
A Generalization of Takeuti-Gandy Interpretation

Bruno Barras, Thierry Coquand and Simon Huber

Introduction

The goal of this paper is to present an explanation of the axiom of function extensionality in dependent
type theory. This extends naturally to a model of type theory where a type is interpreted by a Kan
semisimplicial set and we also present this generalization. The technique for explaining extensionality
for simple type theory goes back to Takeuti [24] and Gandy [7]. The basic idea is already present in the
introduction of the second edition of Principia Mathematica [20] and an earlier explanation of extension-
ality can be found in [21]. In general a function may fail to be extensional, i.e. to send equal elements
to equal elements; for instance an operator on propositions may fail to preserve logical equivalence. The
idea is to consider a relativized model where we quantify over extensional elements.

The paper is organized as follows. We first present the Takeuti-Gandy interpretation of simple
type theory. Roughly speaking, this interprets a type as a type with an equivalence relation, which
is reminiscent of Bishop’s notion of set in constructive mathematics [5]. One can see the notion of
Kan simplicial set as a generalization of the notion of type with equivalence relation. We explain some
effectivity problems that occur when using the notion of Kan simplicial set as a generalization of type
with an equivalence relation. We present then a first semantics, where a type is interpreted as a truncated
Kan semisimplicial set of level 6 1. The correctness of this semantics has been formally verified in the
system Coq V8.4. The system we interpret is close to the first published version of Martin-Löf type
theory [15]. After giving some applications of this semantics, we present a generalization where a type
is interpreted as a Kan semisimplicial set. This gives a formal system together with an effective way of
transporting structures and properties along any equivalences.

1 Takeuti-Gandy interpretation

Takeuti-Gandy interpretation [7, 24] was developed for simple type theory. It is important to analyze
the computational interpretation in this case, before considering dependent type theory. We assume a
type o of propositions and function types A→ B. The idea is to define (extensional) equality at type A
by induction on A. However at the same time, we may need to “restrict” the type A since it may contain
non extensional elements.

Using the language of dependent type theory, we can describe this interpretation as follows. For any
simple type A we define a corresponding type [A] and an equality relation =A on the type [A]. Since we
are using dependent type theory this relation is of type [A] → [A] → Type. The type [o] is an universe,
and =o is logical equivalence. The type [A→ B] is defined as a sigma type

[A→ B] =
∑

f :[A]→[B]

∏
x:[A]

∏
u:[A]

x =A u→ f x =B f u

An element of type [A→ B] is thus a pair f, f ′ where f is of type [A]→ [B] and f ′ is a proof that this
function is extensional. We define (f, f ′) =A→B (g, g′) to be∏

x:[A]

∏
u:[A]

x =A u→ f x =B g u

A context Γ is then interpreted by a type [Γ] with a relation =Γ, and a term Γ ` t : A is interpreted by
a function tρ : [A] for ρ : [Γ] together with a proof tα of tρ0 =A tρ1 whenever α is a proof of ρ0 =Γ ρ1.
ρ0 =Γ ρ1 implies tρ0 =A tρ1. The equality relation =Γ is an equivalence relation on [Γ] and in particular,

1

Γ `
1 : Γ→ Γ

σ : ∆→ Γ δ : Θ→ ∆

σδ : Θ→ Γ

Γ ` t : A σ : ∆→ Γ

∆ ` tσ : Aσ

() `
Γ `

Γ.A `
Γ `

p : Γ.A→ Γ

Γ `
Γ.A ` q : A

σ : ∆→ Γ ∆ ` u : A

(σ, u) : ∆→ Γ.A

Γ.A ` b : B

Γ ` λb : A→ B

Γ ` w : A→ B Γ ` u : A

Γ ` app(w, u) : B

1σ = σ (σδ)ν = σ(δν) (σ, u)δ = (σδ, uδ) p(σ, u) = σ q(σ, u) = u

app(w, u)δ = app(wδ, uδ) app((λb)σ, u) = b(σ, u)

Figure 1: Rules of Simple Type Theory with Explicit Substitution

for each ρ : [Γ] we have a proof 1ρ : ρ =Γ ρ. The interpretation of (λt)ρ, for Γ.A ` t : B, is the pair f, f ′

where f u = t(ρ, u) and f ′ x u ω = t(1ρ, ω).

Figure 1 presents some key rules of simple type theory.

In general a simple type A is interpreted by a type [A] with a proof relevant relation =A on this type.
We now give another description of this semantics, using informal set theory instead. It should be clear
how to go back and forth between the two presentations.

This pair [A],=A can be presented also as a set X[0], intuitively a set of “points”, together with a
set of “lines” X[1] and two maps d0, d1 : X[1] → X[0]; a proof p of a0 =A a1 corresponds to a line p in
X[1] with dip = ai. Given X = X[0], X[1] and Y = Y [0], Y [1] the function space Y X is then defined by
taking Y X [0] to be the set of pairs f, ηf with f : X[0]→ Y [0] and ηf : X[1]→ Y [1] such that diηf = fdi
for i = 0, 1. We can define app((f, ηf), u) = f u : Y [0] if u : X[0]. We define Y X [1] to be the set of
elements λ, f0, f1, ηf0, ηf1 with fi : X[0]→ Y [0] and λ : X[1]→ Y [1] such that diλ = fi and djηfi = fi.
We define then di(λ, f0, ηf0, f1, ηf1) = fi, ηfi. We can define app((λ, f0, f1, ηf0, ηf1), ω) = λω : Y [1] if
ω : X[1]. With this definition we have diapp(α, ω) = app(diα, diω). A type A is then interpreted by a
pair of sets A[0], A[1] with two maps d0, d1 : A[1] → A[0]. Similarly, a context Γ is then interpreted by
a pair of sets Γ[0],Γ[1] with two maps d0, d1 : Γ[1] → Γ[0]. If Γ ` t : A, we should define tρ : A[0] for
ρ : Γ[0], and tα : A[1] for α : Γ[1] in such a way that di(tα) = t(diα) for i = 0.1.

We get the following operational semantics

(tσ)ρ = t(σρ) (σδ)ρ = σ(δρ) 1ρ = ρ (tσ)α = t(σα) (σδ)α = σ(δα) 1α = α

(σ, t)ρ = σρ, tρ q(ρ, u) = u q(α, ω) = ω

app(t1, t0)ρ = app(t1ρ, t0ρ) app(t1, t0)α = app(t1α, t0α)

app((λt)ρ, u) = t(ρ, u) app((λt)α, ω) = t(α, ω) app(η(λt)ρ, ω) = t(1ρ, ω)

di(ηf) = f diapp(λ, ω) = app(diλ, diω)

A logically equivalent definition of (f, f ′) =A→B (g, g′) would be

∀x : [A].f x =B g x

however, this definition would not provide the right definitional equality. In particular it would not
validate β-conversion

Γ ` t(1, u) = app(λt, u) : B

2

for Γ.A ` t : B and Γ ` u : A. With both definitions we get the equality

app(λt, u)ρ = t(1, u)ρ = t(ρ, uρ) : [B]

for ρ : Γ, while it is only with our definition that we get the equality

app(λt, u)α = t(1, u)α = t(α, uα) : t(ρ0, uρ0) =B t(ρ1, uρ1)

for α : ρ0 =Γ ρ1.

We do not interpret all the laws of cartesian closed category: the law

(λt)σ = λt(σp, q)

is not valid in this model. This is because the second component of (λt)σρ and (λt(σp, q))ρ do not
coincide in general since 1σρ may not coincide with σ1ρ. However all the equations of Figure 1 are valid
in this model. (We explain later why this set of laws is satisfactory for representing dependent type
theory.)

For the interpretation of the universal quantification ∀ : (A → o) → o we first have to define a
function F : [A → o] → [o] and to show that this function is extensional. Given (f, f ′) : [A → o] we
define F (f, f ′) to be ∀x : [A].f x. (We need the universe which interprets the type of proposition to be
impredicative; otherwise we can however interpret a predicative version of simple type theory.) Given
(f, f ′) : [A → o] and (g, g′) : [A → o] that are equivalent we have then to prove that ∀x : [A].f x and
∀x : [A].g x are equivalent. This follows from the fact that for any x : [A], we have f x =o g x, which
means precisely that f x and g x are equivalent.

The original motivation of this interpretation was the consistency problem of higher-order arithmetic
[24, 7]. Simple type theory without function extensionality is a simpler system, and the intuitionistic
version of this system, presented in natural deduction, has good proof theoretic properties [16].

2 Effectivity problems with the Kan simplicial set model

One can see the Kan simplicial set model of type as a generalization of the previous interpretation
of simple type theory, where a simplicial set generalizes the notion of set with a relation, and a Kan
simplicial set generalizes the notion of set with an equivalence relation.

When analyzing the Kan simplicial set model of type theory [28, 22, 4], one effectivity problem relies
in the use of the decidability of the notion of degeneracy and the fact that simplicial maps have to
commute with the degeneracy functions. Let us write [n] for the linear poset {0, . . . , n}. Let ∆ be the
category of such linear poset [n] with morphisms all monotone map. The category of simplicial sets
if the presheaf category ∆opSet. A simplicial set is thus a sequence of sets X[n] together with maps
X[n] → X[m], u 7−→ uf for f : [m] → [n] satisfying u1 = u and (uf)g = u(fg) : X[p] if g : [p] → [m].
We write εi : [n − 1] → [n] for the injective map that omits i; this is the ith face map, and we may
write diu instead of uεi. An element u : X[n] is called degenerate if, and only if, there is a non trivial
surjective map g : [n]→ [m] and an element v : X[m] such that u = vg. In a constructive setting, to be
degenerate is not a decidable property. However the theory of simplicial set and of Kan simplicial set
uses this decidability at crucial points.

We give here a simple example of the use of this decidability. If p : B → A is a Kan fibration, given
two points a u : A[0] with a path ω : A[1] connecting a and u, one expects the fibers B(a) and B(u) to
be equivalent Kan simplicial sets. In order to define the map f0 : B(a)[0]→ B(u)[0] one simply uses the
Kan condition: given a point b : B[0] such that p(b) = a : A[0] one can lift the path ω to a path ω′ in B
such that d0ω

′ = b and one define f0 b = d1ω
′. But in order to define f1 : B(a)[1] → B(u)[1] it seems

necessary to define f1α by case whether α is degenerate or not.
Similar problems are found when analyzing various proofs [17, 11] that BA is a Kan simplicial set if

B is a Kan simplicial set.

