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Abstract

We motivate and define a category of topological domains, whose objects are certain
topological spaces, generalising the usual ω-continuous dcppos of domain theory.
Our category supports all the standard constructions of domain theory, including
the solution of recursive domain equations. It also supports the construction of
free algebras for (in)equational theories, can be used as the basis for a theory of
computability, and provides a model of parametric polymorphism.

1 Introduction

A strong theme in Gordon Plotkin’s work on domain theory is an emphasis
on presenting domain theory as a toolkit for the semanticist. In particular, in
his “Pisa” notes [38] (an early version of which bears a title that explicitly re-
flects this perspective [37]), he highlights the variety of different constructions
that domain theory supports, motivating each by its computational relevance,
and discussing in detail how they may be combined for semantic purposes.
Hand-in-hand with this is a mathematical emphasis on grouping domains col-
lectively into categories, so that the constructions on them get explained in
terms of their universal properties. This emphasis presumably reflects an early
awareness by Plotkin that, should traditional domains turn out not to fulfil
all semantic needs, one might nevertheless expect other candidate notions of
domain to provide much the same in the way of category-theoretic structure.
Later, such considerations lay at the core of the development of axiomatic do-
main theory in the 1990’s — a theory to which Plotkin himself made important
contributions, see, e.g., [11].

1 Research Supported by an EPSRC Research Grant “Topological Models of Computational
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The motivation for the present article lies in observations by Plotkin con-
cerning deficiencies in the semantic toolkit provided by traditional domain
theory. In domain theory, it is known how to model: (i) higher-order types
(using cartesian closed categories of domains); (ii) computability (using ω-
continuous dcpos); and (iii) general computational effects such as nondeter-
minism (as free algebras for inequational theories). Furthermore, it is possible
to combine any two of these features. (For (i)+(ii), use any of the cartesian
closed full subcategories of ω-continuous dcpos; for (ii)+(iii), use the cate-
gory of ω-continuous dcpos itself; and, for (i)+(iii), use the category of all
dcpos.) However, Plotkin observed that it is not possible to combine all three.
(None of the cartesian closed subcategories of ω-continuous dcpos are closed
under the formation of free algebras.) This observation led Plotkin to ask for
someone to find a category of domains that does support all three features
in combination. Indeed, at the 2002 meeting in Copenhagen honouring Dana
Scott’s 70th birthday, Plotkin publicly expressed the wish to receive such a
category of domains as a future birthday present for himself. This article is
the requested present.

Actually, it was clear to anyone with detailed knowledge of the work on
synthetic domain theory from the 1990’s [35,22,30,42,34] that such categories
of domains were achievable, as long as one was willing to allow them to arise
as not easily describable subcategories of realizability toposes. However, we
took the main challenge of Plotkin’s wish to be to obtain such a category
as close in spirit to the familiar categories of domain theory as possible. The
approach presented here began with Simpson’s observation that one particular
category of domains arising in synthetic domain theory has a straightforward
alternative description as a category of topological spaces [49,2]. The purpose
of the present paper is to show that this category can be derived from first
principles without any reference to synthetic domain theory. Indeed, it is
obtained as the result of a certain natural combination of topological and
domain-theoretic concerns.

Since the early days of domain theory, it has enjoyed a symbiotic rela-
tionship with general topology, see [15] for an overview. This is no accident.
As Smyth observed, cf. [50,53], there is a strong analogy between open sets
in topology and observable properties of data, according to which one should
expect mathematical models of datatypes to be topological spaces. We review
this connection between topology and computation in Section 2, and we use
it as the starting point for our investigations.

A limitation of the analogy between topology and computation is that the
mathematical world of topology contains many weird and wonderful spaces
for which no connection with computation can possibly be envisaged. It is
natural then to seek to explicitly identify those topological spaces that can
be argued to have some plausible connection with computation. This is the



task we address in Section 3. The idea is to require elements of a topological
space to be representable as infinite streams of discrete data, cf. [54]. This
allows a notion of physical feasibility to be developed, following Plotkin’s re-
lated terminology in [38]. Roughly speaking, physical feasibility captures the
idea that, in computation, a finite amount of output must depend only on a
finite amount of input. For those topological spaces which have admissible
quotient representations, in the sense of [46,47], physical feasibility coincides
with continuity, and so the topology of the space accurately reflects its com-
putational behaviour. Such spaces thus provide a candidate for the restricted
class of topological spaces we are looking for.

In Section 4, we study the topological spaces that arise in the above way.
Such spaces have various characterisations, all due to Schröder [46,47]. Most
concisely, they are exactly the T0 topological quotients of countably based
spaces (henceforth qcb spaces). It turns out that the category of qcb spaces has
excellent closure properties: it is countably complete, countably cocomplete,
and cartesian closed.

Having identified qcb spaces as a reasonable topological notion of datatype,
we turn to the concerns of domain theory in Section 5. There, we impose a
further condition on qcb spaces, in order to identify a notion of topological
domain enjoying the expected fixed point property: every continuous endo-
function has a least (in the topological specialization order) fixed point. As
usual, what is needed for this is a least element and an appropriate form
of chain completeness. The category of topological domains possesses the ex-
pected categorical structure. In particular, it is cartesian closed and so models
products and function spaces. In Section 6, we outline how it also supports
the other standard constructions from domain theory, including the solution
of recursive domain equations.

Our stated motivation for the above development was to address the weak-
ness Plotkin identified in traditional domain theory. In Section 7, we describe
Battenfeld’s work on the construction of free algebras for (in)equational theo-
ries over topological domains [3]. In Section 8, we outline how computability
may be incorporated. Finally, in Section 9, we discuss how topological domains
provide a model of parametric polymorphism. The latter facility might even
be added as a further requirement (iv) to the original wish list above. Para-
metric polymorphism is a feature that traditional domain theory has hitherto
proved entirely incapable of handling.

Throughout the above development, some attention is paid to the fact
that topological domains include all ω-continuous pointed dcpos (with their
Scott topologies). This allows comparisons to be made between construc-
tions (function spaces, free algebras, etc.) in ordinary and topological domain
theory. We discuss, in detail, the circumstances in which such constructions
agree, and also when they disagree. In particular, the combination of free



algebras and function spaces can lead to topological domains in which the
topology is not the Scott topology, and thus one is taken outside of the world
of ordinary domain theory. It is this fact that allows topological domains to
retain a countable pseudobase and thus still be amenable to the development
of a theory of computability. See Sections 5–8 for details.

In this paper, we establish a category of domains that is “convenient” in
two senses. First, as discussed above, it provides the desired toolkit for seman-
tic constructions, and one that goes beyond what is available in traditional
domain theory. Second, the development retains the connection with topology
enjoyed by ordinary domain theory. More fundamentally, the material pre-
sented in Sections 2–5 shows the development of topological domain theory
to be mathematically compelling in itself. Indeed, we believe that topological
domains arise as an inevitable consequence of combining the requirement of
modelling fixed points with the concerns of physical feasibility.

