CHAPTER 5

Modular Functor

Given a modular tensor category C, in the previous chapter we constructed
a 3-dimensional Topological Quantum Field Theory (3D TQFT). Moreover, this
3D TQFT was based on an extended notion of a manifold (a usual manifold with
additional data). In this chapter, we will show that the notion of a modular tensor
category (MTC) is essentially equivalent to some geometric construction in dimen-
sion 2. The right notion here is that of a modular functor, which was introduced
by Segal (see [S]). Our exposition mostly follows the papers [S, MS1, MS2, T
and folklore of mathematical physicists.

5.1. Modular functor

DEFINITION 5.1.1. A (topological) d-dimensional modular functor (MF for short)
is the following collection of data:
(i) A vector space 7(IN) assigned to any oriented compact d-manifold N without
boundary.
(ii) An isomorphism f,: 7(Ny) — 7(Ns) of vector spaces assigned to every
homeomorphism f: N; = N, which depends only on the isotopy class of f.
(iii) Isomorphisms 7(0) = k, 7(Ny U N») — 7(Ny) ® 7(Ny), where k is the
base field.
These data have to satisfy the following axioms:
Multiplicativity: (fg)« = f«g«, ids = id.
Functoriality: the isomorphisms (iii) are functorial.
Compatibility: the isomorphisms of part (iii) are compatible with the canon-
ical isomorphisms N Uw = N, N1 LJ N2 = N2 LJ Nl, (N1 (] NQ) (] N3 =
N U (Ny U N3).
Normalization: We have an isomorphism 7(S?) = k, where S? is the d-
dimensional sphere.

Detailed statement of the functoriality and compatibility axioms can be found
in Remark 4.2.2, where the same conditions appear in the definition of TQFT.

REMARK 5.1.2. Any (d+1)D TQFT (see Definition 4.2.1) gives a d-dimensional
MF, because the axioms of a MF, except for the requirement that f, depends only
on the isotopy class of f, are contained in the axioms of a TQFT, and this last
condition is satisfied by Theorem 4.2.3.

This modular functor is unitary: in addition to the data above, there are func-
torial isomorphisms 7(¥) = 7(X)*, where ¥ is the manifold ¥ with opposite
orientation, which are compatible with the isomorphisms of part (iii).

DEFINITION 5.1.3. (i) We define a category I' with:
Objects: d-manifolds.
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94 5. MODULAR FUNCTOR

Morphisms: Morp (N, Ns) = isotopy classes of orientation-preserving home-
omorphisms Ny — Ns.

This is a symmetric tensor category with the “tensor product” given by disjoint
union, and the unit given by @. (Note that this category is not additive: one can
not add homeomorphisms!)

(ii) For a manifold N, its mapping class group T'(N) is the group of isotopy
classes of homeomorphisms N = N. In other words, I'(N) := Morp (N, N).

The category I is a groupoid, i.e., a category in which every morphism is in-
vertible. One easily sees that d-dimensional modular functor is the same as a
representation of the groupoid T, i.e., a tensor functor I' — Vec(k). This explains
the origin of the term “modular functor”.

In particular, by 5.1.1(ii), every MF defines a representation of the mapping
class group I'(N) of any d-manifold N on the vector space 7(V).

From now on, let us assume that d = 2. Then every connected compact oriented
surface is determined up to homeomorphism by its genus ¢, and defining a modular
functor is equivalent to defining for every g > 0 a representation of the mapping
class group I'y. We quote here some classical results regarding the mapping class
groups.

THEOREM 5.1.4 (Dehn). Let ¥ be a compact oriented surface, and let ¢ be a
simple closed curve on ¥. Define the Dehn twist t. € T'(X) by Figure 5.1.> Then
the elements t. generate the mapping class group T'(X).

FIGURE 5.1. Dehn twist.

This theorem was later refined by Lickorish [Li], who suggested a finite set
of Dehn twists generating I'(X). Finally, an approach allowing one to describe
the generators and relations in I'(X) was given in [HT]. For surfaces of genus g
with 0 or 1 boundary components (or marked points), the ideas of [HT] were fully
developed in [Waj], where a complete set of generators and relations for I'y =T’ o
and I'y 1 is written.

EXAMPLE 5.1.5. Let ¢ = 1, i.e., let ¥ be a two-dimensional torus. Then, by
Theorem 4.1.3, T'y ~ SLy(Z), which can be described as the group with generators

Here we put some auxiliary lines on the surface to demonstrate the action of the home-
omorphisms. These lines are for illustration purposes only. Note that c¢ is not required to be
oriented.
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s,t and relations (st)® = s2,s* = 1 (which implies s>t = ts%). It can also be
generated by the elements

1 1 1 0
ta—t—<0 1): tb—<1 1)7

which correspond to Dehn twists around the meridian and the parallel of the torus.

It turns out that for d = 2 the notion of modular functor can be generalized by
allowing surfaces with “holes”, i.e., with boundary.

DEFINITION 5.1.6. An extended surface is a compact oriented surface X, possi-
bly with boundary, together with an orientation-preserving parameterization 7;: (9%); —»
St of every boundary circle. Here (9X); is considered with the orientation induced
from ¥, and S! = {z € C | |2| = 1} with the counterclockwise orientation.

By a genus of an extended surface, we will mean the genus of the closed surface
cl(X) obtained by “patching the holes of X7, i.e., gluing a disk to every boundary
circle.

A homeomorphism of extended surfaces f: ¥ — ¥ is an orientation-preserving
homeomorphism which also preserves parameterizations.

Finally, for an extended surface (Z,7;: (0X); — S') we define the operation

of orientation reversal by (X, —7;) (note the minus sign!).

The notion of isotopy of homeomorphisms is trivially generalized to this case,
as well as the notion of disjoint union. Thus, we can define the extended groupoid
Teich similarly to Definition 5.1.3(i).

DEFINITION 5.1.7. (i) The (extended) Teichmiiller groupoid Teich is the cate-
gory with objects extended surfaces, and morphisms isotopy classes of homeomor-
phisms of extended surfaces (see Definition 5.1.6).

(ii) For any extended surface X, its mapping class group T'(X) is the group of all
isotopy classes of homeomorphisms ¥ = ¥. (Sometimes the name “mapping class
group” is used for the smaller group I'V(X) of all isotopy classes of homeomorphisms
¥ = ¥ which act trivially on the set of connected components of the boundary.) If
¥ is a surface of genus g with n boundary components, we will denote ['(X) =Ty ,,.

Again, it can be shown that I'(X) is generated by Dehn twists (a complete set
of relations for T, is given in [Gel], [Luo], [Ge2]), and Ty, is generated by Dehn
twists and the “braiding operation” shown in Figure 5.2.2

OG- —

FI1GURE 5.2. Braiding.

It will be useful in the future to give an alternative definition of an extended
surface. We give below two such definitions. Both of them are equivalent to Defi-
nition 5.1.6 in the following sense:

2See the footnote on page 94.
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PROPOSITION 5.1.8. The extended groupoids Teich, defined by Definitions 5.1.6,
5.1.9 and 5.1.10, are equivalent as categories, and this equivalence preserves the op-
eration of orientation reversal.

DEFINITION 5.1.9. An extended surface is an oriented compact surface with
boundary and with a specified point p; on every component of the boundary.

A homeomorphism of extended surfaces is an orientation-preserving homeo-
morphism ¥ — ¥’ which maps marked points to marked points.

Orientation reversal is defined in the obvious way, by reversing the orientation
of ¥ while leaving the points p; unchanged.

DEFINITION 5.1.10. An extended surface is an oriented compact surface X with-
out boundary, with marked points z;, and with non-zero tangent vectors v; attached
to each marked point.

A homeomorphism of extended surfaces is an orientation-preserving homeomor-
phism ¥ — ¥’ which maps marked points to marked points, and marked tangent
vectors to marked tangent vectors.

Orientation reversal is defined by (%, z;,v;) = (%, 2i, —v;).

This definition is analogous to Definition 4.4.1.

PROOF OF PROPOSITION 5.1.8. To establish the equivalence of Definitions 5.1.6
and 5.1.9, note that a parameterization of a boundary circle gives a distinguished
point p; = ;' (i). Since the set of all homeomorphisms S' 5 S' preserving ori-
entation and the distinguished point i € S! is contractible, this is an equivalence
of categories. Similarly, to establish the equivalence of Definitions 5.1.6 and 5.1.10,
note that given ¥ as in Definition 5.1.6, we can glue to ¥ n copies of the standard
disk D = {z € C | |z| < 1} (with reversed orientation), using the identifications of
the boundary circles of ¥ with S'. This gives a new surface cl(X) without bound-
ary, with marked points images of 0 € D, and tangent vectors images of the unit
vector going along the real axis in D. As before, it is easy to check that this gives
an equivalence of categories. |

ExAMPLES 5.1.11. (i) Let ¥ be a two-dimensional torus “with one puncture”:
0% ~ S' and ¥ has genus 1. Then the mapping class group I'1; = I'(2) is
generated by the elements s,t with the relations (st)®> = s2,s? is central (compare
with Example 5.1.5). Moreover, s* is the inverse of the Dehn twist around the
puncture. The easiest way to check this is to use the realization of the torus with
one puncture as the quotient R? /Z? with a non-zero tangent vector at the origin.

(ii) Let X, = R?, with n marked points on the z-axis and with the tangent
vector v; going along this axis in positive direction (all such surfaces are canoni-
cally isomorphic). This surface is not compact, so it does not formally satisfy our
definition, but let us ignore this. Then the group I'(X) is isomorphic to the group
F'B,, of all framed braids with n strands. This group is a semidirect product of the
usual braid group B, and Z" (see Definition 1.2.1). In general, there is indeed a
relationship between the group I'(X), where ¥ is an extended surface with n holes,
and the framed braid group F B, (cl(X)), where cl(X) is the closed surface obtained
by patching the holes of ¥. This relationship is studied in detail in [B2].

The most important difference between extended surfaces and usual surfaces is
that extended surfaces can be glued (or sewed) together along the boundary circles.
Therefore, if we additionally require a modular functor to behave nicely under this
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operation, we could define 7(X) by gluing ¥ from simpler pieces. This motivates
the following definition.

DEFINITION 5.1.12. Let C be an abelian category over a field &, and let R be a
symmetric object in ind—C®? (see Section 2.4). Then a C-extended modular functor
is the following collection of data:

(i) To every extended surface ¥ is assigned a polylinear functor 7(X): Xm0 (9%)
Vecy, where 1 (9X) is the set of boundary components (or punctures, depending
on the point of view) of ¥. In other words, for every choice of objects W, € C at-
tached to every boundary component of ¥ (so, a runs through the set of connected
components of %) is assigned a finite-dimensional vector space 7(X; {W,}), and
this assignment is functorial in W,,.

(ii) To every homeomorphism f: 3 = X' is assigned a functorial isomorphism
o T(Z) = 7(2).

(iii) Functorial isomorphisms 7() — k, 7(N1 U Na) — 7(Ny) ® 7(N2).

(iv) Gluing isomorphism: Let ¢ C ¥ be a closed curve without self-intersections
and p be a marked point on ¢. Cutting ¥ along ¢, we obtain a new surface ¥’ (which
may be connected or not). ¥’ has a natural structure of an extended surface in the
sense of Definition 5.1.9 which has the same boundary components as ¥ plus two
more components ¢q, ¢z, which come from the circle ¢ (with marked points p1, po
coming from p).

P,

C2

FI1GURE 5.3. Cutting of a surface.

Then we are given a functorial isomorphism
(5.1.1) (X {W.}, RV, R®) 5 (5 {W,)),

where we use the notation of Section 2.4.
The above data have to satisfy the following axioms:
Multiplicativity: (fg). = f«g«, ids = id.
Functoriality: all isomorphisms in parts (iii), (iv) above are functorial in X.
Compatibility: all isomorphisms in parts (iii), (iv) above are compatible with
each other.
Normalization: 7(5%) = k.

As before, we leave it to the reader to write the explicit statements of the
functoriality and compatibility axioms, taking as an example the definitions in
Section 4.2. From now on, we will always work with extended modular functors
(unless otherwise specified).