These effectivity problems make it impossible to use the Kan simplicial set model for a computational
interpretation of the axiom of univalence. Because of these problems, we interpret a type not as a Kan
simplicial set, but as a Kan semisimplicial set.

3

3 Takeuti-Gandy interpretation for dependent type theory

3.1 Identity type

The first predicative version of type theory [13] did not have identity types. Over the type of natural
numbers for instance, equality was defined recursively using a universe. This version [13] stayed unpub-
lished for a long time and the identity type was introduced in the first published version of type theory
[15].

Proposition 3.1 In the [15] version of type theory, function extensionality stating that IdA→B f g
follows from ∏

x:A

IdB app(f, x) app(g, x)

is not provable.

Proof. This follows from the fact that if IdT a u is provable in the empty context, then a and u are
convertible [15], and the fact that we can have two functions that are not convertible but pointwise equal
e.g. the functions λn.n+ 0 and λn.0 + n on natural numbers.

To have function extensionality seems however important for representing mathematical arguments.
Voevodsky for instance has shown how to define internally the notion of homotopy level in type theory
[28]. The definition itself does not require function extensionality, but in order for this notion to have
the expected properties (like closure under product) we need function extensionality. Similarly, for
representing intuitions from homotopy theory, and even basic mathematical notions (e.g. category theory)
we need at least function extensionality. The univalence axiom furthermore provides a general principle
of transport of structures along equivalences.

It is remarkable that the explanation of CZF in Type Theory [1], interpreting a set as a well-founded
tree up to bisimulation, does not use the identity type, so it is an interpretation of CZF in the 1972
version of type theory.

The model we present in the next section is a generalization of Takeuti’s and Gandy’s interpretation
[7] of extensional simple type theory in intensional simple type theory. It can be seen as a translation of
type theory with the extensionality axiom in the 1972 version of type theory.

3.2 Type theory as a formal system and definitional equality

All rules of type theory are justified following the pattern:

1. The introduction rules give the meaning to the logical connectives (they are represented by con-
structors, following the terminology of functional programming).

2. The elimination rules are justified w.r.t. the introduction rules (they are represented by defined
functions).

3. These justifications take the form of computation rules (the function is defined by case analysis).

A proof t of a type/proposition A is supposed to be a method to produce a canonical proof of A. The
method to produce a canonical proof is quite uniform: given a term t of type A, we unfold the definitions
until we reach a canonical proof. In functional programming terminology, such a proof is represented as
a term starting with a constructor, and the method of computation is head reduction.

An important point is that computation rules can all be seen as unfolding definitions. For instance,
if we have a type N of natural numbers, an empty type N0 we can define ¬ : U → U by ¬A = A→ N0.
This definition of ¬ can be seen as a computation rule (unfolding of definitions).

The situation is similar if we define a function f : Πx : N.C(x) by the equations

f 0 = a : C(0) f (n+ 1) = g n (f n) : C(n+ 1)

These equations define a function f .

4

Γ `
1 : Γ→ Γ

σ : ∆→ Γ δ : Θ→ ∆

σδ : Θ→ Γ

Γ ` A σ : ∆→ Γ

∆ ` Aσ
Γ ` t : A σ : ∆→ Γ

∆ ` tσ : Aσ

Γ ` F : (A)Type σ : ∆→ Γ

∆ ` Fσ : (Aσ)Type

() `
Γ ` Γ ` A

Γ.A `
Γ ` A

p : Γ.A→ Γ

Γ ` A
Γ.A ` q : Ap

σ : ∆→ Γ Γ ` A ∆ ` u : Aσ

(σ, u) : ∆→ Γ.A

Γ ` A Γ.A ` B
Γ ` λB : (A)Type

Γ ` F : (A)Type Γ ` a : A

Γ ` app(F, a)

Γ ` A Γ ` F : (A)Type

Γ ` Fun A F

Γ.A ` b : app(Fp, q)

Γ ` λb : Fun A F

Γ ` w : Fun A F Γ ` u : A

Γ ` app(w, u) : app(F, u)

1σ = σ = σ1 (σδ)ν = σ(δν) 1 = (p, q)

(σ, u)δ = (σδ, uδ) p(σ, u) = σ q(σ, u) = u

(Aσ)δ = A(σδ) A1 = A (aσ)δ = a(σδ) a1 = a

app(w, u)δ = app(wδ, uδ) app(F, u)δ = app(Fδ, uδ) (Fun A F)σ = Fun(Aσ)(Fσ)

app((λb)σ, u) = b(σ, u) app((λB)σ, u) = B(σ, u)

Figure 2: Rules of WMLTT

A related point is that the typing/provability relation t : A is decidable [15]. To decide this relation
reduces to the problem of comparing two given terms of the same type. This can be done by unfolding
definitions, which can be interpreted as “computing” the meaning of the two terms, and comparing the
result. For instance, if we define

F 0 = A, F (n+ 1) = ¬ (F n)

then F 2 = (A → N0) → N0 : U since F 2 is by definition ¬ (F 1) which is by definition (F 1) → N0

and F 1 is by definition ¬ (F 0) which is F 0 → N0 and F 0 is A. This means that if t is of type F 2
and u is of type ¬ A then app(t, u) is well-typed.

This notion of definitional equality is analyzed in [14]. An early use of this notion can be found in
the paper [16]. It appeared also before in the work on Automath [6] and in Tait’s analysis of Gödel’s
dialectica interpretation [23].

Figure 3.2 presents the rules of a version of type theory using explicit substitution. One can argue
that the conversion rule (λt)σ = λt(σp, q), which expresses the law of substitution under abstraction, is
not compatible with this idea of unfolding definition [15, 14]. On the other hand, the rules in Figure 3.2
can be seen as a formal description of basic rules of definitional equality.

The rules of weak type theory

The type theory we interpret is a variation of the one presented in the references [15, 14, 26]. Besides
the usual judgment Γ `, Γ ` A and Γ ` a : A, we also have the judgment Γ ` F : (A)Type for families
of types over a given type.

The rules for equality that we validate in our formalized model are

Γ ` A Γ ` a : A Γ ` u : A

Γ ` EqA a u

Γ ` A Γ ` a : A

Γ ` ref a : EqA a a

5

Γ ` e : EqA a u Γ ` F : (A)Type Γ ` p : app(F, a)

Γ ` J e p : app(F, u)

These rules express the rules of identity type (where the computation rule is expressed as propositional
equality). We have also the extensionality rule (formulated in a name-free way)

Γ ` p : Fun A (λEqapp(Fp,q) app(fp, q) app(gp, q))

Γ ` ext p : EqFun A F
f g

The substitution rules are then

(Eq A a u)σ = Eq Aσ aσ uσ (ext u)σ = ext uσ (J e)σ = J eσ

We can add rules for sigma types. The typing rules are

Γ ` A Γ ` F : (A)Type

Γ ` Sum A F

Γ ` a : A Γ ` b : app(F, a)

Γ ` (a, b) : Sum A F

Γ ` c : Sum A F

Γ ` pc : A

Γ ` c : Sum A F

Γ ` qc : app(F, pc)

and the computation rules

p(a, b) = a q(a, b) = b (Sum A F)σ = Sum Aσ Fσ

This version of type theory is called weak type theory, by analogy with the notion of weak conversion
in lambda-calculus [14], since we do not include the conversion rule

(λt)σ = λt(σp, q)

The first published version of type theory [15] did not have this rule. Not having this rule actually
simplifies type checking since the conversion

(λB)σ = (λC)δ

is only possible if B = C and σ = δ, while with the rule of substitution under abstraction, this may
happen because B(σp, q) = C(δp, q). Not having this rule furthermore does not appear to be a problem
for representing proofs. Assume for instance that we have

c : Fun A (λB)σ

then the η-expansion of this term λapp(cp, q) is of type Fun A (λC)δ.

4 A first version of the model

In this section, we present a model where a type is interpreted by a Kan semisimplicial set of level 61.
The collection of all such types is interpreted by a Kan semisimplicial set of level 62. Similarly contexts
are interpreted by Kan semisimplicial sets of level 62. This model has been formally verified in the
system Coq 8.4.

In the usual (set-based) presentation of semisimplicial sets, there is a single set for each level (points,
edges, etc.), and there are face maps that, for instance, return the three edges forming the boundary of
a given triangle.

It is not clear whether this presentation can be adapted in a type-theoretical setting, since it would
make heavy use of propositional equality and coherence conditions between provably but not definitionally
equal types. Rather, dependent types can be used to definitionally express the relation between a
semisimplicial set and its faces. In this settings, points are the objects of a type. Let us call this type
X0. Edges are represented by a type X1 parameterized by two points: given a, b : X0, the type X1 a b
is the type of edges between a and b. At level 3, we need to give three points a0, a1, a2 : X0 and three
edges a01 : X1 a0 a1, a02 : X1 a0 a2 and a12 : X1 a1 a2 to form the type of triangles X2 a0 a1 a2 a01 a02 a12.
We generally omit to mention the points since they can be recovered from the edges types, and simply
write X2 a01 a02 a12.

6

4.1 Kan completion

First we define Kan completion operations at each level. At level n, given n faces of level n− 1 forming
a “horn”, they produce the face of level n− 1 omitted in the horn.

Definition 4.1 At level 1, given two types A and B, we write A↔ B for the type of pair of functions
(comp1

0, comp
1
1) such that

comp1
0 : A→ B and comp1

1 : B → A.

At level 2, given three types A0, A1, A2, and three heterogeneous relations R01, R02 and R12,
1 we

write R01 ↔ R02 ↔ R12 for the type of the following three operations:

comp2
0 : R01 a0 a1 → R02 a0 a2 → R12 a1 a2

comp2
1 : R01 a0 a1 → R12 a1 a2 → R02 a0 a2

comp2
2 : R02 a0 a2 → R12 a1 a2 → R01 a0 a1

for all a0 : A0, a1 : A1 and a2 : A2.
At level 3, given four types Ai (0 6 i < 4), six relations Rij (0 6 i < j < 4) and four types of triangles

Tijk (0 6 i < j < k < 4), we write T012 ↔ T013 ↔ T023 ↔ T123 for the type of the following four
operations:

comp3
0 : T012 a01 a02 a12 → T013 a01 a03 a13 → T023 a02 a03 a23 → T123 a12 a13 a13

comp3
1 : T012 a01 a02 a12 → T013 a01 a03 a13 → T123 a12 a13 a13 → T023 a02 a03 a23

comp3
2 : T012 a01 a02 a12 → T023 a02 a03 a23 → T123 a12 a13 a13 → T013 a01 a03 a13

comp3
3 : T013 a01 a03 a13 → T023 a02 a03 a23 → T123 a12 a13 a13 → T012 a01 a02 a12

for all ai : Ai and aij : Rij ai aj .