Notation and prerequisites

The purpose of the present paper is to present a high-level (and hopefully
readable) overview of the development topological domains. In doing so, we
gather together results from a number of sources, mainly [46,47,4,3]. Although
proofs are omitted; where possible, we try to give some indication of why the
stated results hold.

We do assume some knowledge of basic domain theory and topology, as
in, e.g., [38,1,15,50]. In domain theory, we write dcpo for a directed-complete
partial order, and dcppo for a pointed dcpo (i.e., one with least element).

Notationally, when working with the set Xω of infinite sequences over X,
we write a general α ∈ Xω as α0α1α2 . . . , and we write α⌈n for the n-symbol
prefix α0 . . . αn−1 ∈ Xn.
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2 Datatypes as Topological Spaces

Our aim in this and the next section, is to work our way towards a mathemati-
cal model of the notion of datatype starting from first principles. In this short

2 Presumably, the original source for the title can be traced back to [52].



section, we recall Smyth’s appealing conceptual argument that datatypes are
topological spaces, cf. [50,53].

As a first approximation, a datatype X should surely be a set whose ele-
ments correspond to the data items belonging to the type. This, however, is
too crude. Nothing is specified about how one can compute with data. There-
fore some additional information is required that provides such information.

In fact, surprisingly little additional information is needed. In addition to
the set X, one need only specify a notion of “observable” subset of X. The
computational intuition is that an “observation” on X should be performed
by applying a possibly time-consuming abstract procedure to individual ele-
ments of X. Such a procedure has two possibilities when applied to an element
x ∈ X: either it will eventually terminate, and this is the event we observe; or
it will continue forever. We say that a subset U of a datatype X is “observ-
able” if there exists some procedure acting on elements of X that eventually
terminates when applied to any element that belongs to U , but which fails
to terminate when applied to elements of X that do not belong to U . Such
a subset U is “observable” in the sense that, to observe if an element x is
in U , one applies the procedure to x and awaits termination. If termination
occurs then one knows that the element x is indeed in U . In the case of an
element x /∈ U , the procedure continues for ever and one is left twiddling one’s
thumbs. Thus one does not manage to ever observe the fact that x is not in U
(although in the case that X\U is itself an observable subset such an obser-
vation would be possible by applying a different procedure to x). From this
informal description, one sees that “observable” subsets are to the notion of
abstract procedure what semidecidable sets are to the notion of computability.

The connection with topology is that an appealing conceptual argument
shows that, in general, for any datatype X, the observable subsets of X form
(the open sets of) a topology. For closure under finite intersections, given
finitely many observable subsets U0, . . . , Uk−1, one can observe whether x ∈
U0 ∩ · · · ∩ Uk−1 by running each of the k tests x ∈ U0, . . . , x ∈ Uk−1 (either
in sequence or in parallel) and waiting for all the tests to terminate. As
a special case, the entire set X (the empty intersection) is observable. For
closure under finite unions (including the emptyset as an empty union), one
observes whether x ∈ U0 ∪ · · · ∪ Uk−1 by running each of the k tests x ∈ U0,
. . . , x ∈ Uk−1 in parallel and waiting for a single test to terminate. (N.B. the
tests cannot be performed in sequence because if α ∈ U1\U0 then one cannot
wait for the test x ∈ U0 to terminate before starting the test x ∈ U1.) More
generally, one can argue that observable tests are even closed under countable
unions. Indeed, one can test if x ∈

⋃

i≥0 Ui by trying each of the tests x ∈ U0,
x ∈ U1, . . . in turn, starting each new test at a fixed time interval after the
previous test (as above, one cannot wait for the previous test to terminate).
As soon as any one of the tests succeeds, one concludes that x ∈

⋃

i≥0 Ui. It is



worth noting that there is no analogous procedure for observing membership
of a countable intersection. In order to test if x ∈

⋂

i≥0 Ui, one would have to
perform every component test x ∈ Ui and wait for all to terminate; but this is
not possible in finite space and time. Thus there is a fundamental asymmetry
between unions and intersections of observable subsets.

The above conceptual argument justifies that observable subsets should
be closed under finite intersections and countable unions. Thus observable
subsets almost form a topology. Although, it is hard to give a similarly opera-
tional justification for the remaining requirement for a topology, closure under
uncountable unions, it is nonetheless a plausible idealisation of the conceptu-
ally justified closure conditions on observable subsets to actually require them
to form a genuine topology. Accordingly, we henceforth make this idealised
requirement on observable subsets. Note, however, that we shall obtain much
better justification for it in Section 4, see the discussion after Proposition 4.6.

So far, we have that a datatype is a set together with a family of “observ-
able” subsets forming a topology. More briefly, a datatype is a topological
space.

Next we consider intuitive properties of functions between datatypes that
can be “computed” by some abstract procedure acting as a transducer. Sup-
pose we have two datatypes X and Y , and suppose that f : X → Y is a proce-
dure turning elements of X into elements of Y . Consider any observable subset
V ⊆ Y . Then we can define the following procedure acting on any x ∈ X:
first apply f to x to obtain f(x), then perform the test for f(x) ∈ V . One sees
immediately that this procedure performs the test x ∈ {x ∈ X | f(x) ∈ V }.
We have shown that, for any observable subset V ⊆ Y , the subset f−1(V ) ⊆ X
is observable; i.e., the function f is continuous.

The above argument shows that every procedure acting as a transducer
from X to Y , must perform a continuous function. It thus becomes math-
ematically tempting to identify the notions of continuous and performable
function. Doing this, we obtain the following “dictionary” of equivalences be-
tween computational concepts on the left and mathematical concepts on the
right.

datatype ∼ topological space

observable set ∼ open set

transducer ∼ continuous function

See [7] for extensions to this dictionary and further discussion.

The analysis presented so far has several weaknesses.

(i) No justification was given for requiring observable subsets to be closed
under uncountable unions. An alternative would be to work with the
weaker notion of σ-topological space, in which open sets are only required



to be closed under countable unions. However, since the discrepancy
between the two requirements will disappear in Section 4, we can opt for
mathematical conformity safe in the knowledge that our conscience will
eventually be cleared.

(ii) While we have argued that every transducer gives rise to a continuous
function, no argument has been given for the converse implication. Thus
the identification of transducers with continuous functions has not been
justified.

(iii) The identification of datatypes with topological spaces fails fundamen-
tally to provide a toolkit of datatype constructions for the semanticist.
In particular, there is no function space construction. As is well known,
the category of topological spaces is not cartesian closed.

(iv) There are many perverse topological spaces whose size or mathematical
peculiarities preclude them from having any plausible connection with
computation. Our “model” is vastly more inclusive than it needs to be.