DEFINITION 5.1.13. A C-extended MF is called non-degenerate if for every ob-
ject V€ ObC there exists an extended surface ¥ and {W,} C ObC such that
T(3;V,{Wa}) #0.
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The main goal of this chapter is to show that for a given semisimple abelian
category C defining a non-degenerate C-extended MF is essentially equivalent to
defining a structure of a modular tensor category on C, with the object R = @ V; K
V¥, where {V;} are representatives of the equivalence classes of simple objects in
C. The precise statements are given in Theorems 5.4.1 and 5.5.1.

Finally, let us introduce the notion of a unitary MF.

DEFINITION 5.1.14. An extended modular functor is called unitary, if in addi-
tion to the data above, we are also given functorial isomorphisms 7(X) = 7(X)*,
where ¥ is the manifold £ with opposite orientation. These isomorphisms must be
compatible with the isomorphisms f,. and the isomorphisms of part (iii) of Defini-
tion 5.1.12 in the natural way. Also, we require the following compatibility of the

unitary structure with the gluing isomorphism. Let (,)s: 7(X) ® 7(X) — k be the

pairing induced by the isomorphism 7(X) ~ L(E)*. Let ¥,%¥' be as in part (iv)

of Definition 5.1.12, and for f € 7(X),g € 7(X), write f = >_ fi, g = > ¢; with
fie (XA, By), gi € T(fl;Bi,Ai), using (5.1.1). Then:

(5.1.2) (f,9)2 =D ailfi, gi)sr

for some non-zero constants a; which do not depend on X.

5.2. The Lego game
Let us denote by Sy, “the standard sphere with n holes”:
(5.2.1)  So,n=CP'\{Dy,...,D,}, Dj={z]|lz—zj|<e}, 21 << zn,

where € > 0 is small enough so that the disks D; do not intersect, and let us mark
on each boundary circle a point p; = z; — €i. This endows Sy, with the structure
of an extended surface which is independent of the choice of z;,e (i.e., surfaces
obtained for different choices of z;, ¢ are canonically homeomorphic). Note that the
set of boundary components of the standard sphere is naturally indexed by num-
bers 1,...,n; we will use bold numbers for denoting these boundary components:
m0(0So.n) = {1,...,n}.

Obviously, every extended surface ¥ can be obtained by gluing together stan-
dard spheres. Therefore, using the gluing axiom we can define the vector space 7(X)
once we know 7(Sp ). However, the same surface ¥ can be obtained by gluing the
standard spheres in many ways, and in order for 7(X) to be correctly defined we
need to construct canonical isomorphisms between the resulting vector spaces. This
leads to the following problem.

DEFINITION 5.2.1. Let ¥ be an extended surface. A parameterization of ¥ is
the following collection of data, considered up to isotopy:

(i) A finite set C' = {eq,...} of simple non-intersecting closed curves (cuts) on
¥, with one point marked on every cut (the cuts do not have to be ordered).

(ii) A collection of homeomorphisms 9,: £, — Sp ., where ¥, are the con-
nected components of ¥\ C.

We denote the set of all parameterizations of ¥ by M (X).

Our goal is to construct some number of edges (“moves”) and 2-cells (“relations
among moves”) which would turn M (X) into a connected and simply-connected
2-complex. This problem was first considered by Moore and Seiberg [MS1], who
conjectured a set of moves and relations. However, their paper contains certain gaps



5.2. THE LEGO GAME 99

making it not rigorous even by the physicists standards. An accurate proof was
recently found independently by the authors [BK], and by [FG]. Our exposition
follows the paper [BK] with minor changes.
Define the homeomorphisms
z: SO,n l) So,n,
(5.2.2) N
b: 5073 — 5073
as follows: z is rotation of the sphere which preserves the real axis and induces a
cyclic permutation of the holes 1 — 2 +— -+ = n— 1, and b is the braiding of the
2nd and 3rd punctures, as shown in Figure 5.2.
Also, for k,1 > 0, denote by So g4+1 Uk+1,1 So,+1 the surface obtained by iden-
tifying the (k + 1)-st hole of Sp 41 with the first hole of Sp 41, and define the
map

(5.2.3) it Sok+1 Ukt1,1 So,i+1 = So,k+1

by the condition that it maps the first hole of Sy ;41 to the first hole of Sy ;4; and
preserves the real axis (these properties define ay; uniquely up to isotopy).

Now, let us define the following edges (“simple moves”) in M (X). To avoid
confusion, we will write E: My ~» M, if the edge E connects parameterizations
My, M.

Z-move (rotation): If M = (C,{¢,}) € M(X) and I; is one of the connected

components of ¥ \ C, then we define an edge

Z=2Zi: M~ (Cy{ta, 2 0P }azti)-

B-move (braiding): If M = (C,{¢,}) € M(X) and ¥, is a connected com-
ponent of ¥\ C' which has three holes, then we define an edge

B =B;: M ~ (C,{ta,b0t; Yari)-

F-move (fusion): If M = (C,{¢,}) € M(X) and ¢ € C separates two
different components ¥;,¥;, with £ + 1 and [ 4+ 1 holes respectively, and
Yi(c) =k +1,9j(c) = 1, then we define an edge

F=F.: M~ (C\A{c}, {ta, ari o (i Uj) fazting)-

Before describing the relations, it is convenient to introduce some notation.
First of all, let us place on each of the standard spheres Sy, the graph mg as
shown in Figure 5.4 (for n = 4). This graph has one internal vertex, marked by
a star; all other vertices are 1-valent and coincide with the marked points on the
boundary components of Sy . The graph has a distinguished edge—the one which
connects the vertex x with the boundary component 1; in the figure, this edge is
marked by an arrow. Also, this graph has a natural cyclic order on the set of all
edges, given by 1 < --- < n < 1. Whenever we draw such a graph in the plane, we
will always do it in such a way that this order coincides with the clockwise order.

Every parameterization M of a given surface ¥ gives rise to a graph m =
U, 1(mo) on ¥, which we call the marking graph of M. It is easy to show that a
parameterization is uniquely determined by C' and m; therefore, these graphs give
a way to visualize the parameterizations. In some cases, we will draw such graphs
on ¥ to illustrate a certain sequence of moves. However, in many cases it suffices
just to draw the corresponding graphs on the plane, and then the moves can be
reconstructed uniquely.
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FIGURE 5.4. A standard sphere (with 4 holes).

EXERCISE 5.2.2. Show that the moves Z, B, F' connect the parameterizations
corresponding to the marking graphs shown in Figures 5.5, 5.6 and 5.7 below.

FIGURE 5.7. F-move (“fusion” or “cut removal”).

Next, one often needs compositions of the form Z*F.(Z™ U Z}'), where c is
a cut separating components ¥; and ¥; (compare with the definition of the F-
move). We will call any such composition a generalized F-mowve; for brevity, we will
frequently denote it just by F.. The Rotation axiom formulated below implies that
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such a composition is uniquely determined by the original parameterization M and
by the choice of the distinguished edge for the resulting parameterization F.(M).
Moreover, the Symmetry of F axiom along with the commutativity of disjoint union,
also formulated below, imply that if we switch the roles of ¥; and X5, then we
get the same generalized F-move. Thus, the generalized F-move is completely
determined by the marking graph of M and by the choice of the distinguished edge
for the resulting marking graph of F.(M).

Finally, let M € M(X) and let ¥; be one of the components of ¥. As discussed
before, the parameterization v; defines an order on the set of boundary components
of 3;. Let us assume that we have a presentation of m5(0%;) as a disjoint union,
m0(0%;) = I U I, U I3 U Iy, where the order is given by I} < Ir < I3 < I; (some
of the I, may be empty). Then we define the generalized braiding move By, 1, to
be the product of simple moves shown in Figure 5.8 below (note that we are using
generalized F-moves, see above). It is easy to show that this figure uniquely defines
the cuts ¢y, c2, c3 and thus, the generalized braiding move B.

I, Iy Iy
~ T

FIGURE 5.8. Generalized braiding move.

Now let us impose some relations among these moves:

MF1: Rotation axiom: If ¥; is a component with n holes, then Z} =id.

MF2: Symmetry of F: If ¢,¥;,¥; are as in the definition of the F-move,
then ZF—'F, = F.(Z; ' U Z;).

MF3: Associativity of F: If ¥ is a connected surface of genus zero, and
M = (C,m) € M(Y) is a parameterization with two cuts, C = {e1,ca},
then

(5.2.4) F.F.,(M)=F.F. (M)

(here F' denotes generalized F-moves).

MF4: Commutativity of disjoint union: If E;, E> are simple moves that
involve non-intersecting sets of components, then F Es = FEsF .

MF5: Cylinder axiom: Let Sy 2 be a cylinder with boundary components
ap, a1 and with the standard parameterization My = (0,id). Let ¥ be an
extended surface, M € M(X) be a parameterization, and « be a boundary
component of ¥. Then, for every move E: M ~ M' we require that the
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following square be commutative:

BUaayid
M |—|oz7a1 MO — s M |—|oz7a1 MO
(5.2.5) w | [
M W
E

see Figure 5.9 below.

12

2z Uq,als’bz

FIGURE 5.9. Cylinder Axiom.

MF6: Braiding axiom: Let ¥; be a connected component of ¥\ C' which
has 4 holes. Denote the boundary components ;' (1), ...,1; " (4) of ¥; by
a,...,0, respectively. Then:

(5.2.6) Ba,gy = Ba,yBa,g,
Bag,y = Ba,yBg,y-
For an illustration of Eq. (5.2.6), see Figure 5.10. Note that all braidings
involved are generalized braidings as defined above.

MF7: Dehn twist axiom: Let ¥; be a connected component of £\ C' which
has 2 holes: a = t; '(1), 8 = 1; *(2). Then

(5.2.8) ZiBog = Bg o Z;

(as before, B denotes the generalized braidings). This axiom is equivalent to
the identity T, = T, where T, is the Dehn twist defined in Example 5.2.4
below (see Figure 5.11).

THEOREM 5.2.3. Let X be an extended surface of genus zero. Denote by M(X)
the 2-complex with a set of vertices M (X)), edges given by the B-, Z-, and F-moves

a B [3 a [3 a
~ ~ ' N
Ba g Bay
—a —a
5 4 4

FIGURE 5.10. Braiding axiom (5.2.6).
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defined above, and 2-cells given by relations MF1-MF7. Then M(X) is connected
and simply-connected.

As mentioned above, this theorem was first proved (in a different form) in
[MS1]; our exposition follows [BK].

EXAMPLE 5.2.4. Let ¥ be an extended surface, ¢: ¥ = S ,, be a homeomor-
phism, and let a be one of the boundary components. Then one can connect the
parameterization (0,v) with (0, ¢, 01), where t, € I'(So,,) is the Dehn twist around
a (see Figure 5.1), by the following sequence of moves:

Toz - FcBoz,ch_la

where ¢ is a small closed curve around the hole a (see Figure 5.11).

F1GURE 5.11. Dehn twist (T, = Tj3).

EXERCISE 5.2.5. Let Sy 3 be the standard sphere with 3 holes, with the marking
as shown in the left hand side of Figure 5.6. Deduce from the axioms MF1-MF7
the following relation in M(Sp 3):

(5.2.9) T, = Bg,aBa,sTaT5.
Hint: this is analogous to Step 7 in the proof of Theorem 5.3.8.

Now, let us consider extended surfaces of positive genus. In this case, we need
to add to the complex M(X) one more simple move and several more relations.

S-move: Let S;; be a “standard” torus with one boundary component and
one cut, and with the parameterization M corresponding to the graph in
the left hand side of Figure 5.12. Then we add the edge S: M ~» M' where
the parameterization M' corresponds to the graph shown in the right hand
side of Figure 5.12.

More generally, let ¥, be a component of an extended surface and ) be
a homeomorphism ¢: ¥, — Sy ;. Then we add the move S: ="' (M) ~
pH(MY).

REMARK 5.2.6. If ¥ is a surface of genus one with one hole, we can identify the
set, of all parameterizations with one cut on ¥ with the set of all homeomorphisms
$: ¥ = S;1. Then the S-move connects the marking ¢ with s o ¢, where s €
['(S1,1) is as in Example 5.1.11(i).

Now, let us formulate the new relations. In addition to relations MF1-MF7,

let us also impose the following ones:
MF8: Relations for g = 1,n = 1: Let ¥ be a marked torus with one hole «,
isomorphic to the one shown in the left hand side of Figure 5.13. For any
parameterization M = ({c}, 1) with one cut, we let T act on M as the edge
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FIGURE 5.12. S-move.