Next, we define Kan filler that, given the same input as the Kan completion above, returns a simplex
which boundary is the completed horn described in the previous paragraph.

Definition 4.2 At level 1, given two types A and B, the coherence between a relations R on A and B,
and completion operations (comp1

0, comp
1
1) : A↔ B, written Coh(R, comp1) is defined by the following

operations:

Comp1
0 : ∀x : A. Rx (comp1

0 x) and Comp1
1 : ∀y : B. R (comp1

1 y) y.

At level 2, given three types, and three types of edges R01, R02 and R12 between these types, the
coherence between a type of triangles T and comp2 a completion operation at level 2 (R01 ↔ R02 ↔ R12),
written Coh(T, comp2) is defined as:

Comp2
0 : ∀a01 :R01 a0 a1.∀a02 :R02 a0 a2. T a01 a02 (comp2

0 a01 a02)
Comp2

1 : ∀a01 :R01 a0 a1.∀a12 :R12 a1 a2. T a01 (comp2
1 a01 a12) a12

Comp2
2 : ∀a02 :R02 a0 a2.∀a12 :R12 a1 a2. T (comp2

2 a02 a12) a02 a12

Note that the conjunction of these two operations at a given level can be reformulated. comp1 and
Comp1 is equivalent to the statement: for any point of A, there exists a point in B that is related by a
relation R to the former point, and conversely for any point of B, there exists a point in A related by
R to the former. This is the usual specification of transport between types A and B. At level 2, it says
that for every pair of connected edges, there exists a third edge forming a triangle. And so on at higher
levels.

However, our formulation makes it clear that we have actual operations that builds the witnesses
of the existential statements. The reason for splitting this condition will appear in the definitions of
truncated Kan semisimplicial sets below.

1The indices suggest the domain and range type of the relations.

7

4.2 Small types

Definition 4.3 (Small types) A small type A is a Kan semisimplicial set of level 61. It consists of
the following types and operations:

• a small (Coq) type of points written simply A when not ambiguous,

• a small (Coq) type of edges ηAa0 a1 for any a0, a1 : A,

• Kan edge completion comp1 : A↔ A,

• Kan edge filling operation at level 1 Comp1 : Coh(ηA, comp1).

• Kan triangle completion comp2 : ηA↔ ηA↔ ηA.

Note that this truncated version does not require the Kan filling operation at level 2.
Such a structure can be seen as another presentation of the notion of “proof-relevant” equivalence

relation on a type. This can also be seen as a type-theoretic representation of Bishop’s notion of set [5, 18].
Let us make more precise how this definition is equivalent to setoids. First, setoids can be derived from
a Kan semisimplicial set of level 61:

• ηA is a proof-relevant relation, but none of the requirements discriminate between witnesses of
ηAx y; it can be thought of as the equality on the set A, in the sense of Bishop;

• comp2 implies symmetry and transitivity of ηA, and

• further assuming comp1 and Comp1, we can derive reflexivity of ηA.

Conversely, setoids allow to derive the completion operations above.
However, even though the two notions are mutually derivable, we believe that the Kan semisimplicial

approach provides more uniform notations and generalizes better to higher dimensions.
From now on, to alleviate the overloading of the term type, setoid will refer to the structure given in

Def. 4.3.
Setoid morphisms are functions from one setoid to another preserving edges. Let us give a more

formal definition.

Definition 4.4 (Type morphisms) Let A and B be two setoids. A morphism from A to B is a pair
of functions (f, ηf) such that

• f a : B for all a : A and

• ηf a01 : ηB (f a0) (f a1) for all a0, a1 : A and a01 : ηAa0 a1.

We proceed to define the notion of equality on setoids. Again, as in Bishop’s interpretation, it can
be described as the graph of isomorphisms between the (Bishop) sets A and B.

Definition 4.5 (Isomorphisms) Let A and B be two setoids. An isomorphism between A and B is a
structure I formed of a relation (written I) such that we have:

• a Kan completion of level 1, comp1 : A↔ B and Comp1 : Coh(I, comp1), and

• two degenerate triangles

η0I : ηA↔ I ↔ I and η1I : I ↔ ηB ↔ I.

The two triangles ensure that the relation respects the equality on both ends of the relation.

8

4.3 Contexts

Definition 4.6 (Contexts) A context Γ is a Kan semisimplicial set of level 62. It consists of all the
fields of small types (with the difference that types are not required to be small), and

• a (Coq) type of triangles η1ηΓ a01 a02 a12, for all ai : Γ and aij : ηΓ ai aj ,

• Kan triangle filling operations Comp2 : Coh2(η1ηΓ, comp2), and

• Kan tetrahedron completion comp3 : η1ηΓ↔ η1ηΓ↔ η1ηΓ↔ η1ηΓ.

Note that this truncated version does not require the Kan tetrahedron filling operation.
Context morphisms are functions from one context to another preserving edges and triangles.

Definition 4.7 (Context morphism) Let ∆ and Γ be two contexts. A morphism from ∆ to Γ is a
triple (f, ηf, η1ηf) such that:

• f ρ : Γ for all ρ : ∆ and

• ηf ρ01 : ηΓ (f ρ0) (f ρ1) for all ρ0, ρ1 : A, ρ01 : η∆ ρ0 ρ1.

• η1ηf θ012 : η1η∆ (ηf ρ01) (ηf ρ02) (ηf ρ12) for all θ012 : η1ηΓ ρ01 ρ02 ρ12.

Lemma 4.8 Any setoid can be turned into a context by introducing exactly one triangle for each triple
of connected edges.

4.4 Interpretation of the universe

Theorem 4.9 There exists a context U such that:

• The points of U are setoids,

• ηU AB is the set of isomorphisms between A and B,

• η1ηU I01 I02 I12 is I01 ↔ I02 ↔ I12.

Proof. We have to show that the semisimplicial set in the statement of the theorem satisfies the Kan
extension property. At level 1, we use the fact that a setoid is isomorphic to itself. Level 2 completions
involve the composition of isomorphisms. Given three setoids A0, A1 and A2, and two isomorphisms
I01, I02, it suffices to compose them and obtain an isomorphism between A1 and A2. The third level
is tedious but straightforward. Given four types, six morphisms and three triangles, we can form the
fourth triangle of the tetrahedron.

4.5 Interpretation of the judgments

The judgment Γ ` of Section 3 is represented in Coq as an expression Γ of the type of structures of
Definition 4.6. The other judgments are described below.

4.5.1 Types

Types of a context Γ (written Ty(Γ)) are mappings from Γ to Kan semisimplicial types of level 61 (se-
toids), with additional requirements ensuring that equal contexts yield isomorphic setoids, and similarly
for triangles. In other words, an element of Ty(Γ) is simply a context morphism between Γ and U .

Then, a judgment of the form Γ ` A is represented in Coq as an expression A of type Ty(Γ).

9

4.5.2 Elements

Given a context Γ and a type A : Ty(Γ), an element t of A is a function that returns an element of Aρ
for each element ρ of the context. This function is also required to map equal contexts to equal elements.

Definition 4.10 Given a context Γ and A : Ty(Γ), an element of A is a function t such that:

• tρ : Aρ for any ρ : Γ,

• ηtρ01 : Aρ01 (tρ0) (tρ1) for any ρi : Γ and ρ01 : ηΓ ρ0 ρ1.

We define Elt(Γ, A) to be the type of elements of A.

Formally, a judgment of the form Γ ` t : A is represented by an expression t of type Elt(Γ, A).

4.5.3 Substitutions

Substitutions are represented by context morphisms. A judgment σ : ∆ → Γ is encoded in Coq as a
term σ which is a morphism from context ∆ to context Γ.

The construction of the identity morphism and the composition of morphisms justify the rules

Γ `
1 : Γ→ Γ

and
σ : ∆→ Γ δ : Θ→ ∆

σδ : Θ→ Γ
.

It is also straightforward to derive the rules

Γ ` A σ : ∆→ Γ

∆ ` Aσ
Γ ` t : A σ : ∆→ Γ

∆ ` tσ : Aσ

as a form of composition of A (resp. t) with σ.

Definition 4.11 (Context extension Γ.A) Given Γ a context and A a type of Γ, we can build a
context Γ.A, defined by:

• the type of points of Γ.A is Σρ : Γ. Aρ;

• the edges between two points (ρ0, a0) and (ρ1, a1) is a dependent pair of edges, of type Σω :
ηΓ ρ0 ρ1. Aω a0 a1;

• a triangle between three edges (ω01, a01), (ω02, a02) and (ω12, a12) is simply a triangle between
ω01, ω02 and ω12. This follows the idea that small types are injected in contexts by equipping them
with trivial triangles.

• The Kan operations are defined straightforwardly.

This definition interprets the rule
Γ ` Γ ` A

Γ.A `
The definition of Γ.A suggests that an element of this context can be projected to obtain either an

element of Γ or an element of A, and conversely, an element of Γ.A can be formed from a context of Γ
and an element of A. Hence the definition of p, q and (,) is justifying the rules

Γ ` A
p : Γ.A→ Γ

Γ ` A
Γ.A ` q : Ap

σ : ∆→ Γ Γ ` A Γ ` u : Aσ

(σ, u) : ∆→ Γ.A

10

4.5.4 Definitional equality

The definitional equality of WMLTT is represented by the definitional equality of Coq. Note however
that equalities justified by our model are typed. Although the rules given in Section 3 are presented in an
untyped style, they should actually be presented as a judgment. More precisely, the equality judgment
t = u omits the context and type of this judgment in the informal notation, but they do appear in the
formal presentation, and some typing premises are required, as we shall see below.

The definitional equality of Coq can be represented within Coq using the following meta-theoretical
result: if t = u (where = denotes here the usual Leibniz equality of Coq) is provable by reflexivity, then
t and u are definitionally equal.