In the next two sections, we shall address points (iv) and (ii) explicitly, by
narrowing down the topological spaces of interest to ones for which a direct
connection with computation can be argued. As a result, points (i) and (iii)
will be resolved automatically, the latter in a miraculous way.

3 Physical feasibility

Computation must take place in the physical world and must therefore be
physically feasible. In [38, Ch. 1], Plotkin uses an intuitive notion of “physi-
cal feasibility” to argue for the restriction to continuous functions in domain
theory. In this section, we use very similar considerations to argue for a
restricted class of topological spaces as the computationally relevant ones.
Roughly speaking, by “physically feasible” we mean that only a finite amount
of work needs to be done in order to produce any output event, such as flag-
ging the success of an observation. We begin by presenting some important
illustrative examples.

Example 3.1 (Infinite streams) The set Nω of infinite sequences of natural
numbers models a datatype of infinite streams of numbers. We argue that, by
considerations of physical feasibility, the physically observable subsets of N

ω

are exactly the subsets U ⊆ Nω satisfying:

∀α ∈ U. ∃k ≥ 0. {β ∈ N
ω | β⌈k = α⌈k} ⊆ U . (1)

Certainly, any physically feasible observation must define a subset U satisfy-
ing (1); for, if we observe that α ∈ U after a finite amount of time, then we can
have only examined finitely many positions in the infinite sequence α, hence



we have no way of distinguishing α from any other β that agrees with α at
the same positions. Conversely, we argue that any subset U satisfying (1) is
physically observable. Because it satisfies (1), any such U is a union of “basic”
subsets, each of the form

B(k,n0,...,nk−1) =def {β ∈ N
ω | β⌈k = n0 . . . nk−1} ,

for appropriate tuples (k, n0, . . . , nk−1). Obviously, there are only countably
many tuples (k, n0, . . . , nk−1) with B(k,n0,...,nk−1) ⊆ U . Thus U is a countable
union of basic subsets B(k,n0,...,nk−1). Now, each basic subset B(k,n0,...,nk−1) is
trivially observable, because, for any α ∈ Nω, one can test whether α ∈
B(k,n0,...,nk−1) by looking at only a finite prefix of α. Finally, the argument given
in Section 2 for justifying the closure of observable subsets under countable
unions yields a physically feasible procedure (assuming unlimited time and
resources) for observing membership of U . Thus U is indeed observable.

Example 3.2 (Sets of streams) Suppose we want to perform observations
on streams α guaranteed to belong to a given subset X ⊆ Nω. Then, by
similar arguments to above, considerations of physical feasibility lead to the
conclusion that a subset U ⊆ X is physically observable if and only if:

∀α ∈ U. ∃k ≥ 0. {β ∈ X | β⌈k = α⌈k} ⊆ U . (2)

Example 3.3 (Stream transducers) Suppose X, Y ⊆ Nω are sets of streams.
We argue that a function f : X → Y is physically feasible, i.e., determined by
some possible physical stream transducer, if and only if it satisfies:

∀n ≥ 0. ∃m ≥ 0. ∀β ∈ X. α⌈m= β⌈m implies f(α)⌈n= f(β)⌈n , (3)

for all α ∈ X. In words, this property states that a finite amount of output
is determined by a finite amount of input. Intuitively, one would expect any
physically feasible stream transducer to satisfy this property. Moreover, since
any function satisfying (3) is specified by a countable table relating input
prefixes to the output prefixes they determine, one can, given unlimited time
and resources, produce a transducer for the function, as long as one allows the
physical possibility of constructing the lookup table on a “by need” basis.

From the above arguments, one sees that the notion of physical feasibil-
ity is weaker than “computability” in the usual sense. We do not require
that functions and observations are represented as finite programs, and we
allow the possibility of non-effective means of construction in performing tests
for countable unions and in constructing lookup tables. This is in accord
with Plotkin’s use of physical feasibility in [38]. His motivation is to justify
the restriction to continuous functions in domain theory as the mathematical
manifestation of physical feasibility, at least for particular domains. In our



case, we are not (yet) working with domains; but there is nonetheless a similar
correlation between physical feasibility and continuity, which we now develop.

First, observe that the observable subsets of Nω, as identified in Exam-
ple 3.1, form a topology; in fact they are exactly the open sets of the well-
known Baire space topology on Nω. Similarly, for a subset X ⊆ Nω, the
observable subsets, as identified in Example 3.2, are exactly the open subsets
in the relative Baire (i.e. subspace) topology on X.

Proposition 3.4 Suppose X, Y ⊆ Nω are sets of streams, then a function
f : X → Y is physically feasible (i.e., satisfies property (3) of Example 3.3) if
and only if it is continuous (with respect to the relative Baire topologies).

This is a standard and straightforward result, cf. [50].

We have seen that the topology of Baire space accounts for the observable
properties of infinite streams and continuity accounts for the associated physi-
cally feasible functions on streams. Our aim now is to identify a broad class of
topological spaces for which there is a similar coincidence of topological con-
cepts and computational concepts. Having already understood the relevance
of Baire space, an obvious idea is to use Baire space to represent other spaces.
That is, we look at spaces for which the elements are encodable as infinite
streams, so that computation on elements can be performed as computation
on the representing streams. Such an idea may sound unduly restrictive —
why should a computational space be representable in such a simple way?
Nevertheless, as we shall see, the idea turns out to be remarkably powerful.

The definitions that follow are taken from the theory of Type Two Effectiv-
ity (TTE), in which Baire-space representations are used as basic structures,
see [54,46,47]. First, we formulate the way in which we require elements of a
topological space to be represented by streams. We begin by making a weak
requirement, and then strengthen it to remedy deficiencies.

Definition 3.5 (Representation) A representation of a topological space
X is given by a set R ⊆ Nω and a surjective continuous function r : R → X
(with R given the relative Baire topology). If r(α) = x then we say that α is
a name for x.

In this definition, the surjectivity requirement supports the idea that every
element of X is represented by at least one stream. To argue for the continuity
requirement, we consider how we wish to compute with a represented space X.
The idea is that computation should be performed on the names of an element
rather than on the elements themselves — after all, we can understand com-
putation on sequences far better than computation on abstract mathematical
entities. For example, to observe membership of a subset U ⊆ X, one has
to make an appropriate observation on streams representing elements of X.
That is, given any stream α representing r(α) ∈ X, one would like to test
the property r(α) ∈ U by making an appropriate observation on α. Since, by



Example 3.2, we know that the physically observable subsets of R are exactly
the open sets, this leads to the following definition.

Definition 3.6 (Physically observable subset) A subset V ⊆ X is said
to be physically observable under the representation r : R → X if r−1(V ) is an
open subset of R.

The continuity of r can now be motivated. It ensures that every open set of
X is indeed a physically observable subset.

It may be the case that the representation r gives rise to “phantom” observ-
able subsets of X. That is, there may be physically observable subsets V ⊆ X
that are not open in the topology on X. In such a case, one might reasonably
argue that the space that is really being represented by r is X with the finer
topology given by the family of physically observable sets (which does indeed
form a topology). The following definition thus ensures that a represented
space includes all physically observable subsets in its topology.