Dehn twist T, around ¢ (see Example 5.2.4). Then we impose the following

relations:
(5.2.10) 5* = Z 'Ba.c,
(5.2.11) (ST)? = S2.

The left hand side of relation (5.2.10) is shown in Figure 5.13. An illustration
of (5.2.11) can be found in [BK, Appendix A].

FIGURE 5.13. The relation S*> = Z7'B, ., .

MF9: Relation for g = 1,n = 2: Let ¥ be a marked torus with two holes
a, 3, isomorphic to the one shown in Figure 5.14. Then we require

(5.2.12) Z7'BogF,'F., = ST'F'F, T, T, 'F,,' F.,SF'F,,

C3" ¢y
— see Figure 5.15, where all unmarked arrows are compositions of the form
FF~! (see also [BK, Appendix B]).
Note that, by their construction, the above relations are invariant under the
action of the mapping class group.

REMARK 5.2.7. It is not trivial that relations (5.2.11, 5.2.12) make sense, i.e.,
that they are indeed closed paths in M(X). This is equivalent to checking that the
corresponding identities hold in the mapping class group I'(X). This is indeed so
(see, e.g., [B1, MS2]). Of course, these relations can also be checked by explicitly
drawing the corresponding sequence of cuts and graphs and checking that the final
one coincides with the original one, as done in [BK].
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FIGURE 5.14. A marked torus with two holes.

c, O o T 'B B,‘ S —— .
[, R . zlB e
“ ¢
% st
e G
lg e
L T S ¢ P B
L&
.(:3 . T T -1 . ‘Q
a B © 9% g B
P * * e P2 * * e
e V> —AN>
; G 'CA .C4
Olo—< e . B

FIGURE 5.15. The relation for g = 1,n = 2.

EXAMPLE 5.2.8. Let ¥ be a marked torus with one cut ¢; and one hole o (see
the left hand side of Figure 5.12). Then we have:

(5.2.13) (ST)* = 2,
(5.2.14) S*T =T8S?,
(5.2.15) St =11,

Indeed, (5.2.13) is exactly (5.2.11). Equation (5.2.14) follows from (5.2.10), the
Cylinder axiom, and the commutativity of disjoint union, and (5.2.15) easily follows
from (5.2.10) and the braiding axiom.

In particular, this implies that the elements ¢,s € T'1 ;1 (cf. Example 5.1.11)
satisfy relations (5.2.13-5.2.15). In fact, it is known that these are the defining
relations of the group I'i 1 (see [B1]).
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Now we can formulate our main result for arbitrary genus.

THEOREM 5.2.9. Let ¥ be an extended surface. Let M(X) be the 2-complex
with a set of vertices M (X), edges given by the the Z-, F-, B-, and S-moves, and 2-
cells given by relations MF1-MF9. Then M(X) is connected and simply-connected.

Again, this theorem was stated (with minor inaccuracies) in [MS1], but the
proof given there was seriously flawed. An accurate proof was found independently
in [BK] and, in a different form, [FG]. The formulation above is taken from [BK].

5.3. Ribbon categories via the Hom spaces

In this section C will be a semisimple abelian category with representatives
of the equivalence classes of simple objects V;, i € I. We use the notations and
conventions of Section 2.4.

In a semisimple abelian category, any object A € C is determined by the collec-
tion of vector spaces Hom(A4, ). More formally, we have the following well-known
lemma.

LEMMA 5.3.1. (i) Every functor F': C — Vecy is exact (recall that we are con-
sidering only additive functors).
(ii) Let F': C = Vecy be a functor satisfying the following finiteness condition:

(5.3.1) F(V;) =0 for all but a finite number of i.

Then F is representable, i.e., there exists an object Xp, unique up to a unique
isomorphism, such that F(A) = Home(Xp, A). Similarly, for a functor G: C°P —
Vecy there ezists a unique Yo € C such that G(A) = Home (A, Ye).

(iii) For two functors F,F': C — Vecy satisfying the finiteness condition above,
there is a bijection between the space of functor morphisms F' — F' and Home (X g/, XF).
A similar statement holds for G,G': C°? — Vecy.

Therefore, to construct, say, a functor F': C — C, it suffices to define a bifunc-
tor A: C°? x C — Vecy satisfying suitable finiteness conditions, and then define
F(X) by the identity Hom(-, F(X)) = A(:, X); more formally, one would say “let
F(X) be the object representing the functor A(-, X)”. Similarly, all the functorial
isomorphisms can be defined in terms of vector spaces.

Our goal in this section is to rewrite the axioms of a ribbon category in terms
of the vector spaces

(5.3.2) (Wi, ..., W) := Home(1, W) @ - - @ Wy,).

This was first done in [MS1]. The following definition is essentially taken from
[MS1]; for this reason, we think it is proper to commemorate their names.

DEFINITION 5.3.2. Moore-Seiberg data (MS data for short) for a semisimple

abelian category C is the following collection of data:

Conformal blocks: A collection of functors (): C*" — Vecy (n > 0), which
are locally finite in the first component: for every Ay,..., A,_1 € C, we have
(Vi,A1,...,An_1) = 0 for all but a finite number of i. (Here C¥" denotes
the tensor product C X --- K C defined in 1.1.15.)

Rotation isomorphisms: Functorial isomorphisms

Z: (Al, .. ,An> l) (An,Al, e ,Anfl).
R: A symmetric object R € ind—C®? (see Section 2.4).
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Gluing isomorphisms: For every k,l € Z functorial isomorphisms
G:(Ay,..., A, RVY® (R? By,...,B) = (A1,..., A, By, ..., B).
Commutativity isomorphism: A functorial isomorphism
o: (X,A,B) = (X,B,A).
These data have to satisfy the axioms MS1-MS7 listed below.

MS1: Non-degeneracy: For every i, there exists an object X such that
(X, Vi) #0.

MS2: Normalization: The functor (}: C° = Vec; — Vec; is the identity
functor.

MS3: Associativity of G: Let us consider two functorial isomorphisms

G'G",G"G': (A1,...,RM)Y @ (R By,...,R"MY & (R"?,Cy,...,Ch)
l) <A1,...,Bl,...,cl,...,0n>,
where R', R" are two copies of R, and G',G" are the corresponding gluing
isomorphisms. Then G'G" = G"G".
MS4: Rotation axiom: Z" =id: (4;,...,4,) = (4;,...,A,).

MS5: Symmetry of G: For any m,n > 0 the following diagram is commu-
tative:

<A1,...,An,R(1)> & (R(Q),Bl,...,Bm> L} <A1,...,An,Bl,...,Bm>

P(Z®Z’1)l zml

<Bl,...,Bm,R(2)>®<R(1),A1,...,An> ﬂ) <Bl,...,Bm,A1,...,An>

(Here P is the permutation of the two factors in the tensor product and
s: R°" = R is as in Section 2.4.)
MS6: Hexagon axioms: (i) The following diagram is commutative:

A, BC

(X,A,B,C)y —22% o (X,B,C, A)

N A

(X,B,A,C)
where 04 pc is defined as the composition
(X,A,B,C) % (X, 4,RM) (R, B, C)
784, (¢ RW) 4y 0 (R, B, 0y T,

and o4 p is defined as the composition

<X7 B7 C7 A>7

(X,A,B,0) =% (0, Xx,RV) & mwAm
487 0, X, Ry @ (R®, B, A) Z—% (X, B, A, C).

(ii) The same, but with o replaced by o~ !.
MST7: Dehn twist axiom: Zo p =0p aZ: (A, B) — (A,B), where o 5 =

G(o0 ®id)G ! is defined similarly to MS6.
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Now we describe how the MS data are related with the tensor structure on the
category. Let C be a semisimple ribbon category. Define:

(5.3.3)  (A1,...,A,) = Home(1,4; ® -+ ® Ap),
(5634) R=PV eV, cf. (2.4.7),
(5.3.5) Z: Hom(1,4; ® ---® A,)) — Hom(*4,,, 4, @ --- ® A,_1)
= Hom(1,4, @ 4, ® - @ Ap_q)
= Hom(1, A4, ® 4 ® - ® A,_1),
(5.3.6) G: @PHom(1, 4, @A, ® V) @ Hom(1,V; ® By ® - - ® By)
= Hom(1,4; ® - ® Ap ® V;*) ® Hom(V;*, By ® - -+ ® By)
= Hom(1,4, ®---® A, ® B ® ---® By),
(5.3.7) o: Hom(1,X ® A ® B) = Hom(1,X ® B® A).

Here we used the rigidity isomorphisms (2.1.13, 2.1.14), the isomorphisms 6: V —
V**, and the fact that in a semisimple category, Hom(X,Y) ~ @ Hom(X,V;) ®
Hom(V;,Y).

PROPOSITION 5.3.3. If C is a semisimple ribbon category, formulas (5.3.3)-
(5.3.7) define MS data.

The proof of this proposition is straightforward: if we use the technique of
ribbon graphs developed in Chapter 1, then all the axioms are obvious. O

A natural question is whether this proposition can be reversed, i.e., is it true
that every collection of MS data on a semisimple abelian category comes from a
structure of a ribbon category. It turns out that it is almost true; to get a precise
statement, we must somewhat weaken the rigidity axiom.

Let C be a monoidal category. We say that an object V' € Ob(C has a weak
dual if the functor Hom(1,V ® -) is representable. In this case, we denote the cor-
responding representing object by V*: Hom(1,V ® X) = Hom(V*, X). Obviously,
x is functorial: every morphism f: V' — W defines a morphism f*: W* — V*,
provided that V* W* exist.

DEFINITION 5.3.4. A monoidal category C is called weakly rigid if every object
has a weak dual and *: C — C°P is an equivalence of categories.

Of course, every rigid category is weakly rigid; the converse, however, is not
true. It is also useful to note that in every weakly rigid category we have a canonical
morphism iy : 1 — V®V*, corresponding to id € Hom(V*,V*) = Hom(1,V®V*).
If the category is rigid, then iy defined in this way coincides with the one defined
by the rigidity axioms.

DEFINITION 5.3.5. A weakly ribbon category is a weakly rigid braided tensor

category C endowed with a family of functorial isomorphisms 6: V' =5 V satisfying
(2.2.8)—-(2.2.10).

As discussed in Section 2.2, for a rigid category defining 6 satisfying (2.2.8)—
(2.2.10) is equivalent to defining §: V' = V**  so every ribbon category is also
weakly ribbon.
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EXERCISE 5.3.6. (i) Show that in every semisimple weakly ribbon category,
the map ¢: Hom(V*, X) — Hom(1,X ® V**) given by ¢ — (¢ ® id)iy+ is an
isomorphism.

(ii) Show that in every semisimple weakly ribbon category one can define a
family of functorial isomorphisms §: V' = V** by the condition that the following
diagram be commutative:

(V,X) —=— Hom(V*, X)

| L

(x,vy 24825, (x, v

(iii) Show that in every semisimple weakly ribbon category, one has (84 ®id) f =
(id®6g)f for every f: 1 - A® B. (Hint: use 6} = 0y+.)

Note, however, that in general, (V ® W)* 2 W* @ V*, so the axiom dygw =
Oy ® dw does not make sense.

REMARK 5.3.7. The authors do not know any example of a semisimple abelian
category which is weakly rigid but not rigid.

Now we can formulate the main theorem of this section.

THEOREM 5.3.8. Let C be a semisimple weakly ribbon category with simple ob-
jects Vi, i € I. Then formulas (5.3.3)—~(5.3.7), with 0 defined as in Ezxercise 5.3.6,
define MS data for C. Conversely, every collection of MS data for a semisimple
abelian category C is obtained in this way.

PrROOF. The first statement of the theorem is parallel to Proposition 5.3.3.
The proof is also quite parallel; we just have to check that all the arguments work
in a weakly rigid category as well as in a rigid one. This is left to the reader as an
exercise; part of it is contained in Exercise 5.3.6. In particular, the identity (2.2.8)
Ovew = owvovw (fy @0y ) will give the Rotation axiom, and the identity (2.2.10)
Oy = 6y, will give the Dehn twist axiom.

The proof of the converse statement is more complicated. For convenience, we
split it into several steps. To simplify the notation, we will write just (..., R) ®
(R,...), omitting the superscripts. Since R is symmetric, this causes no problems.
The symmetry of G axiom MS5 implies that the order of the factors is not important
for defining G. We will implicitly use this.

Let us start by constructing the duality and tensor product on C from the MS
data.

