of G at g has basis { ∂

∂xn+1
, ...,

∂

∂xm
}.

Since θ̃L(
∂

∂xl
) = 0 for n < l ≤ m, it follows that

∑

l<j

aljdx
j −

∑

i<l

aildx
i = 0.

Therefore aij = 0, when i > n or j > n, which means that

θL|U =
∑

1≤i<j≤n

aijdx
i ∧ dxj

and then

0 = d(θL) =
∑

1≤i<j≤n

( m∑

l=1

∂aij
∂xl

dxl
)
∧ dxi ∧ dxj .

Hence
∂aij
∂xl

= 0 for n < l ≤ m, and so the functions aij do not depend on the

coordinates xn+1, ..., xm. This implies that θL descends to a well defined 2-form θ̄L
on π(U) given by the same formula. It is standard and easy, but somewhat tedious,
to show that there is a well defined closed 2-form ω on M such that π∗ω = θL and
ω|π(U) = θ̄L. Moreover, ω is non-degenerate, because ω̃π(g)(π∗g(v)) = 0 if and only

if (θ̃L)g(v) = 0 or equivalently v ∈ Tg(gHθ), that is π∗(v) = 0. So we have so far
shown that (M,ω) is a symplectic manifold.

Let φ : G ×M → M be the natural transitive left action of G on M so that
φg(hHθ) = (gh)Hθ, g ∈ G. Then φg ◦ π = π ◦ Lg and therefore

π∗(φ∗gω) = (φg ◦ π)∗ω = (π ◦ Lg)∗ω = L∗
g(π

∗ω) = L∗
gθL = θL = π∗ω.

Since π is a submersion, π∗ is injective in the level of forms, and hence φ∗gω = ω.
This shows that the action is symplectic. In order to complete the proof, it remains
to show that Ψ(M) = Oθ. If p = gHθ ∈ M , then φp = π ◦ Rg, and for every X,
Y ∈ g we have

Ψ(p)(X,Y ) = ((φp)∗ω)e(X,Y ) = ωπ(g)(π∗g((Rg)∗e(X)), π∗g((Rg)∗e(Y )))

= (π∗ω)g((Rg)∗e(X), (Rg)∗e(Y )) = (θL)g((Rg)∗e(X), (Rg)∗e(Y ))
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= θ((Lg−1 ◦Rg)∗e(X), (Lg−1 ◦Rg)∗e(X)) = Ad∗g(θ)(X,Y ).

In other words Ψ(gHθ) = Ad∗g(θ) for every g ∈ G and therefore Ψ(M) = Oθ. �

Let again θ ∈ Z2(g) and suppose that (M,ω) is a symplectic manifold, on which
the Lie group G with Lie algebra g acts transitively, symplectically and such that
Ψ(M) = Oθ. Then M is diffeomorphic to the homogeneous space G/H, where H
is the isotropy group of any point of M and necessarily θL = (φp)∗ω, where p ∈M .
The Lie algebra of H is

h = {X ∈ g : iXθ = 0},

IfHθ is the connected component of H which contains e, then Ψ(G/Hθ) = Oθ, as the
proof of Proposition 6.2 shows. The homogeneous space G/Hθ is a covering space
of M . These show that if M amd N are two homogeneous, symplectic G-manifolds
with Ψ(M) = Ψ(N), then N is a covering space of M or vice versa.

Summarizing the results of this section, we have proved the following.

Theorem 5.3. (Kostant-Souriau) Let G be a Lie group with Lie algebra g such
that H1(g) = {0} and H2(g) = {0}. Then, up to covering spaces, the homogeneous,
symplectic G-manifolds are in one-to-one, onto correspondence with the coadjoint
orbits in g∗. �

Before we end this section, we need to make some remarks about the assumptions
in the Kostant-Souriau theorem. If G is a compact, connected Lie group with Lie
algebra g, then Hk(g) is isomorphic to the k-th deRham cohomology, and so to the
k-th real singular cohomology Hk(G;R) of G for every k ≥ 0. Moreover, in this
case the condition H1(G;R) = 0 implies that H2(G;R) = 0 also. For example,
the special orthogonal group SO(3,R) is a compact, connected Lie group and is
diffeomorphic to the 3-dimensional real projective space RP 3. Therefore, its Lie
algebra so(3,R) satisfies the assumptions of the Kostant-Souriau theorem.

3.6 Poisson manifolds

In this section we shall describe an algebraic foundation of mechanics. A Poisson
algebra is a triple (A, {, }, ·), where the pair (A, {, }) is Lie algebra, while at the
same time A is a commutative ring with a unit element and multiplication ·, such
that we have a Leibniz formula

{f, g · h} = h · {f, g} + g · {f, h}

for every f , g, h ∈ A. From section 6 of chapter 2 follows that if (M,ω) is a
symplectic manifold, then (C∞(M), {, }, ·) is a Poisson algebra, where {, } is the
Poisson bracket with respect to ω and · is the usual multiplication of functions. A
map φ : A → B of Poisson algebras is called a homomorphism if is a Lie algebra
homomorphism and a homomorphism of commutative rings with unit element.

The Leibniz formula says that for every f ∈ A the linear map adf : A → A with
adf (g) = {g, f} is a derivation. It is called the Hamiltonian derivation defined by
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f . An f ∈ A is called a Casimir element if {f, g} = 0 for every g ∈ A. For example,
the unit 1 ∈ A is a Casimir element, since

{f, 1} = {f, 1 · 1} = 1 · {f, 1}+ 1 · {f, 1} = 2{f, 1} = 0

for every f ∈ A. A Poisson algebra A is called non-degenerate if every Casimir
element of A is of the form t · 1, t ∈ R.

A Poisson manifold is a smooth manifoldM together with a Poisson structure on
the ring of smooth functions C∞(M). So the Poisson structure on M is completely
determined by the Lie-Poisson bracket {, } on C∞(M). If (U, x1, x2, ..., xn) is a chart
on M , since adf is a derivation of C∞(M), it is a smooth vector field on M . So,

adf |U =
n∑

k=1

{xk, f} ∂

∂xk
.

For every f , g ∈ C∞(M) we have

{g, f}|U =
n∑

k=1

{xk, f} ∂g
∂xk

= −
n∑

k=1

{f, xk} ∂g
∂xk

=
n∑

j,k=1

{xk, xj} ∂f
∂xj

· ∂g
∂xk

.

It follows that the Poisson structure on M is determined by a contravariant, skew-
symmetric 2-tensorW , which is called the structural tensor of the Poisson structure.
For every p ∈ M , the skew-symmetric, bilinear form Wp : T ∗

pM × T ∗
pM → R is

determined by the structural matrix ({xj , xk})1≤j,k≤n. Its rank is called the rank
of the Poisson structure at p.

Proposition 6.1. The Poisson structure of a Poisson manifold M is defined by a
symplectic structure on M if and only if the structural matrix is invertible at every
point of M .

Proof. Let (M,ω) be a symplectic manifold and {, } be the corresponding Poisson
bracket. Then the Poisson tensor is given by W (df, dg) = ω(Xf ,Xg), where Xf and
Xg are the Hamiltonian vector fields with Hamiltonian functions f , g ∈ C∞(M),
respectively. Let f be such that W (df, dg) = 0 for every g ∈ C∞(M). Since T ∗

pM
is generated by {(dg)(p) : g ∈ C∞(M)} for every p ∈ M and ω is non-degenerate,
TpM is generated by {Xg(p) : g ∈ C∞(M)}. It follows now that Xf (p) = 0 for
every p ∈ M . Therefore, df = 0 on M . This shows that the structural matrix
is invertible. If M is connected, the Poisson structure is also non-degenerate. For
the converse, let M be a Poisson manifold, such that the structural matrix W is
everywhere invertible. For f ∈ C∞(M) put Xf = adf . We define

ω(Xf ,Xg) = {f, g} =W (df, dg) = df(Xg).

Since T ∗
pM is generated by {(dg)(p) : g ∈ C∞(M)} and W is invertible, it follows

that ω is a non-degenerate 2-form and it remains to show that ω is closed. For this,
we observe first that

[Xf ,Xg](h) = Xf (Xg(h))−Xg(Xf (h)) = Xf ({h, g}) −Xg({h, f})
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= {{h, g}, f} − {{h, f}, g} = −{h, {f, g}} = −X{f,g}(h)

for every h ∈ C∞(M). Consequently,

dω(Xf ,Xg,Xh) = Xf (ω(Xg,Xh))−Xg(ω(Xf ,Xh)) +Xh(ω(Xf ,Xg))

−ω([Xf ,Xg],Xh) + ω([Xf ,Xh],Xg)− ω([Xg,Xh],Xf )

= 2[{{f, g}, h} + {{g, h}, f} + {{h, f}, g}] = 0. �

Example 6.2. Let (g, [, ]) be a (real) Lie algebra of finite dimension n and g∗ be its
dual. Since g has finite demension, the double dual g∗∗ is naturally isomorphic to
g, and so their elements can be identified. For f , g ∈ C∞(g∗) let {f, g} ∈ C∞(g∗)
be defined by

{f, g}(µ) = µ[df(µ), dg(µ)]

for µ ∈ g∗. It is obvious that the bracket {, } is bilinear and skew-symmetric.
Moreover, the Leibniz formula holds, since it holds for d. In order to have a Poisson
manifold, it remains to verify the Jacobi identity. If {x1, x2, ..., xn} is a basis of
g, then x1, x2,...,xn can be considered as (global) coordinate functions on g. If f ,
g ∈ C∞(g∗), then

{f, g} =
n∑

i,j=1

{xi, xj}
∂f

∂xi
· ∂g
∂xj

.

Since {xi, xj}(µ) = µ[dxi(µ), dxj(µ)] = µ[xi, xj ] for every µ ∈ g∗, it follows from
the Jacobi identity on g, that it also holds for {, } on the the set {x1, x2, ..., xn}. In
general, if f , g, h ∈ C∞(g∗) note first that

n∑

k=1

{xk, xi}{
∂f

∂xk
, xj} =

n∑

k,l=1

{xk, xi}{xl, xj}
∂2f

∂xl∂xk

=

n∑

k,l=1

{xl, xj}{xk, xi}
∂2f

∂xk∂xl
=

n∑

k=1

{xk, xj}{
∂f

∂xk
, xi}.

Now we compute

{{f, g}, h} =

n∑

i,j,k=1

{{xi, xj}, xk}
∂f

∂xi
· ∂g
∂xj

· ∂h
∂xk

+

n∑

i,j,k=1

{xi, xj}{
∂f

∂xi
, xk}

∂h

∂xk
· ∂g
∂xj

+

n∑

i,j,k=1

{xi, xj}{
∂g

∂xj
, xk}

∂h

∂xk
· ∂f
∂xi

.

Similarly,

{{g, h}, f} =

n∑

i,j,k=1

{{xj , xk}, xi}
∂f

∂xi
· ∂g
∂xj

· ∂h
∂xk

+

n∑

i,j,k=1

{xj , xk}{
∂g

∂xj
, xi}

∂h

∂xk
· ∂f
∂xi

+

n∑

i,j,k=1

{xj , xk}{
∂h

∂xk
, xi}

∂g

∂xj
· ∂f
∂xi
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and

{{h, f}, g} =

n∑

i,j,k=1

{{xk, xi}, xj}
∂f

∂xi
· ∂g
∂xj

· ∂h
∂xk

+
n∑

i,j,k=1

{xk, xi}{
∂h

∂xk
, xj}

∂g

∂xj
· ∂f
∂xi

+
n∑

i,j,k=1

{xk, xi}{
∂f

∂xi
, xj}

∂h

∂xk
· ∂g
∂xj

.

Summing up we get

{{f, g}, h} + {{g, h}, f} + {{h, f}, g} =

n∑

i,j,k=1

(
{{xi, xj}, xk}+ {{xj , xk}, xi}+ {{xk, xi}, xj}

)
∂f

∂xi
· ∂g
∂xj

· ∂h
∂xk

= 0.

In this way g∗ becomes a Poisson manifold.

If M1 and M2 are two Poisson manifolds, a smooth map h : M1 →M2 is called
Poisson if h∗ : C∞(M2) → C∞(M1) is a homomorphism of Poisson algebras.

LetM be a Poisson manifold. For every f ∈ C∞(M), the smooth vector field Xf

corresponding to the Hamiltonian derivation adf = {., f} is called the Hamiltonian
vector field of f . This definition agrees with the definition of section 4 in case

M is symplectic.

Proposition 6.3. Let M be a Poisson manifold and Xf be a Hamiltonian vector
field on M with Hamiltonian function f ∈ C∞(M). Let φ : D → M be the flow of
Xf , where D ⊂ R×M is an open neighbourhood of {0} ×M .

(i) If g ∈ C∞(M), then

d

dt
(g ◦ φt) = {g, f} ◦ φt = {g ◦ φt, f}.

(ii) f ◦ φt = f
(iii) The flow of the Hamiltonian vector field Xf consists of Poisson maps.

Proof. (i) If p ∈M , then on the one hand

d

dt
(g ◦ φt) = Xf (g)(φt(p)) = {g, f}(φt(p))

and on the other hand

d

dt
(g ◦φt) = g∗φt(p)((φt)∗p(Xf (p))) = (g ◦φt)∗p(Xf (p)) = Xf (g ◦φt)(p) = {g ◦φt, f}.

(ii) This is obvious from (i) taking g = f .
(iii) Let g1, g2 ∈ C∞(M) and let g ∈ C∞(D) be defined by

g(t, p) = {g1 ◦ φt, g2 ◦ φt}(p)− {g1, g2}(φt(p)).

From (i) and the Jacobi identity we have

∂g

∂t
= { d

dt
(g1 ◦ φt), g2 ◦ φt}(p) + {g1 ◦ φt,

d

dt
(g2 ◦ φt)}(p)−

d

dt
{g1, g2}(φt(p)) =
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{{g1 ◦ φt, f}, g2 ◦ φt}+ {g1 ◦ φt, {g2 ◦ φt, f}} − {{g1, g2} ◦ φt, f} =

{gt, f} = Xf (gt),

where as usual gt = g(t, .), and g(0, p) = 0. By uniqueness of solutions of ordinary
differential equations, we must necessarily have g(t, p) = 0 for all t such that
(t, p) ∈ D. �

If h : M1 → M2 is a Poisson map of Poisson manifolds and f ∈ C∞(M2), then
h∗p(Xh∗(f)(p)) = Xf (h(p)) for every p ∈M1. Therefore, h transforms integral curves
of Xh∗(f) in M1 to integral curves of Xf on M2.