The rule p(σ, u) = σ is represented in Coq by the fact that the lemma p(σ, u) = σ (equation between
morphisms from ∆→ Γ) for all σ : ∆→ Γ and u : Elt(Γ, Aσ) is proved by reflexivity. In the same way,
the following equations are proved

σ : ∆→ Γ

1σ = σ : ∆→ Γ σ1 = σ : ∆→ Γ

σ : ∆→ Γ δ : Θ→ ∆ ν : Ψ→ Θ

(σδ)ν = σ(δν) : Ψ→ Γ

σ : ∆→ Γ Γ ` u : Aσ

p(σ, u) = σ : ∆→ Γ ∆ ` q(σ, u) = u : Aσ

σ : ∆→ Γ ∆ ` u : Aσ δ : Θ→ ∆

(σ, u)δ = (σδ, uδ) : Θ→ Γ.A

The latter rule needs (Aσ)δ = A(σδ) to type-check because uδ has (Aσ)δ while it is expected to have
type A(σδ).

We have now fully defined a type theory with explicit substitutions. Next, we introduce the usual
type constructors of MLTT: product and sum types.

4.5.5 Type families

This section is dedicated to what corresponds to the notion of family of sets used in constructive mathe-
matics [5, 18, 19], where objects A : U correspond to Bishop sets. A family of setoids indexed by a type
A is written (A)Type.

However, since we need to model expressions with free variables, we also need to define families in
a context Γ. In our model, this needs further definitions, as we need to explain when two families are
isomorphic, and also when three family isomorphisms form a triangle.

As suggested above, a setoid family indexed by A is simply a context morphism from A (a setoid
viewed as a context) to U .

Definition 4.12 (Setoid family isomorphism) Given an isomorphism I : ηU A0A1 and two setoid
families F0 and F1 with Fi indexed by Ai, an isomorphism J between F0 and F1 consists of a triple
(J, η0J, η1J) specified by:

• Ja01 is an isomorphism from F0a0 to F1a1 for all ai : Ai and a01 : I a0 a1;

• η0J(a00′ , a01, a0′1) : ηF0a00′ ↔ Ja01 ↔ Ja0′1 for all ai : Ai, a0′ : A0, a00′ : ηA0 a0 a0′ and
aij : I ai aj ;

• η1J(a01, a01′ , a11′) : Ja01 ↔ Ja01′ ↔ ηF1a11′ for all ai : Ai, a1′ : A1, a11′ : ηA1 a1 a1′ and
aij : I ai aj .

Quite naturally, three setoid family isomorphisms form a triangle if any triangle in the index types
can be mapped to a triangle in U between the resulting setoid isomorphisms.

Definition 4.13 (Type family triangle) Given three setoids, three isomorphisms A01, A02 and A12

between them, three families F0, F1 and F2 (with Fi indexed by Ai), a triple of type family isomorphisms
F01, F02 and F12 forms a triangle when we have F01a01 ↔ F02a02 ↔ F12a12 for all ai : Ai and aij :
Aij ai aj .

11

This condition is indeed equivalent to the fact that two isomorphisms ηF a01 and ηF a′01 are extensionally
equal for any two proofs a01, a

′
01 of ηAa0 a1.

Informally, a type family (in a context) should simply be a morphism from the context to the structure
for which we have define the points, edges and triangles. However, since the index type may depend on
its context, we cannot reuse as is the notion of context morphism. Instead we make a similar definition:

Definition 4.14 (Type families) Given a context Γ, and A : Ty(Γ), a type family over A is a tuple
of functions (F, ηF, η1ηF) such that:

• Fρ is a context morphism from Aρ to U for any ρ : Γ,

• ηFρ01 is a setoid family isomorphism from Fρ0 to Fρ1 for all ρi : Γ and ρ01 : ηΓ ρ0 ρ1; the
isomorphism between index setoids Aρ0 and Aρ1 is, without surprise, ηAρ01;

• η1ηFρ012 is a setoid family triangle between ηFρ01, ηFρ02a02 and ηFρ12a12 for all ρi : Γ, ρij :
ηΓ ρi ρj and ρ012 : η1ηΓ ρ01 ρ02 ρ12.

We define Fam(Γ, A) as the type of families over A.

The reader should be careful about the ambiguity there may be between the field η1 of ηF and η1ηF .
This will be addressed by writing simply η1F for the former (and for consistency of notations, we will
also write η0F).

In the current setting, a judgment of the form Γ ` F : (A)Type is interpreted by an expression F of
type Fam(Γ, A).

Ideally, following the informal explanation above, type families should be defined independently of
the ambient context Γ: a context F of all setoid families (A)Type would be defined, and then Fam(Γ, A)
would be the set of context morphisms f from Γ to F such that the index type of fρ is Aρ. This lends
itself better to a generalization, as explained in Section 7. Dealing with the dependency of the index on
the context is the key difficulty.

Definition 4.15 (Type application) Given a family of types F indexed by A in context Γ and a an
element of A, we can define app(F, a), a type which corresponds to the element of the family at a, by:

app(F, a)ρ = Fρ aρ ηapp(F, a)ρ01 = ηFρ01 ηaρ01 η1ηapp(F, a)ρ012 = η1ηFρ012(ηaρ01, ηaρ02, ηaρ12)

with the usual typing convention.

This definition interprets the rule

Γ ` F : (A)Type Γ ` a : A

Γ ` app(F, a)

Substitution of type families is defined in the same style as before, and we can prove that substitution
commutes with application:

Γ ` F : (A)Type σ : ∆→ Γ

∆ ` Fσ : (Aσ)Type
app(F, a)σ = app(Fσ, aσ).

Again, this equation is a simplification of the formal result, which requires well-typedness conditions.
The introduction rule for type families is more tedious and less canonical as it depends on auxiliary

definitions that may be implemented in different ways.

Definition 4.16 (Type-level λ-abstraction) Given a type A in context Γ and a type B in Γ.A, then
we can define λB, a family indexed by A in Γ by:

• λBρa = B(ρ, a)

• η(λBρ)a01 = ηB(φ(ρ), ψ(ρ, a01))

• η1η(λBρ)a012 = η1ηB(φ′(ρ), (ψ(ρ, a01), ψ(ρ, a02), ψ(ρ, a12)))

12

• η(λB)ρ01a01 = ηB(ρ01, a01)

• η0(λB)ρ01(a00′ , a01, a0′1) = η1ηB(φ0(ρ01), (ψ(ρ0, a00′), a01, a0′1))

• η1(λB)ρ01(a01, a01′ , a11′) = η1ηB(φ1(ρ01), (a01, a01′ , ψ(ρ1, a11′)))

• η1η(λB)ρ012(a01, a02, a12) = η1ηB(ρ123, (a01, a02, a12))

with the following auxiliary definitions

• φ(ρ) : ηΓ ρ ρ (reflexivity)

• φ0(ρ01) : η1ηΓφ(ρ0) ρ01 ρ01 (degenerate triangle where one edge is the reflexivity)

• φ1(ρ01) : η1ηΓ ρ01 ρ01 φ(ρ1) (idem)

• φ′(ρ) : η1ηΓφ(ρ)φ(ρ)φ(ρ) (degenerate triangle where all three edges are reflexivity)

• ψ(ρ, aij) : ηAφ(ρ) ai aj (remember that aij : η(Aρ) ai aj)

The auxiliary definitions are easily derivable from the Kan completion operations of Γ up to level 3
(tetrahedron completion), and those of A.

Substitution does not commute with λ-abstraction for reasons similar to what is explained in Section 1.
Nevertheless, the type level β-reduction property can be derived:

app((λB)σ, a) = B(σ, a).

4.6 Interpretation of the product

The goal of this section is to define the interpretation of FunAF , given a context Γ, a type A : Ty(Γ) and
a type family F : Fam(Γ, A). We first deal with the case when there is no ambient context Γ and define
a setoid FunAF : U given a setoid A : U and a family of setoids F indexed by A. Once we establish
that this morphism preserves isomorphisms and triangles, we can extend the definition of FunAF in a
context Γ.

Consider A : U and F a context morphism from A (seen as a context) to U . The type of dependent
functions from A to F does not always form a setoid: reflexivity fails for functions that do not map equal
objects of A to equal images in F . The obvious fix is to consider only functions that respect equality.

Lemma 4.17 (Product of setoids) Given A a setoid and F a setoid family indexed by A, there exists
a setoid FunAF : U such that:

• FunAF = Σ(f : Πa : A.Fa).Πa0, a1 : A.Πa01 : ηAa0 a1.ηFa01 (f a0) (f a1),

• η(FunAF) (f0, f
′
0) (f1, f

′
1) holds when ηFa01 (f0 a0) (f1 a1) for all a0, a1 : A and a01 : ηAa0 a1.

Proof. Completing the setoid definition is straightforward. The most noticeable fact is that level 1
composition derives from the second component of the elements of FunAF .

Lemma 4.18 (Isomorphic products) Given an isomorphism A01 : ηU A0A1 and a setoid family iso-
morphism F01 (with the usual indexing conventions), there exists an isomorphism ηFunA01 F01 between
FunA0 F0 and FunA1 F1 such that ηFunA01 F01 (f0, f

′
0) (f1, f

′
1) produces an object of F01a01 (f0 a0) (f1 a1)

for all ai : Ai and a01 : A01 a0 a1.

Proof. We refer to the formal development.

Lemma 4.19 Given three isomorphisms A01, A02, A12 and A012 : A01 ↔ A02 ↔ A12 (a triangle of U),
and a setoid family isomorphism triangle F012 between F01, F02 and F12, then there exists

η1ηFunA012 F012 : FunA01 F01 ↔ FunA02 F02 ↔ FunA12 F12.

Proof. We refer to the formal development.

13

Definition 4.20 (Product) Given a context Γ, a type A : Ty(Γ) and a type family F : Fam(Γ, A), we
define the type FunAF : Ty(Γ) by:

• (FunAF)ρ = Fun (Aρ) (Fρ)

• η(FunAF)ρ01 = ηFun (ηAρ01) (ηFρ01)

• η1η(FunAF)ρ012 = η1ηFun (η1ηAρ012) (η1ηFη012)

This definition interprets the rules

Γ ` A Γ ` F : (A)Type

Γ ` FunAF
(FunAF)σ = FunAσ Fσ.

As in the case of type level application, the term level application is straightforward:

app(w, u)ρ = π1(wρ)uρ ηapp(w, u)ρ01 = ηwρ01 ηuρ01

where π1 is the first projection of Σ-types.
The term level λ-abstraction is more interesting: one obviously defines the first component of the

Σ-type by
π1((λb)ρ)a = b(ρ, a),

but the definition of the second component requires the Kan completion operations of the domain and
co-domain types. The level 2 part of λb is easy:

η(λb)ρ01a01 = ηb(ρ01, a01).