LEMMA 5.3.9. Given MS data for C, there exists an involution *: I — I such
that dim(V;, V;) = 6; j«. Also, R is isomorphic (non-canonically) to @V; ® V.

PRrROOF. Define A;; = dim(V;,V;), and define B;; by R ~ @ B;;V; K V;. It
follows from the non-degeneracy axiom and the existence of Z that A is a symmetric
matrix with no zero rows or columns. From the symmetry of R, we get that B is
a symmetric matrix.

Writing the identity (V;,V;) = (Vi, RV) @ (R™), V) we get the identity A =
ABA. We leave it to the reader to show that if A, B are symmetric matrices with
non-negative integer entries and A has no zero columns, then such an identity is
possible only if A = B is a permutation of order 2. (Hint: use AB = (AB)? to
prove that AB either has a zero row or column, or it is the identity matrix.) O
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1. Defining the duality functor. Define the functor * by
(5.3.8) Hom(V*, X) = (V, X)

(see Lemma 5.3.1). Then the previous lemma immediately implies V;* ~ V;« (not
canonically!). Tt is easy to see from this that * is an anti-equivalence of categories.
In particular, this implies that every object V' € C is completely determined by the
functor (V,-) = Hom(V'*,-).

Note that if the MS data come from the structure of a weakly ribbon category
on C (see Proposition 5.3.3), then the * functor defined above coincides with the
one given by the rigidity axioms.

2. R=@V* RV,. To prove this, let us write R ~ > X; K V; for some
X; € ind—C. The isomorphism G gives, in particular, an isomorphism

(A,V7) = DA, Xiy @ (Vi, V7).

Since (V;,V;*) = Hom(V*,V*) = k, we get canonical isomorphisms (A,V*) =
(A, X;). Thus, we have constructed an isomorphism R ~ @ V;* ®V; such that the
isomorphism G: (X,Y) ~ (X, R) ® (R,Y) is given by (5.3.6).

3. Tensor product. Define the functor ®: C®? — C by
(5.3.9) (X,A® B) = (X, A, B,
(it is well defined by the results of Step 1). More generally, define the tensor product
of n objects by the following formula:

(XaAl Q- ®An> = <X7A1a"'7An>‘

Next, define isomorphisms

(5.3.10) 41 ® @A, 0(BI®@ - QBp) QA1 Q@ Ay
~A R4 Q-8B @411 ®--® A,
as the following composition:
(X,A1,...,A;,Bi® - @ By, Aiy1,..., Ap)
~ (X, A1, AR A, AR ® (R, B1 @ -+ - ® By)
~(X,A,..., A, R Aiy1,...,An) ® (R, By, ..., Byg)
~(X,A,...,A,B1,...,Br, Ait1, ..., Apn),

where the isomorphisms are, respectively, G—!, the definition of tensor product,
and G.

LEMMA 5.3.10. Let X be an expression of the form
X=(A®(Ax ) A4,

with any grammatically correct parentheses arrangement (parentheses may enclose
any number of factors). Then any two isomorphisms

pr X~ A ®--® Ay,
obtained as a composition of the morphisms of the form (5.3.10), are equal.

Proor. Easy induction arguments show that it suffices to prove this statement
in the case when we have just two pairs of parentheses. Thus, we need to consider
the arrangements of the form ---(---(--+)---)--- and ---(-++)-+-(--+)---. For
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both of them the statement easily follows from the definitions and the associativity
of G. |

This shows that ® is indeed associative; in particular, we can define associa-
tivity constraint A ® (B® C) ~ (A ® B) ® C which satisfies the pentagon axiom.
4. Unit. Define the object 1 € C by

(5.3.11) (1, X) = (X)
(as before, it is well defined due to the results of Step 1).
Define morphisms (Ay,...,A4;, 1, Air1,.. ., An) ~ (A1,..., A Aiyr, ..., Ay) as
the following composition
(Al,...,Ai,l,Ai+1,...,An) ~ <A1,...,Ai,R,Ai+1,...,An)®<1,R>
~ (Ao Aiy By Asgs oo An) @ (R 2 (Avy oo, Ay Ai o A

Note that this construction remains valid for n = 0, in which case, using the
normalization axiom, we get
(5.3.12) (1) = k.

Using the definition of tensor product, we see that the isomorphism
(X A1 AL A, AR =2 (XA A A, A)
gives rise to an isomorphism
(5313) A1 @ 4,104 ® 04,240 @A @A @ @ A,

LemMA 5.3.11. The following diagram, with the horizontal map given by the
associativity isomorphism and the two others by the unit isomorphisms (5.3.13), is
commutative:

A®(1®B)— = A®19B .
A®B

PRroOF. Looking at the definitions, we see that the statement is equivalent to
the commutativity of the following diagram:

(X,AR)Y®(R,19B) —— (X, A R)®(R,B) — (X,4,B)
<X7A717B> EE— <X7A7R1I7B>®<17R”> EE— <X7A7R”7-B>®<R”>

where, as before, R’ and R" are two copies of R. But this easily follows from the
associativity of G applied to the space (X, A, R", Ry ® (1, R") ® (R', B). We leave
the details to the reader. O

COROLLARY 5.3.12. The isomorphisms 1@ X = X and X ® 1 = X, given
by (5.3.13), satisfy the triangle axiom.

Combining this fact with the MacLane coherence theorem (Theorem 1.1.9), we
see that the MS data indeed defines a structure of a monoidal category on C.
5. Definition of (). Using the unit isomorphisms (5.3.13), we can identify
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(Al,...,An> l) <1,A1,...,An> l)HOHl(].*,Al ®®An)

Next, let us construct an isomorphism 1 —s 1*. Using (5.3.12), we can write
Hom(1*,1) = (1) = k. Thus, 1 € k gives an isomorphism 1 = 1*; combining this
isomorphism with the previous identity, we can identify

(5.3.14) (Ay,...,Ap) = Hom(1, 4, ® -+ ® Ay).

6. Commutativity isomorphism. Define the commutativity isomorphism
0: A® B — B ® A using the following composition:

(X,A® B) = (X,A,B) 5 (X,B,A) = (X, B ® A).

Then one easily sees that the Hexagon axioms given in Theorem 1.2.5(iii) are im-
mediate corollaries of the Hexagon axioms for MS data. Thus, the MS data defines
a structure of a BTC on C.

7. Balancing. Consider the functorial isomorphism

(5.3.15) WV, X) 25 (X, VY S v, XD,

By Lemma 5.3.1, there exists a functorial isomorphism 6y : V' V such that the
above composition is given by Ay ® idx. One easily checks that #; = id and that

—1 ~1 ~
0W1 = ZO'WLW2®---®W” = UW2®---®Wn,W1Z : (Wh EEE) Wn) — <W17 sy Wn>

(this is where we need the Dehn twist axiom MST).
To prove the identity ags = 0B,404,8(04 ® 05), note that it is equivalent to

(5.3.16) op,A04 50405 05 =id: (4,B,C) = (A, B,C),
which follows from the identities

03" = Zoapo = Zoacoa B,

05' =0 aZogc,

051 =7Z0A,c%0B,C-

Finally, we leave it to the reader to show that the Dehn twist axiom MF7 is
essentially equivalent to the identity 8y« = 6§,. Thus, the so defined @ satisfies the
balancing axioms (2.2.8)—(2.2.10).

This completes the proof of Theorem 5.3.8. O

It would be nice if we had some axiom for MS data which would automatically
ensure that the corresponding BTC is rigid. However, the only way of doing it that
we know of is explicitly imposing the rigidity condition. (It is claimed in [MS2]
that rigidity follows from the other axioms; however, at some point, they say “we
can check the universality property” without doing it explicitly—we were unable
to reconstruct their arguments.)

In the semisimple case the rigidity condition is equivalent to the non-vanishing
of certain coefficients, which shows that “almost all” weakly rigid semisimple cate-
gories are rigid.

Let C be a semisimple weakly rigid monoidal category such that V** ~ V' (as
discussed above, this holds for any category obtained from MS data). Let ¢;: V;* —

K3
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VX ®V; ® V* be given by ¢; = id®iy,. Using the associativity isomorphism, we
can write

pi=a; @id+ Y 1),
J#0
where a; are certain morphisms 1 = V;* ® V;, and 1; are some morphisms which
are obtained as the composition
Pl ®id
ViVl —— (Ve V) V.

Note that since V;* ® V; contains 1 with multiplicity one, the morphisms a; lie in a
one-dimensional space.

PROPOSITION 5.3.13. Let C be a semisimple weakly rigid monoidal category
such that V** ~V, and let a;: 1 — V* @ V; be defined as above. Then C is rigid
iff a; #0 for all i € 1.

Proor. If C is rigid, then ey,a; = 1, which immediately follows from taking
composition of ¢; with ey, ® id. Thus, a; # 0. Conversely, assume that a; # 0.
Then define ey, : V;* ® V; — 1 by the condition ey,a; = 1; since V;* ® V; contains
1 with multiplicity one, this is possible. From this condition, we immediately see
that the composition

id ®iVi ev; ®id
Vi i—V'eV,eV ——

(3

A

(2

is equal to identity; thus, the second rigidity axiom (2.1.6) is satisfied.
To check the first rigidity axiom, denote the composition

iy; ®id v;

id Qe
Vi L Ve v eV — v

by ¢;; since End(V;) = k, ¢; is a number. We need to show that ¢; = 1.
Consider the composition

F:1 L@n)‘/;@‘/;*@‘/l@‘/z* id ®e®id V;@V;*
From the second rigidity axiom (already proved), ® = iy,. On the other hand,
form the definition of ¢;, we have ® = ¢;iy,. This proves ¢; = 1 and thus, the first
rigidity axiom for V.
Therefore, if a; # 0, then V; is rigid. But since a direct sum of rigid objects is
again rigid, every object in C is rigid. O

5.4. Modular functor in genus zero and tensor categories

In this section we prove the first main theorem of this chapter, establishing that
the axioms of a (weakly) ribbon category are essentially equivalent to the axioms
of a modular functor in genus zero.

Let C be a semisimple abelian category with representatives of the equivalence
classes of simple objects V;, ¢ € I. Let us call a C-extended modular functor in genus
zero the same data as in Definition 5.1.12 but with the spaces 7(X) defined only
for ¥ of genus zero; therefore, the only gluing allowed is the gluing of two different
connected components.

THEOREM 5.4.1 (Moore—Seiberg [MS1]). Let C be a semisimple weakly ribbon
category. Then there is a unique C-extended genus zero modular functor satisfying
the properties (1)—(iii) below.
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(i) For the standard sphere Sy (see (5.2.1)):
(541) T(So,n; Wl, cey Wn) = HOIHC(]., Wl [ Wn) =: (Wl, ey Wn)

ii) R= @ V*®V;, and the isomorphism s: R = R°P is given by (2.4.8).
13
(iii) We have:

(5.4.2) ze =2, b.=o0,

where the homeomorphisms z,b are defined by (5.2.2), and the isomorphisms Z,c
are defined by (5.3.5), (5.3.7). Also, for every k,l > 0, the composition

T(So,k+1; - ,R(l)) X T(So’l+1;R(2), .. ) — T(So’k+1 Ukt1,1 SO,l+1) M) T(SO,k+l)a
where the first arrow is the sewing isomorphism (5.1.1) and ay is as in (5.2.3),
coincides with the isomorphism G defined by (5.3.6).

This modular functor is non-degenerate and has the following properties:

(iv) Let t;: Sopn — So,n be the Dehn twist around it" puncture. Then, under
the isomorphism (5.4.1), (t;)« is given by the twist

Ow,: Home(1, W) ® --- @ Wy,) = Home (1, W1 ® - -- @ Wy).
(v) If C is rigid, then this modular functor is unitary, with the pairing (5.1.2)
(,)80., - Home (1L, W7 ® --- @ W,,) ® Home (1L, Wy @ --- @ W) = k
gwen by
()1 =211->W - W, W, @ - W - 1.

Here we identify k = End(1) and use the fact that for a standard sphere Sp p,, there

s a canonical isomorphism m =5 So.n, which reverses the order of the punctures.

This isomorphism is given by the reflection around the imaginary axis.
Conversely, let T be a non-degenerate genus zero C-extended MF. Then there is

a unique structure of a weakly ribbon category on C such that the above properties
(i)—(iii) hold.