Definition 3.7 (Quotient representation) A representation r : R → T is
said to be a quotient representation if the function r is a topological quotient.

We may now summarise the preceding discussion thus:

On topological spaces with quotient representations, the physically observable
subsets are exactly the open sets.

Representations offer natural means of computing functions from a space
X to another space Y , by computing with names of elements. Thus functions
from X to Y can be computed by stream transducers. This allows a natural
definition of physical feasibility for functions between represented spaces.

Definition 3.8 (Physically feasible function) Given spaces X, Y , repre-
sentations r : R → X and s : S → Y , a function f : X → Y is said to be
physically feasible (from r to s) if there exists a continuous function g : R → S
such that f ◦ r = s ◦ g.

R
g ✲ S

X

r

⇃

f
✲ Y

s

⇃

In the literature on TTE, this property is called relative continuity.

For general representations r and s, the continuous functions from R to
S and the physically feasible functions from r to s need not coincide, indeed
neither class need be included in the other. We now work towards establishing
conditions under which continuity and physical feasibility coincide.



One inclusion follows from r being a quotient.

Proposition 3.9 For a representation r : R → X, the following are equiva-
lent:

(i) r is a topological quotient.

(ii) For every representation s : S → Y , every physically feasible function
from r to s is continuous from X to Y .

The proof is straightforward.

In order to obtain the converse, that every continuous function is physically
feasible we require another strengthening of the notion of representation.

Definition 3.10 (Admissible representation) A representation r : R→X
is said to be admissible if, for every representation r′ : R′ → X of X, it holds
that the identity function on X is physically feasible from r′ to r.

Intuitively, an admissible representation is one that is rich enough that it in-
terprets every other representation. The following standard example (cf. [54])
nicely illustrates the computational relevance of admissibility.

Example 3.11 (Real numbers) The following signed binary representation
is an admissible quotient representation rsb : Z

ω ⇀ R.

dom(rsb) = {α | ∀i ≥ 1. αi ∈ {−1, 0, 1}}

rsb(α) = α0 +

∞
∑

i=1

2−iαi α ∈ dom(rsb)

On the other hand, the familiar binary representation rb : Z
ω ⇀ R, defined by

restricting the function rsb to

dom(rb) = {α | ∀i ≥ 1. αi ∈ {0, 1}}

is a quotient representation that is not admissible. These examples account
topologically for the appropriateness of the signed binary representation for
exact real-number computation, and the inappropriateness of binary represen-
tation. (Any other standard base n notation has similar defects.)

An immediate consequence of the definition of admissibility is that if r
and r′ are both admissible representations of X then they are equivalent in
the sense that the identity function is physically feasible in both directions.
A sightly less immediate consequence is the desired implication between con-
tinuity and physical feasibility.

Proposition 3.12 For a representation s : S → Y , the following are equiva-
lent.



(i) s is admissible.

(ii) For every representation r : R → X, every continuous function from X
to Y is a physically feasible function from r to s.

A proof can be found in [46].

As an immediate consequence of Propositions 3.9 and 3.12 above, we obtain
the coincidence of continuity and physical feasibility.

Corollary 3.13 Given admissible quotient representations r : R → X and
s : S → Y , the continuous functions from X to Y coincide with the physically
feasible functions from r to s.

This result is so important, we summarise it verbally:

Between topological spaces with admissible quotient representations, the phys-
ically feasible functions are exactly the continuous functions.

Accordingly, the desired coincidences between topological and computational
concepts hold for topological spaces with admissible quotient representation.

4 Spaces with admissible quotient representation

We have settled on spaces with admissible quotient representations as topo-
logical spaces for which there is a coincidence between topological and compu-
tational (qua physical feasibility) notions. Of course, the restriction to spaces
whose elements can be named by infinite streams is somewhat arbitrary, and
one could envisage that there might possibly be other spaces for which an
equivalence between topological and computational concepts could be estab-
lished by other means. Nevertheless, as we shall explain in this section, the
spaces with admissible quotient representation enjoy remarkable closure prop-
erties. Furthermore, one can characterise such spaces in direct topological
terms, without consideration of representations. By presenting such results,
the goal of this section is to establish the spaces with admissible quotient rep-
resentation as the natural realm on which there is a coincidence of topological
and computational concepts.

We begin by presenting two characterisations of the topological spaces with
admissible quotient representation, both due to Schröder [46,47]. Working
towards the first characterisation, we examine properties that follow from the
the existence of an admissible quotient representation.

Recall that the specialization order on a topological space X is defined by:
x ⊑ y if x ∈ U implies y ∈ U for all open U ⊆ X. In general, the specialization
order is a preorder. A space X is said to be T0 if the specialization order is a
partial order.

Proposition 4.1 If X has an admissible representation then X satisfies the



T0 separation property.

The proof is by a cardinality argument. If X were not T0 then there would
be at least 22ℵ0 continuous functions from Nω to X. However, there are at
most 2ℵ0 functions that are physically feasible with respect to the identity
representation on Nω. So, by Proposition 3.12, X must be T0.

Recall that sequence convergence in a topological space X is defined as
follows: (xi) → x if, for every open U ⊆ X with x ∈ U , almost all (i.e., all but
finitely many) xi are in U . A subset V ⊆ X is said to be sequentially open
if, whenever (xi) → x ∈ V , it holds that almost all xi are in V . Trivially,
every open set is sequentially open. The space X is said to be sequential if,
conversely, every sequentially open set is open. In [12], Franklin characterises
the sequential spaces as the topological quotients of first countable spaces.

Proposition 4.2 If X has a quotient representation then X is sequential.

Immediate from Franklin’s characterisation, since, for any quotient represen-
tation r : R → X, the space R is countably based (it is a subspace of N

ω).

In this proof, we see that every space X with quotient representation is
a topological quotient of a countably based space. It need not be the case,
however, that X itself has a countable base. But it does enjoy a weaker
related property. The following notion is due to Schröder [46], and is closely
related to various other similarly named concepts in the topological literature,
cf. [32,47,8].

Definition 4.3 (Pseudobase) A (sequential) pseudobase for a topological
space X is a family B of subsets of X such that whenever (xi) → x ∈ U with
U ⊆ X open, there exists B ∈ B such that x ∈ B ⊆ U and, moreover, almost
all xi are in B.

Importantly the subsets in a pseudobase need not be open. Indeed, a base for
the topology is nothing other than a pseudobase satisfying the additional prop-
erty that every B ∈ B is an open set. The reason for introducing pseudobases
is because of the following characterisation due to Schröder.

Theorem 4.4 A topological space has an admissible representation if and only
if it is T0 and has a countable pseudobase.

For a proof see [46].