These definitions interpret the following typing rules:

Γ ` w : FunAF Γ ` u : A

Γ ` app(w, u) : app(F, u)

Γ.A ` b : app(Fp, q)

Γ ` λb : FunAF

The overloading of type level notations at the term level is justified by the fact that the same
definitional equalities apply, including the failure of the propagation of substitutions across λ-expressions.

4.7 Interpretation of the sum types

The definition of sum types follows the same scheme as for the product types. It is nonetheless more
straightforward, since the dependent sum of a setoid with a family of setoids does form a setoid. An
isomorphism between two sum types is defined as a pair of an isomorphism between the first components,
and a type family isomorphism between the second components, and similarly for the triangles.

Given a setoid A and a setoid family F in A, the setoid SumAF : U is defined as:

• SumAF = Σ(a : A).Fa

• η(SumAF) (a0, b0) (a1, b1) = Σ(a01 : ηAa0 a1).ηF a01 b0 b1

The isomorphism ηSumA01 F01 between SumA0 F0 and SumA1 F1 is defined as:

ηSumA01 F01 (a0, b0) (a1, b1) = Σ(a01 : A01 a0 a1).F01a01 b0 b1

All other requirements are fulfilled without surprise.
Last auxiliary definition is the triangle

η1ηSumA012 F012 : SumA01 F01 ↔ SumA02 F02 ↔ SumA12 F12

given two triangles A012 and F012.

Definition 4.21 (Sum) Given a context Γ, a type A : Ty(Γ) and a type family F : Fam(Γ, A), we
define SumAF : Ty(Γ) as:

14

• (SumAF)ρ = Sum (Aρ) (Fρ)

• η(SumAF)ρ01 = ηSum (ηAρ01) (ηFρ01)

• η1η(SumAF)ρ012 = η1ηSum (η1ηAρ012) (η1ηFρ012)

The constructors and projections of sum types are defined by

(a, b)ρ = (aρ, bρ)
η(a, b)ρ01 = (ηaρ01, ηbρ01)

pcρ = π1(cρ)
ηpcρ01 = π1(ηcρ)

qcρ = π2(cρ)
ηqcρ01 = π2(ηcρ)

The following definitional equalities hold:

(SumAF)σ = SumAσ Fσ (a, b)σ = (aσ, bσ) (pc)σ = p(cσ) (qc)σ = q(cσ)

Our model validates both equalities p(a, b) = a and q(a, b) = b. This is not the case for the model
described in [9] (which on the other hand validates the rule of substitution under abstraction). Other
attempts to explain function extensionality [2, 3] use extensions of Type Theory. Our model is close
to Erik Palmgren’s representation of Bishop sets in dependent type theory [19], but we have a different
representation of function spaces which interprets more definitional equality.

5 Applications of the model

We have a direct representation of (×) : U × U → U and (→) : U × U → U . For instance A → B is
the type of extensional functions between A and B. If P : ηU P0 P1 and Q : ηU Q0 Q1 then P → Q
represents the relation (P → Q) f0 f1 which holds exactly when P x0 x1 implies Q (f0 x0) (f1 x1). This
is then a graph of an isomorphism between the sets P0 → Q0 and P1 → Q1. We can define as well the
operations (↔) : U × U → U .

All the applications we present have been formally verified in the system Coq V8.4.

5.1 A small type of propositions

This subsection can be seen as a generalization of Russell’s work on implication [21]. We assume that
the type theory we are working with has at least two universes Type0,Type1 (as introduced in [15]). We
define U to be Type1.

We define Ω = Type0 and ηΩ X0 X1 to be the type X0 ↔ X1.
We define a semisimplicial map T : Ω→ U by taking

T X = X, ηT h x0 x1 = N1

where N1 is the unit type. This interprets the rule

Γ ` a : Ω

Γ ` T a

If X is Kan semisimplicial set we define eqX : X ×X → Ω. We take eqX a u to be the type η X a u.
If P : ηU X Y and we have P a b and P u v then eqX a u and eqY b v are logically equivalent. We
define then EqX a u to be the type T (eqX a u).

It is then possible to show that ∏
a:X

∏
u:X

EqX a u

is provable in this model if, and only if, any two elements of X are related by the equality relation ηX.
Furthermore, the type Ω satisfies the following weak form of univalence.

Proposition 5.1 In the model, the following type is inhabited∏
a:Ω

∏
u:Ω

(T a↔ T u)→ EqΩ a u

15

This model interprets also the operation of quotient. If X is a type and we have a relation R :
X ×X → Ω which is an equivalence relation in the model then it is possible to define a new type X/R
with an operation a 7−→ [a], X → X/R, such that EqX/R [a] [u] is equal to R a u.

We interpret existential quantification in the following way. The rules are

Γ ` A Type0 Γ ` ϕ : A→ Ω

Γ ` ∃ϕ : Ω

with introduction rule

Γ ` A Type0 Γ ` ϕ : A→ Ω Γ ` a : A Γ ` p : T (app(ϕ, a))

Γ ` (a, p) : T (∃ϕ)

and elimination rule

Γ ` u : T (∃ϕ) Γ ` ψ : Ω Γ.A ` v : T (app(ϕp, q))→ Tψp

Γ ` E u v : T (ψ)

and computation rule E (a, p) v = app(va, p).
Here is the interpretation of ∃ϕ. If ρ : Γ[0] we define (∃ϕ)ρ to be the set of pairs u, p with u : Aρ and

p : app(ϕρ, u). If α : Γ[1] with diα = ρi we have to show the logical equivalence of (∃ϕ)ρ0 and (∃ϕ)ρ1.
This follows from the fact that Aα is a relation between Aρ0 and Aρ1 satisfying the Kan condition and
that ϕα shows that app(ϕρ0, u0) and app(ϕρ1, u1) are logically equivalent if u0 : Aρ0 and u1 : Aρ1 are
related by Aα.

5.2 Isomorphisms of setoids

Using a notation with variables for readability, our model interprets contexts of the form X : U or
X : U, Y : U with variable ranging over small Kan semisimplicial types. For instance, we can interpret
the judgment

X : U ` (X → X)×X

or
X : U ` Σ(f, a) : (X → X)×X.EqX (f a) a

which intuitively represents the structure of having an endofunction with a fixpoint over a set X. If
we have such a judgment X : U ` T (X) we can use our model and compute for any given set A a
corresponding set T (A). In this model X : U ` T (X) is interpreted by a function U → U . We can thus
use this interpretation to transform any graph of an isomorphism P : ηU A B between two sets A and
B to a graph of an isomorphism between T (A) and T (B). In particular, in a case like

X : U ` (X → X)×X

this allows us to transport any structure on A to a structure on B, and in a case like

X : U ` Σ(f, a) : (X → X)×X.EqX (f a) a

this shows that any proof of a property on a structure on A (to be a fixpoint) can be transported to a
proof of the corresponding property on the isomorphic structure B. We can cover in this way examples
similar to the ones in [8] but also with computations on open terms.

We have another stronger form of univalence in this model, which transforms any isomorphism be-
tween two sets to a proof that these two sets are equal.

Proposition 5.2 If f : A→ B is an isomorphism between the (Bishop) set A and the (Bishop) set B,
the relation P (a, b) defined by ηB (f a) b is the graph of the isomorphism and we have that P : U [1].

16

6 The semisimplicial set model

Before presenting the Kan semisimplicial set model, we describe the (simpler) semisimplicial set model
of type theory. This model justifies not only the rules of Figure 3.2 but also the rule (λt)σ = λt(σp, q).

We let ∆+ be the category of objects of the form [n] and the morphism are injective monotone maps.
We have an inclusion i : ∆+ → ∆. A semisimplicial set is a presheaf ∆op

+ Set.
We define a semisimplicial set W . An element of W [n] is a family of sets Af indexed by f : [m]→ [n]

injective, with maps Af → Afg, u 7−→ ug for g : [p] → [m] injective such that u = u1 : Af and
ugh = (ug)h : Afgh. If A : W [n] and g : [m]→ [n] is injective we have Ag : W [m] by (Ag)h = A(gh). If
A : W [n] we may write the set A1 simply as A.

If A : W [n] we interpret (A)Type to be the set of families Ff for f : [m] → [n] injective such that
app(Ff, u) : W [m] if u : Af and such that app(Ff, u)g = app(F (fg), ug) : W [p] if g : [p] → [m] is
injective. If A : W [n] and F : (A)Type we define Fun A F to be the set of family ϕf for f : [m] →
[n] injective such that app(ϕf, u) : app(Ff, u) if u : Af and such that app(ϕf, u)g = app(ϕfg, ug) :
app(F (fg), ug) if g : [p]→ [m] is injective.

A context Γ is interpreted by a semisimplicial set, so we have a collection of sets Γ[n] and functions
Γ[n] → Γ[m], ρ 7−→ ρf for any f : [m] → [n] injective, with ρ1 = ρ : Γ[n] and ρfg = ρ(fg) : Γ[p] if
g : [p]→ [m] is injective. A substitution σ : ∆→ Γ is interpreted by a function σρ : Γ[n] for ρ : ∆[n] in
such a way that (σρ)f = σ(ρf) : Γ[m] if f : [m]→ [n] is injective.

A judgment Γ ` A will be interpreted by giving Aρ : W [n] for any ρ : Γ[n] in such a way that Aρf =
A(ρf) if f : [m]→ [n] is injective. If Γ ` A we define (Γ.A)[n] to be the set of pairs ρ, u with ρ : Γ[n] and
u : Aρ and (ρ, u)f = (ρf, uf) if f : [m] → [n] is injective. A judgment Γ ` F : (A)Type is interpreted
by giving Fρ : (Aρ)Type for any ρ : Γ[n] in such a way that app(Fρf, uf) = app(Fρ, u)f : W [m] for any
u : Aρ and any f : [m]→ [n] injective.

A judgment Γ ` t : A is interpreted by giving an element tρ : Aρ for each ρ : Γ[n] in such a way that
tρf = t(ρf) : Aρf if f : [m]→ [n] is injective.