PROOF. The proof is based on the comparison of the results of Sections 5.2
and 5.3. Since by Theorem 5.3.8 the structure of a weakly ribbon category on C
is equivalent to what we called MS data, it suffices to show that a non-degenerate
genus zero MF defines MS data and vice versa.

Let us assume we are given a collection of MS data. To construct a genus zero
MF, let us first consider the pairs (X, M), where M = (C, {¢,}) is a parameteriza-
tion of ¥ (see Definition 5.2.1). For each such pair, define the vector space 7(%, M)
as follows. For every cut ¢, take a copy R. of the object R, and define

(5.4.3) (3, M) = K) 7(Son,),

a
where the index a runs through the set of connected components of ¥ \ C, and for
each connected component ¥, we assign REE) to every boundary component of ¥,
which is a cut, where e € {1, 2} is chosen so that for one of the occurrences of R, we
take e = 1 and for the other we take ¢ = 2 (note that each R, appears exactly twice
in (5.4.3)). Since R is symmetric, it does not matter which occurrence is which.
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More explicitly, the same formula can be written as follows. For each cut ¢ € C,
choose one of its sides as “positive” and the other as “negative”. Then we can define

(5.4.4) = D QrlSom),
i.€l,ceC a

where the sum is taken over all ways to assign an index i. € I to every cut ¢ € C,
and for each connected component ¥, of ¥\ C' we assign V;, to its boundary
component if it is the positive side of the cut ¢, and V;* if it is the negative side of
the cut ¢. This formula depends on the choice of “positive” side for each cut; to
identify the formulas corresponding to different choices, one has to use the canonical
isomorphism V;* B V; = V;« KV defined in (2.4.8).

For example, if ¥ is a sphere with 4 holes which we index by «, 8,7, 4, and ¢ is
a parameterization with one cut ¢ as in Figure 5.16, then the above formula gives

(2,03 Wa, Ws, Wy, Ws) = (Wa, W, RD) @ (R, W, Ws)
= P(Wa, W5, Vi) @ (V¥ Wy, W)

i€l

FIGURE 5.16

Of course, every extended surface ¥ can be parametrized in many ways. How-
ever, if we construct a system of isomorphisms fas a2 7(2, M') = (2, M), com-
patible in the following sense: farar farr, v = far,arr, then we can identify all of
these spaces with each other and define the space 7(X), which is canonically iso-
morphic to each of (X, M) (see a formal definition in the proof of Theorem 4.4.3).

Moreover, such a system of isomorphisms would automatically give a represen-
tation of the extended mapping class groupoid Teich, as follows. Let f: ©; — 3
be a homeomorphism of extended surfaces, and let M> be a parameterization of X,.
Then f gives rise to a parameterization M; of ¥; in the obvious way. Moreover,
f establishes a one-to-one correspondence between the cuts C; on ¥; and Cy on
¥y, and between the components (X), and (X2),. Thus, f gives rise to an iden-
tification 7(21, M1) = D, _¢; cec, @4 T(So,n,) = 7(X2, Ms). Combining this with
the isomorphisms 7(2,) = 7(21, My), 7(X2) = 7(22, M>), we get an isomorphism
fer 7(21) = 7(23). We leave it to the reader to check that this isomorphism
does not depend on the choice of My and satisfies (fg)« = f«g«,ids = id. Also, it
is immediately obvious from (5.4.3) that the so constructed modular functor will
satisfy the gluing axiom.

Therefore, our goal is to construct a compatible system of isomorphisms 7(3, M') =
7(¥, M). By Theorem 5.2.3, every two parameterizations can be connected by a
sequence of simple moves Z, B, F'; let us assign to these moves the isomorphisms
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Z,0,G given by the MS data. A comparison of the axioms MF1-MF7 and MS1-
MS7 shows that all the relations among the moves Z, B, F' also hold for their ana-
logues Z,0,G; the only relation which is not immediately obvious is the cylinder
axiom MF5, but it follows from the functoriality of the morphisms Z, o, G. Thus,
every MS data defines a genus zero MF.

The construction in the opposite direction is quite similar. Assume that we
have a genus zero MF. Define the functors () and the isomorphisms Z,0,G as in
the statement of the theorem. Again, a comparison of the axioms MF1-MF7 and
MS1-MS7 shows that these data satisfy the axioms of MS data. This completes
the proof of Theorem 5.4.1. O

EXAMPLE 5.4.2. Consider the surface ¥ and the “associativity move” M L
-1

My <5 M' shown in Figure 5.17. Assign to the boundary components «,...,d
objects A,...,D. Then:

(%, M) = @(A,B,V;) ® (V;*,C, D),
el

T(EaMO) = (A,B,C,D>,

(3, M') = (D, A, V;) @ (V}*, B,C).
jerl

Then the corresponding isomorphisms 7(3, M) — 7(2, My) — 7(X, M') are given
by Figure 5.18 below.

B

FIGURE 5.18. Associativity isomorphism.
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5.5. Modular categories and modular functor for zero central charge

In this section, we will show, developing the ideas of the previous section, that
the notion of a modular functor (for arbitrary genus) is equivalent to the notion of
a modular tensor category. Recall that for every modular category we have defined
the numbers p* by (3.1.7). In this section we consider the special case of modular
categories with p*/p~ = 1. (For the modular categories coming from conformal
field theory this identity holds if the Virasoro central charge of the theory is equal
to 0 (cf. Remark 3.1.20), hence the title of this section.)

THEOREM 5.5.1. Let C be a modular tensor category with p™/p~ = 1. Then
there exists a unique C-extended modular functor T which satisfies conditions (i)—
(iii) of Theorem 5.4.1. This MF is non-degenerate and satisfies conditions (iv), (v)
of Theorem 5.4.1 and condition (vi) below.

(vi) Let S11 be the torus with one hole. Identify

7(S1154) = @A, Vi, V)) = D Hom (4%, V; @ V)

using the parameterization of Si1 shown in Figure 5.12. Let s: S11 — S1,1 be as
defined in (5.1.5). Then the corresponding

(5.5.1) s« =S: @ Hom(4*, Vi ® V;*) » @) Hom(4*,V; @ V")

is given by Theorem 3.1.17.

Conversely, let C be a semisimple abelian category, and let T be a non-degenerate
C-extended MF. Assume for simplicity that the corresponding structure of a monoidal
category on C (see Theorem 5.4.1) is rigid. Then C is a modular tensor category
with pt = p~; in particular, it has only a finite number of simple objects.

PROOF. Assume that C is a modular category. By Theorem 5.4.1, the structure
of a modular category on C defines a genus zero MF. Therefore, we only need to
show that this MF can be extended to positive genus. In order to do this, by
Theorem 5.2.9, we need to define an isomorphism S: 7(Sy 1, M) — 7(S11, M),
where S;; is the standard torus and M, M’ are the parameterizations shown in
Figure 5.12, and then check that relations MF8, MF9 are satisfied.

Note that by definition

(S0, M3 A) = 7(S11, M'; A) = @H(A, Vi, Vi) = Hom(4*, H),

(3

~

where, as before, H = @ V; ® V;*. Thus, defining an isomorphism S: 7(S1,1, M) —

7(S1 1, M") is the same as defining a functorial system of isomorphisms Hom(A4*, H) —

Hom(A*, H) for every object A. By Lemma 5.3.1, this is the same as defining an
isomorphism S: H — H.

Let us first show that if we define S as in the statement of the theorem, then
relations MF8, MF9 are satisfied. Relations MF8 immediately follow from Theo-
rem 3.1.17 and the assumption p™ = p~.

To check relation MF9 for a torus with two holes, let us rewrite it in terms of
tensor categories.

LEMMA 5.5.2. Let C be a semisimple ribbon category with finite number of sim-
ple objects, and let S be an isomorphism

(5.5.2) Sz@Sji:GBW@W%@W@V}*-

-~
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Then relation MF9 for S is equivalent to the following condition:

k%i k k [

(5.5.3) S = [s,

i J’T lj iT :%/,J\V

The proof of this lemma will be given after the proof of the theorem.

It is easy to check that the operator S defined by (3.1.32) satisfies (5.5.3).

Now, let us prove uniqueness. Assume that we have defined an operator S
of the form (5.5.2) such that relations MF8, MF9 are satisfied. Rewrite relation
MF9 in the form (5.5.3), put j = 0 and note that Sio: 1 — Vi ® V¥ is a non-
zero multiple of iy,. This immediately implies that Si; = axS§. for some non-
zero constant ap, where we temporarily denoted by S the operator defined by
(3.1.32). Equivalently, we can write S = AS®t, where the operator A: H — H is
“diagonal”: A|Vi®Vi* = a;id. Now, let us use the axiom MF8. In particular, we have
TSTST = S. Since S = AS®, and A commutes with T, we get TSS*T ASST = S5¢.
On the other hand, the operator S itself satisfies the axiom MF8, and thus,
T ST SS'T = S5, This implies A = id, S = S5¢,

The proof of the converse statement—that a MF defines a structure of a mod-
ular category—is trivial. Indeed, the identity 7(X) = €@ End V; for ¥ being a torus
without punctures implies that C has only finitely many simple objects (since 7(X)
is finite dimensional). Thus, we only have to check that the matrix §, defined in
(3.1.1), is non-degenerate. But the identity S = AS®® and the invertibility of S
imply that S is invertible. O

for every i, j, k€ I.

PrOOF OF LEMMA 5.5.2. Consider the diagram in Figure 5.15. Let m4 be the
graph in the upper left corner; for convenience, replace the graph m in the lower
right corner by ms = F,,(m). Then the vector spaces 7(X,m) and 7(%,ms) are
given by

T(Eaml) = @(‘/;*7‘471/;) ® (I/;*vaI/}>7

(5.5.4) b
T(Ea m?) = @(Aa Vk7 V]:a B>7
k

where A, B are the objects assigned to the boundary components «, 3 respectively
(see (5.4.4)).

Then relation MF9 can be written as follows: for every ® @ ¥ € (V*, A,V;) ®
(Vi*,B,V;), we have f(® ® ¥) = ¢(® ® ¥), where f is the isomorphism given by
the composition of moves forming the left side and the bottom of the commutative
diagram, and g—by the moves on the top and the right side. We represent this
identity pictorially, using Example 5.4.2, Eq. (5.2.9), and the graphical calculus of
Section 2.3.

A simple manipulation with figures shows that:



5.5. MODULAR CATEGORIES AND MODULAR FUNCTOR 119

f(@o¥) =

From this it is easy to get the statement of the lemma. |

COROLLARY 5.5.3. Let C be an MTC with p™ = p~. Denote
(g;Wh,...,Wy,) = Home(1L, H®Y @ Wy @ - @ W,y,)

where H = @ V; @ V*. Then we have an action of the pure mapping class group

I, , on this space. In particular, for g = 1,n = 1 this action coincides with the

one defined in Theorem 3.1.17.
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Indeed, let 7(X) be the modular functor corresponding to C; then it is easy to
see, using the gluing axiom, that if ¥ is a surface of genus g then 7(X; W1,..., W,,)
is (not canonically) isomorphic to the space 7(g; Wi, ..., W,,) defined above.

REMARK 5.5.4. In fact, Corollary 5.5.3 also holds for modular categories with
pt/p~ # 1 if we replace the word “action” by “projective action”. This will be
discussed in Section 5.7.

EXERCISE 5.5.5. Prove the following formula for the dimension of the space
T(g) for g > 1 (n =0):

(5.5.5) dimr(g) = (%)gl :

SZ.
ier \70i

Hint: Prove that dim7(g) = tr(a?™"), where a;; = dim7(g = 1;V;,V}"),i,j € I.
Then prove that a = ), NN+, where N, is defined as in Proposition 3.1.12, and
use the Verlinde formula to diagonalize a.

5.6. Towers of groupoids

Looking at the previous two sections, one is tempted to say that there is some
“universal” set of relations which must hold in any weakly ribbon category, and
these relations happen to coincide with the relations for the mapping class group.
In this section we sketch the appropriate language in which one can formulate this
and other related results. Therefore, we do not really prove any new results here,
and we allow ourselves to be somewhat informal.

Let us start by considering our main example: the Teichmiller tower Teich.
By definition, Teich is a category with objects all extended surfaces, and morphisms
isotopy classes of homeomorphisms of extended surfaces (see Definition 5.1.7(i)).
This category is a groupoid, i.e., any morphism in Teich is invertible. It also has
some additional structures which played an important role in the previous sections:
the disjoint union and gluing of surfaces. The general definition of a tower of
groupoids will be modeled on this example, so let us study it in more detail.

