
CHAPTER 5

Modular Fun
tor

Given a modular tensor 
ategory C, in the previous 
hapter we 
onstru
ted

a 3-dimensional Topologi
al Quantum Field Theory (3D TQFT). Moreover, this

3D TQFT was based on an extended notion of a manifold (a usual manifold with

additional data). In this 
hapter, we will show that the notion of a modular tensor


ategory (MTC) is essentially equivalent to some geometri
 
onstru
tion in dimen-

sion 2. The right notion here is that of a modular fun
tor, whi
h was introdu
ed

by Segal (see [S℄). Our exposition mostly follows the papers [S, MS1, MS2, T℄

and folklore of mathemati
al physi
ists.

5.1. Modular fun
tor

Definition 5.1.1. A (topologi
al) d-dimensional modular fun
tor (MF for short)

is the following 
olle
tion of data:

(i) A ve
tor spa
e �(N) assigned to any oriented 
ompa
t d-manifoldN without

boundary.

(ii) An isomorphism f

�

: �(N

1

)

�

�! �(N

2

) of ve
tor spa
es assigned to every

homeomorphism f : N

1

�

�! N

2

, whi
h depends only on the isotopy 
lass of f .

(iii) Isomorphisms �(;)

�

�! k, �(N

1

t N

2

)

�

�! �(N

1

) 
 �(N

2

), where k is the

base �eld.

These data have to satisfy the following axioms:

Multipli
ativity: (fg)

�

= f

�

g

�

, id

�

= id.

Fun
toriality: the isomorphisms (iii) are fun
torial.

Compatibility: the isomorphisms of part (iii) are 
ompatible with the 
anon-

i
al isomorphisms N t ; = N , N

1

t N

2

= N

2

t N

1

, (N

1

t N

2

) t N

3

=

N

1

t (N

2

tN

3

).

Normalization: We have an isomorphism �(S

d

) = k, where S

d

is the d-

dimensional sphere.

Detailed statement of the fun
toriality and 
ompatibility axioms 
an be found

in Remark 4.2.2, where the same 
onditions appear in the de�nition of TQFT.

Remark 5.1.2. Any (d+1)D TQFT (see De�nition 4.2.1) gives a d-dimensional

MF, be
ause the axioms of a MF, ex
ept for the requirement that f

�

depends only

on the isotopy 
lass of f , are 
ontained in the axioms of a TQFT, and this last


ondition is satis�ed by Theorem 4.2.3.

This modular fun
tor is unitary: in addition to the data above, there are fun
-

torial isomorphisms �(�)

�

�! �(�)

�

, where � is the manifold � with opposite

orientation, whi
h are 
ompatible with the isomorphisms of part (iii).

Definition 5.1.3. (i) We de�ne a 
ategory � with:

Obje
ts: d-manifolds.
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94 5. MODULAR FUNCTOR

Morphisms: Mor

�

(N

1

; N

2

) = isotopy 
lasses of orientation-preserving home-

omorphisms N

1

�

�! N

2

.

This is a symmetri
 tensor 
ategory with the \tensor produ
t" given by disjoint

union, and the unit given by ;. (Note that this 
ategory is not additive: one 
an

not add homeomorphisms!)

(ii) For a manifold N , its mapping 
lass group �(N) is the group of isotopy


lasses of homeomorphisms N

�

�! N . In other words, �(N) := Mor

�

(N;N).

The 
ategory � is a groupoid, i.e., a 
ategory in whi
h every morphism is in-

vertible. One easily sees that d-dimensional modular fun
tor is the same as a

representation of the groupoid �, i.e., a tensor fun
tor �! Ve


f

(k). This explains

the origin of the term \modular fun
tor".

In parti
ular, by 5.1.1(ii), every MF de�nes a representation of the mapping


lass group �(N) of any d-manifold N on the ve
tor spa
e �(N).

From now on, let us assume that d = 2. Then every 
onne
ted 
ompa
t oriented

surfa
e is determined up to homeomorphism by its genus g, and de�ning a modular

fun
tor is equivalent to de�ning for every g � 0 a representation of the mapping


lass group �

g

. We quote here some 
lassi
al results regarding the mapping 
lass

groups.

Theorem 5.1.4 (Dehn). Let � be a 
ompa
t oriented surfa
e, and let 
 be a

simple 
losed 
urve on �. De�ne the Dehn twist t




2 �(�) by Figure 5.1.

1

Then

the elements t




generate the mapping 
lass group �(�).

c c

Figure 5.1. Dehn twist.

This theorem was later re�ned by Li
korish [Li℄, who suggested a �nite set

of Dehn twists generating �(�). Finally, an approa
h allowing one to des
ribe

the generators and relations in �(�) was given in [HT℄. For surfa
es of genus g

with 0 or 1 boundary 
omponents (or marked points), the ideas of [HT℄ were fully

developed in [Waj℄, where a 
omplete set of generators and relations for �

g

� �

g;0

and �

g;1

is written.

Example 5.1.5. Let g = 1, i.e., let � be a two-dimensional torus. Then, by

Theorem 4.1.3, �

1

' SL

2

(Z), whi
h 
an be des
ribed as the group with generators

1

Here we put some auxiliary lines on the surfa
e to demonstrate the a
tion of the home-

omorphisms. These lines are for illustration purposes only. Note that 
 is not required to be

oriented.



5.1. MODULAR FUNCTOR 95

s; t and relations (st)

3

= s

2

; s

4

= 1 (whi
h implies s

2

t = ts

2

). It 
an also be

generated by the elements

t

a

= t =

�

1 1

0 1

�

; t

b

=

�

1 0

1 1

�

;

whi
h 
orrespond to Dehn twists around the meridian and the parallel of the torus.

It turns out that for d = 2 the notion of modular fun
tor 
an be generalized by

allowing surfa
es with \holes", i.e., with boundary.

Definition 5.1.6. An extended surfa
e is a 
ompa
t oriented surfa
e �, possi-

bly with boundary, together with an orientation-preserving parameterization �

i

: (��)

i

�

�!

S

1

of every boundary 
ir
le. Here (��)

i

is 
onsidered with the orientation indu
ed

from �, and S

1

= fz 2 C j jzj = 1g with the 
ounter
lo
kwise orientation.

By a genus of an extended surfa
e, we will mean the genus of the 
losed surfa
e


l(�) obtained by \pat
hing the holes of �", i.e., gluing a disk to every boundary


ir
le.

A homeomorphism of extended surfa
es f : �

�

�! �

0

is an orientation-preserving

homeomorphism whi
h also preserves parameterizations.

Finally, for an extended surfa
e (�; �

i

: (��)

i

�

�! S

1

) we de�ne the operation

of orientation reversal by (�;��

i

) (note the minus sign!).

The notion of isotopy of homeomorphisms is trivially generalized to this 
ase,

as well as the notion of disjoint union. Thus, we 
an de�ne the extended groupoid

Tei
h similarly to De�nition 5.1.3(i).

Definition 5.1.7. (i) The (extended) Tei
hm�uller groupoid Tei
h is the 
ate-

gory with obje
ts extended surfa
es, and morphisms isotopy 
lasses of homeomor-

phisms of extended surfa
es (see De�nition 5.1.6).

(ii) For any extended surfa
e �, its mapping 
lass group �(�) is the group of all

isotopy 
lasses of homeomorphisms �

�

�! �. (Sometimes the name \mapping 
lass

group" is used for the smaller group �

0

(�) of all isotopy 
lasses of homeomorphisms

�

�

�! � whi
h a
t trivially on the set of 
onne
ted 
omponents of the boundary.) If

� is a surfa
e of genus g with n boundary 
omponents, we will denote �(�) � �

g;n

.

Again, it 
an be shown that �

0

(�) is generated by Dehn twists (a 
omplete set

of relations for �

0

g;n

is given in [Ge1℄, [Luo℄, [Ge2℄), and �

g;n

is generated by Dehn

twists and the \braiding operation" shown in Figure 5.2.

2

1221

Figure 5.2. Braiding.

It will be useful in the future to give an alternative de�nition of an extended

surfa
e. We give below two su
h de�nitions. Both of them are equivalent to De�-

nition 5.1.6 in the following sense:

2

See the footnote on page 94.
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Proposition 5.1.8. The extended groupoids Tei
h, de�ned by De�nitions 5.1.6,

5.1.9 and 5.1.10, are equivalent as 
ategories, and this equivalen
e preserves the op-

eration of orientation reversal.

Definition 5.1.9. An extended surfa
e is an oriented 
ompa
t surfa
e with

boundary and with a spe
i�ed point p

i

on every 
omponent of the boundary.

A homeomorphism of extended surfa
es is an orientation-preserving homeo-

morphism �! �

0

whi
h maps marked points to marked points.

Orientation reversal is de�ned in the obvious way, by reversing the orientation

of � while leaving the points p

i

un
hanged.

Definition 5.1.10. An extended surfa
e is an oriented 
ompa
t surfa
e � with-

out boundary, with marked points z

i

, and with non-zero tangent ve
tors v

i

atta
hed

to ea
h marked point.

A homeomorphism of extended surfa
es is an orientation-preserving homeomor-

phism � ! �

0

whi
h maps marked points to marked points, and marked tangent

ve
tors to marked tangent ve
tors.

Orientation reversal is de�ned by (�; z

i

; v

i

) = (�; z

i

;�v

i

).

This de�nition is analogous to De�nition 4.4.1.

Proof of Proposition 5.1.8. To establish the equivalen
e of De�nitions 5.1.6

and 5.1.9, note that a parameterization of a boundary 
ir
le gives a distinguished

point p

i

= �

�1

i

(i). Sin
e the set of all homeomorphisms S

1

�

�! S

1

preserving ori-

entation and the distinguished point i 2 S

1

is 
ontra
tible, this is an equivalen
e

of 
ategories. Similarly, to establish the equivalen
e of De�nitions 5.1.6 and 5.1.10,

note that given � as in De�nition 5.1.6, we 
an glue to � n 
opies of the standard

disk D = fz 2 C j jzj � 1g (with reversed orientation), using the identi�
ations of

the boundary 
ir
les of � with S

1

. This gives a new surfa
e 
l(�) without bound-

ary, with marked points images of 0 2 D, and tangent ve
tors images of the unit

ve
tor going along the real axis in D. As before, it is easy to 
he
k that this gives

an equivalen
e of 
ategories.

Examples 5.1.11. (i) Let � be a two-dimensional torus \with one pun
ture":

�� ' S

1

and � has genus 1. Then the mapping 
lass group �

1;1

= �(�) is

generated by the elements s; t with the relations (st)

3

= s

2

; s

2

is 
entral (
ompare

with Example 5.1.5). Moreover, s

4

is the inverse of the Dehn twist around the

pun
ture. The easiest way to 
he
k this is to use the realization of the torus with

one pun
ture as the quotient R

2

=Z

2

with a non-zero tangent ve
tor at the origin.

(ii) Let �

n

= R

2

, with n marked points on the x-axis and with the tangent

ve
tor v

i

going along this axis in positive dire
tion (all su
h surfa
es are 
anoni-


ally isomorphi
). This surfa
e is not 
ompa
t, so it does not formally satisfy our

de�nition, but let us ignore this. Then the group �(�) is isomorphi
 to the group

FB

n

of all framed braids with n strands. This group is a semidire
t produ
t of the

usual braid group B

n

and Z

n

(see De�nition 1.2.1). In general, there is indeed a

relationship between the group �(�), where � is an extended surfa
e with n holes,

and the framed braid group FB

n

(
l(�)), where 
l(�) is the 
losed surfa
e obtained

by pat
hing the holes of �. This relationship is studied in detail in [B2℄.

The most important di�eren
e between extended surfa
es and usual surfa
es is

that extended surfa
es 
an be glued (or sewed) together along the boundary 
ir
les.

Therefore, if we additionally require a modular fun
tor to behave ni
ely under this
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operation, we 
ould de�ne �(�) by gluing � from simpler pie
es. This motivates

the following de�nition.

Definition 5.1.12. Let C be an abelian 
ategory over a �eld k, and let R be a

symmetri
 obje
t in ind�C

�2

(see Se
tion 2.4). Then a C-extended modular fun
tor

is the following 
olle
tion of data:

(i) To every extended surfa
e � is assigned a polylinear fun
tor �(�): C

��

0

(��)

!

Ve


f

, where �

0

(��) is the set of boundary 
omponents (or pun
tures, depending

on the point of view) of �. In other words, for every 
hoi
e of obje
ts W

a

2 C at-

ta
hed to every boundary 
omponent of � (so, a runs through the set of 
onne
ted


omponents of ��) is assigned a �nite-dimensional ve
tor spa
e �(�; fW

a

g), and

this assignment is fun
torial in W

a

.

(ii) To every homeomorphism f : �

�

�! �

0

is assigned a fun
torial isomorphism

f

�

: �(�)

�

�! �(�

0

).

(iii) Fun
torial isomorphisms �(;)

�

�! k, �(N

1

tN

2

)

�

�! �(N

1

)
 �(N

2

).

(iv)Gluing isomorphism: Let 
 � � be a 
losed 
urve without self-interse
tions

and p be a marked point on 
. Cutting � along 
, we obtain a new surfa
e �

0

(whi
h

may be 
onne
ted or not). �

0

has a natural stru
ture of an extended surfa
e in the

sense of De�nition 5.1.9 whi
h has the same boundary 
omponents as � plus two

more 
omponents 


1

, 


2

, whi
h 
ome from the 
ir
le 
 (with marked points p

1

, p

2


oming from p).

2

ΣcutΣ p

c

p

c c

p1 2

1

Figure 5.3. Cutting of a surfa
e.

Then we are given a fun
torial isomorphism

�(�

0

; fW

a

g; R

(1)

; R

(2)

)

�

�! �(�; fW

a

g);(5.1.1)

where we use the notation of Se
tion 2.4.

The above data have to satisfy the following axioms:

Multipli
ativity: (fg)

�

= f

�

g

�

, id

�

= id.

Fun
toriality: all isomorphisms in parts (iii), (iv) above are fun
torial in �.

Compatibility: all isomorphisms in parts (iii), (iv) above are 
ompatible with

ea
h other.

Normalization: �(S

2

) = k.

As before, we leave it to the reader to write the expli
it statements of the

fun
toriality and 
ompatibility axioms, taking as an example the de�nitions in

Se
tion 4.2. From now on, we will always work with extended modular fun
tors

(unless otherwise spe
i�ed).

Definition 5.1.13. A C-extended MF is 
alled non-degenerate if for every ob-

je
t V 2 ObC there exists an extended surfa
e � and fW

a

g � Ob C su
h that

�(�;V; fW

a

g) 6= 0.
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The main goal of this 
hapter is to show that for a given semisimple abelian


ategory C de�ning a non-degenerate C-extended MF is essentially equivalent to

de�ning a stru
ture of a modular tensor 
ategory on C, with the obje
t R =

L

V

i

�

V

�

i

, where fV

i

g are representatives of the equivalen
e 
lasses of simple obje
ts in

C. The pre
ise statements are given in Theorems 5.4.1 and 5.5.1.

Finally, let us introdu
e the notion of a unitary MF.