All the rules of type theory are validated by this interpretation, even the rule

(λt)σ = λt(σp, q)

7 The Kan semisimplicial set model

7.1 General lemmas about semisimplicial sets

We let I, J,K, . . . denote nonempty finite linear orders. If I is such a nonempty finite linear order, it is
isomorphic exactly to one unique [n] in an unique way. We define W (I) to be W [n]. If P is in W (I) and
f : J → I is an injection it corresponds to exactly one injection g : [m]→ [n] and we define Pf to be Pg
and the map u 7−→ uf, P → Pf to be the map u 7−→ ug. If f is an inclusion, we may write P (J) instead
of Pf and similarly u(J) instead of uf. If a is an element of I and f is the inclusion I − a→ I we may
write ∂aP instead of Pf and similarly ∂au instead of uf if u : W (I). Note that we leave I implicit as
it can be inferred from the context u : W (I). This deviates from the usual notation for face maps but
simplifies the notation in what follows. Also, note that the semisimplicial identities become ∂a∂b = ∂b∂a
for a 6= b elements of I.

For instance if P : W [1] we have three sets P = P1 and P (0) and P (1) and two maps u 7−→ u(0), P →
P (0) and u 7−→ u(1), P → P (1). We also have P (0) = ∂1P and P (1) = ∂0P .

If J ⊆ I and a is an element of J , we can define P (Λa(J)) as the set of compatible families ub : ∂bP (J)
for b 6= a, i.e. such that ∂cub = ∂buc for b, c distinct from a. We have a canonical map P (J)→ P (Λa(J)).
We say that P is in V (I) iff each canonical map P (J)→ P (Λa(J)) has a section.

If L is a nonempty subset of I and P : W (I) we define a L-compatible family of P to be a family of
elements ub : P (I − b) for each b in L such that ∂cub = ∂buc for all b and c in L. We say that P has
compositions iff for any a not in L and a, L,M ⊆ I we have an operation comp u : P (L,M) which takes
a L-compatible family ub : P (a, L − b,M) and produces an element ua = comp u : P (L,M) satisfying
∂bua = ∂aub for all b in L. Furthermore all these operations should be compatible, in the sense that we

17

have ∂c(comp u) = comp (∂c◦u) for all c in M , where we write ∂c◦u for the family ∂cub : P (a, L−b,M−c)
with b in L.

A stronger notion is to have extension operations. Given a compatible family of elements ub : P (L−
b, a,M) these operations produce an element u = Comp(ub) : P (L, a,M). This element should satisfy
∂bu = ub : P (L−b, a,M) for all b in L, and we should have ∂cu = Comp(∂cub) : P (L, a,M−c) for all c in
M . If P has extension operations, then it also has composition operations by defining comp = ∂aComp.
To have extension operations for P in W (I) is a priori a stronger condition than being in V (I), by taking
L = I − a. However the two properties are actually equivalent.

Lemma 7.1 If P : V (I) then P has extension operations, and hence has compositions.

Proof. Given a compatible family ub : P (L− b, a,M), b ∈ L , we define the extension u : P (L, a,M) by
induction on the cardinality of M . By induction we have defined the extensions uc : P (L, a,M − c) of
all the ∂cub’s for each c in M in a compatible way. We use then the Kan extension operation to define
u : P (L, a,M) such that ∂bu = ub for all b in L and ∂cu = uc for all c in M .

A special case of Lemma 7.1 will be important.

Corollary 7.2 If P : V (I) and a, b are two elements of I there exists an operation Ext u : P (a, b,M)
which takes an element u : P (b,M) and satisfies ∂aExt u = u and ∂cExt u = Ext ∂cu for all c in M .

To have composition operations can be seen as a generalization of the notion of partial equivalence
relations, while to have extension operations generalizes the notion of equivalence relations.

One basic example of composition is the composition of two binary relations. The following result
generalizes this notion.

Lemma 7.3 The semisimplicial set W has compositions.

Proof. Assume given a, L subset of I and a compatible family Qb : W (I − b) for b in L. We define
Qa = comp (Qb) : W (I − a). An element of Qa is a compatible family v = (ub) where ub : Qb for b in L
i.e. a family satisfying ∂cub = ∂buc for all b, c in L. We define then ∂cv to be the family ∂cub, b : L for c
in I − L, a and ∂bv to be ∂aub for b in L.

In the case n = 2 and I = J = 0, 1, 2 and a = 1 we get back the usual notion of composition of
relations.

Lemma 7.4 The semisimplicial set V is closed under the compositions of W .

Proof. To simplify the notation, we describe the argument in the case where we compose P : V (01M)
and Q : V (02M) obtaining a relation R : W (12M). An element in R is a pair u(01M), v(02M) such that
u(0M) = v(0M) and we have

∂1(u, v) = v(2M) ∂2(u, v) = u(1M)

and ∂b(u, v) = ∂bu, ∂bv for all b in M . We show that R is in V (12M). We have three cases.
The first case is if we have a in M and we have a compatible family consisting of an element (ub, vb)

in R(12Mb) for all b in Ma = M − a and we have an element v0 in Q(2M) and an element u0 in P (1M).
We have a compatible family ub in P (01Mb) for b 6= a and u0 in P (1M). By Lemma 7.1 we can find
u : P (01M) such that ∂0u = u0 and ∂bu = ub for all b in M − a. The family consisting of vb : Q(02Mb)
for b in M − a and v0 : Q(2M) and u(0M) : P (0M) = Q(0M) is then compatible and since Q : V (02M)
we can find v : Q(02M) such that ∂bv = vb for b in M − a and ∂0v = v0 and v(0M) = u(0M). The
element u, v in R(12M) is the required filling.

The second case is if we have a compatible family consisting of an element ub, vb in R(12Mb) for each
b in M and an element u0 in P (1M). Since the family ub : P (01Mb) and u0 : P (1M) is compatible
and P : V (01M) we find a filling u : P (01M). We have then a compatible family vb : Q(02Mb) and

18

u(0M) : P (0M) = Q(0M). Since Q : V (02M) we have a filling v : Q(02M). The element u, v in R(12M)
is the required filling.

The third case is if we have a compatible family consisting of an element ub, vb in R(12Mb) for each
b in M and an element v0 in Q(2M). This case is similar to the second case.

Let X be a semisimplicial set. We can associate a simplicial set X by defining X[n] to be the set of
families uf : X[m] for f : [m] → [n] monotone (but not necessarily strictly) such that ufg = ufg : X[k]
whenever g : [k] → [m] is strictly monotone. This defines a simplicial set. We can reformulate this
definition as follows. The inclusion i : ∆+ → ∆ defines a functor i∗ : ∆opSet→ ∆op

+ Set which has a right

adjoint iR : ∆op
+ Set → ∆opSet and we have X = iRX so that iRX[n] can also be defined as all natural

transformations i∗∆n → X, where ∆n is the simplicial set represented by [n].

If X is a semisimplicial set, then each restriction X(I) defines an element of W (I). A Kan semisim-
plicial set is a semisimplicial set Y such that each restriction Y (I) is in V (I).

Lemma 7.5 If the semisimplicial set X has compositions then Y = X is a Kan simplicial set.

Proof. To simplify the notations, we consider only the case where we have compatible u2 : Y (01) and
u1 : Y (02) and we explain how to build the extension u : Y (012). We give an algorithm for computing
uf : X(I) for any map f : I → 012 such that we have ufi = u(fi) for strictly monotone i : J → I. We
let z1 < · · · < zn < a1 < · · · < ap < b1 < · · · < bq be I, with f(zi) = 0 and f(aj) = 1 and f(bk) = 2.
The definition is by induction on p + q. We first treat the case p = 0 or q = 0 separate; if p = 0, i.e.
1 is not in the image of f , we can write f = ∂1f

′ for a uniquely determined f ′ : I → 02, and define
uf = u1f

′. Note that by the uniqueness of the decomposition and fi = ∂1f
′i we have u(fi) = u1f

′i, and
thus u(fi) = ufi. Similarly, if q = 0, we write f = ∂2f

′ and set uf = u2f
′. Note that if both p = q = 0,

we have f = ∂1∂2f
′′ for some f ′′, and then ∂1u2 = ∂2u1 yields u2(∂1f

′′) = u1(∂2f
′′), and hence both

definitions of uf coincide.
In case both p and q are 6= 0, we consider the linear order J obtained by adding one element z

exactly before a1. Let f ′ : J → 012 be the extension of f defined by f ′(z) = 0. Let f1 be the restriction
of f ′ on J1 = J − ap and f2 be the restriction of f ′ on J2 = J − bq. By induction hypothesis, the
elements uf1 : X(J1) and uf2 : X(J2) are defined and are compatible since ∂z(uf1) = u(f1∂z) =
u(f2∂z) = ∂z(uf2). We define uf to be their composition. In order to check (uf)i = u(fi) for injective
i, we distinguish cases: in case 1 or 2 are not in the image of i, say 1, we have that i = ∂1i

′ and
thus (uf)i = (∂z(uf1))i′ = u(f1∂zi

′) = u(f∂1i
′) = u(fi). Otherwise, we can assume i = ∂0; by

the compatibility condition for compositions, ∂0(uf) is the composition of ∂0(ufν) (for ν = 0, 1), and
∂0(ufν) = u(fν∂0); using fν∂0 = (f∂0)ν yields that this composition is u(f∂0) by definition.

It remains to check ∂1u = u1 and ∂2u = u2. But (∂1u)f = u(∂1f) = u1f , and similarly for the other
face.

7.2 Interpretation of the universe

We define U to be V . So an element of U [n] is a natural transformation i∗∆n → V .

Theorem 7.6 U has the structure of a Kan simplicial set.

Proof. This follows from Lemma 7.4 and 7.5.

To give an element of U [n] is to give a family of sets P = (Pf) indexed by f : [m]→ [n] together with
restriction maps Pf → Pfg, u 7−→ ug for g : [p] → [m] injective, satisfying u1 = u and (ug)h = u(gh).
Furthermore, for any f the family Pfg, g : [p]→ [m] defines an element Pf of V [m]. We write u : P for
u : P1. There is a canonical map i∗U → V .

19

7.3 Interpretation of the product

For the semisimplicial set model, we have defined Fun A F : W [n] if A : W [n] and F : (A)Type. In
general if A : V [n] and app(Ff, u) : V [m] for all u : Af and f : [m] → [n] injective, we may not have
Fun A F : V [n]. However Fun A F : W [n] always has composition operations.

Lemma 7.7 If A : V [n] and F : (A)Type is such that app(Ff, u) : V [m] for all f : [m] → [n] injective
then Fun A F : W [n] has composition operations.