Temporarily, let us denote Teich by T. Below we list its properties.

(a) T is a groupoid.

(b) The disjoint union of surfaces LI: 7 x 7 — T and the empty surface () €
Ob T provide T with the structure of a symmetric tensor category.

(c) There is a functor A: T — Sets: for a surface ¥, A(X) = m(9X) is the
set of its boundary components. Here Sets is the groupoid with objects finite sets,
and morphisms bijections. Note that A(X; U X2) = A(Z;) U A(X,) and A(D) = 0
(canonical isomorphisms). In other words, A is a tensor functor.

(d) There is a gluing operation: for every surface ¥ € Ob 7T and an unordered
pair «, f € A(X), we have the surface G, 3(X) = Uq,3(X) obtained by identification
of the boundary components «, 8 (cf. Definition 5.1.12(iv)). The gluing satisfies the
following properties:

Compatibility with A: A(G,3(2)) = A(D) \ {«a, 8}.

Compatibility with U: if a, 3 € A(X;), there is a canonical functorial iso-

morphism Gaﬁ(El L 22) = (GaﬁEl) L3y .
Associativity: if a,(,7,0 € A(X) are distinct, then there exists a canonical
functorial isomorphism G4 3G 5(X) = G, ,6Ga 3(X).
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Functoriality: for each morphism f: ¥ — ¥', we have an isomorphism G¢: G, g(X) —
Go g (X)), where o/ = A(f)(a), ' € A(f)(B) are the corresponding ele-
ments in A(X’). These isomorphisms satisfy G, = G, Gy, and Giq = id.

DEFINITION 5.6.1. A tower of groupoids (or just a tower) is the following col-
lection of data:

(i) A groupoid T;

(ii) A “disjoint union” bifunctor LI: 7 x 7 — T and an object § € ObT
satisfying the axioms of a symmetric tensor category;

(iii) A “boundary functor”: a tensor functor A: T — Sets;

(iv) A “gluing operation”: for every ¥ € ObT and an unordered pair «, 3 €
A(Y), we have an object G 5(X) € T. The gluing should be associative, functorial
and compatible with Ll and A (see (d) above).

EXAMPLE 5.6.2. Sets and Teich are towers of groupoids.

REMARK 5.6.3. Sometimes it is useful to weaken the above definition by con-
sidering towers in which the gluing operation G, g is defined not for all but only
for some pairs «, 5. In this case, the identities Go gl = U(Gq 3 X Id), G4 3Gy =
G,5Gq,p in the definition above should be understood in the following way: if one
side is defined, then the other one is also defined and they are equal.

An example of such a “partial” tower is given by the the Teichmiiller tower in
genus zero, Teichg, in which objects are extended surfaces of genus zero and the
functor G, is defined only if a, 8 belong to different connected components of 3.

REMARK 5.6.4. One can give a definition of what it means for a tower of
groupoids to be presented by generators and relations (but since this is a little
boring, we don’t do it here). Then the results of Section 5.2 (and [BK]) can be
reformulated as giving the generators and relations presentation of the Teichmiiller
tower Teich. One notes that this presentation is much simpler than the presenta-
tions for individual mapping class groups I'(X). The idea of using the Teichmiiller
tower with the gluing operation for the study of mapping class groups belongs to
Grothendieck [G]. More results in this direction can be found in [HLS].

Before giving more examples of towers, let us reformulate Definition 5.6.1 in
a more functorial way. This will be useful later when we define functors between
towers.

Let 7 be a tower of groupoids. Then 7 is a fibered category over Sets. For
any finite set S, the fiber Ts over S is the category with objects all pairs (%, )
where ¥ € ObT7 and ¢: A(¥) = S is a bijection. A morphism between two
objects (X1,¢1), (X2,p2) € ObTg is a morphism f € Morr(X1,Xs) such that
p1 = a0 A(f). Since both T and Sets are groupoids, every fiber Tg is a groupoid.

A bijection of sets ¢: S = S’ gives rise to a functor v, : Tg — Ts/: on objects
(T, ) = (X,9 0 ), and on morphisms 4, (f) = f. It is obvious that

(Poth)e = pu0thy, idi =1id;

in particular, all functors 1, are isomorphisms of categories.

Conversely, given a collection of groupoids {7s}scobsets together with equiv-
ariance functors v, as above, one can reconstruct the groupoid 7 and the functor
A: T — Sets.
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In terms of these data, LI becomes a collection of functors
LSS Ts x T = Tousr,

while ) € Ob 7. They satisfy obvious commutativity, associativity and equivari-
ance conditions.
Similarly, the gluing gives a collection of functors

G350 Ts = To\{a,gy, S €ObSets, a,B €S
(the pair a, 8 is unordered). Indeed, for (X, ) € ObTg, we define
G5 5(2,0) = (T, 0layy)  where ' = G-14,,-15(3)

(recall that A(Y') = A(Z)\{p ta,¢18}). For amorphism f: (X1,01) = (22, ¢2)
in Tg, we define Gg’ 5(f) = Gy (recall the functoriality of gluing). Now the proper-
ties of gluing can be restated as follows.

Compatibility with A: already incorporated in the definition.
Compatibility with Li: for any two sets S,S’ and a,3 € S, there exists a
canonical isomorphism of functors GS'-'S oSS = yS\{abt s (GS x 1d).

Associativity: if a,3,v,0 € S are dlstlnct then there exists a canomcal iso-
S\{v o}, — S\MaB} s
Gv [ G’Y75 Ga,B
Functoriality: already 1nc0rporated in the requirement that Giﬁ are func-
tors.

morphism of functors G,

Finally, there is one more property which follows just from the definition of Ggﬁ.

Equivariance: for any bijection of sets ¢: S — S', we have Gi;’wﬁ 0y =
(W]s\(a})= 0 G2 5

DEFINITION 5.6.5. A tower of groupoids is a collection of groupoids {7s}scob sets
equipped with the following structure:

(i) Equivariance functors ¢, : Ts — T for any 1 € Mors,:s(S,S’), satisfying
(pot))x = ¢y 0t), and id, = id.

(ii) An object § € Ob 7T, and a collection of functors LIS:S": T x Ter — Teus,
satisfying obvious commutativity, associativity and equivariance conditions.

(iii) A collection of functors G o5t Ts = Ts\{a,s}, satisfying the above associa-
tivity, equivariance and compatlblhty with L.

PROPOSITION 5.6.6. Definitions 5.6.1 and 5.6.5 are equivalent.

PRroOF. It was already sketched above. The details are left to the reader as an
exercise. O

DEFINITION 5.6.7. A tower functor F between two towers of groupoids (7,U, 4, G)
and (T',1', A’,G") is a functor F: T — T' which preserves all the structure. More
precisely:

(i) There is an isomorphism of functors A ~ A’ o F. Thus F gives rise to an
equivariant collection of functors F¥: Tg — T4, S € ObSets.

(ii) F is a tensor functor, i.e., the functors Folland o (Fx F): T xT — T’
are isomorphic.

(iii) For any finite set S, there is an isomorphism of functors FS\{*:8} o Ggﬁ ~

G’iﬁ o F¥: T — Té\{a 5} These isomorphisms are equivariant with respect to
bijections of S.
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EXERCISE 5.6.8. Spell out property (iii) of Definition 5.6.7 in terms of the
gluing operations G, 3 from Definition 5.6.1.

EXAMPLE 5.6.9. A: T — Sets is a tower functor for any tower 7T .

There is an even more economical way to reformulate the definition of a tower.
Looking at the equivariance properties of the collections {75} and {Giﬁ}’ one
can notice that they can be combined if we allow more maps between sets. We
introduce a category Sets; with the same objects as in Sets (i.e., finite sets), but
with more morphisms: all maps between sets that are composed of bijections and
the elementary injections iiﬁz S\ {«,8} — S. (This definition was inspired by

[BFM].) Let Sets* be the dual category of Setsy, i.e., the category with the same

objects but with all arrows inverted. All morphisms in Sets* are composed of
bijections and the elementary morphisms

5275: S = S\ {a,B}, S € ObSets*, a,f € S (unordered).
Now if we define
(65.6)« = G2 5t Ts = Ts\{w,5}»

we will have (¢ oY) = ¢u 0 9, for ¢,¢b € Morg,,:. Note that Sets* is again a
symmetric tensor category with respect to L.

PROPOSITION 5.6.10. A tower of groupoids is the same as a symmetric tensor
category T fibered over Sets* such that all fibers Tg (S € Ob Setsﬁ) are groupoids.
In other words, we have parts (i) and (i) of Definition 5.6.5 with Sets replaced with
Setst.

In this language a tower functor F between two towers is just a collection of
functors F°: Tg — T4, equivariant with respect to Morg,,,:, and such that the
corresponding functor F: T — T’ is a tensor functor. A natural transformation ®
between two tower functors F,G: T — T is a Morg,..t-equivariant collection of
natural transformations ®° between the functors F5,G%. Then, as usual, F: T —
T' is called an equivalence of towers if there exists a tower functor F': T' — T
such that the tower functors FF' and F'F are isomorphic to Id.

After introducing all this abstract nonsense let us now give some examples and
applications.

EXAMPLE 5.6.11. Let C be an abelian category and R € ind—C®? be a sym-
metric object.> We define the tower of groupoids Fun(C) as follows.

Objects: all pairs (S, F) where S is a finite set and F is a functor ¥ — Vecy.

Morphisms: Mor((Sy, F1), (Se, F»)) consists of all pairs (f, ) where p: S; =
S, is a bijection, f: Fy — ¢, F» is an isomorphism of functors, and ¢, F; is
the composition C¥S1 25 ¢BS2 2y per

Boundary functor: A(S,F)=S.

Disjoint union: (S;U Sy, F; ® Fy: CR(S1US2) _y Vecy), and similarly for mor-
phisms. The object @) is the obvious one.

Gluing: given by G, 5(S) = S\{a, B} and G, 5(F) = F(...,RM ..., R? ...),
where R, R(?) are put in the places corresponding to the indices o, 3.

3Here and below we use the same notation as in Section 2.4.
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DEFINITION 5.6.12. Let C be an abelian category and R € ind—C®? be a sym-
metric object. A representation of a tower T in C is a tower functor p: T — Fun(C).

The following theorem, which follows immediately from the definitions, eluci-
dates the notion of a modular functor.

THEOREM 5.6.13. A C-extended modular functor is the same as a represen-
tation T of the Teichmiiller tower Teich in C with the additional normalization
condition 7(S?) =id: C° = Vecy — Vecy.

In a similar way one can rewrite the notion of MS data (see Section 5.3). In
order to introduce the corresponding tower of groupoids MS, we will first need the
following definition.

DEFINITION 5.6.14. A marking graph is a graph m without cycles (a “forest”)
with the following additional data:
(i) The vertices of m are split into two subsets, “internal” and “external”

Vertices(m) = Int(m) U Ext(m),

so that every external vertex is 1-valent, and there are no edges connecting two
external vertices.

(ii) For every internal vertex v € Int(m), an order on the set of all edges ending
at v is given.

REMARK 5.6.15. The marking graphs with 3-valent internal vertices are essen-
tially the same as “Bratelli diagrams” used in physics literature.

Graphs of this type appeared in our discussion of parameterizations of extended
surfaces (see Section 5.2). In the figures, we use * for internal vertices and e for
external vertices. To show the order, we draw the edges in a clockwise order and
mark the first edge by an arrow.

We define a CW complex My in a way parallel to the definition of M(X) for
genus 0 (see Section 5.2). The vertices of Mg are all marking graphs. We define
the simple moves Z, B, F' by Figures 5.5, 5.6 and 5.7, respectively. The relations in
My are obtained from MF1-MF7 by forgetting the surfaces.

EXAMPLE 5.6.16. The Moore—Seiberg tower MS is the tower of groupoids de-
fined as follows.

Objects: all marking graphs.

Morphisms: Mor(m;, ms) consists of all paths in the CW complex M con-
necting my with ms, modulo homotopy. (In other words, as a groupoid MS
is the fundamental groupoid of Mj.)

Boundary functor: A(m) = Ext(m).

Disjoint union and (}: obvious.