If M is a Poisson manifold and N ⊂ M is an immersed submanifold, then N
is called a Poisson submanifold if the inclusion i : N →֒ M is a Poisson map. On
every Poisson manifold M one can define an equivalence relation ∼ by setting p ∼ q
if and only if there is a piecewise smooth curve from p to q whose smooth parts are
pieces of integral curves of Hamiltonian vector fields of M . The equivalence classes
are called the symplectic leaves of the Poisson structure of M . We shall prove that
the symplectic leaves are immersed submanifolds and carry a unique symplectic
structure so that the become Poisson submanifolds of M .

Let p ∈ M and f1, f2,...,fk ∈ C∞(M) be such that the set {Xf1(p), ...,Xfk (p)}
is a basis of ImW̃p, where Wp is the Poisson tensor and W̃p : T

∗
pM → T ∗∗

p M ∼= TpM

is the induced linear map. In other words, Xfj (p) = W̃p(dfj(p)). There exists some
ǫ > 0 and an open neighbourhood U of p such that the flow φj of Xfj is defined on
(−ǫ, ǫ)× U for every 1 ≤ j ≤ k. Taking a smaller ǫ > 0, we may assume that

Φp(t1, t2, ..., tk) = (φ1,t1 ◦ φ2,t2 ◦ ... ◦ φk,tk)(p)

is defined for |tj| < ǫ, 1 ≤ j ≤ k. Obviously, Φp is smooth and

(Φp)∗0(
∂

∂tj
) = Xfj (p)

for 1 ≤ j ≤ k. So, (Φp)∗0 is a monomorphism and from the inverse function theorem
there exists an open neighbourhood Vp of 0 in Rk such that Φp : Vp → M is an
embedding. Note also that Im(Φp)∗0 = ImW̃p.

Lemma 6.4. There exists an open neighbourhood Vp of 0 in Rk such that
Im(Φp)∗t = ImW̃Φp(t) for every t = (t1, t2, ..., tk) ∈ Vp.

Proof. We have

(Φp)∗t(
∂

∂tj
) =

(
(φ1,t1)∗ ◦ ... ◦ (φj−1,tj−1)∗ ◦Xfj ◦ φj+1,tj+1 ◦ ...φk,tk

)
(p)

= Xhj(Φp(t)) ∈ ImW̃Φp(t),

where hj = fj ◦ (φ1,t1 ◦ ... ◦ φj−1,tj−1)
−1. Therefore, Im(Φp)∗t ≤ ImW̃Φp(t). However,

dim Im(Φp)∗t = dim Im(Φp)∗0 = dim ImW̃p = dim ImW̃Φp(t), since the flows of
Hamiltonian vector fields consist of Poisson maps, for t ∈ Vp such that Φp : Vp →M
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is an embedding. �

If q ∈ Φp(Vp) and Φq : Vq → M is an embedding constructed as Φp from
functions g1, g2,...,gk ∈ C∞, then there is an open neighbourhood V0 of 0 in Rk

such that Φq maps V0 diffeomorphically onto an open subset of Φp(Vp), from the
inverse function theorem.

Theorem 6.5. (Symplectic Stratification) In a Poisson manifold M every
symplectic leaf S ⊂ M is an immersed submanifold and TpS = ImW̃p for every
p ∈ S. Moreover, S has a unique symplectic structure such that S is a Poisson
submanifold of M .

Proof. Using the above notations, the family of all pairs (Φp(Vp),Φ
−1
p ), p ∈ S, con-

structed from functions f1, f2,...,fk ∈ C∞(M) such that {Xf1(p),Xf2(p), ...,Xfk (p)}
is a basis of ImW̃p, is a smooth atlas for S. Indeed, let p, q ∈ S and
y ∈ Φp(Vp) ∩ Φq(Vq). From the last remark, shrinking Vy we may assume
that Φy(Vy) ⊂ Φp(Vp) ∩ Φq(Vq) and Φy is an embedding of Vy similtaneously into
Φp(Vp) and Φq(Vq). Therefore, S is an immersed Poisson submanifold of M and
TpS = ImW̃p, from Lemma 6.4. By Proposition 6.1, it remains to show that the
structural matrix of S is invertible at every point p ∈ S. Let f ∈ C∞(M) be such
that {f, g}(p) = 0 for every g ∈ C∞(M). Then df(p)(Xg(p)) = Xg(f)(p) = 0 for
every g ∈ C∞(M), which implies that d(f |S)(p) = df(p)|TpS = 0. This shows that
the structural matrix of S at p is invertible. �

Example 6.6. Let (g, [, ]) be the Lie algebra of a Lie group G and g∗ be its dual. If
f ∈ C∞(g∗), the Hamiltonian vector field Xf with respect to the Poisson structure
on g∗ defined in Example 6.2 satisfies

Xf (µ)(g) = {g, f}(µ) = µ([dg(µ), df(µ)]) = −(µ ◦ addf(µ))(dg(µ))

for every g ∈ C∞(g∗) and µ ∈ g∗, where we have identified g∗∗ with g. Thus,
Xf (µ) = −(addf(µ))

∗ for every µ ∈ g∗ and Xf is precisely a fundamental vector field
of the coadjoint representation of G. It follows that the symplectic leaves in g∗ are
the coadjoint orbits. Moreover, the restricted Poisson structure on each coadjoint
orbit coincides with the Kirillov symplectic structure.



Chapter 4

Symmetries and integrability

4.1 Symplectic group actions

LetM be a smooth manifold, G a Lie group with Lie algebra g and φ : G×M →M
be a smooth group action. If X ∈ g, the fundamental vector field φ∗(X) ∈ X (M)
of the action which corresponds to X is the infinitesimal generator of the flow
φX : R ×M → M defined by φX(t, p) = φ(exp(tX), p). Note that for g ∈ G the
transformed vector field (φg)∗(φ∗(X)) is the fundamental vector field φ∗(Adg(X)),
that is

(φg)∗p(φ∗(X)(p)) = φ∗(Adg(X))(φg(p))

for every p ∈M . Indeed,

φ∗(Adg(X))(φg(p)) =
d

dt

∣∣∣∣
t=0

φφg(p)(exp(tAdg(X))) =

(φφg(p))∗e(
d

dt

∣∣∣∣
t=0

exp(tAdg(X))) = (φφg(p))∗e(Adg(X)) =

d

dt

∣∣∣∣
t=0

φ(g exp(tX)g−1, φ(g, p)) =
d

dt

∣∣∣∣
t=0

φ(g exp(tX), p) =

d

dt

∣∣∣∣
t=0

(φp ◦ Lg)(exp(tX)) =
d

dt

∣∣∣∣
t=0

(φg ◦ φp)(exp(tX)) =

(φg)∗p((φ
p)∗e(X)) = (φg)∗p(φ∗(X)(p)).

Lemma 1.1. The linear map φ∗ : g → X (M) is an anti-homomorphism of Lie
algebras, meaning that φ∗([X,Y ]) = −[φ∗(X), φ∗(Y )] for every X, Y ∈ g.

Proof. If p ∈M , then we compute

[φ∗(X), φ∗(Y )](p) =
d

dt

∣∣∣∣
t=0

(φexp(−tX))∗φexp(tX)(p)(φ∗(Y ))(φexp(tX)(p))) =

d

dt

∣∣∣∣
t=0

φ∗(Adexp(−tX)(Y ))(p) = φ∗(−adX(Y ))(p) = −φ∗([X,Y ]). �

83
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Although φ∗ is an anti-homomorphism of Lie algebras, it follows that φ∗(g) is a
Lie subalgebra of X (M) of finite dimension.

Definition 1.2. Let (M,ω) be a symplectic manifold and G a Lie group. A
smooth group action φ : G ×M → M is called symplectic if φg = φ(g, .) : M → M
is a symplectomorphism for every g ∈ G.

If φ is symplectic, then φ∗(g) ⊂ sp(M,ω), and therefore

φ∗([g, g]) ⊂ [sp(M,ω), sp(M,ω)] ⊂ h(M,ω),

by Proposition 6.8 in chapter 2. If Hφ : g → H1
DR(M) is the linear map defined by

Hφ(X) = [iφ∗(X)ω], then X ∈ Ker Hφ if and only if φ∗(X) is a Hamiltonian vector
field, and [g, g] ⊂ Ker Hφ.

Definition 1.3. A symplectic group action φ is called Hamiltonian if Hφ = 0.

Thus, if H1(M ;R) = {0}, then every symplectic group action on M is Hamilto-
nian. In particular, every symplectic group action on a simply connected symplectic
manifold is Hamiltonian. Also if the Lie algebra g of G is perfect, meaning that
g = [g, g], then every symplectic group action of G is Hamiltonian. This happens
for example in the case G = SO(3,R), because so(3,R) is isomorphic to the Lie
algebra (R,×), which is obviously perfect.

If φ is a Hamiltonian group action, in general there is no canonical way to
choose a Hamiltonian function for φ∗(X), since adding a constant to a Hamiltonian
function yields a new Hamiltonian function. If there is a linear map ρ : g → C∞(M)
such that ρ(X) is a Hamiltonian function for φ∗(X) for every X ∈ g, there is a
smooth map µ :M → g∗ defined by µ(p)(X) = ρ(X)(p).

Examples 1.4. (a) Let M be a smooth manifold, G a Lie group with Lie algebra g

and φ : G×M →M a smooth group action. Then, φ is covered by a group action
φ̃ of G on T ∗M defined by φ̃(g, a) = a ◦ (φg−1)∗φg(π(a)), where π : T ∗M →M is the

cotangent bundle projection. Since π ◦ φ̃g = φg ◦ π, differentiating we get

π∗φ̃g(a) ◦ (φ̃g)∗a = (φg)∗π(a) ◦ π∗a

for every a ∈ T ∗M and g ∈ G. The Liouville 1-form θ on T ∗M remains invariant
under the action of G, because

((φ̃g)
∗θ)a = θφ̃g(a) ◦ (φ̃g)∗a = a ◦ (φ−1

g )∗φg(π(a)) ◦ (φg)∗π(a) ◦ π∗a = a ◦ π∗a = θa.

Consequently, the action of G on T ∗M is symplectic with respect to the canonical
symplectic structure ω = −dθ. Moreover, it is Hamiltonian, because

0 = Lφ̃∗(X)θ = iφ̃∗(X)(dθ) + d(iφ̃∗(X)θ)
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and therefore iφ̃∗(X)ω = d(iφ̃∗(X)θ). Here we have a linear map ρ : g → C∞(T ∗M)

defined by ρ(X) = iφ̃∗(X)θ and µ : T ∗M → g∗ is given by the formula

µ(a)(X) = θa(φ̃∗(X)).

(b) Let G be a Lie group with Lie algebra g and O be a coadjoint orbit. The
symplectic Kirillov 2-form ω− is Ad∗-invariant, by Lemma 4.6 of chapter 3, and so
the natural action of G on O is symplectic. Recall that

ω−
ν (Xg∗(ν), Yg∗(ν)) = −ν([X,Y ]) = (ν ◦ adY )(X) = −Yg∗(ν)(X) = −X(Yg∗(ν))

for every X, Y ∈ g and ν ∈ O, having identified g∗∗ with g. If now ρX ∈ C∞(g∗)
is the (linear) function defined by ρX(ν) = −ν(X), then dρX(ν) = −X (again we
identify g∗∗ with g). It follows that iXg∗

ω− = dρX , which shows that the action of
G on O is Hamiltonian.

Let φ : G×M →M be a Hamiltonian group action of the Lie group G with Lie
algebra g on a connected, symplectic manifold (M,ω). We assume that we have a
linear lift ρ : g → C∞(M) such that φ∗(X) = Xρ(X) for every X ∈ g. We shall study
the possibility to change ρ to a new lift which is also a Lie algebra homomorphism.
From Proposition 6.8 of chapter 2 and Lemma 1.1 we have

X{ρ(X0),ρ(X1)} = −[Xρ(X0),Xρ(X1)] = φ∗([X0,X1]) = Xρ([X0,X1]),

for every X0, X1 ∈ g. Since M is connected, there exists c(X0,X1) ∈ R such that

{ρ(X0), ρ(X1)} = ρ([X0,X1]) + c(X0,X1).

Obviously, c : g×g → R is a skew-symmetric, bilinear form. Moreover, δc = 0, from
the Jacobi identity and the linearity of ρ. Hence c ∈ Z2(g). If ρ̃ : g → C∞(M) is
another linear lift and σ = ρ̃− ρ, then σ ∈ g∗ and

{ρ̃(X0), ρ̃(X1)} = {ρ(X0), ρ(X1)} = ρ([X0,X1]) + c(X0,X1) =

ρ̃([X0,X1]) + c(X0,X1)− σ([X0,X1]).

Hence, c̃(X0,X1) − c(X0,X1) = −σ([X0,X1]) = (δσ)(X0,X1). We conclude that
there is a choice of ρ̃ such that c̃ = 0 if and only if [c] = 0 in H2(g). Thus, in case
H2(g) = {0}, we can always select a linear lift ρ : g → C∞(M) which is a Lie
algebra homomorphism.