Proof. For instance we assume that we have A in V (012M) and F in (A)Type and t1 in (Fun A F)(02M)
and t2 in (Fun A F)(01M) and we show how to define t0 in (Fun A F)(12M). We take u0 in A(12M)
and we define app(t0, u0) in app(F (12M), u0). Using the fact that A is in V (012M) and Corollary
7.2 we an extend u0 to an element u in A(012M) so that we have ∂0u = u0. We can then consider
u1 = app(t1, u(02M)) and u2 = app(t2, u(01M)) that are compatible. Since app(F, u) is in V (012M)
these two elements have a composition v in app(F (12M), u0) and we define app(t0, u0) to be this element
v.

If P : U [n] an element F : (A)Type is a family Ff indexed by monotone functions f : [m] → [n]
such that app(Ff, u) : U [m] if u : Af . Furthermore we should have app(Ff, u)g = app(Ffg, ug) : U [p] if
g : [p]→ [m] is injective. If F : (A)Type and f : [m]→ [n] is monotone, then we can define Ff : (Af)Type
by (Ff)g = F (fg) for g : [p]→ [m] monotone.

If A : U(I) and F : (A)Type, we define Fun′ A F to be the set of families tf indexed by monotone
functions f : J → I such that app(tf, u) : app(Ff, u) if u : Af. Furthermore we should have app(tf, u)g =
app(tfg, ug) : app(Ffg, ug) : U(K) if g : K → J is injective.

If f : J → I is a monotone map, we have a restriction map Fun′ A F → Fun′ Af Ff defined by
(tf)h = t(fh) for h : K → J monotone. In this way, given A : U [n] and F : (A)Type we have defined an
element Fun A F in iRW [n] = i∗∆n →W.

By reasoning like for Lemma 7.5 we deduce the following result.

Theorem 7.8 If A : U [n] and F : (A)Type then Fun A F : U [n].

Proof. To simplify notations, let us assume A : U(012) and that we have compatible elements t1 :
(Fun A F)(02) and t2 : (Fun A F)(01); we explain how to build an element t : (Fun A F)(012). We give
an algorithm for computing app(tf, u) : app(Ff, u) for any map f : I → 012 and any u : Af satisfying
app(tf, u)i = app(t(fi), ui) for injective i. We let z1 < · · · < zn < a1 < · · · < ap < b1 < · · · < bq be
I, with f(zi) = 0 and f(aj) = 1 and f(bk) = 2. The definition is by induction on p + q. If p = 0, we
define tf to be t1f

′ where f = ∂1f
′; and likewise, if q = 0, we define tf to be t2f

′ where f = ∂2f
′.

If p and q are 6= 0, we consider the linear ordering J obtained by adding one element z exactly before
a1. Let g : J → 012 be the extension of f defined by g(z) = 0. Let g1 be the restriction of g on
J1 = J − ap and g2 be the restriction of g on J2 = J − bq. For an element u : Af , Corollary 7.2
yields Ext u in Ag such that ∂z(Ext u) = u and ∂c(Ext u) = Ext (∂cu) for c 6= z, ap, bq. The elements
app(tg1, (Ext u)(J1)) : app(Fg1, (Ext u)(J1)) and app(tg2, (Ext u)(J2)) : app(Fg2, (Ext u)(J2)) are defined
and are compatible by induction. We define app(tf, u) to be their composition.

7.4 Interpretation of WMLTT

A context Γ is interpreted as a Kan semisimplicial set. A dependent type Γ ` A is interpreted as a
semisimplicial map A : Γ → i∗U . So for any α : Γ[n] we have an element Aα : U [n], which itself is a
family Aαf : V [m], f : [m]→ [n], such that (Aα)g = A(αg) for injective g : [m]→ [n].

A section Γ ` a : A is given by a family aα : Aα for each α : Γ[n] satisfying aαg = a(αg) for each
g : [m]→ [n] injective.

The empty context () is interpreted by the Kan semisimplicial set which has exactly one element at
each dimension. Context extension is interpreted as follows. If Γ ` A then we define (Γ.A)[n] to be
the set of pairs α, u where α : Γ[n] and u : Aα. Notice that for defining Γ.A we need only to know the
composition of A : Γ→ i∗U and i∗U → V .

20

We interpret Γ ` F : (A)Type by giving for each α : Γ[n] an element Fα : (Aα)Type such that
(Fα)g = F (αg) for injective g : [m] → [n]. We can then take (Fun A F)α = Fun (Aα) (Fα) which
interprets the rule Γ ` Fun A F if Γ ` A and Γ ` F : (A)Type.

If Γ ` F : (A)Type and Γ ` u : A and α : Γ[n] we define app(F, u)α = app(Fα1, uα) : U [n] and if
Γ ` t : Fun A F and Γ ` u : A and α : Γ[n] we define app(t, u)α = app(tα1, uα) : app(Fα, uα).

Given Γ ` A and Γ.A ` B we explain how to define Γ ` λB : (A)Type. For this we have to define for
any α : Γ[n] and any f : I → [n] and any element ω : Aαf an element app(((λB)α)f, ω) : U(I). If f is
an injection, we take app(((λB)α)f, ω) to be B(αf, ω). If f is not injective we look at the first fiber of
f of cardinal > 1, of elements a0 < · · · < am with m > 0. The complexity of f will then be the tuples of
cardinal of fibers that have more than one element, ordered lexicographically. We let K be the extension
of [n] obtained by adding an element p′ just after p = f(a0) and J be the extension of I obtained by
adding one element a′ just after am. We let f ′ : J → K be the extension of f defined by sending a′ to
p′. Using Lemma 7.2 we can extend α : Γ[n] to α′ : Γ(K) using p. We can then use Lemma 7.2 again to
extend ω : (Aα)f to ω′ : (Aα′)f ′ using an. We present an algorithm for computing app((λB)α′)f ′, ω′)
by a side induction on the cardinality of I; then app((λB)α)f, ω) can be defined as the restriction to I.
We have to compute an element of U(J). Using Theorem 7.6 it is enough to define a compatible family
of elements of U(J − b) for each b 6= a′. But for each b 6= a′ consider the function f ′∂b : J − b → K,
for which the element app(((λB)α′)f ′∂b, ω

′(J − b)) is already defined, since either b is one ai and then
f ′∂b is less complex than f ; or b is in I − a0, . . . , am and then we have defined this element by the side
induction hypothesis as we have f ′∂b = (f∂b)

′ and ω′(J − b) = (∂bω)′. Also by induction, these elements
form a compatible family.

The definition is such that
app((λB)α, ω) = B(α, ω)

which justifies the definitional equality app((λB)σ, u) = B(σ, u).

The definition of app((λb)αf, ω) : app(Fαf, ω) if Γ.A ` b : app(Fp, q) and α : Γ[n] and f : I → [n]
and ω : Aαf is similar. The definition is such that

app((λb)α, ω) = b(α, ω) : app(Fα, ω)

which justifies the definitional equality app((λb)σ, u) = b(σ, u).

7.5 More general shapes

We let ∆n
+ be the contravariant functor on ∆+ represented by [n] and we define ∆I

+ = ∆n
+ if I is

isomorphic to [n]. If X is a semisimplicial set, we can identify X[n] and ∆n
+ → X by the Yoneda Lemma.

We shall need to consider more general “shapes”. We define (∆n
+ ⊗ ∆m

+)[p] to be the set of monotone
injective maps [p]→ [n]× [m]. If f : K → I and g : L→ J are injective there is a canonical map

f ⊗ g : ∆K
+ ⊗∆L

+ → ∆I
+ ⊗∆J

+

We can think of an element w : ∆1
+ ⊗ ∆n

+ → X as a “prism” connecting the elements w(c0 ⊗ 1) and
w(c1 ⊗ 1) where ci : [0]→ [1], ci 0 = i. Such a prism has faces w(1⊗ g) for each injection g : I → [n].

Following the proofs in [11] on anodyne extensions, we can prove the following results constructively.

Lemma 7.9 If a map has the right lifting property w.r.t. any inclusion Λnk → ∆n
+ then it has the right

lifting property w.r.t. any inclusion

(∆1
+ ⊗ ∂∆n

+) ∪ ({e} ⊗∆n
+)→ ∆1

+ ⊗∆n
+

for e = 0, 1, and also w.r.t. any inclusion

(∆1
+ ⊗ Λnk) ∪ (∂∆1

+ ⊗∆n
+)→ ∆1

+ ⊗∆n
+

21

7.6 Interpretation of equality

The interpretation of the equality type relies on the following result.

Proposition 7.10 IfX is a Kan semisimplicial set, then we can extend the operationsX[n]→ X(I), x 7−→
xf a priori defined only for injective f : I → [n] to any monotone map f : I → [n] in such a way that
(xf)g = x(fg) : X(J) whenever g : J → I is injective.

This is the constructive part of one result in [12], which states that any Kan semisimplicial set can be
given a simplicial set structure. Constructively we can only ensure (xf)g = x(fg) : X[p] for g : [p]→ [m]
injective. (For instance there does not seem to be any way in general to build operations xη0 : X[1] for
x : X[0] and uη0, uη1 : X[2] for u : X[1] satisfying the equality xη0η1 = xη0η0, which is required for
defining a simplicial set structure on X.)

Proof. If f is injective, xf is defined as an element of X(I) since X is a semisimplicial set. If f is not
injective we look at the last fiber of f which is of cardinal > 1, and write a0 < · · · < an this fiber. Let
M be the complement of an−1, an in I so that we can write I = M,an−1, an. We let J be the extension
M,an−1, an, a

′ of I where we add one element a′ after an. Let g : M,an−1 → [n] be the restriction of f
on M,an−1. By induction hypothesis we have defined an element xg : X(M,an−1). Using Lemma 7.2
we can extend this element to an element u : X(M,an−1, a

′). By swapping an and an−1 we also have
u : X(M,an, a

′). By Lemma 7.1, we can compose the elements u : X(M,an−1, a
′) and u : X(M,an, a

′)
and obtain an element xf : X(M,an−1, an) = X(I).

Given A in U [n] and a, b in A1 we define a set EqA a b and restriction maps v 7−→ vg, EqA a b →
EqAg ag bg if g : [m]→ [n] is an injection. We let p : [n]× [1]→ [n] be the first projection. An element
of EqA a b is a family of elements vf : Apf where f : I → [n] × [1] is an injection and which satisfies
vi0 = a : A and vi1 = b : A where i0 is the injection a 7−→ (a, 0), [n] → [n] × [1] and i1 the injection
a 7−→ (a, 1), [n] → [n]× [1]. Intuitively, we can think of such a family as a “prism” of faces a and b. If
v is such a family and g : [m] → [n] is an injection we let (vg)f be v((g × 1)f) : Ap(i × 1)f = Aif if
f : I → [m]× [1] is an injection. The fact that this defines an element of V [n] follows from Lemma 7.9.