Gluing: if o, € Ext(m) are in different connected components, then we
define G, g(m) to be the graph obtained by identifying the vertices a and
B. The order at the new internal vertex o = 3 is given by e, < eg where e,
is the edge of m ending at a.

Note that MS is a “partial” tower in the sense of Remark 5.6.3.

THEOREM 5.6.17. Let C be a semisimple abelian category. Then MS data for C
is the same as a non-degenerate representation p of the Moore—Seiberg tower MS
in C with the additional normalization condition p(x) = id: Vecy — Vecy, where *
is the marking graph with one vertex and no edges.
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PRrROOF. Given a collection of MS data, let us construct a representation p of
the tower MS. For a marking graph m, define the functor p(m): C¥Ext(m) Vecy
similarly to (5.4.3). In other words, if W, are the objects assigned to the external
vertices v € Ext(m), then we let

p(m)({WU}) = ® (Xeia---aXeﬁu%

u€Int(m)

where el, ..., eF+ are the edges adjacent to u, in the order defined by u, and X, =

W, if e connects u with an external vertex v, or X, = R if e connects two internal
vertices.

The definition of the functorial isomorphisms which we assign to the morphisms
of graphs is obvious. We also have obvious isomorphisms p(m; U ms) ~ p(m;1) ®
p(mz) and p(Ga.g(m)) =~ Gq 5(p(m)); in the latter isomorphism both sides coincide
with p(m)(..., RV, ..., R®) .. ).

Now, a comparison of the relations MS1-MS7 and the relations MF1-MF7,
used in the definition of My, shows that the so defined p is indeed a representation
of MS.

Conversely, given a representation p of the tower MS, define the MS data as
follows:

(Wla---7Wn> = p(mn)(Wl,,Wn)

where m,, is the “standard” marking graph, with one internal vertex and n external
vertices. Again, it is clear how to define the isomorphisms Z, o, G and check that
all the relations are satisfied. O

It is clear by its definition that the tower MS is just the projection on the level
of marking graphs of another tower PTeichg: the parametrized Teichmiiller tower
in genus zero. On its hand, PTeichg is the genus zero part of a tower PTeich which
appeared implicitly in Section 5.2 and which we now proceed to define.

EXAMPLE 5.6.18. The parameterized Teichmiiller tower PTeich is the tower of
groupoids defined as follows.

Objects: all pairs (X, M), where ¥ is an extended surface and M = (C, {1, })
is a parameterization of ¥ (see Definition 5.2.1).

Morphisms: Mor((X1, M), (2, M»)) consists of all pairs (f, ¢) where f: £; —
Y5 is a homeomorphism of extended surfaces and ¢ is a path in M(Zs)
connecting f(M;) with M. The composition of morphisms is given by
(f,0) e (g,9) =(fog,p0 f(¥)).

Boundary functor: A(X, M) = A(X) = mp(0X) — the set of boundary com-
ponents of X.

Disjoint union and (: the usual ones.

Gluing: G, (X, M) = (U 3(X),Uq,z3M), where U, g(X) is obtained from X
by gluing the boundary components o, 3, and the parameterization L, g M
is obtained from M by adding a = § as a new cut and keeping the homeo-
morphisms v, unchanged.

Note that by Theorem 5.2.9 the path ¢ is uniquely defined by f, so we could
as well omit ¢ from the above definition of morphisms. However, it will be useful
for us to have the definition in this form.
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Now we can reformulate the main results of the previous sections in a much
more transparent way.

THEOREM 5.6.19. (i) The towers of groupoids Teich and PTeich are equivalent.
Similarly, their genus zero parts Teichg and PTeichy are equivalent.
(ii) The towers PTeichg and MS are equivalent.

ProoF. (i) To prove the first statement, consider the obvious forgetting functor
PTeich — Teich. It suffices to check that this functor is bijective on morphisms.
By Theorem 5.2.9, for every two parameterizations M, M’ of an extended surface
Y. there exists a unique path in M(X) connecting them. Thus, in a pair (f,¢) €
Morpeich, the path ¢ is uniquely determined by f, which is equivalent to saying
that the forgetting functor gives a bijection Morp7eier, — Moreien. The proof for
genus zero is completely parallel.

(ii) To prove the second statement, consider the functor PTeichg — MS which
assigns to the pair (X, M) the marking graph of M. Obviously, every marking graph
can be obtained in this way. Thus, it suffices to prove that this functor gives a
bijection of the spaces of morphisms. This is immediate from comparing the moves
and relations and the following rigidity lemma.

LEMMA 5.6.20. Let ¥ be an extended surface, M € M(X) be a parameteriza-
tion, and m the corresponding marking graph. Let f: ¥ = ¥ be a homeomorphism
which preserves the graph m pointwise.* Then f is homotopic to identity.

This completes the proof of Theorem 5.6.19. O

A comparison of the theorems above makes the relation between genus zero
modular functors and weakly ribbon structures on a semisimple category obvious.

5.7. Central extension of modular functor

In Section 5.5 we have constructed a C-extended modular functor (MF) starting
from any modular tensor category C satisfying p*/p~ = 1. As with TQFT con-
structed from C, the gluing axiom fails when p™/p~ # 1. There are two approaches
to deal with the general case.

First, we can content ourselves with a modification of the gluing axiom, which
says that it holds only up to a multiplicative factor. This is similar to the notion
of a projective representation of a group.

The second approach is to try to construct a kind of a “central extension” of the
modular functor. This was done independently by several authors; our exposition
follows an unpublished manuscript [BFM] by Beilinson, Feigin, and Masur.

We begin with some preliminaries. Let V' be a symplectic real vector space
of dimension 2g, ¢ € N. Let Ay be the set of all Lagrangian subspaces of V,
i.e., maximal isotropic subspaces of V. This is a compact manifold. Let Ty be
the Poincaré groupoid of Ay ; by definition, objects of this groupoid are points of
Ay and morphisms are homotopy classes of paths connecting two points. It is
convenient to define Ty for V = 0 as the category with only one object 0 and
Homr, (0,0) = Z.

The proof of the following lemma is straightforward and will be omitted.

41t is not sufficient to require that f(m) =m, as f could interchange components of m.
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LEmMA 5.7.1. (i) For any two symplectic vector spaces Vi, Va, there exists a
canonical map Ay, X Av, = Av,gv,.

(ii) Let N C V be an isotropic subspace, i.e., such that the restriction of the
symplectic form on N is 0. Then the space N /N is symplectic, and there eists a
canonical map Ay /n — Ay which assigns to a Lagrangian subspace L C Nt/N
the subspace 7~ '(L) C Nt C V, where 7: N+ — N1 /N is the natural projection.
The induced map of fundamental groupoids Tr. /x — Ty is an equivalence.

COROLLARY 5.7.2. For any point a € Ay, the fundamental group w1 (Av,a) is
isomorphic to 7.

Corollary 5.7.2 implies that the group Z acts freely on Mory, (L1, Ls) for any
Li,Ly € Ay. (In other words, Mor, (L1, L2) is a Z-torsor.) Hence we have a
non-canonical identification

(5.7.1) Morry, (L1, Ly) = 7.

Let us choose such identifications for all Ly, Ly € Ay. If p: L1 — Ly and ¢: Ly —
L3 are two morphisms in Ty, corresponding to numbers m,n € Z, then in general
Wp: L1 — L3 corresponds to some p # m + n. The difference

(5.7.2) w(L1,La, L3) :=p—m —n

is called the Maslov index of the subspaces Ly, L, Ls.
Let ¥ be an extended surface, as in Section 5.1. We denote by ¢l(X) the surface
without boundary obtained from ¥ by gluing disks to all boundary circles, and let

(5.7.3) H(S) == Hy(c(2),R).

The intersection form makes H(X) a symplectic space of dimension 2g where g is
the genus of ¥ (i.e., of ¢l(X)). Introduce the notations

(574) AE = AH(E)a TX; = TAZ'

When ¥ is of genus zero, we have H(X) = 0 and Ay, is a point. In this case, it is
convenient to define T, as the category with only one object 0 and Homyy, (0,0) = Z.
The next lemma is left as an exercise.

LEmMMA 5.7.3. (i) There exists a canonical map a: Ay, XAy, = Ay, ux,. (How-
ever, it is not a homeomorphism.)

(ii) Let the surface ¥ be obtained by sewing two surfaces along one boundary
component: ¥ =X Uy g Xo. Then H(X, U Xs) ~ H(X). Therefore, there exists a
canonical homeomorphism g, 5: As,us, = As.

(iii) Let ¥ be obtained from X' by gluing two boundary circles ay,as in the
same connected component: ¥ = Uy, o,% . These two circles give a cycle a €
H(X). Then we claim that H(X') ~ a*/Ra. Therefore, we have a canonical map
Jar,a0 0 Ay = As which induces an equivalence Tsy 5 T,

EXERCISE 5.7.4. Let X be an extended surface, and let C' be a cut system on X,
i.e., afinite set of closed simple non-intersecting curves on X such that the connected
components ¥, of ¥ \ C' have genus zero (cf. Definition 5.2.1). By Lemma 5.7.3,
this defines a map [[ As, — Asx. Since, by definition, each Ay, is a point, this map
gives an element yo € Ax;. Show that y¢ is the subspace in Hy (cl(2), R) spanned
by the classes [c],c € C.
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Now we can define the “central extension” of the Teichmiiller tower which was
defined in Section 5.6.

DEFINITION 5.7.5. The central extension 7/';z'_c7L of the Teichmiiller tower Teich
is the tower of groupoids defined as follows.

Objects: all pairs (X,y), where ¥ is an extended surface and and y € As.

Morphisms: Mor((X1,%1), (Z2,y2)) consists of all pairs (f, ¢), where f: £; —
¥, is an orientation preserving homeomorphism and ¢ € Morzy, (fiy1,y2).
Here f.: Ay, — Ay, is the map induced from f.

Boundary functor: A(X,y) = mp(9Y) is the set of boundary components of
¥

Disjoint union: (21,y1) U (22,¥y2) = (£1 U X2,a(y1 ® y2)), where a: Ag, %
As, = As 1y, is as in Lemma 5.7.3(i). The object 0 is the obvious one.

Gluing: G, 5(2,y) = (Ua,5(X), 9a,5(¥)), where go 5: As — Ay ,(x) is as in
Lemma 5.7.3(ii), (iii).

This groupoid is a central extension of the usual Teichmiiller groupoid in the

following sense: we have an obvious functor Teich — Teich compatible with all the
operations, and for each (X,y) € Ob Teich, the kernel of the map Autm(E, y) —

Autreicn(X) is Autp, (y) = Z (see (5.7.1)). In other words, denoting for an extended
surface ¥ and y € Ay the extended mapping class group by

(5.7.5) 0(2,y) = Aut——(Z,y),

(up to an isomorphism, this does not depend on the choice of y), we can write the
following exact sequence:

(5.7.6) 0—Z—TD(2,y) = [(T) — 0.

Note that for ¥ of genus zero, Ay, is a point, and we have a canonical isomorphism
[(¥) = Z x T'(Y), i.e., the above exact sequence splits. For positive genus, this is
not so.

EXAMPLE 5.7.6. Let ¥ = S;; be the torus with one puncture, and let o,
be the meridian and the parallel of the torus, so that H(X) = R[a] ® R[S] (see
Figure 5.19). Then Ay, = RP! = S'. Let s,t € I'1 1 be the elements of the mapping
class group defined in Example 5.1.11.

(4
-

FIGURE 5.19

For y = [a] we will describe the central extension I'(E,y). Note that t.([a]) =
[a], s«[a] = [B]. Let us choose a path ¢ in Ax connecting the points [3] and [a].
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Now, define elements t, §,¢é € f‘(E,y) by i = (t,id), § = (s,¢), ¢ = (c,id), where
c = s acts on H(X) by v — —w, and thus, acts trivially on Ayx. Then we claim
that the group I'(X,y) is generated by the elements t,8,¢,v with the relations

(5.7.7) 32 =q¢, (31)® =42, ~,¢are central,

where v = (id, 7) is the generator of the fundamental group 7 (As,y) = Z.
Similarly, if we consider a torus without punctures, then the mapping class

group I'(S10,y) is generated by the same elements with the additional relation

¢2 = 1. The proof of both of these statements is left to the reader as an exercise.