Definition 5.1.14. An extended modular fun
tor is 
alled unitary , if in addi-

tion to the data above, we are also given fun
torial isomorphisms �(�)

�

�! �(�)

�

,

where � is the manifold � with opposite orientation. These isomorphisms must be


ompatible with the isomorphisms f

�

and the isomorphisms of part (iii) of De�ni-

tion 5.1.12 in the natural way. Also, we require the following 
ompatibility of the

unitary stru
ture with the gluing isomorphism. Let h; i

�

: �(�) 
 �(�)! k be the

pairing indu
ed by the isomorphism �(�) ' �(�)

�

. Let �;�

0

be as in part (iv)

of De�nition 5.1.12, and for f 2 �(�); g 2 �(�), write f =

P

f

i

, g =

P

g

i

with

f

i

2 �(�

0

;A

i

; B

i

), g

i

2 �(�

0

;B

i

; A

i

), using (5.1.1). Then:

hf; gi

�

=

X

a

i

hf

i

; g

i

i

�

0

(5.1.2)

for some non-zero 
onstants a

i

whi
h do not depend on �.?!

5.2. The Lego game

Let us denote by S

0;n

\the standard sphere with n holes":

S

0;n

= C P

1

n fD

1

; : : : ; D

n

g; D

j

= fz j jz � z

j

j < "g; z

1

< � � � < z

n

;(5.2.1)

where " > 0 is small enough so that the disks D

j

do not interse
t, and let us mark

on ea
h boundary 
ir
le a point p

j

= z

j

� "i. This endows S

0;n

with the stru
ture

of an extended surfa
e whi
h is independent of the 
hoi
e of z

j

; " (i.e., surfa
es

obtained for di�erent 
hoi
es of z

j

; " are 
anoni
ally homeomorphi
). Note that the

set of boundary 
omponents of the standard sphere is naturally indexed by num-

bers 1; : : : ; n; we will use bold numbers for denoting these boundary 
omponents:

�

0

(�S

0;n

) = f1; : : : ;ng.

Obviously, every extended surfa
e � 
an be obtained by gluing together stan-

dard spheres. Therefore, using the gluing axiom we 
an de�ne the ve
tor spa
e �(�)

on
e we know �(S

0;n

). However, the same surfa
e � 
an be obtained by gluing the

standard spheres in many ways, and in order for �(�) to be 
orre
tly de�ned we

need to 
onstru
t 
anoni
al isomorphisms between the resulting ve
tor spa
es. This

leads to the following problem.

Definition 5.2.1. Let � be an extended surfa
e. A parameterization of � is

the following 
olle
tion of data, 
onsidered up to isotopy:

(i) A �nite set C = f


1

; : : : g of simple non-interse
ting 
losed 
urves (
uts) on

�, with one point marked on every 
ut (the 
uts do not have to be ordered).

(ii) A 
olle
tion of homeomorphisms  

a

: �

a

�

�! S

0;n

a

, where �

a

are the 
on-

ne
ted 
omponents of � n C.

We denote the set of all parameterizations of � by M(�).

Our goal is to 
onstru
t some number of edges (\moves") and 2-
ells (\relations

among moves") whi
h would turn M(�) into a 
onne
ted and simply-
onne
ted

2-
omplex. This problem was �rst 
onsidered by Moore and Seiberg [MS1℄, who


onje
tured a set of moves and relations. However, their paper 
ontains 
ertain gaps
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making it not rigorous even by the physi
ists standards. An a

urate proof was

re
ently found independently by the authors [BK℄, and by [FG℄. Our exposition

follows the paper [BK℄ with minor 
hanges.

De�ne the homeomorphisms

z : S

0;n

�

�! S

0;n

;

b : S

0;3

�

�! S

0;3

(5.2.2)

as follows: z is rotation of the sphere whi
h preserves the real axis and indu
es a


y
li
 permutation of the holes 1 7! 2 7! � � � 7! n 7! 1, and b is the braiding of the

2nd and 3rd pun
tures, as shown in Figure 5.2.

Also, for k; l � 0, denote by S

0;k+1

t

k+1;1

S

0;l+1

the surfa
e obtained by iden-

tifying the (k + 1)-st hole of S

0;k+1

with the �rst hole of S

0;l+1

, and de�ne the

map

�

k;l

: S

0;k+1

t

k+1;1

S

0;l+1

! S

0;k+l

(5.2.3)

by the 
ondition that it maps the �rst hole of S

0;k+1

to the �rst hole of S

0;k+l

and

preserves the real axis (these properties de�ne �

k;l

uniquely up to isotopy).

Now, let us de�ne the following edges (\simple moves") in M(�). To avoid


onfusion, we will write E : M

1

 M

2

if the edge E 
onne
ts parameterizations

M

1

;M

2

.

Z-move (rotation): IfM = (C; f 

a

g) 2M(�) and �

i

is one of the 
onne
ted


omponents of � n C, then we de�ne an edge

Z � Z

i

: M  (C; f 

a

; z Æ  

i

g

a6=i

):

B-move (braiding): If M = (C; f 

a

g) 2 M(�) and �

i

is a 
onne
ted 
om-

ponent of � n C whi
h has three holes, then we de�ne an edge

B � B

i

: M  (C; f 

a

; b Æ  

i

g

a6=i

):

F-move (fusion): If M = (C; f 

a

g) 2 M(�) and 
 2 C separates two

di�erent 
omponents �

i

;�

j

, with k + 1 and l + 1 holes respe
tively, and

 

i

(
) = k+ 1;  

j

(
) = 1, then we de�ne an edge

F � F




: M  (C n f
g; f 

a

; �

kl

Æ ( 

i

t  

j

)g

a6=i;j

):

Before des
ribing the relations, it is 
onvenient to introdu
e some notation.

First of all, let us pla
e on ea
h of the standard spheres S

0;n

the graph m

0

as

shown in Figure 5.4 (for n = 4). This graph has one internal vertex, marked by

a star; all other verti
es are 1-valent and 
oin
ide with the marked points on the

boundary 
omponents of S

0;n

. The graph has a distinguished edge|the one whi
h


onne
ts the vertex � with the boundary 
omponent 1; in the �gure, this edge is

marked by an arrow. Also, this graph has a natural 
y
li
 order on the set of all

edges, given by 1 < � � � < n < 1. Whenever we draw su
h a graph in the plane, we

will always do it in su
h a way that this order 
oin
ides with the 
lo
kwise order.

Every parameterization M of a given surfa
e � gives rise to a graph m =

S

 

�1

a

(m

0

) on �, whi
h we 
all the marking graph of M . It is easy to show that a

parameterization is uniquely determined by C and m; therefore, these graphs give

a way to visualize the parameterizations. In some 
ases, we will draw su
h graphs

on � to illustrate a 
ertain sequen
e of moves. However, in many 
ases it suÆ
es

just to draw the 
orresponding graphs on the plane, and then the moves 
an be

re
onstru
ted uniquely.
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4

*

1 2 3

Figure 5.4. A standard sphere (with 4 holes).

Exer
ise 5.2.2. Show that the moves Z;B; F 
onne
t the parameterizations


orresponding to the marking graphs shown in Figures 5.5, 5.6 and 5.7 below.

*

α
Z

�� 

*

α

Figure 5.5. Z-move (\rotation").

*

α β

γ

B

�;�

�� 

α β

γ

*

Figure 5.6. B-move (\braiding").

* *
c F




�� *

Figure 5.7. F-move (\fusion" or \
ut removal").

Next, one often needs 
ompositions of the form Z

a

F




(Z

m

i

t Z

n

j

), where 
 is

a 
ut separating 
omponents �

i

and �

j

(
ompare with the de�nition of the F-

move). We will 
all any su
h 
omposition a generalized F-move; for brevity, we will

frequently denote it just by F




. The Rotation axiom formulated below implies that
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su
h a 
omposition is uniquely determined by the original parameterizationM and

by the 
hoi
e of the distinguished edge for the resulting parameterization F




(M).

Moreover, the Symmetry of F axiom along with the 
ommutativity of disjoint union,

also formulated below, imply that if we swit
h the roles of �

1

and �

2

, then we

get the same generalized F-move. Thus, the generalized F-move is 
ompletely

determined by the marking graph of M and by the 
hoi
e of the distinguished edge

for the resulting marking graph of F




(M).

Finally, let M 2M(�) and let �

i

be one of the 
omponents of �. As dis
ussed

before, the parameterization  

i

de�nes an order on the set of boundary 
omponents

of �

i

. Let us assume that we have a presentation of �

0

(��

i

) as a disjoint union,

�

0

(��

i

) = I

1

t I

2

t I

3

t I

4

, where the order is given by I

1

< I

2

< I

3

< I

4

(some

of the I

k

may be empty). Then we de�ne the generalized braiding move B

I

2

;I

3

to

be the produ
t of simple moves shown in Figure 5.8 below (note that we are using

generalized F-moves, see above). It is easy to show that this �gure uniquely de�nes

the 
uts 


1

; 


2

; 


3

and thus, the generalized braiding move B.

I1 I4I2 I3

*

F

�1




1

F

�1




2

F

�1




3

�� 

I1 I4I2 I3

*

* *

*

B




1

;


2

�� 

B




1

;


2

�� 

I1 I4I3 I2

*

* *

*

F




1

F




2

F




3

�� 

I1 I4I2I3

*

Figure 5.8. Generalized braiding move.

Now let us impose some relations among these moves:

MF1: Rotation axiom: If �

i

is a 
omponent with n holes, then Z

n

i

= id.

MF2: Symmetry of F : If 
;�

i

;�

j

are as in the de�nition of the F-move,

then Z

k�1

F




= F




(Z

�1

i

t Z

j

).

MF3: Asso
iativity of F : If � is a 
onne
ted surfa
e of genus zero, and

M = (C;m) 2 M(�) is a parameterization with two 
uts, C = f


1

; 


2

g,

then

F




1

F




2

(M) = F




2

F




1

(M)(5.2.4)

(here F denotes generalized F-moves).

MF4: Commutativity of disjoint union: If E

1

; E

2

are simple moves that

involve non-interse
ting sets of 
omponents, then E

1

E

2

= E

2

E

1

.

MF5: Cylinder axiom: Let S

0;2

be a 
ylinder with boundary 
omponents

�

0

; �

1

and with the standard parameterization M

0

= (;; id). Let � be an

extended surfa
e, M 2 M(�) be a parameterization, and � be a boundary


omponent of �. Then, for every move E : M  M

0

we require that the
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following square be 
ommutative:

M t

�;�

1

M

0

Et

�;�

1

id

������! M

0

t

�;�

1

M

0

F

�

?

?

y

?

?

y

F

�

M ������!

E

M

0

;(5.2.5)

see Figure 5.9 below.

α,α S0,2Σ
1

α

α 0

= α1

*

*
F

�

��!

α,α S0,2Σ
1

0

*

α

'

Σ

α

*

Figure 5.9. Cylinder Axiom.

MF6: Braiding axiom: Let �

i

be a 
onne
ted 
omponent of � n C whi
h

has 4 holes. Denote the boundary 
omponents  

�1

i

(1); : : : ;  

�1

i

(4) of �

i

by

�; : : : ; Æ, respe
tively. Then:

B

�;�


= B

�;


B

�;�

;(5.2.6)

B

��;


= B

�;


B

�;


:(5.2.7)

For an illustration of Eq. (5.2.6), see Figure 5.10. Note that all braidings

involved are generalized braidings as de�ned above.

MF7: Dehn twist axiom: Let �

i

be a 
onne
ted 
omponent of �nC whi
h

has 2 holes: � =  

�1

i

(1); � =  

�1

i

(2). Then

Z

i

B

�;�

= B

�;�

Z

i

(5.2.8)

(as before, B denotes the generalized braidings). This axiom is equivalent to

the identity T

�

= T

�

, where T

�

is the Dehn twist de�ned in Example 5.2.4

below (see Figure 5.11).

Theorem 5.2.3. Let � be an extended surfa
e of genus zero. Denote by M(�)

the 2-
omplex with a set of verti
es M(�), edges given by the B-, Z-, and F-moves

*

γα

δ

β

B

�;�

�� 

*

γ

δ

β α

B

�;


�� 

*

δ

β γ α

Figure 5.10. Braiding axiom (5.2.6).
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de�ned above, and 2-
ells given by relations MF1{MF7. Then M(�) is 
onne
ted

and simply-
onne
ted.

As mentioned above, this theorem was �rst proved (in a di�erent form) in

[MS1℄; our exposition follows [BK℄.

Example 5.2.4. Let � be an extended surfa
e,  : �

�

�! S

0;n

be a homeomor-

phism, and let � be one of the boundary 
omponents. Then one 
an 
onne
t the

parameterization (;;  ) with (;; t

�

Æ ), where t

�

2 �(S

0;n

) is the Dehn twist around

� (see Figure 5.1), by the following sequen
e of moves:

T

�

= F




B

�;


F

�1




;

where 
 is a small 
losed 
urve around the hole � (see Figure 5.11).

β

*

α

T

�

�� 

β

*

α

=

β

*

α

Figure 5.11. Dehn twist (T

�

= T

�

).

Exer
ise 5.2.5. Let S

0;3

be the standard sphere with 3 holes, with the marking

as shown in the left hand side of Figure 5.6. Dedu
e from the axioms MF1{MF7

the following relation in M(S

0;3

):

T




= B

�;�

B

�;�

T

�

T

�

:(5.2.9)

Hint : this is analogous to Step 7 in the proof of Theorem 5.3.8.

Now, let us 
onsider extended surfa
es of positive genus. In this 
ase, we need

to add to the 
omplex M(�) one more simple move and several more relations.

S-move: Let S

1;1

be a \standard" torus with one boundary 
omponent and

one 
ut, and with the parameterization M 
orresponding to the graph in

the left hand side of Figure 5.12. Then we add the edge S : M  M

0

where

the parameterization M

0


orresponds to the graph shown in the right hand

side of Figure 5.12.

More generally, let �

a

be a 
omponent of an extended surfa
e and  be

a homeomorphism  : �

a

�

�! S

1;1

. Then we add the move S :  

�1

(M)  

 

�1

(M

0

).

Remark 5.2.6. If � is a surfa
e of genus one with one hole, we 
an identify the

set of all parameterizations with one 
ut on � with the set of all homeomorphisms

 : �

�

�! S

1;1

. Then the S-move 
onne
ts the marking  with s Æ  , where s 2

�(S

1;1

) is as in Example 5.1.11(i).

Now, let us formulate the new relations. In addition to relations MF1{MF7,

let us also impose the following ones:

MF8: Relations for g = 1; n = 1: Let � be a marked torus with one hole �,

isomorphi
 to the one shown in the left hand side of Figure 5.13. For any

parameterizationM = (f
g;  ) with one 
ut, we let T a
t on M as the edge
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c1

α

*

S

�� 

c2

α

*

Figure 5.12. S-move.

Dehn twist T




around 
 (see Example 5.2.4). Then we impose the following

relations:

S

2

= Z

�1

B

�;


1

;(5.2.10)

(ST )

3

= S

2

:(5.2.11)

The left hand side of relation (5.2.10) is shown in Figure 5.13. An illustration

of (5.2.11) 
an be found in [BK, Appendix A℄.

c1

α

*

S

�� 

c2

α

*

S

�� 

c1

α

*

Figure 5.13. The relation S

2

= Z

�1

B

�;


1

.

MF9: Relation for g = 1; n = 2: Let � be a marked torus with two holes

�; �, isomorphi
 to the one shown in Figure 5.14. Then we require

Z

�1

B

�;�

F

�1




6

F




1

= S

�1

F

�1




6

F




4

T




3

T

�1




4

F

�1




4

F




5

SF

�1




5

F




2

(5.2.12)

| see Figure 5.15, where all unmarked arrows are 
ompositions of the form

FF

�1

(see also [BK, Appendix B℄).

Note that, by their 
onstru
tion, the above relations are invariant under the

a
tion of the mapping 
lass group.