Using Proposition 7.10, we can define (EqA a b)f to be EqAf af bf : V [m] if f : [m] → [n] is a
monotone, not necessarily injective, map. This defines EqA a b as an element of U [n].

For the interpretation of reflexivity, we also use Proposition 7.10. If A is in U [n] and a : A we can
consider the family vf : Apf by defining vf = apf which satisfies vi0 = api0 = a and vi1 = api1 = a.

7.7 Univalence

We explain how to use our interpretation to transform any equivalence ϕ : A → B between two Kan
semisimplicial sets in a proof of equality of A and B in U . More generally we explain how to transform
any map ϕ : A→ B between two semisimplicial sets into an element E(ϕ) of iRW [1]. This element E(ϕ)
can be thought of as the graph of the map ϕ. If A and B are Kan semisimplicial and ϕ is an equivalence
than E(ϕ) is in iRV [1] = U [1].

We have to define for each f : [m]→ [1] a set E(ϕ)f together with restriction maps E(ϕ)f → E(ϕ)fg
if g : [p]→ [m] is injective. An element f : I → [1] is either the constant 0, or the constant 1 or is 0 on
an initial segment I0 and 1 on I − I0. We define E(ϕ)f as follows

1. if f is 0 then it is A(I)

2. if f is 1 then it is B(I)

3. if f is 0 on I0 and 1 on I − I0 then it is the set of pairs (u, v) with u in A(I0) and v in B(I) such
that v(I0) = ϕu.

If we have g : J → I which is injective and w in E(ϕ)f we define wg in E(ϕ)fg. If gf is 0 we have w = u
in A(I) or w = (u, v) with u in A(I0) and we take wg = u(J0). If gf is 1 we have w = v in B(I) or
w = (u, v) with u in A(I0) and we take wg = v(J). Otherwise, we can write g = g0 +g1 : J0 +J1 → I0 +I1
with I1 = I − I0, J1 = J − J0 and we take wg = (u(J0), v(J)). We define in this way an element E(ϕ)
in iRW [1].

22

A Kan semisimplicial set A is contractible iff the interpretation of the type Σx : A.Πy : A.EqA x y is
inhabited.

Lemma 7.11 If A is a contractible Kan semisimplicial set, there exists a : A[0] and any α : A(I) can
be extended to an element α : A(I, u) such that α(u) = a, with i < u for all i in I, and in such a way
that we have α(J) = α(J, u) for all J ⊆ I.

A map ϕ : A → B between Kan semisimplicial set is an equivalence if all its fibers are contractible.
Using Lemma 7.11, we have the following property of equivalences.

Lemma 7.12 If A and B are Kan semisimplicial set and ϕ : A → B is an equivalence, then each pair
of elements β : B(I, u) and α : A(I) such that β(I) = ϕα can be extended to a pair β : B(I, u′, u)
and α : A(I, u′) satisfying β(I, u′) = ϕα, with i < u′ < u for each i in I. Furthermore we have
β(J, u) = β(J, u′, u) and α(J) = α(J, u′) for each J ⊆ I.

The following result can be seen as a generalization of Proposition 5.2.

Proposition 7.13 If A and B are Kan semisimplicial set and ϕ : A → B is an equivalence then E(ϕ)
is in iRV [1] = U [1].

Proof. We show that any horn in E(ϕ)f, f : [n] → [1] can be filled. If f is 0 this follows from the fact
that A has the Kan filling property. If f−1(1) has more than one element, this follows from the fact that
B has the Kan filling property. The remaining case is if f−1(1) is a singleton. For instance, for n = 3
we are given a(0), a(1), a(2) in A[0] and b(4) in B[0] and we have a(i, j) in A[1] and b(i, j, 4) in B[2] such
that b(i, j) = ϕa(i, j) for i < j < 3. The problem is to find an extension b(0, 1, 2, 4) in B[3] and a(0, 1, 2)
in A[3] such that b(0, 1, 2) = ϕa(0, 1, 2). Using Lemma 7.12 we can find a(i, j, 3) and b(i, j, 3, 4) such
that b(i, j, 3) = ϕa(i, j, 3). Since A is a Kan semisimplicial set, we can find an extension a(0, 1, 2, 3) in
A[3]. We can then consider the compatible elements ϕa(0, 1, 2, 3) and b(i, j, 3, 4) for i < j < 3. Since B
satisfies the Kan property we obtain b(0, 1, 2, 3, 4) such that b(0, 1, 2, 3) = ϕa(0, 1, 2, 3) and the element
(a(0, 1, 2), b(0, 1, 2, 4)) is the required filling in E(ϕ)f.

Conclusion

We have given an explanation of functional extensionality and the transport of structures and properties
along equivalences. This generalizes Takeuti’s and Gandy’s interpretation of extensional simple type
theory in intensional simple type theory. For the truncated model at level 6 1, this can be seen as a
representation in type theory of Bishop’s notion of sets and dependent families [5, 18].

Our work suggests several research directions. First it would be interesting to provide concrete exam-
ples where we effectively compute the transport of structures along equivalence of groupoids, generalizing
our computation of transport of structures along isomorphisms. The computation should then proceed
as given by Proposition 7.13. Another research direction is about Voevodsky resizing axiom [29]. Using
a type system with Type : Type it is possible to give computational meaning to a set of propositions,
with impredicative quantifications and unique choice operator, following what is presented in Section 5.
We conjecture that this extension still has normalization property: we should only use in this translation
a normalizing fragment of Type : Type. Another possible project would be to extend the formalization
in the case of Kan semisimplicial types of level 6 2. Yet another issue would be the computational
interpretation of higher-order inductive types, which seems possible in our framework. The type S2 for
instance will be described as the free Kan semisimplicial set X generated by a point b : X[0] and a self
loop between the constant path on b. The notion of truncation should have a direct description; for
instance if A is a Kan semisimplicial set, we can define a Kan semisimplicial set A∗[n] = A[0]n+1 and
this should be a way to build the (−1)-truncation of A. Finally, it might be interesting, even in the
truncated versions, to give an operational semantics of the computation underlying our interpretation
together with an implementation.

23

References

[1] P. Aczel. The Type Theoretic Interpretation of Constructive Set Theory. Logic Colloquium 77, 1978,
p. 55-66.

[2] T. Altenkirch. Extensional Equality in Intensional Type Theory. In 14th Symposium on Logic in
Computer Science, 1999

[3] T. Altenkirch, C. McBride and W. Swierstra. Observational Equality, Now! In PLPV ’07: Proceedings
of the 2007 workshop on Programming languages meets program verification, ACM, 2007, p. 57-68.

[4] S. Awodey and M. Warren. Homotopy theoretic models of identity types. Mathematical Proceedings
of the Cambridge Philosophical Society, 146, p 45-55.

[5] E. Bishop. Foundations of Constructive Analysis. Ishi Press International, 2012, reprinted from the
original version MacGraw-Hill, 1967.

[6] N.G. de Bruijn. A survey of the project AUTOMATH In H.B. Curry: essays on combinatory logic,
lambda calculus and formalism, 579-606, Academic Press, 1980.

[7] R. Gandy. On The Axiom of Extensionality -Part I. The Journal of Symbolic Logic, Vol. 21, 1956.

[8] D. Licata and R. Harper. Canonicity for 2-dimensional type theory. In POPL ’12: Proceedings of the
39th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, ACM,
2012, p. 337-348

[9] M. Hofmann. Extensional concepts in intensional type theory. Ph.D. thesis, Edinburgh, 1994.

[10] M. Hofmann and T. Streicher. The Groupoid Model of Type Theory. In 25 years of type theory,
1996.

[11] P.J. Goerss and J.F. Jardine. Simplicial homotopy theory. Birkhauser, 1997.

[12] J.E. McClure. On semisimplicial sets satisfying the Kan condition. Submitted, 2012.

[13] P. Martin-Löf. An intuitionistic theory of types. 1972, published in the volume 25 Years of Type
Theory, G. Sambin and J. Smith, eds, 1996.

[14] P. Martin-Löf. About models for intuitionistic type theories and the notion of definitional equality
Proceedings of the Third Scandinavian Symposium, North-Holland, 1975.

[15] P. Martin-Löf. An intuitionistic theory of types: predicative part. Logic Colloquium, 1973.

[16] P. Martin-Löf. Haupsatz for Intuitionistic Type Theory. Proceeding of the Fourth International
congress for Logic, Methodology, and Philosophy of Science, Bucharest, 1971.

[17] P. May. Simplicial objects in algebraic topology Van Norstrand, 1967.

[18] R. Mines, F. Richman and W. Ruitenburg. A Course in Constructive Algebra. Springer, 1988.

[19] E. Palmgren. Proof-relevance of families of setoids and identity in type theory. Archive for Mathe-
matical Logic 51(2012), 35-47.

[20] B. Russell. Principia Mathematica, second edition, Introduction. Cambridge University Press, 1925.

[21] B. Russell. The Theory of Implications. American Journal of Mathematics, Vol. 28, 2, p. 159-202,
1906.

[22] T. Streicher. A Model of Type Theory in Simplicial Sets. Unpublished notes available at the author’s
home page.

[23] W. Tait. Intensional Interpretations of Functionals of Finite Type I. Journal of Symbolic Logic,
Vol. 32, p. 198-212, 1967.

24

[24] G. Takeuti. On a generalized logic calculus. Japanese Journal of Mathemathics 23, p. 39-96, 1953.

[25] A. Tarski. Über die Beschränktheit der Ausdrucksmittel deduktiver Theorien. In Ergebnisse eines
mathematischen Kolloquiums, facsicule 7 (1934-35), English translation “On the limitations of the
means of expression of deductive theories”.

[26] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics. An Introduction. Volume II
North-Holland, 1988.

[27] D. Turner. Extensional Type Theory. Talk, recorder in proceeding of B̊astad, 1989.

[28] V. Voevodsky. Univalent foundations project. NSF grant application, 2010.

[29] V. Voevodsky. Resizing Axioms. Talk given at the 2011 TYPE meeting, Bergen, 2011, slides
available at the author’s home page.

25