Examples 1.5. (a) Let M be a smooth manifold, G a Lie group with Lie algebra
g and φ : G ×M → M a smooth group action. As we saw in Example 1.4(a), the
covering action φ̃ on T ∗M is Hamiltonian and ρ : g → C∞(T ∗M) is given by the
formula ρ(X) = iφ̃∗(X)θ, where θ is the invariant Liouville 1-form. Then,

c(X0,X1) = −dθ(φ̃∗(X0), φ̃∗(X1))− θ(φ̃∗([X0,X1]) =

−Lφ̃∗(X0)
ρ(X1) + Lφ̃∗(X1)

ρ(X0) + θ([φ̃∗(X0), φ̃∗(X1)])− θ(φ̃∗([X0,X1]) =
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−{ρ(X1), ρ(X0)}+ {ρ(X0), ρ(X1)} − 2θ(φ̃∗([X0,X1]) = 2c(X0,X1)

and hence c = 0.
(b) If G is a Lie group with Lie algebra g and O is a coadjoint orbit, then

ρ(X)(ν) = −ν(X) for every X ∈ g and ν ∈ O ⊂ g∗, as we saw in Example 1.4(b).
Therefore, c = 0, from the definition of the Kirillov 2-form.

(c) We shall now describe a simple example, where [c] is a non-zero element of
H2(g). Let G = (R2,+), in which case g = R2 with trivial Lie bracket. Let M = R2

endowed with the euclidean area 2-form dx ∧ dy. Let G act on M by translations.
The action is symplectic and if X = (a, b) ∈ g, then

φ∗(X) = a
∂

∂x
+ b

∂

∂y
,

which is Hamiltonian with Hamiltonian function ρ(X)(x, y) = ay − bx. Then,

c((a0, b0), (a1, b1)) = a0b1 − a1b0

and therefore [c] = c 6= 0.

Definition 1.6. Let M be a symplectic manifold and G be a Lie group with Lie
algebra g. A Hamiltonian group action φ : G×M →M is called Poisson (or strongly
Hamiltonian) if there is a lift ρ : g → C∞(M) which is a Lie algebra homomorphism.

We conclude this section with a couple of criteria giving sufficient conditions
for a symplectic group action to be Poisson.

Theorem 1.7. Let (M,ω) be a compact, connected, symplectic 2n-manifold
and G a Lie group with Lie algebra g. Then, every Hamiltonian group action
φ : G×M →M is Poisson.

Proof. Recall from Proposition 6.9 of Chapter 2 that C∞(M) = R⊕ C∞
0 (M,ω). If

X ∈ g and F ∈ C∞(M) is a Hamiltonian function of φ∗(X), we define

ρ(X) = F − 1

vol(M)

∫

M
Fωn,

where ωn = ω ∧ ω ∧ ... ∧ ω n-times. Then ρ is a linear lift. Let X0, X1 ∈ g and F0,
F1 ∈ C∞(M) be Hamiltonian functions of φ∗(X0) and φ∗(X1), respectively. From
Proposition 6.8 of Chapter 2 and Lemma 1.1 we have

X{F0,F1} = −[XF0 ,XF1 ] = −[φ∗(X0), φ∗(X1)] = φ∗([X0,X1]),

and therefore

ρ([X0,X1]) = {F0, F1} −
1

vol(M)

∫

M
{F0, F1}ωn =

{ρ(X0), ρ(X1)} − 0 = {ρ(X0), ρ(X1)},
from Proposition 6.9(b) of Chapter 2. �
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Theorem 1.8. Let G be a Lie group with Lie algebra g. If H1(g) = {0} and
H2(g) = {0}, then every symplectic group action of G is Poisson.

Proof. Let (M,ω) be a symplectic manifold and φ : G ×M → M be a symplectic
action of G. The condition H1(g) = {0} is equivalent to [g, g] = g. This implies that
φ∗(g) ⊂ h(M,ω), which means that the action is Hamiltonian. Since H2(g) = {0},
the discussion preceeding the Examples 1.5 shows that the action is Poisson. �

We shall end this section with a final remark concerning the existence of invariant
almost complex structures. Let (M,ω) be a symplectic manifold and G be a Lie
group acting smoothly and symplectically on M . If G is compact (or more generally
the action is proper), there exists a G-invariant Riemannian metric on M . Starting
with such a Riemannian metric, one can repeat the second part of the proof of
Proposition 3.7 of Chapter 1 to construct a G-invariant almost complex structure
J on M which is compatible with ω. Obviously, the corresponding compatible
Riemannian metric g on M given by the formula gx(u, v) = −ω(J(u), v), for u,
v ∈ TxM , x ∈M , is also G-invariant.

4.2 Momentum maps

Let (M,ω) be a connected, symplectic manifold, G be a Lie group with Lie algebra
g and φ : G×M →M be a Poisson action.

Definition 2.1. A momentum map for φ is a smooth map µ : M → g∗ such that
ρ : g → C∞(M) defined by ρ(X)(p) = µ(p)(X) for X ∈ g and p ∈M satisfies

(i) φ∗(X) = Xρ(X), and
(ii) {ρ(X), ρ(Y )} = ρ([X,Y ]) for every X, Y ∈ g.

From the point of view of dynamical systems, one reason to study momentum
maps is the following. If H : M → R is a G-invariant, smooth function, then µ is
constant along the integral curves of the Hamiltonian vector field XH . Indeed, for
every X ∈ g we have

LXH
ρ(X) = {ρ(X),H} = −{H, ρ(X)} = −Lφ∗(X)H = 0.

Theorem 2.2. If G is a connected Lie group, then a momentum map µ : M → g∗

is G-equivariant with respect to the coadjoint action on g∗.

Proof. The momentum map µ is G-equivariant when µ(φg(p)) = µ(p) ◦ Adg−1 or
equivalently

ρ(X)(φg(p)) = ρ(Adg−1(X))(p)

for every X ∈ g, g ∈ G and p ∈M . Observe that if this is true for two elements g1,
g2 ∈ G and for every X ∈ g and p ∈ M , then this is also true for the element g1g2.
Recall that since G is connected, if V is any connected, open neighbourhood of the

identity e ∈ G with V = V −1, then G =
∞⋃

n=1

V n, where V n = V · ... · V , n-times.
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It follows that it suffices to prove the above equality for g = exp tY for Y ∈ g and
t ∈ R. In other words, it suffices to show that

ρ(X)(φexp(tY )(p)) = ρ(Adexp(−tY )(X))(p)

for every X, Y ∈ g, p ∈ M and t ∈ R. As this is true for t = 0, we need only show
that the two sides have equal derivatives with respect to t. The derivative of the
left hand side is

d

dt
ρ(X)(φexp(tY )(p)) = dρ(X)(φexp(tY )(p))(

d

dt
φexp(tY )(p)) =

ω(φ∗(X)(φexp(tY )(p)), φ∗(Y )(φexp(tY )(p))) =

ω((φg)∗p(φ∗(Adexp(−tY )(X))(p)), (φg)∗p(φ∗(Adexp(−tY )(Y ))(p))) =

ω(φ∗(Adexp(−tY )(X))(p), φ∗(Adexp(−tY )(Y ))(p)) =

ω(φ∗(Adexp(−tY )(X))(p), φ∗(Y )(p)),

since Adexp(−tY )(Y ) = Y , the action is symplectic and using the remarks in the
beginning of section 1. The derivative of the right hand side is

d

dt
ρ(Adexp(−tY )(X))(p) = ρ(

d

dt
Adexp(−tY )(X))(p) =

ρ(ad(−Y )(Adexp(−tY )(X)))(p) = ρ([−Y,Adexp(−tY )(X)])(p) =

{ρ(Adexp(−tY )(X)), ρ(Y )}(p) = ω(φ∗(Adexp(−tY )(X))(p), φ∗(Y )(p)). �

In general, for every X ∈ g and g ∈ G the smooth function

(φg)
∗(ρ(X)) − ρ(Adg−1(X)) :M → R

has differential

d((φg)
∗(ρ(X)) − ρ(Adg−1(X))) = (φg)

∗(dρ(X)) − dρ(Adg−1(X)) =

(φg)
∗(ω̃−1(φ∗(X)))−ω̃−1(φ∗(Adg−1(X))) = ω̃−1((φg−1)∗φ∗(X)−φ∗(Adg−1(X))) = 0,

because the group action is symplectic and using the remarks in the beginning of
section 1. Since M is connected, it is constant and so we have a function c : G→ g∗

defined by

c(g) = (φg)
∗(ρ(X)) − ρ(Adg−1(X)) = µ(φg(p))−Ad∗g(µ(p))

for any p ∈M . If now g0, g1 ∈ G, then

c(g0g1) = µ(φg0(φg1(p))) −Ad∗g0(Ad
∗
g1(µ(p))) =

µ(φg0(φg1(p)))−Ad∗g0(µ(φg1(p))) + Ad∗g0(µ(φg1(p)))−Ad∗g0(Ad
∗
g1(µ(p))) =

c(g0) + Ad∗g0(µ(φg1(p))−Ad∗g1(µ(p))) = c(g0) + Ad∗g0(c(g1)).
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This means that c is a 1-cocycle with respect to the group cohomology of Gδ with
coefficients in the G-module g∗, with respect to the coadjoint action, where Gδ

denotes G made discrete. If µ′ is another momentum map, there exists a constant
a ∈ g∗ such that µ′ = µ+ a. The corresponding cocycle c′ is given by the formula

c′(g) = µ(φg(p)) + a−Ad∗g(µ(p))−Ad∗g(a) = (c− δa)(g)

where δ denotes the coboundary operator in group cohomology. Thus, the coho-
mology class [c] ∈ H1(Gδ; g∗) does not depend on the choice of the momentum map
but only on the group action.

Proposition 2.3. If H1(Gδ ; g∗) = {0}, there exists a G-equivariant momentum
map.

Proof. Let µ be any momentum map with corresponding 1-cocycle c. There exists
a ∈ g∗ such that c = δa, that is c(g) = Ad∗g(a)− a for every g ∈ G. Then µ+ a is a
G-equivariant momentum map, because

µ(φg(p)) + a = c(g) +Ad∗g(µ(p)) + a = Ad∗g(a)− a+Ad∗g(µ(p)) + a = Ad∗g(µ+ a)(p)

for every g ∈ G and p ∈M . �

Examples 2.4. (a) Let φ : G ×M → M be a smooth action of the Lie group G
with Lie algebra g on the smooth manifold M and φ̃ : G × T ∗M → T ∗M be the
lifted action on the cotangent bundle. As we saw in Examples 1.4(a) and 1.5(a),
the action of G on T ∗M is Poisson and actually the Liouville 1-form θ on T ∗M is
G-invariant. The momentum map µ : T ∗M → g∗ is given by the formula

µ(a)(X) = θa(φ̃∗(X)(a))

for X ∈ g and a ∈ T ∗M , and is G-equivariant, because θ is G-invariant. Indeed,

µ(φ̃g(a))(X) = θφ̃(a)(φ̃∗(X)(φ̃g(a))) = ((φ̃g−1)∗θ)φ̃(a)(φ̃∗(X)(φ̃g(a))) =

θa((φ̃g−1)∗φ̃g(a)(φ̃∗(X)(φ̃g(a)))) = θa(φ̃∗(Adg−1(X))(a)) = µ(a)(Adg−1(X)),

for every g ∈ G.
In the case of the 3-dimensional euclidean space R3 we have T ∗R3 ∼= R3 × R3,

where the isomorphism is defined by the euclidean inner product 〈, 〉, identifying
thus T ∗R3 with TR3. The Liouville 1-form is given by the formula

θ(q,p)(v,w) = 〈v, p〉.

The natural action of SO(3,R) on R3 is covered by the action φ̃ such that

φ̃A(q, p)(v) = 〈p,A−1v〉 = 〈Ap, v〉

for every v ∈ TqR
3 and A ∈ SO(3,R). Therefore, φ̃A(q, p) = (Aq,Ap) for every

(q, p) ∈ T ∗R3 and A ∈ SO(3,R). If now v ∈ R3 ∼= so(3,R), the corresponding
fundamental vector field of the action satisfies

φ̃∗(v)(q, p) = (v̂q, v̂p) = (v × q, v × p).
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It follows that the momentum map satisfies

µ(q, p)(v) = 〈v × q, p〉 = 〈q × p, v〉

for every v ∈ R3. Consequently, the momentum map is the angular momentum

µ(q, p) = q × p.

Suppose now that we have a system of n particles in R3. The configuration space
is R3n. The additive group R3 acts on R3n by translations, that is

φx(q
1, q2, ..., qn) = (q1 + x, q2 + x, ..., qn + x)

for every x ∈ R3. The lifted action on T ∗R3n ∼= R3n × R3n is

φ̃x(q
1, q2, ..., qn, p1, p2, ..., pn) = (q1 − x, q2 − x, ..., qn − x, p1, p2, ..., pn).

If now X ∈ R3, the corresponding fundamental vector field of the action is

φ̃∗(X)(q1, q2, ..., qn, p1, p2, ..., pn) = (−X,−X, ...,−X, 0, 0, ..., 0).

Hence the momentum map µ : T ∗R3n → R3 satisfies

µ(q1, q2, ..., qn, p1, p2, ..., pn)(X) =

n∑

j=1

〈−X, pj〉 = 〈X,−
n∑

j=1

pj〉.

In other words, the momentum map in this case is the total linear momentum

µ(q1, q2, ..., qn, p1, p2, ..., pn) = −
n∑

j=1

pj.

This example justifies the use of the term momentum map.

(b) Let G be a Lie group with Lie algebra g and O ⊂ g∗ be a coadjoint orbit.
As we saw in Examples 1.4(b) and 1.5(b), the transitive action of G on O is Poisson
with momentum map µ : O → g∗ given by the formula µ(ν) = −ν for every ν ∈ O.
In other words, the momentum map is minus the inclusion of O in g∗, which is of
course G-equivariant.

(c) Let h be the usual hermitian product and ω the standard symplectic 2-
form in Cn defined by the formula ω(v,w) = Reh(Jv,w), where J : Cn → Cn

is multiplication by i. The natural group action φ : U(n) × Cn → Cn preserves
h (by definition) and is symplectic, since the elements of U(n) commute with J .
If X ∈ u(n), the corresponding fundamental vector field is φ∗(X)(z) = Xz and
therefore

(iφ∗(X)ω)z(v) = ω(Xz, v) = Reh(JXz, v)

for every v ∈ TzC
n and z ∈ Cn. Let now ρ(X) : Cn → R be the smooth function

defined by

ρ(X)(z) =
i

2
h(Xz, z)



4.2. MOMENTUM MAPS 91

which takes indeed real values since

h(Xz, z) = h(z, X̄tz) = h(z,−Xz) = −h(Xz, z),

because X ∈ u(n). Observe that

h(X(z + v), z + v)− h(Xz, z) = h(Xv, v) + h(Xz, v) − h(Xz, v)

and

lim
v→0

h(Xv, v)

‖v‖ = 0.