Remark 5.2.7. It is not trivial that relations (5.2.11, 5.2.12) make sense, i.e.,

that they are indeed 
losed paths in M(�). This is equivalent to 
he
king that the


orresponding identities hold in the mapping 
lass group �(�). This is indeed so

(see, e.g., [B1, MS2℄). Of 
ourse, these relations 
an also be 
he
ked by expli
itly

drawing the 
orresponding sequen
e of 
uts and graphs and 
he
king that the �nal

one 
oin
ides with the original one, as done in [BK℄.
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**

1c

c2

βα

Figure 5.14. A marked torus with two holes.

c

c

**
α β

1

2

c

βα *

*

2

*

*

βα

c3

c4

c3 c4

c

c

**
α β

3

4

T

Z

T

**
α β

3c -1

c1

6c

6c6c

c

αβ

c

*

*

2

S -1

S

*

*

βα *

*

βα

3c

c5

c5

-1 B

Figure 5.15. The relation for g = 1; n = 2.

Example 5.2.8. Let � be a marked torus with one 
ut 


1

and one hole � (see

the left hand side of Figure 5.12). Then we have:

(ST )

3

= S

2

;(5.2.13)

S

2

T = TS

2

;(5.2.14)

S

4

= T

�1

�

:(5.2.15)

Indeed, (5.2.13) is exa
tly (5.2.11). Equation (5.2.14) follows from (5.2.10), the

Cylinder axiom, and the 
ommutativity of disjoint union, and (5.2.15) easily follows

from (5.2.10) and the braiding axiom.

In parti
ular, this implies that the elements t; s 2 �

1;1

(
f. Example 5.1.11)

satisfy relations (5.2.13{5.2.15). In fa
t, it is known that these are the de�ning

relations of the group �

1;1

(see [B1℄).
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Now we 
an formulate our main result for arbitrary genus.

Theorem 5.2.9. Let � be an extended surfa
e. Let M(�) be the 2-
omplex

with a set of verti
es M(�), edges given by the the Z-, F-, B-, and S-moves, and 2-


ells given by relations MF1{MF9. Then M(�) is 
onne
ted and simply-
onne
ted.

Again, this theorem was stated (with minor ina

ura
ies) in [MS1℄, but the

proof given there was seriously 
awed. An a

urate proof was found independently

in [BK℄ and, in a di�erent form, [FG℄. The formulation above is taken from [BK℄.

5.3. Ribbon 
ategories via the Hom spa
es

In this se
tion C will be a semisimple abelian 
ategory with representatives

of the equivalen
e 
lasses of simple obje
ts V

i

, i 2 I . We use the notations and


onventions of Se
tion 2.4.

In a semisimple abelian 
ategory, any obje
t A 2 C is determined by the 
olle
-

tion of ve
tor spa
es Hom(A; �). More formally, we have the following well-known

lemma.

Lemma 5.3.1. (i) Every fun
tor F : C ! Ve


f

is exa
t (re
all that we are 
on-

sidering only additive fun
tors).

(ii) Let F : C ! Ve


f

be a fun
tor satisfying the following �niteness 
ondition:

F (V

i

) = 0 for all but a �nite number of i:(5.3.1)

Then F is representable, i.e., there exists an obje
t X

F

, unique up to a unique

isomorphism, su
h that F (A) = Hom

C

(X

F

; A). Similarly, for a fun
tor G : C

op

!

Ve


f

there exists a unique Y

G

2 C su
h that G(A) = Hom

C

(A; Y

G

).

(iii) For two fun
tors F; F

0

: C ! Ve


f

satisfying the �niteness 
ondition above,

there is a bije
tion between the spa
e of fun
tor morphisms F ! F

0

and Hom

C

(X

F

0

; X

F

).

A similar statement holds for G;G

0

: C

op

! Ve


f

.

Therefore, to 
onstru
t, say, a fun
tor F : C ! C, it suÆ
es to de�ne a bifun
-

tor A : C

op

� C ! Ve


f

satisfying suitable �niteness 
onditions, and then de�ne

F (X) by the identity Hom(�; F (X)) = A(�; X); more formally, one would say \let

F (X) be the obje
t representing the fun
tor A(�; X)". Similarly, all the fun
torial

isomorphisms 
an be de�ned in terms of ve
tor spa
es.

Our goal in this se
tion is to rewrite the axioms of a ribbon 
ategory in terms

of the ve
tor spa
es

hW

1

; : : : ;W

n

i := Hom

C

(1;W

1


 � � � 
W

n

):(5.3.2)

This was �rst done in [MS1℄. The following de�nition is essentially taken from

[MS1℄; for this reason, we think it is proper to 
ommemorate their names.

Definition 5.3.2. Moore{Seiberg data (MS data for short) for a semisimple

abelian 
ategory C is the following 
olle
tion of data:

Conformal blo
ks: A 
olle
tion of fun
tors h i : C

�n

! Ve


f

(n � 0), whi
h

are lo
ally �nite in the �rst 
omponent: for every A

1

; : : : ; A

n�1

2 C, we have

hV

i

; A

1

; : : : ; A

n�1

i = 0 for all but a �nite number of i. (Here C

�n

denotes

the tensor produ
t C � � � �� C de�ned in 1.1.15.)

Rotation isomorphisms: Fun
torial isomorphisms

Z : hA

1

; : : : ; A

n

i

�

�! hA

n

; A

1

; : : : ; A

n�1

i:

R: A symmetri
 obje
t R 2 ind�C

�2

(see Se
tion 2.4).
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Gluing isomorphisms: For every k; l 2 Z

+

fun
torial isomorphisms

G : hA

1

; : : : ; A

k

; R

(1)

i 
 hR

(2)

; B

1

; : : : ; B

l

i

�

�! hA

1

; : : : ; A

k

; B

1

; : : : ; B

l

i:

Commutativity isomorphism: A fun
torial isomorphism

� : hX;A;Bi

�

�! hX;B;Ai:

These data have to satisfy the axioms MS1{MS7 listed below.

MS1: Non-degenera
y: For every i, there exists an obje
t X su
h that

hX;V

i

i 6= 0.

MS2: Normalization: The fun
tor h i : C

0

� Ve


f

! Ve


f

is the identity

fun
tor.

MS3: Asso
iativity of G: Let us 
onsider two fun
torial isomorphisms

G

0

G

00

; G

00

G

0

: hA

1

; : : : ; R

0(1)

i 
 hR

0(2)

; B

1

; : : : ; R

00(1)

i 
 hR

00(2)

; C

1

; : : : ; C

n

i

�

�! hA

1

; : : : ; B

1

; : : : ; C

1

; : : : ; C

n

i;

where R

0

; R

00

are two 
opies of R, and G

0

; G

00

are the 
orresponding gluing

isomorphisms. Then G

0

G

00

= G

00

G

0

.

MS4: Rotation axiom: Z

n

= id: hA

1

; : : : ; A

n

i

�

�! hA

1

; : : : ; A

n

i.

MS5: Symmetry of G: For any m;n � 0 the following diagram is 
ommu-

tative:

hA

1

; : : : ; A

n

; R

(1)

i 
 hR

(2)

; B

1

; : : : ; B

m

i

G

����! hA

1

; : : : ; A

n

; B

1

; : : : ; B

m

i

P (Z
Z

�1

)

?

?

y

Z

m

?

?

y

hB

1

; : : : ; B

m

; R

(2)

i 
 hR

(1)

; A

1

; : : : ; A

n

i

GÆs

����! hB

1

; : : : ; B

m

; A

1

; : : : ; A

n

i

:

(Here P is the permutation of the two fa
tors in the tensor produ
t and

s : R

op

�

�! R is as in Se
tion 2.4.)

MS6: Hexagon axioms: (i) The following diagram is 
ommutative:

hX;A;B;Ci

�

A;B

$$IIIIIIIII

�

A;BC //
hX;B;C;Ai

hX;B;A;Ci

�

A;C

::uuuuuuuuu

where �

A;BC

is de�ned as the 
omposition

hX;A;B;Ci

G

�1

���! hX;A;R

(1)

i 
 hR

(2)

; B; Ci

�
id

���! hX;R

(1)

; Ai 
 hR

(2)

; B; Ci

Z

�1

G(Z
id)

��������! hX;B;C;Ai;

and �

A;B

is de�ned as the 
omposition

hX;A;B;Ci

G

�1

Z

����! hC;X;R

(1)

i 
 hR

(2)

; A;Bi

id
�

���! hC;X;R

(1)

i 
 hR

(2)

; B;Ai

Z

�1

G

����! hX;B;A;Ci:

(ii) The same, but with � repla
ed by �

�1

.

MS7: Dehn twist axiom: Z�

A;B

= �

B;A

Z : hA;Bi

�

�! hA;Bi, where �

A;B

=

G(� 
 id)G

�1

is de�ned similarly to MS6.
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Now we des
ribe how the MS data are related with the tensor stru
ture on the


ategory. Let C be a semisimple ribbon 
ategory. De�ne:

hA

1

; : : : ; A

n

i = Hom

C

(1; A

1


 � � � 
A

n

);(5.3.3)

R =

M

V

�

i


 V

i

; 
f. (2.4.7);(5.3.4)

Z : Hom(1; A

1


 � � � 
A

n

)

�

�! Hom(

�

A

n

; A

1


 � � � 
A

n�1

)(5.3.5)

�

�! Hom(1;

��

A

n


A

1


 � � � 
A

n�1

)

�

�! Hom(1; A

n


A

1


 � � � 
A

n�1

);

G :

M

Hom(1; A

1


 � � � 
A

n


 V

�

i

)
Hom(1; V

i


B

1


 � � � 
B

k

)(5.3.6)

�

�! Hom(1; A

1


 � � � 
A

n


 V

�

i

)
Hom(V

�

i

; B

1


 � � � 
B

k

)

�

�! Hom(1; A

1


 � � � 
A

n


B

1


 � � � 
B

k

);

� : Hom(1; X 
A
B)

�

�! Hom(1; X 
B 
A):(5.3.7)

Here we used the rigidity isomorphisms (2.1.13, 2.1.14), the isomorphisms Æ : V

�

�!

V

��

, and the fa
t that in a semisimple 
ategory, Hom(X;Y ) '

L

Hom(X;V

i

) 


Hom(V

i

; Y ).

Proposition 5.3.3. If C is a semisimple ribbon 
ategory, formulas (5.3.3){

(5.3.7) de�ne MS data.

The proof of this proposition is straightforward: if we use the te
hnique of

ribbon graphs developed in Chapter 1, then all the axioms are obvious.

A natural question is whether this proposition 
an be reversed, i.e., is it true

that every 
olle
tion of MS data on a semisimple abelian 
ategory 
omes from a

stru
ture of a ribbon 
ategory. It turns out that it is almost true; to get a pre
ise

statement, we must somewhat weaken the rigidity axiom.

Let C be a monoidal 
ategory. We say that an obje
t V 2 ObC has a weak

dual if the fun
tor Hom(1; V 
 �) is representable. In this 
ase, we denote the 
or-

responding representing obje
t by V

�

: Hom(1; V 
X) = Hom(V

�

; X). Obviously,

� is fun
torial: every morphism f : V ! W de�nes a morphism f

�

: W

�

! V

�

,

provided that V

�

;W

�

exist.

Definition 5.3.4. A monoidal 
ategory C is 
alled weakly rigid if every obje
t

has a weak dual and � : C ! C

op

is an equivalen
e of 
ategories.

Of 
ourse, every rigid 
ategory is weakly rigid; the 
onverse, however, is not

true. It is also useful to note that in every weakly rigid 
ategory we have a 
anoni
al

morphism i

V

: 1! V 
V

�

, 
orresponding to id 2 Hom(V

�

; V

�

) = Hom(1; V 
V

�

).

If the 
ategory is rigid, then i

V

de�ned in this way 
oin
ides with the one de�ned

by the rigidity axioms.

Definition 5.3.5. A weakly ribbon 
ategory is a weakly rigid braided tensor


ategory C endowed with a family of fun
torial isomorphisms � : V

�

�! V satisfying

(2.2.8){(2.2.10).

As dis
ussed in Se
tion 2.2, for a rigid 
ategory de�ning � satisfying (2.2.8){

(2.2.10) is equivalent to de�ning Æ : V

�

�! V

��

, so every ribbon 
ategory is also

weakly ribbon.
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Exer
ise 5.3.6. (i) Show that in every semisimple weakly ribbon 
ategory,

the map � : Hom(V

�

; X) ! Hom(1; X 
 V

��

) given by  7! ( 
 id)i

V

�

is an

isomorphism.

(ii) Show that in every semisimple weakly ribbon 
ategory one 
an de�ne a

family of fun
torial isomorphisms Æ : V

�

�! V

��

by the 
ondition that the following

diagram be 
ommutative:

hV;Xi

'

����! Hom(V

�

; X)

�

?

?

y

?

?

y

�

hX;V i

id
Æ

����! hX;V

��

i

:

(iii) Show that in every semisimple weakly ribbon 
ategory, one has (�

A


id)f =

(id
�

B

)f for every f : 1! A
B. (Hint: use �

�

V

= �

V

�

.)

Note, however, that in general, (V 
W )

�

6' W

�


 V

�

, so the axiom Æ

V
W

=

Æ

V


 Æ

W

does not make sense.

Remark 5.3.7. The authors do not know any example of a semisimple abelian


ategory whi
h is weakly rigid but not rigid.

Now we 
an formulate the main theorem of this se
tion.

Theorem 5.3.8. Let C be a semisimple weakly ribbon 
ategory with simple ob-

je
ts V

i

; i 2 I. Then formulas (5.3.3){(5.3.7), with Æ de�ned as in Exer
ise 5.3.6,

de�ne MS data for C. Conversely, every 
olle
tion of MS data for a semisimple

abelian 
ategory C is obtained in this way.

Proof. The �rst statement of the theorem is parallel to Proposition 5.3.3.

The proof is also quite parallel; we just have to 
he
k that all the arguments work

in a weakly rigid 
ategory as well as in a rigid one. This is left to the reader as an

exer
ise; part of it is 
ontained in Exer
ise 5.3.6. In parti
ular, the identity (2.2.8)

�

V
W

= �

WV

�

VW

(�

V


�

W

) will give the Rotation axiom, and the identity (2.2.10)

�

V

�

= �

�

V

will give the Dehn twist axiom.

The proof of the 
onverse statement is more 
ompli
ated. For 
onvenien
e, we

split it into several steps. To simplify the notation, we will write just h: : : ; Ri 


hR; : : :i, omitting the supers
ripts. Sin
e R is symmetri
, this 
auses no problems.

The symmetry of G axiomMS5 implies that the order of the fa
tors is not important

for de�ning G. We will impli
itly use this.

Let us start by 
onstru
ting the duality and tensor produ
t on C from the MS

data.

Lemma 5.3.9. Given MS data for C, there exists an involution � : I ! I su
h

that dimhV

i

; V

j

i = Æ

i;j

�

. Also, R is isomorphi
 (non-
anoni
ally) to

L

V

i

� V

i

�

.

Proof. De�ne A

ij

= dimhV

i

; V

j

i, and de�ne B

ij

by R '

L

B

ij

V

i

� V

j

. It

follows from the non-degenera
y axiom and the existen
e of Z that A is a symmetri


matrix with no zero rows or 
olumns. From the symmetry of R, we get that B is

a symmetri
 matrix.