We now have all the ingredients for Schröder’s characterisation of spaces
with admissible quotient representation.

Theorem 4.5 The following are equivalent for a topological space X.

(i) X has an admissible quotient representation.

(ii) X is a T0 sequential space with countable pseudobase.

(iii) X is a T0 quotient of a countably based space.



N.B., condition (iii) says simply that X is T0 space that can be exhibited as
a topological quotient q : A → X for some countably based space A (without
loss of generality, A can itself be assumed to be T0). The proof of (i) ⇐⇒ (ii)
appears in [46]; and the proof of (ii) ⇐⇒ (iii) is in [47].

Given the above characterisation, we henceforth call spaces with admissible
quotient representation qcb spaces (T0 quotient of a countably based space). 3

We next give an overview of some of the good topological properties en-
joyed by qcb spaces.

Proposition 4.6 If X is a qcb space then it is hereditarily Lindelöf; that is,
for any family {Ui}i∈I of opens there exists a countable subfamily J ⊆ I such
that

⋃

j∈J Uj =
⋃

i∈I Ui.

This property has computational significance. In Section 2, we found it im-
possible to give computational justification for the closure of open sets under
uncountable unions in the definition of a topology. However, for qcb spaces,
the fact that opens are closed under arbitrary unions does have computational
justification, since uncountable unions of opens reduce to countable ones.

The next two properties are technical. The first will have an application
in Section 5, and the second says that the several potentially different notions
of compactness all coincide for qcb spaces. Thus some of the pathologies of
general topology disappear when one restricts to qcb spaces.

Proposition 4.7 If X is a qcb space then it is hereditarily separable; that is,
for any subset A ⊆ X, there exists a countable C ⊆ A that is dense in the
subspace topology on A.

Proposition 4.8 If X is a qcb space then the following properties coincide
for a subset K ⊆ X.

(i) K is compact; that is, for any family {Ui}i∈I of opens with K ⊆
⋃

i∈I Ui,
there exists a finite F ⊆ I with K ⊆

⋃

i∈F Ui

(ii) K is countably compact; that is, for any countable family {Ui}i∈I of opens
with K ⊆

⋃

i∈I Ui, there exists a finite F ⊆ I with K ⊆
⋃

i∈F Ui

(iii) K is sequentially compact; that is, for any sequence (xi)i≥0 of elements
of K, there exists a subsequence (xij )j≥0 (given by a strictly monotone
function j 7→ ij) and an element x ∈ K with (xij )j≥0 → x.

Here, the equivalence of (i) and (ii) is an immediate consequence of Proposi-
tion 4.6. The implication (iii) =⇒ (ii) is valid for arbitrary topological spaces.
The converse implication, which is non-trivial, was communicated to us by
Peter Nyikos.

3 Our terminology mildly differs from some of the literature, where qcb spaces are not
always assumed to be T0.



Having considered the properties of qcb spaces individually, we now con-
sider their collective properties. For this, we consider the category QCB of
continuous functions between qcb spaces. This category has unexpectedly rich
structure.

First, it has all countable colimits. Countable coproducts are calculated as
for topological spaces. To form the coequalizer of a parallel pair f, g : X → Y ,
one first constructs the quotient of Y under the coarsest equivalence relation
equating f(x) and g(x) for every x ∈ X (this is the coequalizer in the category
Top of topological spaces), and then further quotients this to implement the
T0 property by identifying points that are equivalent in specialization order
(this is the coequalizer in the category Top0 of T0 spaces).

Dually, QCB also has countable limits, however these are not calculated
as in Top (equivalently Top0). Indeed, one can find qcb spaces X, Y such
that the topological product X × Y is not a sequential space (cf. [8, Example
5.1]). However, every topological space X has a sequentialization, Seq(X),
defined on the same underlying set, with the sequentially open sets of X as
its opens. The countable product of qcb spaces (Xi)i≥0 is defined by:

∏

i≥0

Xi =def Seq (
∏

i≥0

Top

Xi) ,

where the product on the right is the topological product. This is simply the
product in the category Seq of sequential spaces. A similar issue arises in
forming equalizers since a subspace of a qcb space is not necessarily itself a
qcb space (again it is sequentiality that fails). Thus the equalizer of a parallel
pair f, g : X → Y in QCB is constructed by sequentializing the subspace
{x ∈ X | f(x) = g(x)} of X. (This subspace is itself the equalizer in Top.)

Finally, we consider function spaces. Let [X → Y ] be the set of all con-
tinuous functions from X to Y . We topologise this set with the topology
generated by subbasic opens of the form:

〈(xi) → x∞, V 〉 =def {f ∈ [X → Y ] | ∀i ∈ N ∪ {∞}. f(xi) ∈ V } ,

where (xi) → x∞ in X and V ⊆ Y is open. 4 Define

X ⇒ Y = Seq [X → Y ] .

The above definition is justified by the following surprising theorem, again
due to Schröder.

4 Such subbasic sets are a restricted form of open from the compact open topology on
[X → Y ]. In fact, we could alternatively place the (in general finer) compact open topology
on [X → Y ] without affecting the discussion, cf. [8].



Proposition 4.9 If X, Y are qcb spaces then so is X ⇒ Y , and this is an
exponential in the category QCB.

This is proved in [46,47]. The following theorem summarises all the structure
identified above.

Theorem 4.10 The category QCB is cartesian closed and countably com-
plete and cocomplete.

Having now extensively examined qcb spaces, we return to issues (i)–(iv)
raised in Section 2, in which we criticised general topological spaces as a notion
of datatype. We see that we have directly addressed point (iv) by restricting to
spaces whose elements can be represented as streams. Furthermore, point (ii)
was resolved in Section 3 via the admissibility and quotient requirements. As a
result, point (i) is redundant since uncountable unions of opens are reduced to
countable ones (as in the discussion below Proposition 4.6). Finally, point (iii)
is addressed by Theorem 4.10. This theorem is unexpected since the restriction
to spaces with admissible quotient representation is entirely motivated through
considerations of physical feasibility, and cartesian closedness falls out for free
without any effort being made to force it. From the results in this section,
we conclude that qcb spaces provide a compelling mathematical model of the
notion of datatype.

5 Topological domains

Our considerations so far have been distant from the usual concerns of domain
theory. In domain theory, recursion, nontermination and partiality play promi-
nent roles, and one starts straight away with the idea that domains should
be ordered and that continuous functions should have least fixed points. In
contrast, although we have argued that, through considerations of physical
feasibility, datatypes should be modelled as qcb spaces, we have ignored such
recursion-related issues entirely.

In this section, we place additional requirements on qcb spaces, suitable
for modelling recursion. As in domain theory, this will require order-theoretic
considerations. Since our spaces satisfy the T0 separation property, they al-
ready have an intrinsic partial order, namely the specialization order ⊑. As
in domain theory, we shall find the least fixed point of a continuous function
f by taking a limit of an approximating sequence:

⊥ ⊑ f(⊥) ⊑ f(f(⊥)) ⊑ f(f(f(⊥))) ⊑ . . . .