It follows that

dρ(X)(z)v =
i

2
[h(Xz, v) − h(Xz, v)] = Re(ih(Xz, v)) = (iφ∗(X)ω)z(v)

for every v ∈ TzC
n and z ∈ Cn. This means that the action is Hamiltonian.

Moreover, it is Poisson because for every X, Y ∈ u(n) we have

ρ([X,Y ])(z) = ρ(XY − Y X)(z) =
i

2
[h(XY z, z) − h(Y Xz, z)] =

i

2
[h(Y z,−Xz)− h(Xz,−Y z)] = i

2
[−h(Xz, Y z) + h(Xz, Y z)] =

Re(ih(Xz, Y z)) = ωz(Xz, Y z) = {ρ(X), ρ(Y )}(z).
In accordance to Theorem 2.2, the corresponding momentum map µ : Cn → u(n)∗

is indeed U(n)-equivariant since

µ(Az)(X) =
i

2
h(XAz,Az) =

i

2
h(ĀtXAz, z) =

i

2
h(A−1XAz, z) =

i

2
h(AdA−1(X)z, z) = (µ(z) ◦ AdA−1)(X)

for every z ∈ Cn, A ∈ U(n) and X ∈ u(n), because AdA−1(X) = A−1XA.

(d) On Cn×n we consider the inner product

〈A,B〉 = 1

2
Tr(AB∗ +BA∗),

where A∗ = Āt, and the corresponding symplectic form ω(A,B) = 〈iA,B〉. Note
that since AB∗+BA∗ is hermitian, it has real eigenvalues and 〈, 〉 is a euclidean inner
product. The action φ of U(n) on Cn×n by conjugation is isometric and symplectic.
If X ∈ u(n), the corresponding fundamental vector field of the action at A ∈ Cn×n

is

φ∗(X)(A) =
d

dt

∣∣∣∣
t=0

(exp tX)A(exp tX)∗ = XA+AX∗ = [X,A].

Let µ : Cn×n → u(n)∗ ∼= u(n) be the smooth map defined by

µ(A) = −1

2
i[A,A∗],
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where the identification of u(n)∗ with u(n) is made through the restriction of the
above inner product to u(n). It is easy to see that µ is U(n)-equivariant. We shall
show that µ is a momentum map. Let ρ : u(n) → C∞(Cn×n) be the corresponding
map defined by the formula

ρ(X)(A) = µ(A)(X) = −〈1
2
i[A,A∗],X〉.

For every A ∈ Cn×n and H ∈ Cn×n, we have

dρ(X)(A)H = 〈1
2
i([A∗,H]− [A,H∗]),X〉 = 1

4
Tr(i([A∗,H]− [A,H∗])(X∗ −X)) =

1

2
Tr(iX([A,H∗]− [A∗,H])) =

1

2
Tr(i(XAH∗ −XH∗A−XA∗H +XHA∗)) =

1

2
Tr(i([X,A]H∗ −H[X,A∗])) = 〈i[X,A],H〉 = ω(φ∗(X)(A),H).

In other words φ∗(X) = Xρ(X). Moreover, the action is Poisson, because for every
X, Y ∈ u(n) and A ∈ Cn×n we have

{ρ(X), ρ(Y )}(A) = 〈i[X,A], [Y,A]〉 = 1

2
Tr(i[A,A∗][X,Y ]) = ρ([X,Y ])(A).

4.3 Symplectic reduction

Let (M,ω) be a connected, symplectic manifold, G a Lie group with Lie algebra g

and φ : G ×M → M a symplectic action. In general, the orbit space G\M of the
action may not be a smooth manifold (not even a Hausdorff space). Even in the
case it is, it may not admit any symplectic structure, as for instance it may be odd
dimensional. If the action is Poisson and there is a G-equivariant momentum map
µ : M → g∗, there exists a well defined continuous map µ̃ : G\M → G\g∗. Under
certain circumstances, the level sets µ̃−1(Oa), a ∈ g∗, can be given a symplectic
structure in a natural way. It is easy to see that the inclusion j : µ−1(a) →֒ µ−1(Oa)
induces a continuous bijection j# : Ga\µ−1(a) → G\µ−1(Oa). In certain cases, j#
is a homeomorphism or even a diffeomorphism of smooth manifolds. For example,
if the action of G on M is free and proper and a is a regular value of µ, then
µ−1(Oa) is a smooth submanifold of M and so are G\µ−1(Oa) and Ga\µ−1(a).
Moreover, in this case j# is a diffeomorphism. In particular, these are true if G is
compact and the action is free.

Definition 3.1. Let P , Q be two smooth manifolds and f : P → Q be a smooth
map. A point q ∈ Q is called a clean (or weakly regular) value of f if f−1(q) is
an embedded smooth submanifold ofM and Tpf

−1(q) = Kerf∗p for every p ∈ f−1(q).

Obviously, a regular value is always clean, but the converse is not true. For
example, (0, 0) ∈ R2 is a clean, but not regular, value of the smooth function
f : R3 → R2 with f(x, y, z) = (z2, z).
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Theorem 3.2. Let (M,ω) be a symplectic manifold, G be a Lie group with Lie
algebra g and φ : G×M →M be a Poisson action with a G-equivariant momentum
map µ : M → g∗. Let a ∈ g∗ be a clean value of µ such that the orbit space
Ma = Ga\µ−1(a) is a smooth manifold and the quotient map πa : µ−1(a) → Ma

is a smooth submersion, where Ga is the isotropy group of a with respect to the
coadjoint action. Then there exists a unique symplectic 2-form ωa on Ma auch that
π∗aωa = ω|µ−1(a).

Proof. First note that µ−1(a) is indeed Ga-invariant, since µ is G-equivariant. Ev-
idently, ω̃a = ω|µ−1(a) is closed and Ga-invariant, because the action is symplectic.
So there exists a unique 2-form ωa on Ma such that π∗aωa = ω̃a. Since πa is a
submersion and ω̃a is closed, so is ωa. It remains to show that ωa is non-degenerate.

Observe that for any p ∈ µ−1(a) we have

(TpGp)
⊥ = {v ∈ TpM : ωp(φ∗(X)(p), v) = 0 for every X ∈ g} =

{v ∈ TpM : µ∗p(v)(X) = 0 for every X ∈ g} =

Kerµ∗p = Tpµ
−1(a),

because TpGp is generated by the values at p of the fundamental vector fields of
the action. On the other hand, µ−1(a) ∩ Gp = Gap, since µ is G-equivariant, and
therefore TpGap ⊂ Tpµ

−1(a) ∩ TpGp. Actually, we have equality. To see this, let
v ∈ Tpµ

−1(a) ∩ TpGp. There exists X ∈ g∗ such that v = φ∗(X)(p) and since
Tpµ

−1(a) = Kerµ∗p, we have

0 = µ∗p(v)(X) =
d

dt

∣∣∣∣
t=0

µ(φexp(tX)(p)) =
d

dt

∣∣∣∣
t=0

Ad∗exp(tX)(µ(p)) = (Ad∗)∗(X)(a).

This means X ∈ ga, the Lie algebra of Ga, or in other words v ∈ TpGap.

It follows that TpGap = Tpµ
−1(a)∩(Tpµ−1(a))⊥. Suppose now that v ∈ Tpµ

−1(a)
is such that ω̃a(v,w) = 0 for every w ∈ Tpµ

−1(a). Then v ∈ (Tpµ
−1(a))⊥ and so

v ∈ TpGap. Hence (πa)∗p(v) = 0. This proves that ωa is non-degenerate. �

Under the assumptions of Theorem 3.2 let H ∈ C∞(M) be G-invariant. As
we observed in the beginning of section 3.2, the momentum map µ is constant
along the integral curves of the Hamiltonian vector field XH , which is obviously
G-invariant, since the action is symplectic. Thus, XH is tangent to µ−1(a) and
is Ga-invariant. Let Ha ∈ C∞(Ma) be defined by Ha ◦ πa = H and XHa be the
corresponding Hamiltonian vector field on the symplectic manifold (Ma, ωa). Then
(πa)∗XH = XHa , because for every p ∈ µ−1(a) and v ∈ Tpµ

−1(a) we have

(ωa)πa(p)((πa)∗p(XH(p)), (πa)∗p(v)) = ((πa)
∗ωa)p(XH(p), v) = ωp(XH(p), v) =

dH(p)(v) = dHa(πa(p))((πa)∗p(v)) = (ωa)πa(p)(XHa(πa(p)), (πa)∗p(v)).

The Hamiltonian vector field XHa is called the reduced Hamiltonian vector field.
This is a geometric way to use the symmetry group G of XH in order to reduce
the number of differential equations we have to solve, if we want to find its integral
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curves.

Examples 3.3. (a) Let M be a symplectic manifold and H ∈ C∞(M) be such that
the Hamiltonian vector field XH is complete. Its flow is a Poisson group action of
R on M with momentum map H itself. Since R is abelian, the coadjoint action is
trivial. If now a ∈ R is a clean value of H, then according to Theorem 3.2 the orbit
space R\H−1(a) has a natural symplectic structure.

(b) Let SO(3,R) act on T ∗R3 ∼= R3 × R3 as in the Example 2.4(a). As we saw,
the momentum map µ : R3 × R3 → R3 is the angular momentum

µ(q, p) = q × p.

The Jacobian matrix of µ at (q, p) is (−p̂, q̂), and so every non-zero v ∈ R3 is a
regular value of µ. The isotropy group of v is the group of rotations of R3 around
the axis generated by v, hence isomorphic to S1. Thus, the orbit space S1\µ−1(v)
has a symplectic structure.

(c) Let φ : S1 × Cn+1 → Cn+1 be the action with φ(eit, z) = eitz. As we saw in
the Example 2.4(c), the action is Poisson with respect to the standard symplectic
structure of Cn+1 and the momentum map µ : Cn+1 → u(1)∗ = (iR)∗ ∼= R is given
by the formula

µ(z) =
i

2
h(iz, z) = −1

2
|z|2.

Now a = −1

2
is a regular value of µ and µ−1(a) = S2n+1. Since S1 is abelian,

we conclude that CPn = S1\S2n+1 has a symplectic 2-form. It is clear from the
definitions that this is exactly the fundamental symplectic 2-form of the Fubini-
Study metric.

(d) Let M be a symplectic 2n-manifold and H1,...,Hk ∈ C∞(M) such that the
Hamiltonian vector fields XH1 ,...,XHk

are complete. If {Hi,Hj} = 0 for every i,
j = 1, 2, ..., k, then their flows commute and define a Poisson action of Rk on M
with momentum map µ = (H1, ...,Hk) : M → Rk. Since Rk is abelian, we get a
symplectic structure on the orbit space Rk\µ−1(a) for every clean value a ∈ Rk of
µ. In the next section we shall examine this situation in further detail when k = n.

4.4 Completely integrable Hamiltonian systems

Let (M,ω) be a connected, symplectic 2n-manifold and H1 ∈ C∞(M). The
triple (H1,M, ω) is called a completely integrable Hamiltonian system if there are
H2,...,Hn ∈ C∞(M) such that {Hi,Hj} = 0 for every 1 ≤ i, j ≤ n and the differen-
tial 1-forms dH1, dH2,...,dHn are linearly independent on a dense open set D ⊂M .
In this section we shall always assume that we have such a system.

For every p ∈ M the set {XH1(p),XH2(p), ...,XHn (p)} generates an isotropic
linear subspace of TpM . If p ∈ D, then it is a basis of a Lagrangian subspace of
TpM . If f = (H1,H2, ...,Hn) : M → Rn, then f |D is a smooth submersion and
so the connected components of the fibers f−1(y) ∩ D, y ∈ Rn, are the leaves of
a foliation of D by Lagrangian submanifolds, because f∗p(XHi

(p)) = 0 for every
1 ≤ i ≤ n.
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Suppose that the Hamiltonian vector fields XH1 , XH2 ,..., XHn are complete.
Since their flows commute, they define a Poisson group action φ : Rn×M →M with
fundamental vector fields XH1 , XH2 ,..., XHn and momentum map f . Let y ∈ Rn

be a regular value of f . Then f−1(y) ⊂ D is a Rn-invariant, regular n-dimensional
submanifold of M . The vector fields XH1 , XH2 ,..., XHn are tangent to f−1(y), and
since they are linearly independent at every point of f−1(y), every orbit in f−1(y)
is an open subset of f−1(y). This implies that every connected component N of
f−1(y) is an orbit of the action. Thus, N is diffeomorphic to the homogenenous
space Rn/Γp, where Γp is the isotropy group of p. Note that Γp does not depend on
p, but only on N , since Rn is abelian. Also, Γp is a 0-dimensional closed subgroup
of Rn and therefore is discrete. The discrete subgroups of Rn are described as follows.

Lemma 4.1. Let Γ ≤ Rn be a non-trivial discrete subgroup. Then Γ is a lattice,
that is there exist 1 ≤ k ≤ n and linearly independent vectors v1,...,vk such that

Γ = Zv1 + ...+ Zvk.