Writing the identity hV

i

; V

j

i = hV

i

; R

(1)

i 
 hR

(2)

; V

j

i we get the identity A =

ABA. We leave it to the reader to show that if A;B are symmetri
 matri
es with

non-negative integer entries and A has no zero 
olumns, then su
h an identity is

possible only if A = B is a permutation of order 2. (Hint: use AB = (AB)

2

to

prove that AB either has a zero row or 
olumn, or it is the identity matrix.)
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1. De�ning the duality fun
tor. De�ne the fun
tor � by

Hom(V

�

; X) = hV;Xi(5.3.8)

(see Lemma 5.3.1). Then the previous lemma immediately implies V

�

i

' V

i

�

(not


anoni
ally!). It is easy to see from this that � is an anti-equivalen
e of 
ategories.

In parti
ular, this implies that every obje
t V 2 C is 
ompletely determined by the

fun
tor hV; �i = Hom(V

�

; �).

Note that if the MS data 
ome from the stru
ture of a weakly ribbon 
ategory

on C (see Proposition 5.3.3), then the � fun
tor de�ned above 
oin
ides with the

one given by the rigidity axioms.

2. R =

L

V

�

i

� V

i

. To prove this, let us write R '

P

X

i

� V

i

for some

X

i

2 ind�C. The isomorphism G gives, in parti
ular, an isomorphism

hA; V

�

i

i '

M

hA;X

i

i 
 hV

i

; V

�

i

i:

Sin
e hV

i

; V

�

i

i = Hom(V

�

i

; V

�

i

) = k, we get 
anoni
al isomorphisms hA; V

�

i

i =

hA;X

i

i. Thus, we have 
onstru
ted an isomorphism R '

L

V

�

i

� V

i

su
h that the

isomorphism G : hX;Y i ' hX;Ri 
 hR; Y i is given by (5.3.6).

3. Tensor produ
t. De�ne the fun
tor 
 : C

�2

! C by

hX;A
Bi = hX;A;Bi;(5.3.9)

(it is well de�ned by the results of Step 1). More generally, de�ne the tensor produ
t

of n obje
ts by the following formula:

hX;A

1


 � � � 
A

n

i = hX;A

1

; : : : ; A

n

i:

Next, de�ne isomorphisms

(5.3.10) A

1


 � � � 
A

i


 (B

1


 � � � 
B

k

)
A

i+1


 � � � 
A

n

' A

1


 � � � 
A

i


B

1


 � � � 
B

k


A

i+1


 � � � 
A

n

as the following 
omposition:

hX;A

1

; : : : ; A

i

; B

1


 � � � 
B

k

; A

i+1

; : : : ; A

n

i

' hX;A

1

; : : : ; A

i

; R;A

i+1

; : : : ; A

n

i 
 hR;B

1


 � � � 
B

k

i

' hX;A

1

; : : : ; A

i

; R;A

i+1

; : : : ; A

n

i 
 hR;B

1

; : : : ; B

k

i

' hX;A

1

; : : : ; A

i

; B

1

; : : : ; B

k

; A

i+1

; : : : ; A

n

i;

where the isomorphisms are, respe
tively, G

�1

, the de�nition of tensor produ
t,

and G.

Lemma 5.3.10. Let X be an expression of the form

X = (A

1


 (A

2


 � � � ))
A

n

with any grammati
ally 
orre
t parentheses arrangement (parentheses may en
lose

any number of fa
tors). Then any two isomorphisms

' : X ' A

1


 � � � 
A

n

;

obtained as a 
omposition of the morphisms of the form (5.3.10), are equal.

Proof. Easy indu
tion arguments show that it suÆ
es to prove this statement

in the 
ase when we have just two pairs of parentheses. Thus, we need to 
onsider

the arrangements of the form � � � (� � � (� � � ) � � � ) � � � and � � � (� � � ) � � � (� � � ) � � � . For
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both of them the statement easily follows from the de�nitions and the asso
iativity

of G.

This shows that 
 is indeed asso
iative; in parti
ular, we 
an de�ne asso
ia-

tivity 
onstraint A
 (B 
 C) ' (A
B)
 C whi
h satis�es the pentagon axiom.

4. Unit. De�ne the obje
t 1 2 C by

h1; Xi = hXi(5.3.11)

(as before, it is well de�ned due to the results of Step 1).

De�ne morphisms hA

1

; : : : ; A

i

;1; A

i+1

; : : : ; A

n

i ' hA

1

; : : : ; A

i

; A

i+1

; : : : ; A

n

i as

the following 
omposition

hA

1

; : : : ; A

i

;1; A

i+1

; : : : ; A

n

i ' hA

1

; : : : ; A

i

; R;A

i+1

; : : : ; A

n

i 
 h1; Ri

' hA

1

; : : : ; A

i

; R;A

i+1

; : : : ; A

n

i 
 hRi ' hA

1

; : : : ; A

i

; A

i+1

; : : : ; A

n

i:

Note that this 
onstru
tion remains valid for n = 0, in whi
h 
ase, using the

normalization axiom, we get

h1i = k:(5.3.12)

Using the de�nition of tensor produ
t, we see that the isomorphism

hX;A

1

; : : : ; A

i

;1; A

i+1

; : : : ; A

n

i ' hX;A

1

; : : : ; A

i

; A

i+1

; : : : ; A

n

i

gives rise to an isomorphism

A

1


 � � � 
A

i


 1
A

i+1


 � � � 
A

n

' A

1


 � � � 
A

i


A

i+1


 � � � 
A

n

:(5.3.13)

Lemma 5.3.11. The following diagram, with the horizontal map given by the

asso
iativity isomorphism and the two others by the unit isomorphisms (5.3.13), is


ommutative:

A
 (1
B)

""DD
DD

DD
DD

//
A
 1
B

~~||
||

||
||

A
B

:

Proof. Looking at the de�nitions, we see that the statement is equivalent to

the 
ommutativity of the following diagram:

hX;A;R

0

i 
 hR

0

;1
Bi ����! hX;A;R

0

i 
 hR

0

; Bi ����! hX;A;Bi

?

?

y

x

?

?

hX;A;1; Bi ����! hX;A;R

00

; Bi 
 h1; R

00

i ����! hX;A;R

00

; Bi 
 hR

00

i

where, as before, R

0

and R

00

are two 
opies of R. But this easily follows from the

asso
iativity of G applied to the spa
e hX;A;R

00

; R

0

i 
 h1; R

00

i 
 hR

0

; Bi. We leave

the details to the reader.

Corollary 5.3.12. The isomorphisms 1 
X

�

�! X and X 
 1

�

�! X, given

by (5.3.13), satisfy the triangle axiom.

Combining this fa
t with the Ma
Lane 
oheren
e theorem (Theorem 1.1.9), we

see that the MS data indeed de�nes a stru
ture of a monoidal 
ategory on C.

5. De�nition of h i. Using the unit isomorphisms (5.3.13), we 
an identify
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hA

1

; : : : ; A

n

i

�

�! h1; A

1

; : : : ; A

n

i

�

�! Hom(1

�

; A

1


 � � � 
A

n

):

Next, let us 
onstru
t an isomorphism 1

�

�! 1

�

. Using (5.3.12), we 
an write

Hom(1

�

;1) = h1i = k. Thus, 1 2 k gives an isomorphism 1

�

�! 1

�

; 
ombining this

isomorphism with the previous identity, we 
an identify

hA

1

; : : : ; A

n

i ' Hom(1; A

1


 � � � 
A

n

):(5.3.14)

6. Commutativity isomorphism. De�ne the 
ommutativity isomorphism

� : A
B ! B 
A using the following 
omposition:

hX;A
Bi = hX;A;Bi

�

�! hX;B;Ai = hX;B 
Ai:

Then one easily sees that the Hexagon axioms given in Theorem 1.2.5(iii) are im-

mediate 
orollaries of the Hexagon axioms for MS data. Thus, the MS data de�nes

a stru
ture of a BTC on C.

7. Balan
ing. Consider the fun
torial isomorphism

hV;Xi

�

�1

��! hX;V i

Z

�! hV;Xi:(5.3.15)

By Lemma 5.3.1, there exists a fun
torial isomorphism �

V

: V

�

�! V su
h that the

above 
omposition is given by �

V


 id

X

. One easily 
he
ks that �

1

= id and that

�

�1

W

1

= Z�

W

1

;W

2


���
W

n

= �

W

2


���
W

n

;W

1

Z

�1

: hW

1

; : : : ;W

n

i

�

�! hW

1

; : : : ;W

n

i

(this is where we need the Dehn twist axiom MS7).

To prove the identity �

A
B

= �

B;A

�

A;B

(�

A


 �

B

), note that it is equivalent to

�

B;A

�

A;B

�

A

�

�1

C

�

B

= id: hA;B;Ci

�

�! hA;B;Ci;(5.3.16)

whi
h follows from the identities?!

�

�1

A

= Z�

A;BC

= Z�

A;C

�

A;B

;

�

�1

B

= �

B;A

Z�

B;C

;

�

�1

C

= Z�

A;C

Z�

B;C

:

Finally, we leave it to the reader to show that the Dehn twist axiom MF7 is

essentially equivalent to the identity �

V

�

= �

�

V

. Thus, the so de�ned � satis�es the

balan
ing axioms (2.2.8){(2.2.10).

This 
ompletes the proof of Theorem 5.3.8.

It would be ni
e if we had some axiom for MS data whi
h would automati
ally

ensure that the 
orresponding BTC is rigid. However, the only way of doing it that

we know of is expli
itly imposing the rigidity 
ondition. (It is 
laimed in [MS2℄

that rigidity follows from the other axioms; however, at some point, they say \we


an 
he
k the universality property" without doing it expli
itly|we were unable

to re
onstru
t their arguments.)

In the semisimple 
ase the rigidity 
ondition is equivalent to the non-vanishing

of 
ertain 
oeÆ
ients, whi
h shows that \almost all" weakly rigid semisimple 
ate-

gories are rigid.

Let C be a semisimple weakly rigid monoidal 
ategory su
h that V

��

' V (as

dis
ussed above, this holds for any 
ategory obtained from MS data). Let '

i

: V

�

i

!
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V

�

i


 V

i


 V

�

i

be given by '

i

= id
i

V

i

. Using the asso
iativity isomorphism, we


an write

'

i

= a

i


 id+

X

j 6=0

 

j

;

where a

i

are 
ertain morphisms 1 ! V

�

i


 V

i

, and  

j

are some morphisms whi
h

are obtained as the 
omposition

V

�

i

! V

j


 V

�

i

 

0

j


id

����! (V

�

i


 V

i

)
 V

�

i

:

Note that sin
e V

�

i


 V

i


ontains 1 with multipli
ity one, the morphisms a

i

lie in a

one-dimensional spa
e.

Proposition 5.3.13. Let C be a semisimple weakly rigid monoidal 
ategory

su
h that V

��

' V , and let a

i

: 1 ! V

�

i


 V

i

be de�ned as above. Then C is rigid

i� a

i

6= 0 for all i 2 I.

Proof. If C is rigid, then e

V

i

a

i

= 1, whi
h immediately follows from taking


omposition of '

i

with e

V

i


 id. Thus, a

i

6= 0. Conversely, assume that a

i

6= 0.

Then de�ne e

V

i

: V

�

i


 V

i

! 1 by the 
ondition e

V

i

a

i

= 1; sin
e V

�

i


 V

i


ontains

1 with multipli
ity one, this is possible. From this 
ondition, we immediately see

that the 
omposition

V

�

i

id
i

V

i

����! V

�

i


 V

i


 V

�

i

e

V

i


id

����! V

�

i

is equal to identity; thus, the se
ond rigidity axiom (2.1.6) is satis�ed.

To 
he
k the �rst rigidity axiom, denote the 
omposition

V

i

i

V

i


id

����! V

i


 V

�

i


 V

i

id
e

V

i

����! V

i

by 


i

; sin
e End(V

i

) = k, 


i

is a number. We need to show that 


i

= 1.

Consider the 
omposition

�: 1

i
i

��! V

i


 V

�

i


 V

i


 V

�

i

id
e
id

�����! V

i


 V

�

i

:

From the se
ond rigidity axiom (already proved), � = i

V

i

. On the other hand,

form the de�nition of 


i

, we have � = 


i

i

V

i

. This proves 


i

= 1 and thus, the �rst

rigidity axiom for V

i

.

Therefore, if a

i

6= 0, then V

i

is rigid. But sin
e a dire
t sum of rigid obje
ts is

again rigid, every obje
t in C is rigid.

5.4. Modular fun
tor in genus zero and tensor 
ategories

In this se
tion we prove the �rst main theorem of this 
hapter, establishing that

the axioms of a (weakly) ribbon 
ategory are essentially equivalent to the axioms

of a modular fun
tor in genus zero.

Let C be a semisimple abelian 
ategory with representatives of the equivalen
e


lasses of simple obje
ts V

i

, i 2 I . Let us 
all a C-extended modular fun
tor in genus

zero the same data as in De�nition 5.1.12 but with the spa
es �(�) de�ned only

for � of genus zero; therefore, the only gluing allowed is the gluing of two di�erent


onne
ted 
omponents.

Theorem 5.4.1 (Moore{Seiberg [MS1℄). Let C be a semisimple weakly ribbon


ategory. Then there is a unique C-extended genus zero modular fun
tor satisfying

the properties (i){(iii) below.
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(i) For the standard sphere S

0;n

(see (5.2.1)):

�(S

0;n

;W

1

; : : : ;W

n

) = Hom

C

(1;W

1


 � � � 
W

n

) =: hW

1

; : : : ;W

n

i:(5.4.1)

(ii) R =

L

V

�

i


 V

i

, and the isomorphism s : R

�

�! R

op

is given by (2.4.8).

(iii) We have:

z

�

= Z; b

�

= �;(5.4.2)

where the homeomorphisms z; b are de�ned by (5.2.2), and the isomorphisms Z; �

are de�ned by (5.3.5), (5.3.7). Also, for every k; l � 0, the 
omposition

�(S

0;k+1

; : : : ; R

(1)

)
 �(S

0;l+1

;R

(2)

; : : : )! �(S

0;k+1

t

k+1;1

S

0;l+1

)

(�

kl

)

�

����! �(S

0;k+l

);

where the �rst arrow is the sewing isomorphism (5.1.1) and �

kl

is as in (5.2.3),


oin
ides with the isomorphism G de�ned by (5.3.6).

This modular fun
tor is non-degenerate and has the following properties :

(iv) Let t

i

: S

0;n

! S

0;n

be the Dehn twist around i

th

pun
ture. Then, under

the isomorphism (5.4.1), (t

i

)

�

is given by the twist

�

W

i

: Hom

C

(1;W

1


 � � � 
W

n

)! Hom

C

(1;W

1


 � � � 
W

n

):

(v) If C is rigid, then this modular fun
tor is unitary, with the pairing (5.1.2)

h; i

S

0;n

: Hom

C

(1;W

1


 � � � 
W

n

)
Hom

C

(1;W

�

n


 � � � 
W

�

1

)! k

given by

h';  i : 1! 1
 1!W

1


 � � � 
W

n


W

�

n


 � � � 
W

�

1

! 1:

Here we identify k = End(1) and use the fa
t that for a standard sphere S

0;n

, there

is a 
anoni
al isomorphism S

0;n

�

�! S

0;n

, whi
h reverses the order of the pun
tures.

This isomorphism is given by the re
e
tion around the imaginary axis.

Conversely, let � be a non-degenerate genus zero C-extended MF. Then there is

a unique stru
ture of a weakly ribbon 
ategory on C su
h that the above properties

(i){(iii) hold.