REMARK 5.7.7. One sees that for ¥ = Sj 1, the exact sequence (5.7.6) trivially
splits. For ¥ = 510, we have I'(¥) = SLy(Z), and one can check that the above
exact sequence does not split, but it “splits over : if we denote by f(E,y)Q =
f‘(E, y) Xz Q the group obtained by adding to f‘(E) fractional powers of v, then the

exact sequence
0= Q—=T(%,y)p—=T(T) =0

does split. However, it can be shown that for g > 1 the exact sequence (5.7.6) for
['y,0 does not split even over Q.

Now we can formulate the notion of a modular functor with a central charge.
Recall that we have defined the notion of a representation of a tower of groupoids
in an abelian category C (see Definition 5.6.12), and the modular functor can be
defined as a representation of the Teichmiiller tower (see Theorem 5.6.13).

DEFINITION 5.7.8. Let C be an abelian category. A C-extended modular functor

with (multiplicative) central charge K € k* is a representation of the tower Teich,
with the additional normalization condition 7(S?) = k, and such that for every
extended surface ¥ and y € Ayx the generator v of Autry (y) = Z C Aut——(X,y)
acts as multiplication by K.

For those readers who do not like the language of towers of groupoids, this
definition can be spelled out explicitly as follows.

DEFINITION 5.7.9. A modular functor with (multiplicative) central charge K €
k> is the following collection of data:

(i) Let ¥ be a compact oriented surface with boundary, with a point and an
object of C attached to any boundary circle, and let y € Ax.. To any such (X, y)
the modular functor assigns a finite dimensional vector space 7(X,y).

(ii) To any morphism f: (2,y) — (¥',y') the modular functor assigns an iso-
morphism of the corresponding vector spaces f.: 7(2,y) — 7(2',y').

(iii) Functorial isomorphisms 7(0) = k, 7(Z; U Za,y1 © y2) — 7(Z1,91) ®
7(22,¥2).

(iv) A symmetric object R € ind—C®? (see Section 2.4).

(v) Gluing isomorphism: Let ¥’ be the surface obtained from ¥ by cutting
Y along a circle. Then we require that there is an isomorphism

(5.7.8) (2,5, RY, RP)) — (S, 9(y))

where g is as in Lemma 5.7.3(ii), (iii).
These data have to satisfy the same axioms as in Definition 5.1.12 and the
following additional relation. Note that for every (X,y) the group m(As,y) is
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canonically isomorphic to Z. (The orientation of ¥ gives a choice for the sign of
the generator .) Then we require that v.: 7(2,y) — 7(¥,y) be a multiplication
by K.

THEOREM 5.7.10. Any modular tensor category gives rise to a modular functor
with central charge K = p™/p~. Conversely, if T is a C-extended modular functor
with central charge K, then it defines on C a structure of a weakly ribbon category.
If this category is rigid, then C is a modular category with p*/p~ = K.

PRrROOF. The proof is similar to the proof in the case of zero central charge
(p™ = p7). It is based on an analogue of Theorem 5.2.9, giving the set of moves
and relations among the parameterizations. However, now we have to extend the
notion of parameterization as follows.

Let ¥ be an extended surface and y € Ax. An extended parameterization M
is a pair (M, p), where M is a parameterization of ¥ (see Definition 5.2.1), and
¢ € Morr, (y,ya), where yas € Axy is the Lagrangian subspace defined by the cut
system C of M (see Example 5.7.4).

Since the moves B, F, Z do not change yr, we can lift each of them to a move
between extended parameterizations by letting B = (B,id), etc. We also have a
new move y: (M, ) ~ (M, o ), where ~ is the generator of Autry (yar,ynr) =

Z. Finally, the move S can be lifted to a move S as in Example 5.7.6. Then

each of relations MF1-MF7 makes sense as a relation among the moves Z, . F.
As for relations MF8, MF9, they can be uniquely lifted to relations among the
moves between the extended parameterizations by replacing Z,...S by Z,...,S

and inserting an appropriate power of v to make it into a closed loop in M (2).
We will denote the corresponding axioms by MF8, MF9. Let us also add an axiom
MF10 requiring that 4 be central. Then it is easy to deduce from Theorem 5.2.9
that the corresponding 2-complex M(X) is connected and simply-connected.

Now to show that every MTC defines a modular functor, we can follow the
same approach as before, i.e., first define 7(X, y, M), and then assign to every move
E: M ~ M' an isomorphism T(E,y,M) — T(E,y,M’) so that all the relations
MF1-MF10 are satisfied.

Let us define (%, y, M) = 7(X, M) (thus, it does not depend on the choice of
y and ¢) and assign to the moves Z, é, F' the same isomorphisms as before (i.e.,
Z,0,G). Assign to v the isomorphism given by multiplication by p™/p~. Finally,
assign to S the operator S /+/pt /p~, where S is defined in Theorem 3.1.17. Explicit
calculation shows that for so defined S , relations MF8, MF9 are satisfied. For MF8,
this calculation essentially coincides with the one done in Example 5.7.6.

The proof in the opposite direction is absolutely parallel to the one for the
genus zero case; thus, we omit it. [l

5.8. From 2D MF to 3D TQFT

Starting from a modular tensor category C with p™/p~ = 1, we have con-
structed a C-extended 3-dimensional Topological Quantum Field Theory (Section 4.4)
and a C-extended 2-dimensional modular functor (Section 5.1). We have also
showed that conversely, if C is a semisimple abelian category then any C-extended
2-dimensional modular functor gives rise to a structure of a modular category on C
(provided that the rigidity condition is satisfied).
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Schematically, we have:
C-extended 3D TQFT

/

MTC C

C-extended 2D MF

This indicates that there must be also a direct construction relating (C-extended)
3D TQFT with (C-extended) 2D MF.

3D TQFT — 2D MF. This implication has already been discussed before:
in fact, the axioms of 2D MF (except the gluing axiom) are part of the axioms
of 3D TQFT, cf. Remark 5.1.2. To prove that the gluing axiom also follows from
the axioms of 3D TQFT, we again use the version of extended surface from Defini-
tion 5.1.10.

Let X, be the surface obtained from a surface ¥ by cutting a circle from it
and labeling the two new boundary components with objects V and V*, as in
Definition 5.1.12 (see Figure 5.20).

FIGURE 5.20

In accordance with the proof of Proposition 5.1.8, instead of X1, we consider the
surface ¥’ = XY, obtained from X}, by replacing the boundary circles with marked
points with tangent vectors at them. We can shrink ¥, so that it is “inside” ¥, as
in Figure 5.21 below.

>

FIiGure 5.21

Then we “fill in the space between X and ¥ i.e., we consider a 3-manifold M
with boundary OM = X U X" (see Figure 5.22). This M is a C-marked 3-manifold,
hence it gives a vector

(M) € 7(0M) ~ Homy (7(2"), 7(X)).
Considered as a map 7(X},) — 7(X), this gives the required gluing map (5.1.1).

One can easily check that this definition is correct and satisfies all the properties
of Definition 5.1.12.
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Z \V; V*
P >
M

T

FIGURE 5.22

2D MF — 3D TQFT. This implication is much more difficult and, to the
best of our knowledge, no complete construction of it is known. There are two ap-
proaches: the first one, due to L. Crane [C] (see also [Ko]), is based on the Heegaard
splitting; the second one, due to M. Kontsevich and to I. Frenkel (unpublished), is
based on Morse theory.

Following Crane [C], we will construct (non-extended) 3D TQFT starting from
a C-extended 2D MF. We do not know how to extend this construction to a C-
extended 3D TQFT.

We will use the following well-known theorem in topology (for references, see
[Cr]).

THEOREM 5.8.1 (Reidemeister—Singer). Let M be a connected closed oriented
3-manifold. Then:

(i) M can be presented as a result of gluing of two solid handlebodies:

M =M, =H U, H,
where ¢: OH; = OH,. Such a presentation is called a Heegaard splitting.

(ii) Two such M, and M, are homeomorphic iff ¢: OH, — OH, can be
obtained from ¢': OH, = OH} by a sequence of the following moves:

(a) Hy = H{, Hy = H}, ¢' is isotopic to .

(b) Hy = H{, Hy = H}, ¢ =yopox, where x € Ni,, y € Ng, and

Ny := {homeomorphisms of OH which extend to H}.
(c) Stabilization. Let H| = Hy#T, H) = Hy#T, where T is a solid torus and

# denotes a connected sum of topological spaces (see Figure 5.23 below). Let @' =
p#s, where s: 0T = OT is the homeomorphism of the 2-torus which has a matriz

<(1) _01> in the standard basis {a, B} of Hy(OT,R). Then M, ~ M,#S> ~ M,,.

FIGURE 5.23. Connected sum of 3-manifolds.

Now suppose that we have a C-extended modular functor. Let H be a solid

handlebody whose boundary 0H is a surface of genus g. We will construct a vector
vo(H) € T7(0H) as follows.
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Choose some non-intersecting “cuts”, i.e., disks embedded in H, which cut
H into contractible pieces. This also gives a system of cuts on 0H and thus, a
decomposition of H into spheres with holes: 0H = [JX,. Consider all possible
labelings ¢ : {cuts} — I of the cutting circles by simple objects of C (see Figure 5.24).

FIGURE 5.24

Then, by the gluing axiom,
T(0H) ~ @ ® T(Za; {Vii Yecos,)-
i a

Here ¥, are the components of H, the notation ¢ C 0¥, means that the cut c is
one of the boundary components of ¥,, and V¢ is either V' or V* chosen so that
every V;, appears in the tensor product once as V;, and once as V;*.

Let us choose all i, =0, i.e., all V;_, = 1. Then 7(3,;1,...,1) = k. Therefore,
this gives a vector

vo(H) = Q)1 € 7(Sa31,...,1)) € 7(9H).

a

(compare with Remark 4.5.4).

THEOREM 5.8.2 (Crane [C]). The vector vo(H) does not depend on the choice
of the cuts. Moreover, vo(H) is Ng-invariant.

ProOF. Obviously, any two systems of cuts of H into a union of solid balls can
be related to one another by a sequence of the following moves:

(a) the action of Ny, and (b) the F-move.

It is easy to see that vo(H) does not change under the move (b). As for (a),
one needs a description of the generators of Np. Such a description is known
[Su]. Then one checks that vo(H) is invariant under these generators—this is not
difficult—we refer to [C], [Ko] for the details.

The fact that vo(H) is Npg-invariant follows from (a). O

Now we will use Theorems 5.8.1 and 5.8.2 to construct invariants of closed
3-manifolds.

Let M = M, = H; U, Hy be as in 5.8.1. The map ¢: 0H; = 0H, gives an
isomorphism of vector spaces ¢, : T(0H;) — 7(0H>) = 7(0Hs)*. We define

(5.8.1) (M) := D" (u(vo(H1)), vo(Hy)),

where D = s, is defined by (3.1.15).
The prefactor D9~! is chosen in order that 7(M) be invariant under the stabi-
lization move 5.8.1(c). Indeed, let H' = H#T. Then OH' = OH#IT, where 0T is
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the 2-torus. By the construction of vo(H') it is clear that
’l)o(H’) = ’l)o(H) & ’Uo(T).
Then

T(M') = DY ((p#5)«(vo(H1) @ vo(T)), v0 (Hs))
= 7(M)D (s.v0(T),v0(T)) = 7(M)Dsoo = 7(M).

Therefore, we have constructed an invariant 7 of closed 3-manifolds. To con-
struct 3D TQFT, we have to define 7(M) for any 3-manifold M with boundary.
To do so, we need a variant of Heegaard splitting for 3-manifolds with boundary.
There is such a theorem, due to Motto [Mo]. His result is similar to what we had
before, only one has to consider not only handlebodies but also “hollow handle-
bodies”. A hollow handlebody is a handlebody with some parts of its interior cut
out. Hence, it has both “inner” and “outer” boundary. We glue two such hollow
handlebodies by identifying their outer boundaries, the remaining inner boundaries
give the boundary of the resulting 3-manifold.

Then we can repeat the above construction of 7(M) for manifolds M with
boundary. This gives the implication

C-extended 2D MF — (non-extended) 3D TQFT.

In order to go one step further, i.e., to construct a C-extended 3D TQFT, one needs
an analog of Heegaard splitting and Reidemeister—Singer theorem for manifolds with
boundary and marked points. To the best of our knowledge, such a result is not
available at the moment. Hopefully, this is only a temporary difficulty. Finally, let
us note that if we start with a non-extended 2D MF, without gluing axiom, the
construction of 3D TQFT would fail.