Proof. Let u1 ∈ Γ \ {0}. Since Γ is discrete, there exists λ > 0 such that λu1 ∈ Γ
and Γ ∩ (−λ, λ)u1 = {0}. Let v1 = λu1 and so Γ ∩ Rv1 = Zv1. If Γ = Zv1, then
k = 1 and we have finished. Suppose that Γ 6= Zv1 and u2 ∈ Γ \ Zv1 be such that
Γ ∩ Ru2 = Zu2. Then, v1 and u2 are linearly independent. Let

P (v1, u2) = {t1v1 + t2u2 : t1, t2 ∈ [0, 1]}

be the parallelogram generated by v1 and u2. The set Γ∩P (v1, u2) is finite, because Γ
is discrete. So there exists v2 ∈ P (v1, u2) such that Γ∩P (v1, v2) = {0, v1, v2, v1+v2}.
It follows now that

Γ ∩ (Rv1 ⊕ Rv2) = Zv1 + Zv2,

because if there exist t1, t2 ∈ R \ Z such that t1v1 + t2v2 ∈ Γ, then

(t1 − [t1])v1 + (t2 − [t2])v2 ∈ Γ ∩ P (v1, v2),

contradiction. If Γ = Zv1 + Zv2, then k = 2 and we have finished. If not,
then we proceed inductively using the same argument repeatedly, replacing the
parallelograms with parallelopipeds etc. Since Rn has finite dimension, we end up
with linearly independent vectors v1,...,vk such that Γ = Zv1 + ...+ Zvk. �

Corollary 4.2. Let Γ ≤ Rn be a non-trivial discrete subgroup. Then there exists
1 ≤ k ≤ n such that the homogenenous space Rn/Γ is diffeomorphic to T k × Rn−k.
If Rn/Γ is compact, then k = n and Rn/Γ is diffeomorphic to the n-torus T n.

Proof. From Lemma 4.1 there exist 1 ≤ k ≤ n and linearly independent vectors
v1,...,vk such that Γ = Zv1+ ...+Zvk. We complete to a basis {v1, ..., vk , vk+1, ..., vn}
of Rn and consider the linear isomorphism T : Rn → Rn with T (vj) = ej , 1 ≤ j ≤ n.
Then, T (Γ) = Zk ×{0}, and so T imduces a diffeomorphism T̃ : R/Γ → T k ×Rn−k.
The rest is obvious. �
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Note that if N is compact then the restrictions of the Hamiltonian vector fields
XH1 , XH2 ,..., XHn to N are automatically complete. So, we have arrived at the
following.

Theorem 4.3. (Arnold-Liouville) Let y ∈ Rn be a regular value of f and N be a
connected component of f−1(y).

(i) If N is compact, then it is diffeomorphic to the n-torus T n.
(ii) If N is not compact and XH1 , XH2 ,..., XHn are complete, then N is

diffeomorphic to T k × Rn−k for some 1 ≤ k ≤ n. �

It is not hard now to describe the flow of the Hamiltonian vector field XH1

on N . Let p ∈ N and φ̃p : Rn/Γ → N be the diffeomorphism which is induced by
φp = φ(., p) : Rn → N . Let (ψt)t∈R be the flow ofXH1 on N and ψ̃t = (φ̃p)−1◦ψt◦φ̃p,
t ∈ R, be the conjugate flow on Rn/Γ. Then

ψ̃t([t1, ..., tn]) = (φ̃p)−1(ψt(φ((t1, ..., tn), p))) =

(φ̃p)−1(φ((t+ t1, t2, ..., tn), p)) = [t+ t1, t2, ..., tn].

In other words, ψt([v]) = [v + te1] for every v ∈ Rn and t ∈ R. Using the notations
of the proof of Corollary 4.2, let T (e1) = (ν1, ..., νn) and let χt = T̃ ◦ ψ̃t ◦ T̃−1, t ∈ R,
be the conjugate flow on T k × Rn−k. Then,

χt(e
2πit1 , ..., e2πitk , tk+1, ..., tn) = T̃ (ψ̃t([t1v1+...+tnvn])) = T̃ ([te1+t1v1+...+tnvn]).

Since

T (te1 + t1v1 + ...+ tnvn) = tT (e1) + t1e1 + ...+ tnen = (t1 + tν1, ..., tn + tνn)

it follows that

χt(e
2πit1 , ..., e2πitk , tk+1, ..., tn) = (e2πi(t1+tν1), ..., e2πi(tk+tνk), tk+1+tνk+1, ..., tn+tνn).

This shows that the flow of XH1 on N is smoothly conjugate to a linear flow on
T k×Rn−k. In case N is compact, then k = n and the real numbers ν1,...,νn are called
the frequences of the flow on N . As is well known, if they are linearly independent
over Q, then the flow on N is uniquely ergodic and every orbit is dense in N .

In the rest of this section we shall study more closely the case of a compact
connected component N of f−1(y), where y ∈ Rn is a regular value of f . We are
mainly interested in the structure of (M,ω) around N . Since N is compact, there
exist an open neighbourhood U of y and a φ-invariant neighbourhood V of N such
that V is compact, f(V ) = U and f |V : V → U is a submersion with compact fibers.
Therefore, f |V is a locally trivial fibration with Lagrangian fibers diffeomorphic to
the n-torus T n. Shrinking U to an open neighbourhood of y diffeomorphic to Rn,
we get an open neighbourhood V of N diffeomorphic to U ×N and so to Rn × T n.

The orbits of the restriction of the Poisson group action φ on V are the fibers
(f |V )−1(q) , q ∈ U , and the isotropy group of a point on (f |V )−1(q) depends only on
q, since Rn is abelian. We shall show first that the isotropy groups vary smoothly
with q. Let t0 ∈ Γp \{0}, where p ∈ N , and let s : U → V be a smooth section, that
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is f ◦ s = id. Identifying a small open neighbourhood B of p in N with Rn, there
exist an open neighbourhood W of t0 in Γp \ {0} and an open neighbourhood Uy of
y in U such that

pr(φ(t, s(q)))− s(q) ∈ B

for every t ∈W and q ∈ Uy, where pr : V → N is the projection. The smooth map
G :W × Uy → B with

G(t, q) = pr(φ(t, s(q))) − s(q)

is thus well defined and 0 is a regular value of G(., y). From the Implicit Function
Theorem there exist an open neighbourhood U ′

y of y and a smooth map h : U ′
y → Rn

such that G(h(q), q) = 0 for every q ∈ U ′
y and h(y) = t0. In other words,

φ(h(q), s(q)) = s(q)

for every q ∈ U ′
y. Varying now t0 in a basis of the lattice Γp, we conclude that there

exists smooth functions v1,...,vn : U → Rn such that

Γp = Zv1(f(p)) + ...+ Zvn(f(p))

for every p ∈ V , shrinking U and V appropriately.
Let now Yi be the infinitesimal generator of the smooth flow φi : R × V → V

with φi(t, p) = φ(tvi(f(p)), p). Then,

Yi(p) =

n∑

j=1

vi,j(f(p))XHj
(p),

where vi = (vi,1, ..., vi,n). Obviously, the flow φi is periodic with period 1, the vector
fields Y1,...,Y1 are linearly independent and [Yi, Yj ] = 0, because [XHi

,XHj
] = 0

and XH1 ,...,XHn are tangent to the fibers of f |V . This means that there is a well
defined group action of the n-torus T n on V with fundamental vector fields Y1,...,Yn,
whose orbits are the fibers of f |V . We shall show that this action is Poisson and
and we shall construct a momentum map. First note that since we have selected U
to be contractible and V is diffeomorphic to U × N , the inclusion N ⊂ V induces
an isomorphism in cohomology. It follows that ω|V is exact since ω|N = 0, because
N is Lagrangian. Let η be a smooth 1-form on V such that ω|V = −dη and for
1 ≤ i ≤ n let gi : V → R be the smooth function defined by

gi(p) =

∫ 1

0
(iYiη)(φ

i(t, p))dt.

Since T n is abelian, it suffices to show that Yi = Xgi for all 1 ≤ i ≤ n, that is

ω(Yi(p), Z(p)) = dgi(p)(Z(p))

for every Z(p) ∈ TpM and p ∈ V . Then, (g1, ..., gn) will be a momentum map.
Let Z(p) ∈ TpM and let Z be an extension to a smooth vector field on V which is

invariant by the action of T n, that is [Yi, Z] = 0 for every 1 ≤ i ≤ n. Differentiating
gi we get

dgi(p)(Z(p)) =

∫ 1

0
d(iYiη)(φ

i(t, p))(Z(φi(t, p)))dt,
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since Z is φi-invariant. But

d(iYiη)(Z) = LZ(iYiη) = iYi(LZη) + η([Z, Yi]) = (LZη)(Yi) =

d(iZη)(Yi) + iZ(dη)(Yi) = d(iZη)(Yi) + ω(Yi, Z)

and ∫ 1

0
d(iZη)(Yi)(φ

i(t, p))dt = (izη)(φ
i(1, p)) − (izη)(φ

i(0, p)) = 0,

since the flow φi is periodic with period 1. Consequently,

dgi(p)(Z(p)) =

∫ 1

0
ω(Yi, Z)(φ

i(t, p))dt

and it suffices to show that ω(Yi, Z) is φi-invariant. Indeed, since [Yi, Z] = 0, we
have LYi(ω(Yi, Z)) = iYi(LYiω)(Z) and

iYi(LYiω) = iYi(d(iYiω)) =

n∑

j=1

Yi(vi,j ◦ f)dHj −
n∑

j=1

Yi(Hj)d(vi,j ◦ f) = 0,

because Yi(vi,j ◦ f) = Yi(Hj) = 0, since Hj and vi,j ◦ f , 1 ≤ j ≤ n, are constant
along the orbits of Yi.

Since now (g1, ..., gn) is a momentum map of the action of T n, it is constant on
the fibers of f |V and so it is a function of f(p), p ∈ V . We shall henceforth consider
(g1, ..., gn) as a function defined on U . Its rank at every point is n because

dg1 ∧ ... ∧ dgn =
1

n!
iY1 ...iYn(ω ∧ ... ∧ ω).

Considering local coordinates θ1,...θn on N around a point p ∈ N , the smooth map
g = (g1, ..., gn, θ1, ..., θn) : V → R2n defines local coordinates in a small neighbour-
hood of p in M . Moreover, since (g1, ..., gn) is a momentum map of the n-torus
action and the action on the fibers is simply translation, we have

(g−1)∗ω =

n∑

i=1

dθi ∧ dgi +
∑

i<j

aijdgi ∧ dgj

for some smooth functions aij , 1 ≤ i < j ≤ n. The fact that ω is closed implies that
the 2-form

α =
∑

i<j

aijdgi ∧ dgj

is also closed, which means that aij does not depend on θ1,...,θn. Having chosen
U contractible, there exists a smooth 1-form β such that α = −dβ. So, there are
smooth functions β1,...,βn of g1,..,gn such that

β =

n∑

i=1

βidgi.

Putting now ψi = θi − βi we get

(g−1)∗ω =

n∑

i=1

dψi ∧ dgi.

The local coordinates (g1, ..., gn, ψ1, ..., ψn) are called action angle coordinates.
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4.5 Hamiltonian torus actions

Let (M,ω) be a connected, symplectic manifold, G a Lie group with Lie algebra g

and φ : G ×M → M a symplectic action. For X ∈ g let GX denote the closure
in G of the one-parameter subgroup of G generated by X. The fixed point set
FixGX

(M) of the restricted action of GX on M coincides with the zeros of the
fundamental vector field φ∗(X). If the action of G is Hamiltonian, the zeros of X
are precisely the critical points of the Hamiltonian function of X. So the set of
the critical points of the Hamiltonian of X coincides with FixGX

(M), which is a
submanifold of M , if GX is compact.

Lemma 5.1. Let (M,ω) be a connected, symplectic manifold, Tm the m-torus
and φ : Tm ×M → M a symplectic action. If K is closed subgroup of Tm, then
FixK(M) is a Tm-invariant symplectic submanifold of M .

Proof. It is obvious that FixK(M) is Tm-invariant, because Tm is abelian. Let J
be a Tm-invariant almost complex structure on M which is compatible with ω and
〈, 〉 be the corresponding Tm-invariant Riemannian metric. For every p ∈ FixK(M)
and h ∈ K, the linear map (φh)∗p : TpM → TpM is symplectic and preserves J and
〈, 〉 at p. Therefore, Ker(id− (φh)∗p) is a symplectic linear subspace of TpM and so
is

FixK(TpM) =
⋂

h∈K

Ker(id− (φh)∗p).

There is some δ > 0 such that the exponential map expp at p, with respect to the
Levi-Civita connection of 〈, 〉, maps the open ball of radius δ in TpM centered at
0 ∈ TpM diffeomorphically onto an open neighbourhood V of p in M . Since φh is a
Riemannian isometry for every h ∈ K, it commutes with the exponential map. This
implies that

φh(expp(u)) = expp((φh)∗p(u))

for every u ∈ TpM with ‖u‖ < δ. It follows that

V ∩ FixK(M) = expp(FixK(TpM)).

This proves that FixK(M) is a submanifold of M whose tangent space at p is
FixK(TpM) and is therefore symplectic. �

In the case of a Hamiltonian torus action the Hamiltonians of the fundamental
vector fields of the action are Morse-Bott functions. This observation is due to
M. Atiyah. As we shall see later, it results in constraints on the structure of
momentum maps.

Proposition 5.2. Let (M,ω) be a connected, symplectic manifold, Tm the m-torus
with Lie algebra tm = (iR)m and φ : Tm ×M → M a Hamiltonian action. Then,
for every X ∈ tm the Hamiltonian function H : M → R of φ∗(X) is a Morse-Bott
function whose critical submanifolds are symplectic. Moreover, all the Morse
indices are even.
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Proof. Let p be a critical point of H and let (φt)t∈R denote the flow of φ∗(X). As
in the proof of Lemma 5.1 we fix a Tm-invariant almost complex structure J on M
which is compatible with ω and a corresponding Tm-invariant Riemannian metric
〈, 〉. Then (φt)∗p is a unitary automorphism of the Kähler vector space TpM for
every t ∈ R. Therefore,

φ̂p =
d

dt

∣∣∣∣
t=0

(φt)∗p

is a skew-hermitian endomorphism of TpM and (φt)∗p = etφ̂p for all t ∈ R. It follows
that

Kerφ̂p =
⋂

t∈R

Ker(id− (φt)∗p) = TpFixGX
(M).

Also, for every smooth vector field Y on M we have

φ̂p(Y (p)) =
d

dt

∣∣∣∣
t=0

(φt)∗p(Y (p)) = [Y, φ∗(X)](p).