Proof. The proof is based on the 
omparison of the results of Se
tions 5.2

and 5.3. Sin
e by Theorem 5.3.8 the stru
ture of a weakly ribbon 
ategory on C

is equivalent to what we 
alled MS data, it suÆ
es to show that a non-degenerate

genus zero MF de�nes MS data and vi
e versa.

Let us assume we are given a 
olle
tion of MS data. To 
onstru
t a genus zero

MF, let us �rst 
onsider the pairs (�;M), where M = (C; f 

a

g) is a parameteriza-

tion of � (see De�nition 5.2.1). For ea
h su
h pair, de�ne the ve
tor spa
e �(�;M)

as follows. For every 
ut 
, take a 
opy R




of the obje
t R, and de�ne

�(�;M) =

O

a

�(S

0;n

a

);(5.4.3)

where the index a runs through the set of 
onne
ted 
omponents of � nC, and for

ea
h 
onne
ted 
omponent �

a

, we assign R

(")




to every boundary 
omponent of �

a

whi
h is a 
ut, where " 2 f1; 2g is 
hosen so that for one of the o

urren
es of R




we

take " = 1 and for the other we take " = 2 (note that ea
h R




appears exa
tly twi
e

in (5.4.3)). Sin
e R is symmetri
, it does not matter whi
h o

urren
e is whi
h.
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More expli
itly, the same formula 
an be written as follows. For ea
h 
ut 
 2 C,


hoose one of its sides as \positive" and the other as \negative". Then we 
an de�ne

�(�;M) =

M

i




2I; 
2C

O

a

�(S

0;n

a

);(5.4.4)

where the sum is taken over all ways to assign an index i




2 I to every 
ut 
 2 C,

and for ea
h 
onne
ted 
omponent �

a

of � n C we assign V

i




to its boundary


omponent if it is the positive side of the 
ut 
, and V

�

i




if it is the negative side of

the 
ut 
. This formula depends on the 
hoi
e of \positive" side for ea
h 
ut; to

identify the formulas 
orresponding to di�erent 
hoi
es, one has to use the 
anoni
al

isomorphism V

�

i

� V

i

�

�! V

i

�

� V

�

i

�

de�ned in (2.4.8).

For example, if � is a sphere with 4 holes whi
h we index by �; �; 
; Æ, and ' is

a parameterization with one 
ut 
 as in Figure 5.16, then the above formula gives

�(�; ';W

�

;W

�

;W




;W

Æ

) = hW

�

;W

�

; R

(1)

i 
 hR

(2)

;W




;W

Æ

i

=

M

i2I

hW

�

;W

�

; V

i

i 
 hV

�

i

;W




;W

Æ

i:

δ

c

βα

γ

Figure 5.16

Of 
ourse, every extended surfa
e � 
an be parametrized in many ways. How-

ever, if we 
onstru
t a system of isomorphisms f

M;M

0

: �(�;M

0

)

�

�! �(�;M), 
om-

patible in the following sense: f

M;M

0

f

M

0

;M

00

= f

M;M

00

, then we 
an identify all of

these spa
es with ea
h other and de�ne the spa
e �(�), whi
h is 
anoni
ally iso-

morphi
 to ea
h of �(�;M) (see a formal de�nition in the proof of Theorem 4.4.3).

Moreover, su
h a system of isomorphisms would automati
ally give a represen-

tation of the extended mapping 
lass groupoid Tei
h, as follows. Let f : �

1

�

�! �

2

be a homeomorphism of extended surfa
es, and letM

2

be a parameterization of �

2

.

Then f gives rise to a parameterization M

1

of �

1

in the obvious way. Moreover,

f establishes a one-to-one 
orresponden
e between the 
uts C

1

on �

1

and C

2

on

�

2

, and between the 
omponents (�

1

)

a

and (�

2

)

a

. Thus, f gives rise to an iden-

ti�
ation �(�

1

;M

1

) =

L

i




2I; 
2C

1

N

a

�(S

0;n

a

) = �(�

2

;M

2

). Combining this with

the isomorphisms �(�

1

) = �(�

1

;M

1

), �(�

2

) = �(�

2

;M

2

), we get an isomorphism

f

�

: �(�

1

)

�

�! �(�

2

). We leave it to the reader to 
he
k that this isomorphism

does not depend on the 
hoi
e of M

2

and satis�es (fg)

�

= f

�

g

�

; id

�

= id. Also, it

is immediately obvious from (5.4.3) that the so 
onstru
ted modular fun
tor will

satisfy the gluing axiom.

Therefore, our goal is to 
onstru
t a 
ompatible system of isomorphisms �(�;M

0

)

�

�!

�(�;M). By Theorem 5.2.3, every two parameterizations 
an be 
onne
ted by a

sequen
e of simple moves Z;B; F ; let us assign to these moves the isomorphisms
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Z; �;G given by the MS data. A 
omparison of the axioms MF1{MF7 and MS1{

MS7 shows that all the relations among the moves Z;B; F also hold for their ana-

logues Z; �;G; the only relation whi
h is not immediately obvious is the 
ylinder

axiom MF5, but it follows from the fun
toriality of the morphisms Z; �;G. Thus,

every MS data de�nes a genus zero MF.

The 
onstru
tion in the opposite dire
tion is quite similar. Assume that we

have a genus zero MF. De�ne the fun
tors h i and the isomorphisms Z; �;G as in

the statement of the theorem. Again, a 
omparison of the axioms MF1{MF7 and

MS1{MS7 shows that these data satisfy the axioms of MS data. This 
ompletes

the proof of Theorem 5.4.1.

?!

Example 5.4.2. Consider the surfa
e � and the \asso
iativity move" M

F




 

M

0

F

�1




0

 M

0

shown in Figure 5.17. Assign to the boundary 
omponents �; : : : ; Æ

obje
ts A; : : : ; D. Then:

�(�;M) =

M

i2I

hA;B; V

i

i 
 hV

�

i

; C;Di;

�(�;M

0

) = hA;B;C;Di;

�(�;M

0

) =

M

j2I

hD;A; V

j

i 
 hV

�

j

; B; Ci:

Then the 
orresponding isomorphisms �(�;M) ! �(�;M

0

) ! �(�;M

0

) are given

by Figure 5.18 below.

δ

c

βα

γ

F




�!

γδ

α β

F

�1




0

���!

γ
c

δ

α β

:

Figure 5.17. Asso
iativity move.

Ψ

D

Φ

A B i i C

!

ΨΦ

D

i

A B C

!

X

j2I

1

jI jd

j ΨΦ

D

i

CBjjA

:

Figure 5.18. Asso
iativity isomorphism.
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5.5. Modular 
ategories and modular fun
tor for zero 
entral 
harge

In this se
tion, we will show, developing the ideas of the previous se
tion, that

the notion of a modular fun
tor (for arbitrary genus) is equivalent to the notion of

a modular tensor 
ategory. Re
all that for every modular 
ategory we have de�ned

the numbers p

�

by (3.1.7). In this se
tion we 
onsider the spe
ial 
ase of modular


ategories with p

+

=p

�

= 1. (For the modular 
ategories 
oming from 
onformal

�eld theory this identity holds if the Virasoro 
entral 
harge of the theory is equal

to 0 (
f. Remark 3.1.20), hen
e the title of this se
tion.)

Theorem 5.5.1. Let C be a modular tensor 
ategory with p

+

=p

�

= 1. Then

there exists a unique C-extended modular fun
tor � whi
h satis�es 
onditions (i){

(iii) of Theorem 5.4.1. This MF is non-degenerate and satis�es 
onditions (iv), (v)

of Theorem 5.4.1 and 
ondition (vi) below.

(vi) Let S

1;1

be the torus with one hole. Identify

�(S

1;1

;A) =

M

hA; V

i

; V

�

i

i =

M

Hom(A

�

; V

i


 V

�

i

)

using the parameterization of S

1;1

shown in Figure 5.12. Let s : S

1;1

! S

1;1

be as

de�ned in (5.1.5). Then the 
orresponding

s

�

= S :

M

Hom(A

�

; V

i


 V

�

i

)!

M

Hom(A

�

; V

i


 V

�

i

)(5.5.1)

is given by Theorem 3.1.17.

Conversely, let C be a semisimple abelian 
ategory, and let � be a non-degenerate

C-extended MF. Assume for simpli
ity that the 
orresponding stru
ture of a monoidal


ategory on C (see Theorem 5.4.1) is rigid. Then C is a modular tensor 
ategory

with p

+

= p

�

; in parti
ular, it has only a �nite number of simple obje
ts.

Proof. Assume that C is a modular 
ategory. By Theorem 5.4.1, the stru
ture

of a modular 
ategory on C de�nes a genus zero MF. Therefore, we only need to

show that this MF 
an be extended to positive genus. In order to do this, by

Theorem 5.2.9, we need to de�ne an isomorphism S : �(S

1;1

;M)

�

�! �(S

1;1

;M

0

),

where S

1;1

is the standard torus and M;M

0

are the parameterizations shown in

Figure 5.12, and then 
he
k that relations MF8, MF9 are satis�ed.

Note that by de�nition

�(S

1;1

;M ;A) = �(S

1;1

;M

0

;A) =

M

i

hA; V

i

; V

�

i

i = Hom(A

�

; H);

where, as before, H =

L

V

i


V

�

i

. Thus, de�ning an isomorphism S : �(S

1;1

;M)

�

�!

�(S

1;1

;M

0

) is the same as de�ning a fun
torial system of isomorphisms Hom(A

�

; H)

�

�!

Hom(A

�

; H) for every obje
t A. By Lemma 5.3.1, this is the same as de�ning an

isomorphism S : H ! H .

Let us �rst show that if we de�ne S as in the statement of the theorem, then

relations MF8, MF9 are satis�ed. Relations MF8 immediately follow from Theo-

rem 3.1.17 and the assumption p

+

= p

�

.

To 
he
k relation MF9 for a torus with two holes, let us rewrite it in terms of

tensor 
ategories. ?!

Lemma 5.5.2. Let C be a semisimple ribbon 
ategory with �nite number of sim-

ple obje
ts, and let S be an isomorphism

S =

M

S

ji

:

M

V

i


 V

�

i

!

M

V

j


 V

�

j

:(5.5.2)
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Then relation MF9 for S is equivalent to the following 
ondition:

kjS

i

k k i

j j

= Ski

i

kk i

jj

i

(5.5.3)

for every i; j; k 2 I.

The proof of this lemma will be given after the proof of the theorem.

It is easy to 
he
k that the operator S de�ned by (3.1.32) satis�es (5.5.3).

Now, let us prove uniqueness. Assume that we have de�ned an operator S

of the form (5.5.2) su
h that relations MF8, MF9 are satis�ed. Rewrite relation

MF9 in the form (5.5.3), put j = 0 and note that S

k0

: 1 ! V

k


 V

�

k

is a non-

zero multiple of i

V

k

. This immediately implies that S

ki

= a

k

S

st

ki

for some non-

zero 
onstant a

k

, where we temporarily denoted by S

st

the operator de�ned by

(3.1.32). Equivalently, we 
an write S = AS

st

, where the operator A : H ! H is

\diagonal": Aj

V

i


V

�

i

= a

i

id. Now, let us use the axiomMF8. In parti
ular, we have

TSTST = S. Sin
e S = AS

st

, and A 
ommutes with T , we get TS

st

TAS

st

T = S

st

.

On the other hand, the operator S

st

itself satis�es the axiom MF8, and thus,

TS

st

TS

st

T = S

st

. This implies A = id; S = S

st

.

The proof of the 
onverse statement|that a MF de�nes a stru
ture of a mod-

ular 
ategory|is trivial. Indeed, the identity �(�) =

L

EndV

i

for � being a torus

without pun
tures implies that C has only �nitely many simple obje
ts (sin
e �(�)

is �nite dimensional). Thus, we only have to 
he
k that the matrix ~s, de�ned in

(3.1.1), is non-degenerate. But the identity S = AS

st

and the invertibility of S

imply that S

st

is invertible.

Proof of Lemma 5.5.2. Consider the diagram in Figure 5.15. Let m

1

be the

graph in the upper left 
orner; for 
onvenien
e, repla
e the graph m in the lower

right 
orner by m

2

= F




4

(m). Then the ve
tor spa
es �(�;m

1

) and �(�;m

2

) are

given by

�(�;m

1

) =

M

i;j

hV

�

j

; A; V

i

i 
 hV

�

i

; B; V

j

i;

�(�;m

2

) =

M

k

hA; V

k

; V

�

k

; Bi;

(5.5.4)

where A;B are the obje
ts assigned to the boundary 
omponents �; � respe
tively

(see (5.4.4)).

Then relation MF9 
an be written as follows: for every �
	 2 hV

�

j

; A; V

i

i 


hV

�

i

; B; V

j

i, we have f(� 
 	) = g(� 
 	), where f is the isomorphism given by

the 
omposition of moves forming the left side and the bottom of the 
ommutative

diagram, and g|by the moves on the top and the right side. We represent this

identity pi
torially, using Example 5.4.2, Eq. (5.2.9), and the graphi
al 
al
ulus of

Se
tion 2.3.

A simple manipulation with �gures shows that:
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f(�
	) =

Ψ

Ski

Φ

θ-1

B

j

k
k

ii

A
; g(�
	) =

ΨΦ

θ-1 Skj

j

BA
k

k

j
i

:

The identity f(�
	) = g(�
	) 8� is equivalent to:

Ψ

Ski

i

k
k

i

B

j

:

=

Ψ

Skj

i

k

j j

kB
:

We manipulate this as follows:

Ψ S

i

ki

i

k kB

j

:

=

Ψ

Skj

B

j ji

k k

;

and then 
an
el 	, to get:

ki

j

S

i

k k

ji

i

:

=

S

i

kj

j j

k k

i

j

:

From this it is easy to get the statement of the lemma.

Corollary 5.5.3. Let C be an MTC with p

+

= p

�

. Denote

�(g;W

1

; : : : ;W

n

) = Hom

C

(1; H


g


W

1


 � � � 
W

m

)

where H =

L

V

i


 V

�

i

. Then we have an a
tion of the pure mapping 
lass group

�

0

g;n

on this spa
e. In parti
ular, for g = 1; n = 1 this a
tion 
oin
ides with the

one de�ned in Theorem 3.1.17.
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Indeed, let �(�) be the modular fun
tor 
orresponding to C; then it is easy to

see, using the gluing axiom, that if � is a surfa
e of genus g then �(�;W

1

; : : : ;W

n

)

is (not 
anoni
ally) isomorphi
 to the spa
e �(g;W

1

; : : : ;W

n

) de�ned above.

Remark 5.5.4. In fa
t, Corollary 5.5.3 also holds for modular 
ategories with

p

+

=p

�

6= 1 if we repla
e the word \a
tion" by \proje
tive a
tion". This will be

dis
ussed in Se
tion 5.7.

Exer
ise 5.5.5. Prove the following formula for the dimension of the spa
e

�(g) for g � 1 (n = 0):

dim �(g) =

X

i2I

�

1

s

2

0i

�

g�1

:(5.5.5)

Hint: Prove that dim �(g) = tr(a

g�1

), where a

ij

= dim �(g = 1;V

i

; V

�

j

); i; j 2 I .

Then prove that a =

P

k

N

k

N

k

�

, where N

k

is de�ned as in Proposition 3.1.12, and

use the Verlinde formula to diagonalize a.

5.6. Towers of groupoids

Looking at the previous two se
tions, one is tempted to say that there is some

\universal" set of relations whi
h must hold in any weakly ribbon 
ategory, and

these relations happen to 
oin
ide with the relations for the mapping 
lass group.