For this, we shall, as usual, require that domains have least element and limits
of ascending sequences. It is mathematically productive to address these two
requirements separately.



An ascending sequence (or ω-chain) in a topological space is a sequence
(xi)i≥0 with x0 ⊑ x1 ⊑ x2 ⊑ . . . .

Definition 5.1 (Topological predomain) A qcb space is said to be a topo-
logical predomain if every ascending sequence (xi) has an upper bound x∞

such that (xi) → x∞.

Here, we are exploiting the fact that we have a topological space to use the
topological notion of sequence convergence (as defined above Proposition 4.2).
For this to be a nontrivial definition, it is essential to include the requirement
that x∞ is an upper bound, because, for any ascending sequence (xi), one
always has (xi) → xk for every k ≥ 0. We do not ask for x∞ to be a least
upper bound since this follows from (but is weaker than) the convergence
requirement. Indeed, it is easily seen that if x is any limit of an ascending
sequence (xi) then x lies below every upper bound of (xi). The result below
is an immediate consequence.

Proposition 5.2 If X, Y are topological predomains then:

(i) Every ascending sequence in X has a least upper bound.

(ii) Every continuous function from X to Y preserves least upper bounds of
ascending sequences.

The notion of topological predomain has been formulated by requiring
suprema only for ascending sequences rather than, more generally, for directed
sets. As remarked by Plotkin [38, Ch. 1], there is computational motivation
for requiring suprema for ascending sequences, since such suprema are needed
for finding least fixed points. In contrast, similar motivation is not easily given
for requiring suprema for arbitrary directed sets. For qcb spaces, however, one
does not need to motivate directed completeness; it follows from ω-chain com-
pleteness. 5 Indeed, Proposition 5.4 below establishes that every topological
predomain is a dcpo (in its specialization order). The difference with respect
to ordinary domain theory is that, in general, the topology is coarser than
the Scott topology. These properties are captured by the following definition
taken from [15] (first introduced as d-spaces in [55]).

Definition 5.3 (Monotone convergence space) A topological space X is
a monotone convergence space if its specialization order is a dcpo (in particular
it is T0) and every open set is open in the Scott topology on (X,⊑).

Proposition 5.4 A qcb space is a topological predomain if and only if it is a
monotone convergence space.

It is obvious that every qcb monotone convergence space is a topological pre-
domain. To prove the converse, one has to show that every directed subset

5 This generalises the situation for ω-algebraic cpos discussed in [38, Ch. 6, Exercise 1].



D ⊆ X has a supremum d and that D converges to d (under net conver-
gence). For this, one applies Proposition 4.7 to extract a countable dense
subset C ⊆ D, using which one constructs an ascending sequence in D whose
supremum is the required supremum for D. See [4, Proposition 4.7] for details.

We write TP for the full subcategory of QCB consisting of topological
predomains. Usefully, this category enjoys the same richness of structure as
QCB.

Theorem 5.5 The category TP is a full reflective exponential ideal of QCB.

It follows that TP is countably complete and inherits its limits from QCB. It
is also countably cocomplete, with colimits obtained by applying the reflection
functor to colimits in QCB. The exponential ideal property means that if X
is any qcb space and Y any topological predomain then the qcb function space
X ⇒ Y is a topological predomain. In particular, the category TP is cartesian
closed. For a proof of the Theorem 5.5, see [4, Theorem 4.8].

We now address the least element requirement on domains.

Definition 5.6 (Topological domain) A topological domain is a topological
predomain with least element in the specialization order.

Topological domains do indeed enjoy the expected fixed-point property that
we used to motivate their definition.

Theorem 5.7 Every continuous function f : D → D on a topological domain
D has a least fixed point lfp(f) ∈ D.

The standard proof works (on account of Proposition 5.2). We also have the
expected uniformity property of least fixed points, as identified by Plotkin [38,
Ch. 2, Exercise 30] (and independently by Eilenberg in unpublished work).
As in traditional domain theory, a continuous function between topological
domains is said to be strict if it preserves the least element.

Proposition 5.8 (Uniformity) Given topological domains D, E, continu-
ous functions f : D → D, g : E → E and a strict continuous function h : D →
E such that h ◦ f = g ◦ h, then lfp(g) = h(lfp(f)).

Furthermore, as in domain theory, the property of uniformity characterises
least fixed points.

We write TD for the category of topological domains and continuous func-
tions. We have finally arrived at the convenient category of domains in the
title of the paper. Let us begin to establish its good properties.

Theorem 5.9 The category TD is an exponential ideal of QCB and is closed
under countable products in QCB.

In view of Theorem 5.5, all that needs to be verified here is that the relevant
products and function spaces have least elements. This is straightforward. We



have thus, in Theorems 5.9 and 5.7, established that TD is a cartesian closed
category with fixed points.

We end this section by presenting a connection between ordinary dcppo-
based domain theory and our topological domains. It is easily seen that every
ω-continuous dcppo, endowed with the Scott topology, is a topological domain.
(The crucial point is that it is a qcb space because the Scott topology is
countably based.) 6 Thus the category ωCont of ω-continuous dcppos is a
full subcategory of TD. Although ωCont is not itself cartesian closed, it is
known that it has a largest full subcategory that is, namely Jung’s category
ωFS of countably based FS domains, see [27,1].

Theorem 5.10 The inclusion of ωFS in TD preserves the cartesian closed
structure and countable products.

The above result is proved in [4, Proposition 5.2 and Theorem 5.7]. It means
that function spaces of countably based FS domains in TD carry Scott topolo-
gies. This property does not hold in general for ω-continuous dcppos that are
not FS domains. A counterexample can be found in [4, Proposition 5.3]. It
is not unreasonable to have a different function space topology in such cases,
since one can argue that FS domains form the largest collection of domains for
which the Scott topology on function spaces is well behaved. See [4, Section
5] for further discussion.

6 Constructions on topological domains

Since TD is a cartesian closed category with fixed points, it follows that
it does not have initial object, finite coproducts or equalizers, see [19]. As
in ordinary domain theory, better category theoretic structure is possessed
by the subcategory TD⊥ of strict continuous functions between topological
domains.

Proposition 6.1 The category TD⊥ is countably complete, with limits inher-
ited from QCB.

Since an analogous property holds for TP (Theorem 5.5), one just needs to
show that limits of strict diagrams preserve the existence of a least element.
This is straightforward.

Proposition 6.2 The category TD⊥ has countable coproducts.