Now for every pair of smooth vector fields Y1, Y2 on M the value of the Hessian
HessH(p) of the Hamiltonian H at p is

HessH(p)(Y1(p), Y2(p)) = Y1(p)(Y2H) = Y1(p)(dH(Y2))

= Y1(p)(ω(φ∗(X), Y2)) = LY1ω(φ∗(X), Y2)(p)

= (LY1ω)(p)(φ∗(X)(p), Y2(p)) + ω([Y1, φ∗(X)](p), Y2(p)) + ω(φ∗(X)(p), [Y1, Y2](p))

= ω([Y1, φ∗(X)](p), Y2(p)) = ω(φ̂p(Y1(p)), Y2(p)) = 〈J(p)(φ̂p(Y1(p))), Y2(p)〉.
Hence J(p) ◦ φ̂p is a self-adjoint operator with respect to the Riemannian metric
which represents HessH(p). Note that it also commutes with J(p), because

(J(p) ◦ φ̂p) ◦ J(p) = −J(p) ◦ φ̂p ◦ J(p)∗ = J(p) ◦ φ̂∗p ◦ J(p)∗

= J(p) ◦ (J(p) ◦ φ̂p)∗ = J(p) ◦ (J(p) ◦ φ̂p),
and

Ker(J(p) ◦ φ̂p) = Kerφ̂p = TpFixGX
(M).

This proves that H is a Morse-Bott function. Moreover, since J(p) ◦ φ̂p commutes
with J(p), its eigenspaces are J(p)-invariant and therefore have even dimensions. �

In case M is compact and connected, each fiber of the Hamiltonian H in Propo-
sition 5.2 is connected. This is a consequence of the connectivity lemma for Morse-
Bott functions presented in the Appendix to this section as Proposition 5.9.

Let now (M,ω) be a compact, connected, symplectic 2n-manifold with a
Hamiltonian action φ : Tm × M → M . From Lemma 5.1, the fixed point set
FixTm(M) of the action is a compact submanifold of M and so has a finite number
of connected components. By Theorem 1.7, the action is Poisson, which means
that there exists a lift ρ : tm → C∞(M) and a dual momentum map µ : M → t∗m.
We shall analyze the image of such a momentum map.
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Lemma 5.3. The momentum map is constant on each connected component of
FixTm(M).

Proof. The isotropy group of a point p ∈ M is a subtorus of Tm whose Lie algebra
consists of the elements of tm for which the corresponding fundamental vector field
of the action vanishes at p. On the other hand, the transpose of µ∗p : TpM → t∗m is
the linear map (µ∗p)

∗ : tm → T ∗
pM given by the formula

(µ∗p)
∗(X) = dρ(X)(p).

So, the Lie algebra of the isotropy group of p is precisely Ker(µ∗p)
∗.

If now p ∈ FixTm(M), then its isotropy group is Tm and the above shows that
(µ∗p)

∗ = 0, hence also µ∗p = 0. �

We pick a basis {X1,X2, ...,Xm} of commuting elements of tm. For example,

we can take Xj =
∂

∂tj
, 1 ≤ j ≤ m, at the identity element of Tm. If X =

m∑

j=1

ajXj ,

then

µ(p) =

m∑

j=1

ajρ(Xj)(p)

for every p ∈M . So, if we identify t∗m with Rm with respect to this basis of tm, the
momentum map becomes the smooth function

µ = (µ1, µ2, ..., µm) :M → Rm,

where we have put µj = ρ(Xj), 1 ≤ j ≤ m. Also, µ1, µ2,..., µm are Morse-Bott
functions whose critical sumanifolds are symplectic and have even Morse indices.

The main subject of this section is the following famous convexity theorem for
the image of the momentum map, which was proved independently by M. Atiyah
and V. Guillemin-S.Sternberg.

Theorem 5.4. Let (M,ω) be a compact, connected, symplectic manifold and
φ : Tm × M → M a Hamiltonian action of the m-torus with momentum map
µ :M → Rm. Then the following hold.
(a) The fibers of µ are connected.
(b) The image µ(M) of µ is a convex subset of Rm.
(c) µ(M) is the convex hull of the finite set of the values of µ on FixTm(M).

In order to facilitate the inductive proof of Theorem 5.4, we shall actually prove
the following slightly more general version.

Theorem 5.5. Let (M,ω) be a compact, connected, symplectic manifold and let
φ : Tm×M →M be a Hamiltonian action of the m-torus with lift ρ : tm → C∞(M)
and a dual momentum map µ : M → t∗m. If f1, f2,..., fk ∈ Imρ and they
commute with respect to the Poisson bracket, then for the smooth function
f = (f1, f2, ..., fk) :M → Rk the following hold.
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(a) The fibers of f are connected.
(b) The image f(M) of f is a convex subset of Rk.
(c) The set of common critical points of f1, f2,..., fk is a disjoint finite union of
compact, connected submanifolds of M on each of which f takes a constant value
and f(M) is the convex hull of these values.

In the proof of Theorem 5.5(a) we shall use the following.

Lemma 5.6. Let φ : Tm ×M → M be a smooth action on a smooth n-manifold
M . Then every point p ∈ M has an open neighbourhood U such that only a finite
number of subgroups of Tm occur as isotropy groups of the points of U .

Proof. The proof will be carried out by induction on the dimension n of M . For
n = 0, the conclusion is trivial. Suppose that it is true for manifolds of dimension
n − 1. Observe that the identity element of Tm has an open neighbourhood which
contains only the trivial subgroup of Tm and the same is true for the quotient group
Tm/Tmp , which is also a torus, where Tmp is the isotropy group of p.

First we shall prove that Tmx ⊂ Tmp for points x ∈ M sufficiently close to p.
Indeed, otherwise there exists a sequence of points (xk)k∈N converging to p such
that Tmxk is not contained in Tmp . Let U be an open neighbourhood of the identity
in Tm/Tmp which contains only the trivial subgroup and let V ⊂ Tm be its inverse
image under the quotient map. Then all subgroups of Tm which are contained
in V are subgroups of Tmp . So there are elements tk ∈ Tmxk \ V , k ∈ N. Since
Tm \ V is compact, we may assume that the sequence (tk)k∈N converges to some
element t ∈ Tm \ V . But then the sequence (xk)k∈N converges to φ(t, p) 6= x. This
contradiction proves that there exists an open neighbourhood W of p such that
Tmx ⊂ Tmp for every x ∈ W . So, it suffices to consider only the restricted action
of Tmp on M . Since Tmp is compact, there is a Tmp -invariant Riemannian metric
on M . Now Tmp acts on TpM by linear isometries, because p is a fixed point of
the action of Tmp , and there is some r > 0 such that expp maps the open ball
in TpM with center 0 and radius r Tmp -equivariantly and diffeomorphically onto
the geodesic ball in M with center p and radius r. So it suffices to prove the
conclusion for the action of Tmp on TpM . The isotropy group of a non-zero v ∈ TpM
coincides with that of v/‖v‖. Thus, it suffices to consider only the isotropy groups
of the points on the (n − 1)-sphere with center 0 in TpM . Since this sphere is
a (n−1)-dimensional manifold, the conclusion follows by the inductive hypothesis. �

Proof of Theorem 5.5(a). For k = 1 the conclusion is an immediate consequence
of Proposition 5.2 and Proposition 5.9 in the Appendix. We assume that (a) holds
for k − 1. Let F = (f2, ..., fk) : M → Rk−1 and let U be its set of regular values.
If c = (c2, ...ck) ∈ U , then N = F−1(c) is a connected, compact submanifold of
M , by the inductive hypothesis. A point p ∈ N is critical for f1|N if and only if
df1(p)|TpN = 0 or equivalently df1(p) is a linear combination of df2(p),..., dfk(p),
because

TpN =
k⋂

j=2

Kerdfj(p).
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Let a = (a2, ..., ak) ∈ Rk−1 be such that

df1(p) = a2df2(p) + · · · akdfk(p).

Since M is compact, only a finite number of subgroups of Tm occur as isotropy
groups of points ofM , by Lemma 5.6. Thus, only a finite number of linear subspaces
of tm occur as Lie algebras of isotropy groups, that is as sets of elements for which
the corresponding fundamental vector field of the action vanishes at a specific point.

Since fj ∈ Imρ, there exists Yj ∈ tm such that fj is the Hamiltonian of φ∗(Yj),

1 ≤ j ≤ k. If b1, b2,..., bk ∈ R and
k∑

j=1

bjYj belongs to the Lie algebra of the isotropy

group of the critical point p ∈ N of f1|N , that is (µ∗p)
∗, then

k∑

j=1

bjdfj(p) = 0

and substituting df1(p) we get

k∑

j=

(ajb1 + bj)dfj(p) = 0.

Since {df2(p), ..., dfk(p)} is linearly independent, bj = −ajb1 for 2 ≤ j ≤ k and

k∑

j=1

bjYj = b1(Y1 − a2Y2 − · · · − akYk).

This shows that Ker(µ∗p)
∗ ∩ span{Y1, ..., Yk} is generated by

Ya = Y1 − a2Y2 − · · · − akYk.

The set A of all such a = (a2, ..., ak) ∈ Rk−1 is finite and the set of critical points of
f1|N is a disjoint union ⋃

a∈A

N ∩ Za

where Za = {p ∈ M : Ya ∈ Ker(µ∗p)
∗} = FixGYa

(M). By Lemma 5.1 and its proof,
each Za is a disjoint finite union of connected, compact submanifolds of M and
TpZa = FixGYa

(TpM).
Since φ∗(Ya) commutes with φ∗(Yj), the proof of Proposition 5.2 shows that

φ∗(Yj)(p) ∈ FixGYa
(TpM), 1 ≤ j ≤ k. If now J is a Tm-invariant almost com-

plex structure which is compatible with ω and g is the corresponding Tm-invariant
Riemannian metric on M , we have

dfj(p) = ω(φ∗(Yj)(p), .) = g(J(φ∗(Yj)(p)), .)

from which follows that

gradfj(p) = J(φ∗(Yj)(p)) ∈ TpZa
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where the gradient is considered with respect to g. This shows that p ∈ Za is
a regular point of F |Za, because gradfj(p), 2 ≤ j ≤ k, are linearly independent.
Hence N ∩ Za is submanifold of codimension k − 1 in Za.

Recall now that TpN is the g-orthogonal complement to

span{gradfj(p) : 2 ≤ j ≤ k}

and so it contains all the eigenspaces of the Hessian of the Hamiltonian

ψ = f1 −
k∑

j=2

ajfj

of Ya which correspond to non-zero eigenvalues. So the restriction of the Hessisn to
TpN has even index and degeneracy

dimZa − (k − 1) = dim(N ∩ Za).

Since

ψ(p) = f1(p)−
k∑

j=2

ajcj

for p ∈ N , the Hessian of ψ restricted on TpN coincides with the Hessian of f1|N
at p. This implies that f1|N is a Morse-Bott function and its critical submanifolds
have even Morse indices. From Proposition 5.9, the fibers of f1|N are connected.
But these are the fibers of f above the points of pr−1(c), where pr : Rk → Rk−1 is
the projection onto the last k− 1 coordinates. Hence the fibers of f over the points
of the open and dense set pr−1(U) are connected.

Finally, if L ⊂ Rk is a line, there exist a vector v ∈ Rk and a linear map
σ : Rk → Rk−1 such that L = v+Kerσ. Applying the inductive hypothesis to σ ◦ f ,
we have that (σ ◦ f)−1(σ(v)) = f−1(L) is connected. From Proposition 5.9 we get
conclusion (a).

Proof of Theorem 5.5(b). To prove that f(M) is convex, let q, u ∈ f(M) be two
different points. They define a unique line L which contains them and f−1(L) is
connected, by (a). Therefore, L ∩ f(M) = f(f−1(L)) is connected and since it
contains q and u, it must contain the line segment with these as endpoints. This
proves that f(M) is convex.

In order to prove the third assertion of Theorem 5.5, we need the following.

Lemma 5.7. Let X1, X2,..., Xk ∈ Rm be vectors which generate a linear subspace
S of Rm. If q(S) is dense in Tm, where q : Rm → Tm is the quotient map, then
there exists a dense set D ⊂ Rk such that the set

q({t
k∑

j=1

ajXj : t ∈ R})

is dense in Tm for every (a1, a2, ..., ak) ∈ D.
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Proof. Let Xj = (Xj1,Xj2, ...,Xjm), 1 ≤ j ≤ k. If there are b1, b2,..., bm ∈ Z such
that

m∑

i=1

biXji = 0

for every 1 ≤ j ≤ k, then q(S) is contained in the subtorus

{(x1, x2, ..., xm) + Zm ∈ Tm :

m∑

i=1

bixi ∈ Z}

of Tm and our assumption implies that it must be all of Tm. In this case we conclude
that b1 = b2 = · · · = bm = 0. This shows that if (b1, b2, ..., bm) ∈ Zm \ {(0, 0, ..., 0)},
there exists some 1 ≤ j ≤ k such that

m∑

i=1

biXji 6= 0.

and since the vector

( m∑

i=1

biX1i,

m∑

i=1

biX2i, ...,

m∑

i=1

biXki

)

is non-zero, the set

D(b1, b2, ..., bm) = {(a1, a2, ..., ak) ∈ Rk :
k∑

j=1

m∑

i=1

ajbiXji 6= 0}

is open and dense in Rk. By Baire’s theorem,

D =
⋂

(b1,b2,...,bm)∈Zm

D(b1, b2, ..., bm)

is dense in Rk. Obviously, for every (a1, a2, ..., ak) ∈ D, the coordinates of the

vector

k∑

j=1

ajXj are linearly independent over Z and the conclusion follows now

from Kronecker’s theorem. �

Proof of Theorem 5.5(c). Using the notations of the proof of assertion (a), let

K = exp(span{Y1, Y2, ..., Yk}).

The set of common critical points of f1, f2,...,fk is FixK(M) and is a disjoint finite
union of connected compact submanifolds Z1, Z2,..., Zl of M . Moreover, fj takes a
constant value cji ∈ R on Zi.