In this se
tion we sket
h the appropriate language in whi
h one 
an formulate this

and other related results. Therefore, we do not really prove any new results here,

and we allow ourselves to be somewhat informal.

Let us start by 
onsidering our main example: the Tei
hm�uller tower Tei
h.

By de�nition, Tei
h is a 
ategory with obje
ts all extended surfa
es, and morphisms

isotopy 
lasses of homeomorphisms of extended surfa
es (see De�nition 5.1.7(i)).

This 
ategory is a groupoid, i.e., any morphism in Tei
h is invertible. It also has

some additional stru
tures whi
h played an important role in the previous se
tions:

the disjoint union and gluing of surfa
es. The general de�nition of a tower of

groupoids will be modeled on this example, so let us study it in more detail.

Temporarily, let us denote Tei
h by T . Below we list its properties.

(a) T is a groupoid.

(b) The disjoint union of surfa
es t : T � T ! T and the empty surfa
e ; 2

ObT provide T with the stru
ture of a symmetri
 tensor 
ategory.

(
) There is a fun
tor A : T ! Sets: for a surfa
e �, A(�) = �

0

(��) is the

set of its boundary 
omponents. Here Sets is the groupoid with obje
ts �nite sets,

and morphisms bije
tions. Note that A(�

1

t �

2

) = A(�

1

) t A(�

2

) and A(;) = ;

(
anoni
al isomorphisms). In other words, A is a tensor fun
tor.

(d) There is a gluing operation: for every surfa
e � 2 ObT and an unordered

pair �; � 2 A(�), we have the surfa
e G

�;�

(�) = t

�;�

(�) obtained by identi�
ation

of the boundary 
omponents �; � (
f. De�nition 5.1.12(iv)). The gluing satis�es the

following properties:

Compatibility with A: A(G

�;�

(�)) = A(�) n f�; �g.

Compatibility with t: if �; � 2 A(�

1

), there is a 
anoni
al fun
torial iso-

morphism G

�;�

(�

1

t �

2

) = (G

�;�

�

1

) t �

2

.

Asso
iativity: if �; �; 
; Æ 2 A(�) are distin
t, then there exists a 
anoni
al

fun
torial isomorphism G

�;�

G


;Æ

(�) = G


;Æ

G

�;�

(�).
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Fun
toriality: for ea
h morphism f : �! �

0

, we have an isomorphismG

f

: G

�;�

(�)!

G

�

0

;�

0

(�

0

), where �

0

= A(f)(�), �

0

2 A(f)(�) are the 
orresponding ele-

ments in A(�

0

). These isomorphisms satisfy G

f

1

f

2

= G

f

1

G

f

2

and G

id

= id.

Definition 5.6.1. A tower of groupoids (or just a tower) is the following 
ol-

le
tion of data:

(i) A groupoid T ;

(ii) A \disjoint union" bifun
tor t : T � T ! T and an obje
t ; 2 ObT

satisfying the axioms of a symmetri
 tensor 
ategory;

(iii) A \boundary fun
tor": a tensor fun
tor A : T ! Sets;

(iv) A \gluing operation": for every � 2 Ob T and an unordered pair �; � 2

A(�), we have an obje
t G

�;�

(�) 2 T . The gluing should be asso
iative, fun
torial

and 
ompatible with t and A (see (d) above).

Example 5.6.2. Sets and Tei
h are towers of groupoids.

Remark 5.6.3. Sometimes it is useful to weaken the above de�nition by 
on-

sidering towers in whi
h the gluing operation G

�;�

is de�ned not for all but only

for some pairs �; �. In this 
ase, the identities G

�;�

t = t(G

�;�

� Id), G

�;�

G


;Æ

=

G


;Æ

G

�;�

in the de�nition above should be understood in the following way: if one

side is de�ned, then the other one is also de�ned and they are equal.

An example of su
h a \partial" tower is given by the the Tei
hm�uller tower in

genus zero, Tei
h

0

, in whi
h obje
ts are extended surfa
es of genus zero and the

fun
tor G

�;�

is de�ned only if �; � belong to di�erent 
onne
ted 
omponents of �.

Remark 5.6.4. One 
an give a de�nition of what it means for a tower of

groupoids to be presented by generators and relations (but sin
e this is a little

boring, we don't do it here). Then the results of Se
tion 5.2 (and [BK℄) 
an be

reformulated as giving the generators and relations presentation of the Tei
hm�uller

tower Tei
h. One notes that this presentation is mu
h simpler than the presenta-

tions for individual mapping 
lass groups �(�). The idea of using the Tei
hm�uller

tower with the gluing operation for the study of mapping 
lass groups belongs to

Grothendie
k [G℄. More results in this dire
tion 
an be found in [HLS℄.

Before giving more examples of towers, let us reformulate De�nition 5.6.1 in

a more fun
torial way. This will be useful later when we de�ne fun
tors between

towers.

Let T be a tower of groupoids. Then T is a �bered 
ategory over Sets. For

any �nite set S, the �ber T

S

over S is the 
ategory with obje
ts all pairs (�; ')

where � 2 Ob T and ' : A(�)

�

�! S is a bije
tion. A morphism between two

obje
ts (�

1

; '

1

); (�

2

; '

2

) 2 Ob T

S

is a morphism f 2 Mor

T

(�

1

;�

2

) su
h that

'

1

= '

2

ÆA(f). Sin
e both T and Sets are groupoids, every �ber T

S

is a groupoid.

A bije
tion of sets  : S

�

�! S

0

gives rise to a fun
tor  

�

: T

S

! T

S

0

: on obje
ts

 

�

(�; ') = (�;  Æ '), and on morphisms  

�

(f) = f . It is obvious that

(� Æ  )

�

= �

�

Æ  

�

; id

�

= id;

in parti
ular, all fun
tors  

�

are isomorphisms of 
ategories.

Conversely, given a 
olle
tion of groupoids fT

S

g

S2ObSets

together with equiv-

arian
e fun
tors  

�

as above, one 
an re
onstru
t the groupoid T and the fun
tor

A : T ! Sets.
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In terms of these data, t be
omes a 
olle
tion of fun
tors

t

S;S

0

: T

S

� T

S

0

! T

StS

0

;

while ; 2 Ob T

;

. They satisfy obvious 
ommutativity, asso
iativity and equivari-

an
e 
onditions.

Similarly, the gluing gives a 
olle
tion of fun
tors

G

S

�;�

: T

S

! T

Snf�;�g

; S 2 ObSets; �; � 2 S

(the pair �; � is unordered). Indeed, for (�; ') 2 ObT

S

, we de�ne

G

S

�;�

(�; ') = (�

0

; 'j

A(�

0

)

) where �

0

= G

'

�1

�;'

�1

�

(�)

(re
all that A(�

0

) = A(�)nf'

�1

�; '

�1

�g). For a morphism f : (�

1

; '

1

)! (�

2

; '

2

)

in T

S

, we de�ne G

S

�;�

(f) = G

f

(re
all the fun
toriality of gluing). Now the proper-

ties of gluing 
an be restated as follows.

Compatibility with A: already in
orporated in the de�nition.

Compatibility with t: for any two sets S; S

0

and �; � 2 S, there exists a


anoni
al isomorphism of fun
tors G

StS

0

�;�

Æt

S;S

0

= t

Snf�;�g;S

0

Æ (G

S

�;�

� Id).

Asso
iativity: if �; �; 
; Æ 2 S are distin
t then there exists a 
anoni
al iso-

morphism of fun
tors G

Snf
;Æg

�;�

ÆG

S


;Æ

= G

Snf�;�g


;Æ

ÆG

S

�;�

.

Fun
toriality: already in
orporated in the requirement that G

S

�;�

are fun
-

tors.

Finally, there is one more property whi
h follows just from the de�nition of G

S

�;�

.

Equivarian
e: for any bije
tion of sets  : S

�

�! S

0

, we have G

S

0

 �; �

Æ  

�

=

( j

Snf�;�g

)

�

ÆG

S

�;�

.

Definition 5.6.5. A tower of groupoids is a 
olle
tion of groupoids fT

S

g

S2ObSets

equipped with the following stru
ture:

(i) Equivarian
e fun
tors  

�

: T

S

! T

S

0

for any  2 Mor

Sets

(S; S

0

), satisfying

(� Æ  )

�

= �

�

Æ  

�

and id

�

= id.

(ii) An obje
t ; 2 Ob T

;

and a 
olle
tion of fun
tors t

S;S

0

: T

S

� T

S

0

! T

StS

0

,

satisfying obvious 
ommutativity, asso
iativity and equivarian
e 
onditions.

(iii) A 
olle
tion of fun
tors G

S

�;�

: T

S

! T

Snf�;�g

, satisfying the above asso
ia-

tivity, equivarian
e and 
ompatibility with t.

Proposition 5.6.6. De�nitions 5.6.1 and 5.6.5 are equivalent.

Proof. It was already sket
hed above. The details are left to the reader as an

exer
ise.

Definition 5.6.7. A tower fun
tor F between two towers of groupoids (T ;t; A;G)

and (T

0

;t

0

; A

0

; G

0

) is a fun
tor F : T ! T

0

whi
h preserves all the stru
ture. More

pre
isely:

(i) There is an isomorphism of fun
tors A ' A

0

Æ F . Thus F gives rise to an

equivariant 
olle
tion of fun
tors F

S

: T

S

! T

0

S

, S 2 ObSets.

(ii) F is a tensor fun
tor, i.e., the fun
tors F Æt and t

0

Æ (F �F) : T �T ! T

0

are isomorphi
.

(iii) For any �nite set S, there is an isomorphism of fun
tors F

Snf�;�g

ÆG

S

�;�

'

G

0

S

�;�

Æ F

S

: T

S

! T

0

Snf�;�g

. These isomorphisms are equivariant with respe
t to

bije
tions of S.
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Exer
ise 5.6.8. Spell out property (iii) of De�nition 5.6.7 in terms of the

gluing operations G

�;�

from De�nition 5.6.1.

Example 5.6.9. A : T ! Sets is a tower fun
tor for any tower T .

There is an even more e
onomi
al way to reformulate the de�nition of a tower.

Looking at the equivarian
e properties of the 
olle
tions fT

S

g and fG

S

�;�

g, one


an noti
e that they 
an be 
ombined if we allow more maps between sets. We

introdu
e a 
ategory Sets

℄

with the same obje
ts as in Sets (i.e., �nite sets), but

with more morphisms: all maps between sets that are 
omposed of bije
tions and

the elementary inje
tions i

S

�;�

: S n f�; �g ,! S. (This de�nition was inspired by

[BFM℄.) Let Sets

℄

be the dual 
ategory of Sets

℄

, i.e., the 
ategory with the same

obje
ts but with all arrows inverted. All morphisms in Sets

℄

are 
omposed of

bije
tions and the elementary morphisms

Æ

S

�;�

: S ! S n f�; �g; S 2 ObSets

℄

; �; � 2 S (unordered):

Now if we de�ne

(Æ

S

�;�

)

�

= G

S

�;�

: T

S

! T

Snf�;�g

;

we will have (� Æ  )

�

= �

�

Æ  

�

for �;  2 Mor

Sets

℄ . Note that Sets

℄

is again a

symmetri
 tensor 
ategory with respe
t to t.

Proposition 5.6.10. A tower of groupoids is the same as a symmetri
 tensor


ategory T �bered over Sets

℄

su
h that all �bers T

S

(S 2 ObSets

℄

) are groupoids.

In other words, we have parts (i) and (ii) of De�nition 5.6.5 with Sets repla
ed with

Sets

℄

.

In this language a tower fun
tor F between two towers is just a 
olle
tion of

fun
tors F

S

: T

S

! T

0

S

, equivariant with respe
t to Mor

Sets

℄ , and su
h that the


orresponding fun
tor F : T ! T

0

is a tensor fun
tor. A natural transformation �

between two tower fun
tors F ;G : T ! T

0

is a Mor

Sets

℄ -equivariant 
olle
tion of

natural transformations �

S

between the fun
tors F

S

;G

S

. Then, as usual, F : T !

T

0

is 
alled an equivalen
e of towers if there exists a tower fun
tor F

0

: T

0

! T

su
h that the tower fun
tors FF

0

and F

0

F are isomorphi
 to Id.

After introdu
ing all this abstra
t nonsense let us now give some examples and

appli
ations.

Example 5.6.11. Let C be an abelian 
ategory and R 2 ind�C

�2

be a sym-

metri
 obje
t.

3

We de�ne the tower of groupoids Fun(C) as follows.

Obje
ts: all pairs (S; F ) where S is a �nite set and F is a fun
tor C

�S

! Ve


f

.

Morphisms: Mor((S

1

; F

1

); (S

2

; F

2

)) 
onsists of all pairs (f; ') where ' : S

1

�

�!

S

2

is a bije
tion, f : F

1

�

�! '

�

F

2

is an isomorphism of fun
tors, and '

�

F

2

is

the 
omposition C

�S

1

'

�

�! C

�S

2

F

2

�! Ve


f

.

Boundary fun
tor: A(S; F ) = S.

Disjoint union: (S

1

tS

2

; F

1


F

2

: C

�(S

1

tS

2

)

! Ve


f

), and similarly for mor-

phisms. The obje
t ; is the obvious one.

Gluing: given byG

�;�

(S) = Snf�; �g andG

�;�

(F ) = F (: : : ; R

(1)

; : : : ; R

(2)

; : : : ),

where R

(1)

; R

(2)

are put in the pla
es 
orresponding to the indi
es �; �.

3

Here and below we use the same notation as in Se
tion 2.4.
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Definition 5.6.12. Let C be an abelian 
ategory and R 2 ind�C

�2

be a sym-

metri
 obje
t. A representation of a tower T in C is a tower fun
tor � : T ! Fun(C).

The following theorem, whi
h follows immediately from the de�nitions, elu
i-

dates the notion of a modular fun
tor.

Theorem 5.6.13. A C-extended modular fun
tor is the same as a represen-

tation � of the Tei
hm�uller tower Tei
h in C with the additional normalization


ondition �(S

2

) = id : C

0

= Ve


f

! Ve


f

.

In a similar way one 
an rewrite the notion of MS data (see Se
tion 5.3). In

order to introdu
e the 
orresponding tower of groupoidsMS, we will �rst need the

following de�nition.

Definition 5.6.14. A marking graph is a graph m without 
y
les (a \forest")

with the following additional data:

(i) The verti
es of m are split into two subsets, \internal" and \external"

Verti
es(m) = Int(m) t Ext(m);

so that every external vertex is 1-valent, and there are no edges 
onne
ting two

external verti
es.

(ii) For every internal vertex v 2 Int(m), an order on the set of all edges ending

at v is given.

Remark 5.6.15. The marking graphs with 3-valent internal verti
es are essen-

tially the same as \Bratelli diagrams" used in physi
s literature.

Graphs of this type appeared in our dis
ussion of parameterizations of extended

surfa
es (see Se
tion 5.2). In the �gures, we use � for internal verti
es and � for

external verti
es. To show the order, we draw the edges in a 
lo
kwise order and

mark the �rst edge by an arrow.

We de�ne a CW 
omplex M

0

in a way parallel to the de�nition of M(�) for

genus 0 (see Se
tion 5.2). The verti
es of M

0

are all marking graphs. We de�ne

the simple moves Z;B; F by Figures 5.5, 5.6 and 5.7, respe
tively. The relations in

M

0

are obtained from MF1{MF7 by forgetting the surfa
es.

Example 5.6.16. The Moore{Seiberg tower MS is the tower of groupoids de-

�ned as follows.

Obje
ts: all marking graphs.