Coproducts in TD⊥ are a straightforward topological generalisation of the
coalesced sums of domain theory, see, e.g., [38, Ch. 3]. We exhibit the finite

6 In fact it follows from [8, Corollary 6.11] that a continuous dcppo is a topological domain
only if it is ω-continuous.



coproducts explicitly. The initial object is given by any one point space. The
sum D ⊕ E of two topological domains has underlying set:

{inl(d) | d ∈ D, d 6= ⊥D} ∪ {inr(e) | e ∈ E, e 6= ⊥E} ∪ {⊥D⊕E} ,

using an obvious notation for the least elements of D and E. The topology on
D⊕E is generated by basic opens of the form: {inl(d) | d ∈ U} where U ⊆ D is
open; {inr(e) | e ∈ V }, where V ⊆ E is open; and D⊕E itself. Thus ⊥D⊕E is
indeed the least element of D⊕E, as the notation suggests. The construction
of countably infinite coproducts is similar and left to the reader. In both the
finite and infinite cases, the construction does indeed yield a qcb space because
it can be exhibited (in an obvious way) as a quotient of a countable sum in
QCB. The remaining conditions for being a topological domain are routinely
verified, as is the universal property of the coproduct.

Next, we consider analogues of the strict product and strict function space
of domain theory [38, Ch. 3]. The binary strict product D ⊗ E of two topo-
logical domains has underlying set:

{(d, e) ∈ D × E | d 6= ⊥D, e 6= ⊥E} ∪ {⊥D⊗E} .

The topology has the following open sets: W ⊆ D ⊗ E\{⊥D⊗E} where W
is open in the QCB product D × E (see Section 4); and D ⊗ E itself. The
main observation needed in showing that this indeed forms a qcb space is that
(D ⊗E)\{⊥D⊗E} is an open subset of D ×E and so its subspace topology is
sequential. Therefore, (D⊗E)\{⊥D⊗E}, with the subspace topology, is a qcb
space, from which it follows that D ⊗ E is too. The remaining conditions for
a topological domain are easily verified.

As in domain theory, cf. [38, Ch. 3], strict product has a universal property
as a classifier of bistrict continuous functions. Recall that a function of two
arguments f : D1×D2 → E is said to be bistrict if it is strict in each argument
separately. For example, the function ⊗ : D1 × D2 → D1 ⊗ D2 defined by:

⊗(d1, d2) =







(d1, d2) if d1 6= ⊥D1
and d2 6= ⊥D2

⊥D1⊗D2
otherwise

is bistrict and continuous.

Proposition 6.3 If f : D1×D2 → E is bistrict and continuous, for topological
domains D1, D2, E, then there exists a unique continuous function g : D1 ⊗



D2 → E such that f = g ◦ ⊗.

D1 ⊗ D2

g ✲ E

D1 × D2

⊗

✻

f

✲

It is also easily verified that ⊗ is (the action on objects of) a symmetric
monoidal product on TD⊥ with Sierpinski space S =def {⊥,⊤} (where {⊤}
but not {⊥} is open) as its unit; again cf. [38, Ch. 3].

The strict function space D ⇒⊥ E has underlying set

{f ∈ [D → E] | f strict} ,

and its topology is the subspace topology from D ⇒ E. In this case, D ⇒⊥ E
is a closed subset of D ⇒ E, and hence its subspace topology is sequential;
therefore D ⇒⊥ E is indeed a qcb space. Again, the remaining conditions for
being a topological predomain are straightforward to verify, as is the proposi-
tion below.

Proposition 6.4 Together, ⊗, S and ⇒⊥ provide symmetric monoidal closed
structure on TD⊥.

If follows from Theorem 5.10 that the strict function space D ⇒⊥ E between
two countably based FS domains carries the Scott topology. Again, coun-
terexamples can be found for ω-continuous dcppos that are not FS domains.
(The example of [4, Proposition 5.3] also works for strict function space.)

The lifting construction of domain theory also has a topological analogue.
For any topological predomain D, we define D⊥ to have underlying set

{⌈d⌉ | d ∈ D} ∪ {⊥D⊥
} .

The open sets are: {⌈d⌉ | d ∈ U} where U ⊆ D is open; and D⊥ itself. This
is again a qcb space, since it is trivially T0 and sequential, and a countable
pseudobase is obtained in the obvious way from one for D. As expected, lifting
is left adjoint to the inclusion of TD⊥ in TP.

Proposition 6.5 If D is a topological predomain and E is a topological do-
main, then, for any continuous f : D → E there exists a unique strict contin-



uous g : D⊥ → E such that f = g ◦ ⌈·⌉.

D⊥

g ✲ E

D

⌈·⌉

✻

f

✲

In addition, one can easily verify that the inclusion of TD⊥ in TP is monadic,
i.e., that TD⊥ is the category of Eilenberg-Moore algebras for the lifting
monad on TP. The moral, once again, is that the familiar structure of domain
theory is present also for topological domains.

Finally in this section, we show that topological domains support the solu-
tion of recursive domain equations. This turns out to be a simple application
of Smyth and Plotkin’s axiomatic framework for such solutions [51]. However,
we take a more modern perspective, incorporating the ideas of Freyd [13,14],
as developed by Fiore in his (Plotkin-supervised) Ph.D. thesis [10].

Using the fact that, for topological domains D, E, the strict function space
D ⇒⊥ E is again a topological domain, and applying Proposition 5.2, one
easily shows that TD⊥ is an ωcppo-enriched category. Further any one point
space 1 is a zero object in TD; that is it is both initial and terminal. Moreover,
for any topological domain D, the composite D → 1 → D of unique strict
maps is (trivially) the least element of D ⇒⊥ D, and hence lies below the
identity in D ⇒⊥ D. That is, the object 1 is an ep-zero, in the sense of [10],
in TD⊥. In addition, by Proposition 6.1, TD⊥ has all countable limits, in
particular it has limits of ωop-chains of projections, as defined in [10]. We have
now verified all the conditions needed to invoke Fiore’s fundamental theorem
in [10], and obtain: 7

Proposition 6.6 TD⊥ is ωcppo-parametrized algebraically compact.

What this means is that we can solve recursive domain equations for systems
of equations expressed in terms of mixed variance ωcppo-enriched functors
of type (TD⊥

op × TD⊥)k → TD⊥. Since all the constructions on topological
domains considered so far are given by functors of this form, one can solve
arbitrary recursive domain equations involving such constructions. For a de-
tailed explanation of how Proposition 6.6 leads to such conclusions, the reader
is referred to the very thorough treatment in [10].

7 Here ωcppo is the category of ω-continuous functions between ω-complete pointed partial
orders. The theorem applies to TD⊥ considered as an ωcppo-enriched category in the
natural way.



7 Free algebras

In [36], Plotkin introduced his powerdomain construction as a means of mod-
elling nondeterminism (hence concurrency) in domain theory. Subsequently,
Henessy and Plotkin [18] characterised this construction as yielding the free
domain-theoretic semilattice. More recently, Plotkin and Power [40] have ad-
vocated the idea of using general free algebras to model computational effects,
refining the work of Moggi on computational monads [33].