By Lemma 5.7, there exists a dense set D ⊂ Rk such that

exp({t
k∑

j=1

ajYj : t ∈ R})
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is dense in the torus K for every (a1, a2, ..., ak) ∈ D. Now Z is the set of critical

points of the smooth function

k∑

j=1

ajfj for every (a1, a2, ..., ak) ∈ D and so this

function must take its extreme values somewhere on Z. In particular, this implies
that

k∑

j=1

ajfj(p) ≤ max{
k∑

j=1

ajcji : 1 ≤ i ≤ l}

for every p ∈ M and (a1, a2, ..., ak) ∈ D. By continuity, this holds actually for all
(a1, a2, ..., ak) ∈ Rk.

Suppose now that f(M) is not contained in the convex hull H of the points
ci = (c1i, c2i, ..., cki), 1 ≤ i ≤ l and let p ∈ M be such that f(p) /∈ H. Since H is
compact, there exists an element h ∈ H closest to f(p). Let 〈, 〉 denote the euclidean
inner product in Rk and ‖ · ‖ the corresponding norm. Then ‖f(p)− h‖ > 0 and

〈a, f(p)〉 ≤ max{〈a, ci〉 : 1 ≤ i ≤ l}

or in another form

〈a, f(p)− h〉 ≤ max{〈a, ci − h〉 : 1 ≤ i ≤ l}

for every a ∈ Rk. Applying this for the special value a = f(p)− h we get

0 < ‖f(p)− h‖2 ≤ 〈f(p)− h, ci − h〉

for some 1 ≤ i ≤ l and therefore

‖f(p)− h‖2〈f(p)− h, ci − h〉 ≤ 〈f(p)− h, ci − h〉2 ≤ ‖f(p)− h‖2 · ‖ci − h‖2.

Hence

0 <
〈f(p)− h, ci − h〉

‖ci − h‖2 ≤ 1.

Since H is convex, it must contain the point

(
1− 〈f(p)− h, ci − h〉

‖ci − h‖2
)
h+

〈f(p)− h, ci − h〉
‖ci − h‖2 ci

and this point cannot be closer to f(p) than h. Thus,

‖f(p)−h‖2 ≤
∥∥∥∥f(p)−h−

〈f(p)− h, ci − h〉
‖ci − h‖2 (ci−h)

∥∥∥∥
2

= ‖f(p)−h‖2−〈f(p)− h, ci − h〉2
‖ci − h‖2 .

This contradiction shows that f(M) ⊂ H and therefore f(M) = H, because f(M)
is convex and contains c1, c2,..., ck.

The proof of Theorem 5.5 is now complete. �

Example 5.8. The action φ : T n+1 × Cn+1 → Cn+1 defined by

φ((t0, t1, ..., tn), (z0, z1, ..., zn)) = (t0z0, t1z1, ..., tnzn)
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is the (n + 1)-fold cartesian product of the action of the unit circle S1 in Example
3.3(c). So it is Poisson with momentum map µ : Cn+1 → Rn+1 given by

µ(z0, z1, ..., zn) =
(
−1

2
|z0|2,−

1

2
|z1|2, ...,−

1

2
|zn|2

)
.

Obviously, the origin is a fixed point and the restricted action on Cn+1\{(0, 0, ..., 0)}
commutes with scalar multiplication with non-zero complex numbers. Therefore, it
induces a smooth action φ̃ : T n+1 × CPn → CPn given by

φ̃((t0, t1, ..., tn), [z0, z1, ..., zn]) = [t0z0, t1z1, ..., tnzn]

which is Hamiltonian, hence Poisson, with momentum map µ : CPn → Rn+1 given
by

µ̃[z0, z1, ..., zn] =

(
− |z0|2

2

n∑

j=0

|zj |2
,− |z1|2

2

n∑

j=0

|zj |2
, ...,− |zn|2

2

n∑

j=0

|zj |2

)
.

The image of µ̃ lies on the hyperplane

x0 + x1 + · · ·+ xn = −1

2

of Rn+1 and is the n-simplex

∆ =
{
(x0, x1, ..., xn) ∈ Rn+1 : x0+x1+ · · ·+xn = −1

2
and xj ≤ 0, 0 ≤ j ≤ n

}
.

The fixed points of the action are the n+ 1 points

[1, 0, 0, ..., 0], [0, 1, 0, ..., 0], ..., [0, 0, ...0, 1]

and their values under µ̃ are the vertices of ∆.

Appendix

Let M be a connected, smooth n-manifold. We recall that a smooth function
f : M → R is called a Morse-Bott function if its set of critical points is a disjoint
union of a finite number of compact connected submanifolds C1, C2,..., Ck of M
such that the Hessian Hessf(p) of f at p ∈ Cj is non-degenerate on a complement
of TpCj in TpM . Each Cj is called a critical submanifold of f . The pullback of
TM to Cj decomposes as a Whitney direct sum of vector bundles TCj ⊕E+

j ⊕E−
j ,

where the fiber E+
j (p) is spanned by the eigenspaces of the positive eigenvalues of

Hessf(p) and E−
j (p) is spanned by the eigenspaces of its negative eigenvalues. The

Morse index of f at p ∈ Cj is dimE−
j (p) and is constant along Cj , by continuity.

So, we talk of the Morse index of Cj .
Let now M be compact and for c ∈ R let M−

c = f−1((−∞, c]). If a < b are two
regular values of f with at most one critical value between them, then

Hq(M
−
b ,M

−
a ;Z2) ∼=

m⊕

i=1

Hq(E
−(Ci), E

−
0 (Ci);Z2) ∼=

m⊕

i=1

Hq−li(Ci;Z2),
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where C1, C2,..., Cm are the connected components of the critical value between a
and b and l1, l2,..., lm are their Morse indices, respectively. Recall that the second
isomorphism is just the Thom isomorphism in homology with coefficients in Z2.
The main aim of this Appendix is to prove the next proposition which is usually
called the connectivity lemma for Morse-Bott functions.

Proposition 5.9. Let M be a compact, connected, smooth n-manifold and let
f : M → R be a Morse-Bott function. If no critical submanifold of f has Morse
index 1 or n− 1, then f−1(c) is connected for every c ∈ R.

Proof. We putM+
c = f−1([c,+∞)) andMc = f−1(c). In order to avoid problems of

orientability, we use singular homology with coefficients in Z2 throughout the proof
without further mention. Let a < b be two regular values of f with at most one
critical value between them. The last part of the long exact sequence of the pair
(M−

b ,M
−
a ) becomes

· · · →
m⊕

i=1

H1−li(Ci) → H0(M
−
a ) → H0(M

−
b ) →

m⊕

i=1

H−li(Ci) → 0.

If M−
b is connected and M−

a is not empty, we get H−li(Ci) = 0 for all 1 ≤ i ≤ m.
This means that li ≥ 1 and by our assumption li ≥ 2, 1 ≤ i ≤ m. Hence also
H1−li(Ci) = 0, 1 ≤ i ≤ m and H0(M

−
a ) ∼= H0(M

−
b ), which means that M−

a is
connected as well. If M−

a is empty, then the critical value between a and b is the
global minimum of f and li = 0 for all 1 ≤ i ≤ m. Since f is a Morse-Bott function,
it has a finite number of critical values and inductively we conclude that if a < b
are any two regular values of f with M−

b is connected, then M−
a is also connected.

If now we pick b larger than the maximum value of f on M , then M−
b =M , which

is assumed to be connected. It follows that M−
c is connected for every regular value

c ∈ R of f .
The assumption that f has no critical submanifold of Morse index n − 1 is

equivalent to saying that −f has no critical submanifold of Morse index 1. The
Morse index of Ci with respect to −f is the dimension of the fiber of E+(Ci), that
is n − li − dimCi. Arguing as above for −f and the interval [−b,−a], we get the
exact sequence

· · · → Hn−1(M
+
b ) → Hn−1(M

+
a ) →

m⊕

i=1

Hli+dimCi−1(Ci) → · · ·

Since li ≥ 2, we have Hli+dimCi−1(Ci) = 0. Thus, if Hn−1(M
+
b ) is trivial, then so

is Hn−1(M
+
a ). Picking again b larger than the maximum value of f on M , we have

M+
b = ∅, and inductively as before we conclude that Hn−1(M

+
c ) = 0 for every

regular value c ∈ R.
Let now c ∈ R be a regular value of f such that Mc 6= ∅. Applying the above

to −f we have Hn−1(M
+
c ) = Hn−1(M

−
c ) = 0. Since c is a regular value, we have a

Mayer-Vietoris long exact sequence

0 → Hn(M) → Hn−1(Mc) → Hn−1(M
+
c )⊕Hn−1(M

−
c ) → Hn−1(M) → · · ·
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from which follows that Hn−1(Mc) is either trivial or Z2. But since c is a regular
value, Mc is a compact (n − 1)-manifold and the former possibility is excluded.
Hence Hn−1(Mc) ∼= Z2, which shows that Mc is connected for every regular value
c ∈ R of f . Since the set of regular values is open and dense in R, by Sard’s
theorem, the conclusion follows from the following general topological lemma. �

Lemma 5.10. Let X be a compact, connected, Hausdorff space and f : X → Rk a
continuous map with the following properties.
(i) There exists an open, dense set U in Rk such that for every c ∈ U the fiber
f−1(c) is connected.
(ii) f−1(L) is connected for every line L in Rk.
Then for for every c ∈ Rk the fiber f−1(c) is connected.

Proof. Suppose that c ∈ Rk is such that f−1(c) is not connected. Then c ∈ R\U and
there are disjoint closed sets A, B ⊂ X with f−1(c) = A ∪B. Since X is compact,
so are A and B and they have disjoint open neighbourhoods G and H, respectively.
Then, f(X \(G∪H)) is a compact subset of Rk, which does not contain c. Let V be
an open ball in Rk with center c which is disjoint from f(X \ (G ∪H)). Obviously,
f−1(V ) ⊂ G ∪H and furthermore

f(G) ∩ f(H) ∩ V ⊂ Rk \ U,

because for every a ∈ f(G) ∩ f(H) ∩ V we have f−1(a) ⊂ f−1(V ) ⊂ G ∪ H and
f−1(a) ∩G 6= ∅, f−1(a) ∩H 6= ∅.

Let now L be any line through c. Then L \ {0} has two connected components,
L− and L+. We identify L with R so that c corresponds to 0, and L− and L+

correspond to (−∞, 0) and (0,+∞), respectively.
We claim that f(G)∩f(H) contains V ∩L− or V ∩L+. If not, there are a ∈ V ∩L−

and b ∈ V ∩L+ such that none of them belongs to f(G)∩f(H). We have to consider
two cases. If a /∈ f(G) and b /∈ f(G), then f−1(a) ∪ f−1(b) ⊂ H and

f−1(L) = [f−1(a, b) ∩G] ∪ [f−1(−∞, a) ∪ f−1(b,+∞) ∪ (H ∩ f−1(L))].

If a /∈ f(G) and b /∈ f(H), then f−1(a) ⊂ H, f−1(b) ⊂ G and

f−1(L) = [f−1(b,+∞) ∪ (f−1(a,+∞) ∩G)] ∪ [f−1(−∞, a) ∪ (f−1(−∞, b) ∩H)].

In both cases we we get that f−1(L) is not connected, contrary to our assumption
(ii).

If now g : Rk → Rk is the affine homeomorphism with g(x) = −x + 2c, then g
fixes c and it is such that g(L−) = L+ and g(L+) = L− for every line L through c.
Since V ∩ L ⊂ (Rk \ U) ∩ g(Rk \ U) for every line L through c and V is a ball with
center c, we must have V ⊂ (Rk \ U) ∩ g(Rk \ U). This is impossible, because U is
dense in Rk. �

Remark 5.11. The proof of Proposition 5.9 shows that there exist at most one
local minimum and at most one local maximum value of f , which are its extreme
values on M .
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4.6 The topology of the harmonic oscillator

The harmonic oscillator in R2 is the physical system which consists of a particle, say
of unit mass, acted upon by two springs in orthogonal directions, which we assume
to have unit spring constants for simplicity. The phase space of the system is T ∗R2,
which is identified with R4 endowed with the canonical symplectic 2-form

ω = dq1 ∧ dp1 + dq2 ∧ dp2.

The Hamiltonian function of the harmonic oscillator is

H(q, p) =
1

2
‖p‖2 + 1

2
‖q‖2,

where q = (q1, q2) and p = (p1, p2). In other words, it is the sum of the kinetic and
the potential energy. The equations of motion are

q̇ = p, ṗ = −q

or equivalently the corresponding Hamiltonian vector field is XH(q, p) = (p,−q).
Since the equations of motion form a system of linear differential equations with

constant coefficients, it can be solved explicitly. The flow of XH is given by the
formula

φHt (q, p) = ((cos t)q + (sin t)p, (− sin t)q + (cos t)p)

for t ∈ R and (q, p) ∈ T ∗R2. Despite of this explicit formula we want to have a
qualitative description of the flow. Note that the flow induces a free smooth action
of S1 on T ∗R2.

As in Example 2.4(a), the action of the special orthogonal group SO(2,R) on
R2 lifts to a Poisson action on T ∗R2 which leaves the Liouville 1-form invariant and
gives rise to the angular momentum µ : T ∗R2 → R defined by the formula

µ(q, p) = q1p2 − q2p1

for q = (q1, q2) and p = (p1, p2). Since the Hamiltonian H is SO(2,R)-invariant, µ
is a integral of motion, that is {H,µ} = 0. In order to verify that XH is completely
integrable in the sense of section 4.4, it suffices to show that dH and dµ are linearly
independent on a dense open subset T ∗R2. Thus, we need to find the critical points,
the critical values and the range of the energy-momentum map

E = (H,µ) : T ∗R2 → R2.

The Jacobian matrix of E at (q, p) ∈ T ∗R2 is

DE(q, p) =

(
dH(q, p)
dµ(q, p)

)
=

(
q1 q2 p1 p2
p2 −p1 −q2 q1

)

for q = (q1, q2) and p = (p1, p2), and dH(q, p), dµ(q, p) are linearly independent
if and only if DE(q, p) has rank 2. Obviously, DE(q, p) has rank 0 if and only
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(q, p) = (0, 0). Suppose that DE(q, p) has rank 1. Then dH(q, p) and dµ(q, p) are
both non-zero and there exists a 6= 0 such that

(p2,−p1,−q2, q1) = (aq1, aq2, ap1, ap2).