Morphisms: Mor(m

1

;m

2

) 
onsists of all paths in the CW 
omplex M

0


on-

ne
ting m

1

with m

2

, modulo homotopy. (In other words, as a groupoidMS

is the fundamental groupoid of M

0

.)

Boundary fun
tor: A(m) = Ext(m).

Disjoint union and ;: obvious.

Gluing: if �; � 2 Ext(m) are in di�erent 
onne
ted 
omponents, then we

de�ne G

�;�

(m) to be the graph obtained by identifying the verti
es � and

�. The order at the new internal vertex � = � is given by e

�

< e

�

where e

�

is the edge of m ending at �.

Note that MS is a \partial" tower in the sense of Remark 5.6.3.

Theorem 5.6.17. Let C be a semisimple abelian 
ategory. Then MS data for C

is the same as a non-degenerate representation � of the Moore{Seiberg tower MS

in C with the additional normalization 
ondition �(�) = id: Ve


f

! Ve


f

, where �

is the marking graph with one vertex and no edges.
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Proof. Given a 
olle
tion of MS data, let us 
onstru
t a representation � of

the towerMS. For a marking graph m, de�ne the fun
tor �(m) : C

�Ext(m)

! Ve


f

similarly to (5.4.3). In other words, if W

v

are the obje
ts assigned to the external

verti
es v 2 Ext(m), then we let

�(m)(fW

v

g) =

O

u2Int(m)

hX

e

1

u

; : : : ; X

e

k

u

u

i;

where e

1

u

; : : : ; e

k

u

u

are the edges adja
ent to u, in the order de�ned by u, and X

e

=

W

v

if e 
onne
ts u with an external vertex v, or X

e

= R if e 
onne
ts two internal

verti
es.

The de�nition of the fun
torial isomorphisms whi
h we assign to the morphisms

of graphs is obvious. We also have obvious isomorphisms �(m

1

tm

2

) ' �(m

1

) 


�(m

2

) and �(G

�;�

(m)) ' G

�;�

(�(m)); in the latter isomorphism both sides 
oin
ide

with �(m)(: : : ; R

(1)

; : : : ; R

(2)

; : : : ).

Now, a 
omparison of the relations MS1{MS7 and the relations MF1{MF7,

used in the de�nition ofM

0

, shows that the so de�ned � is indeed a representation

of MS.

Conversely, given a representation � of the tower MS, de�ne the MS data as

follows:

hW

1

; : : : ;W

n

i = �(m

n

)(W

1

; : : : ;W

n

)

wherem

n

is the \standard" marking graph, with one internal vertex and n external

verti
es. Again, it is 
lear how to de�ne the isomorphisms Z; �;G and 
he
k that

all the relations are satis�ed.

It is 
lear by its de�nition that the towerMS is just the proje
tion on the level

of marking graphs of another tower PTei
h

0

: the parametrized Tei
hm�uller tower

in genus zero. On its hand, PTei
h

0

is the genus zero part of a tower PTei
h whi
h

appeared impli
itly in Se
tion 5.2 and whi
h we now pro
eed to de�ne.

Example 5.6.18. The parameterized Tei
hm�uller tower PTei
h is the tower of

groupoids de�ned as follows.

Obje
ts: all pairs (�;M), where � is an extended surfa
e andM = (C; f 

a

g)

is a parameterization of � (see De�nition 5.2.1).

Morphisms: Mor((�

1

;M

1

); (�

2

;M

2

)) 
onsists of all pairs (f; ') where f : �

1

�

�!

�

2

is a homeomorphism of extended surfa
es and ' is a path in M(�

2

)


onne
ting f(M

1

) with M

2

. The 
omposition of morphisms is given by

(f; ') Æ (g;  ) = (f Æ g; ' Æ f( )).

Boundary fun
tor: A(�;M) = A(�) = �

0

(��) | the set of boundary 
om-

ponents of �.

Disjoint union and ;: the usual ones.

Gluing: G

�;�

(�;M) = (t

�;�

(�);t

�;�

M), where t

�;�

(�) is obtained from �

by gluing the boundary 
omponents �; �, and the parameterization t

�;�

M

is obtained from M by adding � = � as a new 
ut and keeping the homeo-

morphisms  

a

un
hanged.

Note that by Theorem 5.2.9 the path ' is uniquely de�ned by f , so we 
ould

as well omit ' from the above de�nition of morphisms. However, it will be useful

for us to have the de�nition in this form.
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Now we 
an reformulate the main results of the previous se
tions in a mu
h

more transparent way.

Theorem 5.6.19. (i) The towers of groupoids Tei
h and PTei
h are equivalent.

Similarly, their genus zero parts Tei
h

0

and PTei
h

0

are equivalent.

(ii) The towers PTei
h

0

and MS are equivalent.

Proof. (i) To prove the �rst statement, 
onsider the obvious forgetting fun
tor

PTei
h ! Tei
h. It suÆ
es to 
he
k that this fun
tor is bije
tive on morphisms.

By Theorem 5.2.9, for every two parameterizations M;M

0

of an extended surfa
e

� there exists a unique path in M(�) 
onne
ting them. Thus, in a pair (f; ') 2

Mor

PTei
h

, the path ' is uniquely determined by f , whi
h is equivalent to saying

that the forgetting fun
tor gives a bije
tion Mor

PTei
h

�

�! Mor

Tei
h

. The proof for

genus zero is 
ompletely parallel.

(ii) To prove the se
ond statement, 
onsider the fun
tor PTei
h

0

!MS whi
h

assigns to the pair (�;M) the marking graph ofM . Obviously, every marking graph


an be obtained in this way. Thus, it suÆ
es to prove that this fun
tor gives a

bije
tion of the spa
es of morphisms. This is immediate from 
omparing the moves

and relations and the following rigidity lemma.

Lemma 5.6.20. Let � be an extended surfa
e, M 2 M(�) be a parameteriza-

tion, and m the 
orresponding marking graph. Let f : �

�

�! � be a homeomorphism

whi
h preserves the graph m pointwise.

4

Then f is homotopi
 to identity.

This 
ompletes the proof of Theorem 5.6.19.

A 
omparison of the theorems above makes the relation between genus zero

modular fun
tors and weakly ribbon stru
tures on a semisimple 
ategory obvious.

5.7. Central extension of modular fun
tor

In Se
tion 5.5 we have 
onstru
ted a C-extended modular fun
tor (MF) starting

from any modular tensor 
ategory C satisfying p

+

=p

�

= 1. As with TQFT 
on-

stru
ted from C, the gluing axiom fails when p

+

=p

�

6= 1. There are two approa
hes

to deal with the general 
ase.

First, we 
an 
ontent ourselves with a modi�
ation of the gluing axiom, whi
h

says that it holds only up to a multipli
ative fa
tor. This is similar to the notion

of a proje
tive representation of a group.

The se
ond approa
h is to try to 
onstru
t a kind of a \
entral extension" of the

modular fun
tor. This was done independently by several authors; our exposition

follows an unpublished manus
ript [BFM℄ by Beilinson, Feigin, and Masur.

We begin with some preliminaries. Let V be a symple
ti
 real ve
tor spa
e

of dimension 2g, g 2 N. Let �

V

be the set of all Lagrangian subspa
es of V ,

i.e., maximal isotropi
 subspa
es of V . This is a 
ompa
t manifold. Let T

V

be

the Poin
ar�e groupoid of �

V

; by de�nition, obje
ts of this groupoid are points of

�

V

and morphisms are homotopy 
lasses of paths 
onne
ting two points. It is


onvenient to de�ne T

V

for V = 0 as the 
ategory with only one obje
t 0 and

Hom

T

0

(0; 0) = Z.

The proof of the following lemma is straightforward and will be omitted.

4

It is not suÆ
ient to require that f(m) = m, as f 
ould inter
hange 
omponents of m.
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Lemma 5.7.1. (i) For any two symple
ti
 ve
tor spa
es V

1

, V

2

, there exists a


anoni
al map �

V

1

� �

V

2

! �

V

1

�V

2

.

(ii) Let N � V be an isotropi
 subspa
e, i.e., su
h that the restri
tion of the

symple
ti
 form on N is 0. Then the spa
e N

?

=N is symple
ti
, and there exists a


anoni
al map �

N

?

=N

! �

V

whi
h assigns to a Lagrangian subspa
e L � N

?

=N

the subspa
e �

�1

(L) � N

?

� V , where � : N

?

! N

?

=N is the natural proje
tion.

The indu
ed map of fundamental groupoids T

N

?

=N

! T

V

is an equivalen
e.

Corollary 5.7.2. For any point a 2 �

V

, the fundamental group �

1

(�

V

; a) is

isomorphi
 to Z.

Corollary 5.7.2 implies that the group Z a
ts freely on Mor

T

V

(L

1

; L

2

) for any

L

1

; L

2

2 �

V

. (In other words, Mor

T

V

(L

1

; L

2

) is a Z-torsor .) Hen
e we have a

non-
anoni
al identi�
ation

Mor

T

V

(L

1

; L

2

)

�

�! Z:(5.7.1)

Let us 
hoose su
h identi�
ations for all L

1

; L

2

2 �

V

. If ' : L

1

! L

2

and  : L

2

!

L

3

are two morphisms in T

V

, 
orresponding to numbers m;n 2 Z, then in general

 ' : L

1

! L

3


orresponds to some p 6= m+ n. The di�eren
e

�(L

1

; L

2

; L

3

) := p�m� n(5.7.2)

is 
alled the Maslov index of the subspa
es L

1

; L

2

; L

3

.

Let � be an extended surfa
e, as in Se
tion 5.1. We denote by 
l(�) the surfa
e

without boundary obtained from � by gluing disks to all boundary 
ir
les, and let

H(�) := H

1

(
l(�);R):(5.7.3)

The interse
tion form makes H(�) a symple
ti
 spa
e of dimension 2g where g is

the genus of � (i.e., of 
l(�)). Introdu
e the notations

�

�

:= �

H(�)

; T

�

:= T

�

�

:(5.7.4)

When � is of genus zero, we have H(�) = 0 and �

�

is a point. In this 
ase, it is


onvenient to de�ne T

�

as the 
ategory with only one obje
t 0 and Hom

T

�

(0; 0) = Z.

The next lemma is left as an exer
ise.

Lemma 5.7.3. (i) There exists a 
anoni
al map a : �

�

1

��

�

2

! �

�

1

t�

2

. (How-

ever, it is not a homeomorphism.)

(ii) Let the surfa
e � be obtained by sewing two surfa
es along one boundary


omponent : � = �

1

t

�;�

�

2

. Then H(�

1

t �

2

) ' H(�). Therefore, there exists a


anoni
al homeomorphism g

�;�

: �

�

1

t�

2

�

�! �

�

.

(iii) Let � be obtained from �

0

by gluing two boundary 
ir
les �

1

; �

2

in the

same 
onne
ted 
omponent : � = t

�

1

;�

2

�

0

. These two 
ir
les give a 
y
le � 2

H(�). Then we 
laim that H(�

0

) ' �

?

=R�. Therefore, we have a 
anoni
al map

g

�

1

;�

2

: �

�

0

! �

�

whi
h indu
es an equivalen
e T

�

0

�

�! T

�

.

Exer
ise 5.7.4. Let � be an extended surfa
e, and let C be a 
ut system on �,

i.e., a �nite set of 
losed simple non-interse
ting 
urves on � su
h that the 
onne
ted


omponents �

a

of � n C have genus zero (
f. De�nition 5.2.1). By Lemma 5.7.3,

this de�nes a map

Q

�

�

a

! �

�

. Sin
e, by de�nition, ea
h �

�

a

is a point, this map

gives an element y

C

2 �

�

. Show that y

C

is the subspa
e in H

1

(
l(�);R) spanned

by the 
lasses [
℄; 
 2 C.
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Now we 
an de�ne the \
entral extension" of the Tei
hm�uller tower whi
h was

de�ned in Se
tion 5.6.

Definition 5.7.5. The 
entral extension

^

Tei
h of the Tei
hm�uller tower Tei
h

is the tower of groupoids de�ned as follows.

Obje
ts: all pairs (�; y), where � is an extended surfa
e and and y 2 �

�

.

Morphisms: Mor((�

1

; y

1

); (�

2

; y

2

)) 
onsists of all pairs (f; �), where f : �

1

�

�!

�

2

is an orientation preserving homeomorphism and � 2 Mor

T

�

2

(f

�

y

1

; y

2

).

Here f

�

: �

�

1

! �

�

2

is the map indu
ed from f .

Boundary fun
tor: A(�; y) = �

0

(��) is the set of boundary 
omponents of

�.

Disjoint union: (�

1

; y

1

) t (�

2

; y

2

) = (�

1

t �

2

; a(y

1

� y

2

)), where a : �

�

1

�

�

�

2

! �

�

1

t�

2

is as in Lemma 5.7.3(i). The obje
t ; is the obvious one.

Gluing: G

�;�

(�; y) = (t

�;�

(�); g

�;�

(y)), where g

�;�

: �

�

! �

t

�;�

(�)

is as in

Lemma 5.7.3(ii), (iii).

This groupoid is a 
entral extension of the usual Tei
hm�uller groupoid in the

following sense: we have an obvious fun
tor

^

Tei
h! Tei
h 
ompatible with all the

operations, and for ea
h (�; y) 2 Ob

^

Tei
h, the kernel of the map Aut

^

Tei
h

(�; y)!

Aut

Tei
h

(�) is Aut

T

�

(y) = Z (see (5.7.1)). In other words, denoting for an extended

surfa
e � and y 2 �

�

the extended mapping 
lass group by

^

�(�; y) := Aut

^

Tei
h

(�; y);(5.7.5)

(up to an isomorphism, this does not depend on the 
hoi
e of y), we 
an write the

following exa
t sequen
e:

0! Z!

^

�(�; y)! �(�)! 0:(5.7.6)

Note that for � of genus zero, �

�

is a point, and we have a 
anoni
al isomorphism

^

�(�) = Z� �(�), i.e., the above exa
t sequen
e splits. For positive genus, this is

not so.

Example 5.7.6. Let � = S

1;1

be the torus with one pun
ture, and let �; �

be the meridian and the parallel of the torus, so that H(�) = R[�℄ � R[�℄ (see

Figure 5.19). Then �

�

= RP

1

= S

1

. Let s; t 2 �

1;1

be the elements of the mapping


lass group de�ned in Example 5.1.11.

β
α

Figure 5.19

For y = [�℄ we will des
ribe the 
entral extension

^

�(�; y). Note that t

�

([�℄) =

[�℄, s

�

[�℄ = [�℄. Let us 
hoose a path � in �

�


onne
ting the points [�℄ and [�℄.
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Now, de�ne elements

^

t; ŝ; 
̂ 2

^

�(�; y) by

^

t = (t; id), ŝ = (s; �), 
̂ = (
; id), where


 = s

2

a
ts on H(�) by v 7! �v, and thus, a
ts trivially on �

�

. Then we 
laim

that the group

^

�(�; y) is generated by the elements

^

t; ŝ; 
̂; 
 with the relations

ŝ

2

= 

̂; (ŝ

^

t)

3

= ŝ

2

; 
; 
̂ are 
entral,(5.7.7)

where 
 = (id; 
) is the generator of the fundamental group �

1

(�

�

; y) = Z.

Similarly, if we 
onsider a torus without pun
tures, then the mapping 
lass

group �(S

1;0

; y) is generated by the same elements with the additional relation


̂

2

= 1. The proof of both of these statements is left to the reader as an exer
ise.

Remark 5.7.7. One sees that for � = S

1;1

, the exa
t sequen
e (5.7.6) trivially

splits. For � = S

1;0

, we have �(�) = SL

2

(Z), and one 
an 
he
k that the above

exa
t sequen
e does not split, but it \splits over Q": if we denote by

^

�(�; y)

Q

=

^

�(�; y)�

Z

Q the group obtained by adding to

^

�(�) fra
tional powers of 
, then the

exa
t sequen
e

0! Q !

^

�(�; y)

Q

! �(�)! 0

does split. However, it 
an be shown that for g > 1 the exa
t sequen
e (5.7.6) for

�

g;0

does not split even over Q.

Now we 
an formulate the notion of a modular fun
tor with a 
entral 
harge.

Re
all that we have de�ned the notion of a representation of a tower of groupoids

in an abelian 
ategory C (see De�nition 5.6.12), and the modular fun
tor 
an be

de�ned as a representation of the Tei
hm�uller tower (see Theorem 5.6.13).

Definition 5.7.8. Let C be an abelian 
ategory. A C-extended modular fun
tor

with (multipli
ative) 
entral 
harge K 2 k

�

is a representation of the tower

^

Tei
h,

with the additional normalization 
ondition �(S

2

) = k, and su
h that for every

extended surfa
e � and y 2 �

�

the generator 
 of Aut

T

�

(y) = Z� Aut

^

Tei
h

(�; y)

a
ts as multipli
ation by K.

For those readers who do not like the language of towers of groupoids, this

de�nition 
an be spelled out expli
itly as follows.

Definition 5.7.9. A modular fun
tor with (multipli
ative) 
entral 
harge K 2

k

�

is the following 
olle
tion of data:

(i) Let � be a 
ompa
t oriented surfa
e with boundary, with a point and an

obje
t of C atta
hed to any boundary 
ir
le, and let y 2 �

�

. To any su
h (�; y)

the modular fun
tor assigns a �nite dimensional ve
tor spa
e �(�; y).

(ii) To any morphism

~

f : (�; y) ! (�

0

; y

0

) the modular fun
tor assigns an iso-

morphism of the 
orresponding ve
tor spa
es

~

f

�

: �(�; y)

�

�! �(�

0

; y

0

).

(iii) Fun
torial isomorphisms �(;)

�

�! k, �(�

1

t �

2

; y

1

� y

2

)

�

�! �(�

1

; y

1

) 


�(�

2

; y

2

).

(iv) A symmetri
 obje
t R 2 ind�C

�2

(see Se
tion 2.4).

(v) Gluing isomorphism: Let �

0

be the surfa
e obtained from � by 
utting

� along a 
ir
le. Then we require that there is an isomorphism

�(�

0

; y;R

(1)

; R

(2)

)! �(�; g(y))(5.7.8)

where g is as in Lemma 5.7.3(ii), (iii).

These data have to satisfy the same axioms as in De�nition 5.1.12 and the

following additional relation. Note that for every (�; y) the group �

1

(�

�

; y) is
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anoni
ally isomorphi
 to Z. (The orientation of � gives a 
hoi
e for the sign of

the generator 
.) Then we require that 


�

: �(�; y) ! �(�; y) be a multipli
ation

by K.

Theorem 5.7.10. Any modular tensor 
ategory gives rise to a modular fun
tor

with 
entral 
harge K = p

+

=p

�

. Conversely, if � is a C-extended modular fun
tor

with 
entral 
harge K, then it de�nes on C a stru
ture of a weakly ribbon 
ategory.

If this 
ategory is rigid, then C is a modular 
ategory with p

+

=p

�

= K.

Proof. The proof is similar to the proof in the 
ase of zero 
entral 
harge

(p

+

= p

�

). It is based on an analogue of Theorem 5.2.9, giving the set of moves

and relations among the parameterizations. However, now we have to extend the

notion of parameterization as follows.

Let � be an extended surfa
e and y 2 �

�

. An extended parameterization

^

M

is a pair (M;'), where M is a parameterization of � (see De�nition 5.2.1), and

' 2 Mor

T

�

(y; y

M

), where y

M

2 �

�

is the Lagrangian subspa
e de�ned by the 
ut

system C of M (see Example 5.7.4).

Sin
e the moves B;F; Z do not 
hange y

M

, we 
an lift ea
h of them to a move

between extended parameterizations by letting

^

B = (B; id), et
. We also have a

new move 
 : (M;')  (M;
 Æ '), where 
 is the generator of Aut

T

�

(y

M

; y

M

) =

Z. Finally, the move S 
an be lifted to a move

^

S as in Example 5.7.6. Then

ea
h of relations MF1{MF7 makes sense as a relation among the moves

^

Z; : : : ;

^

F .

As for relations MF8, MF9, they 
an be uniquely lifted to relations among the

moves between the extended parameterizations by repla
ing Z; : : : S by

^

Z; : : : ;

^

S

and inserting an appropriate power of 
 to make it into a 
losed loop in

^

M(�).

We will denote the 
orresponding axioms by MF

^

8, MF

^

9. Let us also add an axiom

MF

^

10 requiring that 
 be 
entral. Then it is easy to dedu
e from Theorem 5.2.9

that the 
orresponding 2-
omplex

^

M(�) is 
onne
ted and simply-
onne
ted.

Now to show that every MTC de�nes a modular fun
tor, we 
an follow the

same approa
h as before, i.e., �rst de�ne �(�; y;

^

M), and then assign to every move

^

E :

^

M  

^

M

0

an isomorphism �(�; y;

^

M) ! �(�; y;

^

M

0

) so that all the relations

MF1{MF

^

10 are satis�ed.

Let us de�ne �(�; y;

^

M) = �(�;M) (thus, it does not depend on the 
hoi
e of

y and ') and assign to the moves

^

Z;

^

B;

^

F the same isomorphisms as before (i.e.,

Z; �;G). Assign to 
 the isomorphism given by multipli
ation by p

+

=p

�

. Finally,

assign to

^

S the operator S=

p

p

+

=p

�

, where S is de�ned in Theorem 3.1.17. Expli
it


al
ulation shows that for so de�ned

^

S, relations MF

^

8, MF

^

9 are satis�ed. For MF

^

8,

this 
al
ulation essentially 
oin
ides with the one done in Example 5.7.6.

The proof in the opposite dire
tion is absolutely parallel to the one for the

genus zero 
ase; thus, we omit it.

5.8. From 2D MF to 3D TQFT

Starting from a modular tensor 
ategory C with p

+

=p

�

= 1, we have 
on-

stru
ted a C-extended 3-dimensional Topologi
al Quantum Field Theory (Se
tion 4.4)

and a C-extended 2-dimensional modular fun
tor (Se
tion 5.1). We have also

showed that 
onversely, if C is a semisimple abelian 
ategory then any C-extended

2-dimensional modular fun
tor gives rise to a stru
ture of a modular 
ategory on C

(provided that the rigidity 
ondition is satis�ed).
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S
hemati
ally, we have:

C-extended 3D TQFT

MTC C

44jjjjjjjjjjjj

fn

&.UUUUUUUUUUU

UUUUUUUUUUU

C-extended 2D MF

:

This indi
ates that there must be also a dire
t 
onstru
tion relating (C-extended)

3D TQFT with (C-extended) 2D MF.

3D TQFT ! 2D MF. This impli
ation has already been dis
ussed before:

in fa
t, the axioms of 2D MF (ex
ept the gluing axiom) are part of the axioms

of 3D TQFT, 
f. Remark 5.1.2. To prove that the gluing axiom also follows from

the axioms of 3D TQFT, we again use the version of extended surfa
e from De�ni-

tion 5.1.10.

Let �

0

V

be the surfa
e obtained from a surfa
e � by 
utting a 
ir
le from it

and labeling the two new boundary 
omponents with obje
ts V and V

�

, as in

De�nition 5.1.12 (see Figure 5.20).

2

ΣcutΣ p

c

p

c c

p1 2

1

Figure 5.20

In a

ordan
e with the proof of Proposition 5.1.8, instead of �

0

V

we 
onsider the

surfa
e �

00

= �

00

V

obtained from �

0

V

by repla
ing the boundary 
ir
les with marked

points with tangent ve
tors at them. We 
an shrink �

00

, so that it is \inside" �, as

in Figure 5.21 below.

p cut V *V

Σ Σ
Σ

p p
1 2

Figure 5.21

Then we \�ll in the spa
e between � and �

00

", i.e., we 
onsider a 3-manifoldM

with boundary �M = �t�

00

(see Figure 5.22). This M is a C-marked 3-manifold,

hen
e it gives a ve
tor

�(M) 2 �(�M) ' Hom

k

(�(�

00

); �(�)):

Considered as a map �(�

0

V

) ! �(�), this gives the required gluing map (5.1.1).

One 
an easily 
he
k that this de�nition is 
orre
t and satis�es all the properties

of De�nition 5.1.12.
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Figure 5.22

2D MF ! 3D TQFT. This impli
ation is mu
h more diÆ
ult and, to the

best of our knowledge, no 
omplete 
onstru
tion of it is known. There are two ap-

proa
hes: the �rst one, due to L. Crane [C℄ (see also [Ko℄), is based on the Heegaard

splitting; the se
ond one, due to M. Kontsevi
h and to I. Frenkel (unpublished), is

based on Morse theory.

Following Crane [C℄, we will 
onstru
t (non-extended) 3D TQFT starting from

a C-extended 2D MF. We do not know how to extend this 
onstru
tion to a C-

extended 3D TQFT.

We will use the following well-known theorem in topology (for referen
es, see

[Cr℄).

Theorem 5.8.1 (Reidemeister{Singer). Let M be a 
onne
ted 
losed oriented

3-manifold. Then:

(i) M 
an be presented as a result of gluing of two solid handlebodies :

M =M

'

= H

1

t

'

H

2

;

where ' : �H

1

�

�! �H

2

. Su
h a presentation is 
alled a Heegaard splitting.

(ii) Two su
h M

'

and M

'

0

are homeomorphi
 i� ' : �H

1

�

�! �H

2


an be

obtained from '

0

: �H

0

1

�

�! �H

0

2

by a sequen
e of the following moves :

(a) H

1

= H

0

1

, H

2

= H

0

2

, '

0

is isotopi
 to '.

(b) H

1

= H

0

1

, H

2

= H

0

2

, '

0

= y Æ ' Æ x, where x 2 N

H

1

, y 2 N

H

2

and

N

H

:= fhomeomorphisms of �H whi
h extend to Hg:

(
) Stabilization. Let H

0

1

= H

1

#T , H

0

2

= H

2

#T , where T is a solid torus and

# denotes a 
onne
ted sum of topologi
al spa
es (see Figure 5.23 below). Let '

0

=

'#s, where s : �T

�

�! �T is the homeomorphism of the 2-torus whi
h has a matrix

�

0 �1

1 0

�

in the standard basis f�; �g of H

1

(�T;R). Then M

'

0

'M

'

#S

3

'M

'

.

# =

Figure 5.23. Conne
ted sum of 3-manifolds.

Now suppose that we have a C-extended modular fun
tor. Let H be a solid

handlebody whose boundary �H is a surfa
e of genus g. We will 
onstru
t a ve
tor

v

0

(H) 2 �(�H) as follows.
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Choose some non-interse
ting \
uts", i.e., disks embedded in H , whi
h 
ut

H into 
ontra
tible pie
es. This also gives a system of 
uts on �H and thus, a

de
omposition of �H into spheres with holes: �H =

S

�

a

. Consider all possible

labelings i : f
utsg ! I of the 
utting 
ir
les by simple obje
ts of C (see Figure 5.24).

3iV2iV1

iV6i

V

V4

iV5

i

Figure 5.24

Then, by the gluing axiom,

�(�H) '

M

i

O

a

�(�

a

; fV

"

i




g


���

a

):

Here �

a

are the 
omponents of �H , the notation 
 � ��

a

means that the 
ut 
 is

one of the boundary 
omponents of �

a

, and V

"

is either V or V

�


hosen so that

every V

i




appears in the tensor produ
t on
e as V

i




and on
e as V

�

i




.

Let us 
hoose all i




= 0, i.e., all V

i




= 1. Then �(�

a

;1; : : : ;1) = k. Therefore,

this gives a ve
tor

v

0

(H) =

O

a

(1 2 �(�

a

;1; : : : ;1)) 2 �(�H):

(
ompare with Remark 4.5.4).

Theorem 5.8.2 (Crane [C℄). The ve
tor v

0

(H) does not depend on the 
hoi
e

of the 
uts. Moreover, v

0

(H) is N

H

-invariant.

Proof. Obviously, any two systems of 
uts of H into a union of solid balls 
an

be related to one another by a sequen
e of the following moves:

(a) the a
tion of N

H

, and (b) the F-move.

It is easy to see that v

0

(H) does not 
hange under the move (b). As for (a),

one needs a des
ription of the generators of N

H

. Su
h a des
ription is known

[Su℄. Then one 
he
ks that v

0

(H) is invariant under these generators|this is not

diÆ
ult|we refer to [C℄, [Ko℄ for the details.

The fa
t that v

0

(H) is N

H

-invariant follows from (a).

Now we will use Theorems 5.8.1 and 5.8.2 to 
onstru
t invariants of 
losed

3-manifolds.

Let M = M

'

= H

1

t

'

H

2

be as in 5.8.1. The map ' : �H

1

�

�! �H

2

gives an

isomorphism of ve
tor spa
es '

�

: �(�H

1

)

�

�! �(�H

2

) = �(�H

2

)

�

. We de�ne

�(M) := D

g�1

('

�

(v

0

(H

1

)); v

0

(H

2

));(5.8.1)

where D = s

�1

00

is de�ned by (3.1.15).

The prefa
tor D

g�1

is 
hosen in order that �(M) be invariant under the stabi-

lization move 5.8.1(
). Indeed, let H

0

= H#T . Then �H

0

= �H#�T , where �T is
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the 2-torus. By the 
onstru
tion of v

0

(H

0

) it is 
lear that

v

0

(H

0

) = v

0

(H)
 v

0

(T ):

Then

�(M

0

) = D

g

(('#s)

�

(v

0

(H

1

)
 v

0

(T )); v

0

(H

0

2

))

= �(M)D (s

�

v

0

(T ); v

0

(T )) = �(M)Ds

00

= �(M):

Therefore, we have 
onstru
ted an invariant � of 
losed 3-manifolds. To 
on-

stru
t 3D TQFT, we have to de�ne �(M) for any 3-manifold M with boundary.

To do so, we need a variant of Heegaard splitting for 3-manifolds with boundary.

There is su
h a theorem, due to Motto [Mo℄. His result is similar to what we had

before, only one has to 
onsider not only handlebodies but also \hollow handle-

bodies". A hollow handlebody is a handlebody with some parts of its interior 
ut

out. Hen
e, it has both \inner" and \outer" boundary. We glue two su
h hollow

handlebodies by identifying their outer boundaries, the remaining inner boundaries

give the boundary of the resulting 3-manifold.

Then we 
an repeat the above 
onstru
tion of �(M) for manifolds M with

boundary. This gives the impli
ation

C-extended 2D MF! (non-extended) 3D TQFT:

In order to go one step further, i.e., to 
onstru
t a C-extended 3D TQFT, one needs

an analog of Heegaard splitting and Reidemeister{Singer theorem for manifolds with

boundary and marked points. To the best of our knowledge, su
h a result is not

available at the moment. Hopefully, this is only a temporary diÆ
ulty. Finally, let

us note that if we start with a non-extended 2D MF, without gluing axiom, the


onstru
tion of 3D TQFT would fail.