This implies that a2 = 1. Consequently, the set of points (q, p) in T ∗R2 at which
DE(q, p) has rank 1 consists of the two punctured 2-dimensional linear subspaces

P+ = {(q1, q2,−q2, q1) ∈ T ∗R2 : (q1, q2) 6= (0, 0)},

P− = {(q1, q2, q2,−q1) ∈ T ∗R2 : (q1, q2) 6= (0, 0)}.
Thus, dH and dµ are linearly independent on an open dense subset of T ∗R2.

Each energy level set H−1(c), c ∈ R, is either a 3-sphere of radius
√
2c for c > 0,

a singleton for c = 0 or the empty set for c < 0. Let c > 0 and (q, p) ∈ H−1(c).
Then, (q, p) 6= (0, 0) and the orbit of (q, p) lies in the intersection of H−1(c) with the
2-dimensional linear subspace of T ∗R2 = R4 generated by {(q, p), (p,−q)}. Thus,
each orbit of XH in H−1(c) is a great circle.

We are going to analyse how the level sets of the restriction of the angular
momentum µ|H−1(c) fit in each energy level set H−1(c) for c > 0. The critical values
of the energy-momentum map E is the set

E(P+) ∪ E(P−) = {(c, c) : c > 0} ∪ {(c,−c) : c > 0}.

Observe that

H−1(c) ∩ P+ = {(q1, q2,−q2, q1) ∈ T ∗R2 : (q1)2 + (q2)2 = c},

H−1(c) ∩ P− = {(q1, q2, q2,−q1) ∈ T ∗R2 : (q1)2 + (q2)2 = c}
are great circles which are orbits of XH and H−1(c)∩ (P+∪P−) is the set of critical
values of µ|H−1(c). So, µ|H−1(c) has two critical submanifolds, namely H−1(c) ∩ P+

and H−1(c) ∩ P−.

Proposition 6.1. The restriction of the angular momentum µ|H−1(c) on an energy
level set H−1(c) for c > 0 is a Morse-Bott function and has two critical great circles
on which the Morse indices are 2 and 0, respectively.

Proof. We shall show that the critical level H−1(c)∩P+ is non-degenerate of Morse
index 2. Let (q, p) = (q1, q2, p1, p2) ∈ H−1(c) ∩ P+, that is p1 = −q2 and p2 = q1.
From the above, (q, p) is a critical point of µ|H−1(c) with Lagrange multiplier 1 and
the Hessian of µ|H−1(c) at (q, p) is

D2(µ −H)(q, p)|KerDH(q,p) =




−1 0 0 1
0 −1 −1 0
0 −1 −1 0
1 0 0 −1


 |KerDH(q,p).

Since H−1(c) ∩ P+ is an orbit of XH , its tangent space at (q, p) is generated by

XH(q, p) = (−q2, q1,−q1,−q2).
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Also, KerDH(q, p) is generated by the basis consisting of

XH(q, p), v1 = (q2,−q1,−q1,−q2), v2 = (q1, q2, q2,−q1)

and {v1, v2} is an orthogonal basis of the orthogonal complement of the tangent
space of H−1(c) ∩ P+ at (q, p) in KerDH(q, p). Now a simple computation gives

D2(µ−H)(q, p)v1 = −2v1, D2(µ −H)(q, p)v2 = −2v2.

Hence H−1(c) ∩ P+ is a non-degenerate critical level of Morse index 2. A similar
computation shows that the critical level H−1(c) ∩ P− is non-degenerate of Morse
index 0. �

Corollary 6.2. For every c > 0 the orbit space H−1(c)/S1 of XH |H−1(c) is
diffeomorphic to the 2-sphere S2.

Proof. Since the flow of XH |H−1(c) induces a free smooth action of S1 on H−1(c), the
orbit space H−1(c)/S1 is a smooth 2-dimensional manifold and the quotient map
is a fibre bundle projection. According to Proposition 6.1 the angular momentum
induces a Morse function µ̃ : H−1(c)/S1 → R with two critical points, namely
H−1(c) ∩ P+ of Morse index 2 and H−1(c) ∩ P− of Morse index 0. It follows from
Reeb’s Theorem that H−1(c)/S1 is homeomorphic to S2. Since it is 2-dimensional
and smooth, it is diffeomorphic to S2. �

From Proposition 6.1 we conclude thet the angular momentum µ|H−1(c) takes
its maximum value c on H−1(c) ∩ P+ and its minimum value −c on H−1(c) ∩ P−.
Therefore,

E(T ∗R2) = {(c, d) ∈ R2 : |d| ≤ c}.
We shall now determine the topological structure of the level sets

(µ|H−1(c))
−1(d) = H−1(c) ∩ µ−1(d)

for |d| ≤ c. We consider the linear automorphism Q of R4 such that

(q1, q2, p1, p2) = Q(ξ1, ξ2, η1, η2),

where

q1 = − 1√
2
η1 −

1√
2
η2, q2 =

1√
2
ξ1 −

1√
2
ξ2,

p1 =
1√
2
ξ1 +

1√
2
ξ2, q2 =

1√
2
η1 −

1√
2
η2

or in matrix form (
q
p

)
= Q

(
ξ
η

)
=

(
A −B
B A

)(
ξ
η

)
,

where

A =
1√
2

(
0 0
1 −1

)
, B =

1√
2

(
1 1
0 0

)
.
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Note that AtB = ABt = 0 and AtA+BtB = I2. Therefore,

QtJQ =

(
At Bt

−Bt At

)(
0 −I2
I2 0

)(
A −B
B A

)
= J

which means that Q ∈ Sp(2,R). Moreover, QtQ = I4 and so Q ∈ SO(4,R). These
imply that XH◦Q = Q−1 ◦ XH ◦ Q and the Hamiltonian of XH◦Q is given by the
formula

(H ◦Q)(ξ, η) =
1

2
‖ξ‖2 + 1

2
‖η‖2.

The angular momentum µ ◦ Q is also a first integral of XH◦Q and is given by the
formula

(µ ◦Q)(ξ1, ξ2, η1, η2) =
1

2
(η22 − η21 + ξ22 − ξ21).

Thus, the symplectic orthogonal transformation Q diagonalizes simultaneously the
quadratic forms of the energy and the angular momentum. Now

(E◦Q)−1(c, d) = {(ξ1, ξ2, η1, η2) ∈ R4 : ξ21+ξ
2
2+η

2
1+η

2
2 = 2c, η22−η21+ξ22−ξ21 = 2d}

= {(ξ1, ξ2, η1, η2) ∈ R4 : η21 + ξ21 = c− d, η22 + ξ22 = c+ d}.

If |d| < c, then (c, d) is a regular value of E ◦Q and we conclude that E−1(c, d) =
Q((E ◦ Q)−1(c, d)) is diffeomorphic to the 2-torus. The rotation number of each
orbit of XH on E−1(c, d) is 1.

Finally, we want to examine the way the level sets H−1(c) ∩ µ−1(d), |d| ≤ c, of
the energy-momentum map fill out the energy level set H−1(c). Summarizing the
above, the energy level set H−1(c) for c > 0 is diffeomorphic to the 2-sphere S2 and
H−1(c)∩ µ−1(d) for |d| < c is diffeomorphic to the 2-torus, while H−1(c)∩ µ−1(±c)
are great circles.

The action of SO(2,R) on T ∗R2 can be naturally extended to an action of U(2).
If A+ iB ∈ U(2), where A, B ∈ R2×2, then

I2 = (A+ iB)(A+ iB)
t
= (A+ iB)(At − iBt) = AAt +BBt + i(BAt −ABt)

which means that AAt + BBt = I2 and BAt = ABt. Moreover, (A + iB)(ix) =
−Bx+ iAx for every x ∈ R2, so that in particular

(A+ iB)e1 = Ae1 +B(ie1),

(A+ iB)e2 = Ae2 +B(ie2),

(A+ iB)(ie1) = −Be1 +A(ie1),

(A+ iB)(ie2) = −Be2 +A(ie2).

Hence A+ iB ∈ U(2) can be represented a a real 4× 4 matrix by

(
A −B
B A

)
,
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where A, B ∈ GL(2,R) are such that AAt + BBt = I2 and BAt = ABt. Since
U(2) = Sp(2,R) ∩ GL(2,C), the natural action of U(2) on R4 is linear symplectic,
hence Hamiltonian. For u ∈ u(2) we have

u =

(
A −B
B A

)

for some A, B ∈ R2×2 such that A = −At, B = Bt and the integral curves of
the corresponding fundamental vector field of the action are the solutions of the
Hamiltonian system of linear differential equations

(
q̇
ṗ

)
=

(
A −B
B A

)(
q
p

)
.

The Hamiltonian function is given by the formula

ρ(u)(q, p) =
1

2
ω(u

(
q
p

)
,

(
q
p

)
) = 〈Aq, p〉 − 1

2
〈q,Bq〉 − 1

2
〈p,Bp〉,

for (q, p) ∈ T ∗R∗, where 〈., .〉 denotes the euclidean inner product in R4. If u,
v ∈ u(2), by the linearity of Xρ(u) and Xρ(v) we have {ρ(u), ρ(v)}(0, 0) = 0 =
ρ([u, v])(0, 0). So, the above formula defines a lift ρ : u(2) → C∞(T ∗R2) which is a
Lie algebra homomorphism. Therefore, the natural action of U(2) on T ∗R2 = R4 is
Poisson and gives rise to a momentum map ℓ : T ∗R2 → u(2)∗, which is equivariant
with respect to the coadjoint action of U(2) on u(2)∗, according to Theorem 2.2.
Since each element of U(2) is also an element of SO(4,R) and the Hamiltonian H is
U(2)-invariant, it follows that ℓ is an integral of motion of the harmonic oscillator.
So, for every u ∈ u(2) the smooth function ρ(u) is a (homogeneous, quadratic) first
integral of XH .

A basis of u(2) consists of the elements (considered as 4× 4 matrices)

u1 =




0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0


 , u2 =




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


 ,

u3 =




0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0


 , u4 =




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


 ,

with corresponding first integrals

W1(q, p) = ρ(u1)(q, p) = q1q2 + p1p2,

W2(q, p) = ρ(u2)(q, p) = q1p2 − qq2p1 = µ(q, p),

W3(q, p) = ρ(u3)(q, p) =
1

2
((q1)2 − (q2)2 + p21 − p22),

W4(q, p) = ρ(u4)(q, p) =
1

2
((q1)2 + (q2)2 + p21 + p22) = H(q, p)
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which satisfy the quadratic relation

W 2
1 +W 2

2 +W 2
3 =W 2

4 , W4 ≥ 0.

We observe that for c > 0 the map W = (W1,W2,W3) : H
−1(c) → S2

c , where S
2
c

is the 2-sphere in R3 of radius c, is essentially the Hopf fibration. Recall that the
Hopf fibration is the map f : S3 → S2 defined by the formula

f(x1, x2, y1, y2) = (2x1x2 + 2y1y2, 2x2y1 − 2x1y2, x
2
1 + y21 − x22 − y22).

If now h : S3 → H−1(c) and g : S2 → S2
c are the restrictions of the linear diffeomor-

phisms h =
√
2cI4 and

g =



c 0 0
0 −c 0
0 0 c


 ,

then the following diagram commutes.

S3 S2

H−1(c) Sc

f

h g

W

Proposition 6.3. The fibres of W are the great circles in H−1(c).

Proof. Let a = (a1, a2, a3) ∈ S2
c . If (q, p) = (q1, q2, p1, p2) ∈W−1(a), then

q1q2 + p1p2 = a1,

q1p2 − q2p1 = a2,

(q1)2 − (q2)2 + p21 − p22 = 2a3,

(q1)2 + (q2)2 + p21 + p22 = 2c.

The first two equations can be written in matrix form
(
q1 p1
−p1 q1

)(
q2

p2

)
=

(
a1
a2

)
,

and from the last two we obtain (q1)2 + p21 = a3 + c.
If (a1, a2, a3) 6= (0, 0,−c), then a3 + c > 0 and we can invert to get

(
q2

p2

)
=

1

a3 + c

(
q1 −p1
p1 q1

)(
a1
a2

)

or equivalently

(
a1 −a2 − c −a2 0
a2 0 a1 −a3 − c

)



q1

q2

p1
p2


 =

(
0
0

)
.
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Therefore W−1(a) is contained in the kernel of

(
a1 −a2 − c −a2 0
a2 0 a1 −a3 − c

)

which is 2-dimensional, because this matrix has rank 2, since (a1, a2, a3) 6= (0, 0,−c).
In case (a1, a2, a3) = (0, 0,−c) we have

(q1)2 − (q2)2 + p21 − p22 = −2c,

(q1)2 + (q2)2 + p21 + p22 = 2c

and hence q1 = p1 = 0. Thus, W−1(0, 0,−c) is contained in the 2-dimensional linear
subspace {(0, q2, 0, p2) : q2, p2 ∈ R} of R4. Since W is a submersion, W−1(a) is a
compact 1-dimensional submanifold of H−1(c) and from the above it is contained
in a great circle. It follows that W−1(a) is a great circle in H−1(c). �

Combining the above, each fibre of W : H−1(c) → S2
c , c > 0, coincides with a

single (unoriented) orbit of XH . So, there is a well defined bijective continuous map
φ : S2

c → H−1(c)/S1 which makes the following diagram commutative.

H−1(c) H−1(c)/S1 ≈ S2

S2
c

quotient map

W
φ

By compactness, it is a homeomorphism. Moreover, since W is a smooth locally
trivial fibre bundle projection and the flow of XH on H−1(c) has smooth local
sections by the Flow Box Theorem (actually the induced free smooth action of S1

has smooth tubes), the map φ is a diffeomorphism. Summarizing, on each energy
level set H−1(c), c > 0, the flow of XH is smoothly equivalent to the Hopf flow on
S3.
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