In this section we explain how the category TP of topological predomains
supports a wide collection of free-algebra constructions, including the usual
powerdomains. Let Σ be a signature containing a countable collection of op-
eration symbols, each with an associated arity ≤ ω (note that we are allowing
countably infinite arities as well as finite ones). Let E be a set of (in)equations
over terms constructed from Σ; by which we mean that elements of E may
have two forms: (i) s = t, and (ii) s ⊑ t. Then a (Σ, E)-algebra in TP is a pair
(D, {fo}o∈Σ), where each fo is a continuous function Darity(o) → D (of course
the power Darity(o) is taken in the category TP, equivalently in QCB), and
such that all the (in)equations in E are validated. In [3], Battenfeld shows
that free (Σ, E)-algebras exist in TP.

Theorem 7.1 For any topological predomain D there exists a (Σ, E)-algebra
(F(D), {fo}o∈Σ) with continuous function ηD : D → F(D) such that, for any
(Σ, E)-algebra (E, {go}o∈Σ) and continuous e : D → E, there is a unique con-
tinuous homomorphism h : (F(D), {fo}o∈Σ) → (E, {go}o∈Σ) making the dia-
gram below commute.

F(D)
h ✲ E

D

ηD

✻

e

✲

Battenfeld’s construction of free algebras is carried out in three stages. First,
a free algebra is constructed in the category of sequential T0 spaces. It is pos-
sible to do this using Freyd’s adjoint functor theorem. However, an explicit
description is needed to show, as step two, that the free sequential algebra
is actually a qcb space. Finally, the reflection functor from qcb spaces to
topological predomains is applied to yield the free algebra in topological pre-
domains. The details can be found in [3]. We remark that stages two and
three crucially rely on properties of countable products in QCB established
in [48].



Example 7.2 (Convex powerdomain) The convex (or Plotkin) powerdo-
main is the free algebra generated by one binary operation “or” and equations:

x or x = x (4)

x or y = y or x (5)

(x or y) or z = x or (y or z) . (6)

These are just the standard equations for (binary) semilattices.

Example 7.3 (Upper and lower powerdomains) The convex (or Smyth)
powerdomain has the same signature and equations as the Plotkin powerdo-
main, and also the single inequation:

x or y ⊑ x . (7)

The lower (or Hoare) powerdomain is obtained by replacing the inequation
above with the reverse inequality:

x ⊑ x or y . (8)

By Theorem 7.1, for any of the above inequational theories, free algebras exist
in the category of topological predomains. Moreover, because the idempo-
tency equation (4) holds in each case, it can be shown that the free algebra
constructions preserve the presence of a least element. Thus one has the usual
three powerdomains in the category TD of topological domains

Since ωCont is a full subcategory of TP, it is interesting to compare how
the powerdomains in TP relate to the usual domain-theoretic ones. We say
that (Σ, E) is a finitary (in)equational theory if every operation in Σ has finite
arity. It is shown in [1] that the category ωCont has free algebras for arbitrary
finitary (in)equational theories. Battenfeld has proved the following general
coincidence result.

Theorem 7.4 If (Σ, E) is a finitary theory then, for every countably based
continuous dcpo D, the free (Σ, E)-algebra in TP carries the Scott topology
and coincides with the free (Σ, E)-algebra in ωCont.

As is well known, Plotkin’s category of bifinite ω-algebraic dcppos (orig-
inally called SFP objects [36]) is closed under the above powerdomains, and
also under all the constructions on domains discussed in Sections 5 and 6. Fur-
thermore, all such constructions are preserved by the inclusion of ω-bifinite
dcppos in TD. Thus, nothing new is achieved by interpreting these con-
structions in the richer setting of topological domains. One might as well use
traditional domain theory.

However, there are other free algebras of interest in semantics. One par-
ticularly important example is Jones and Plotkin’s probabilistic powerdomain,



which is used for modelling probabilistic choice [25,26]. The probabilistic pow-
erdomain can be defined for arbitrary dcpos. Jones proved that it cuts down to
the subcategory of ω-continuous dcpos [25]. However, it is not known whether
the probabilistic powerdomain further restricts to any cartesian closed cat-
egory of ω-continuous dcppos — see [28] for a discussion of the difficulties
that arise. In practice, what this means is that, by iterating applications of
function space and probabilistic powerdomain in domain theory, one may be
taken outside the world of ω-continuous dcpos.

There are various approaches to obtaining the probabilistic powerdomain
as a free algebra, cf. [25,17]. One possibility is to make use of a countably
infinite operation to implement countable convex combinations, cf. [9]. This
fits into the theory of (Σ, E)-algebras presented above, but the equational
theory is complicated (in [9] a non-equational theory is used). An arguably
preferable alternative is to instead use a single parametrized binary operation,

choose : [0, 1] × D × D → D ,

where, computationally, choose(λ, x, y) reads as: choose alternative x with
probability λ and otherwise choose alternative y (mathematically this amounts
to a convex combination λx+(1−λ)y). With such a parametrized operation,
one can give elegant axioms for an appropriate equational theory, which is sim-
ply the theory of (finite) convex combinations, cf. [25]. In order to implement
the right continuity constraints on algebras, it is important that the parameter
space [0, 1] is given the Euclidean topology. In the domain-theoretic setting,
one does then obtain a characterisation of the probabilistic powerdomain as a
free algebra over ω-continuous dcppos, cf. [25].

In [3], Battenfeld considers a general notion of equational theory for alge-
bras whose operations may be parametrized by countably based topological
spaces. Moreover, generalising Theorem 7.1 above, 8 he shows that topolog-
ical predomains have free algebras for all such parametrized equational the-
ories. In particular, one can obtain a probabilistic powerdomain using the
parametrized “choose” operation, as outlined above. Other useful examples
of free parametrized algebras are also presented in [3].

With the probabilistic powerdomain, one has a computationally useful ex-
ample for which a combination of constructions on topological domains need
not agree with the corresponding combination in ordinary domain theory. In-
deed, because of the difficulties identified in [28], it is plausible that a single
application of the probabilistic powerdomain to a finite partial order might
lead outside Jung’s category of FS domains. Following this, a single func-
tion space construction may lead to a case in which the function space in

8 Inequational theories are treated as examples of Sierpinski-parametrized equational the-
ories.



topological domains does not carry the Scott topology, since Theorem 5.10 no
longer applies. If so, a two step construction over a finite partial order gives
a disagreement between ordinary and topological domain theory.

Since the foregoing discussion is hypothetical, we present an example in
which such a disagreement can be shown to actually occur.

Example 7.5 (Midpoint algebras) Midpoint algebras (cf. [9]), have one
binary operation ⊕ and equations:

x ⊕ x = x

x ⊕ y = y ⊕ x

(x ⊕ y) ⊕ (z ⊕ w) = (x ⊕ z) ⊕ (y ⊕ w) .

These axioms capture the equational properties of the operation of taking
midpoints in Euclidean space.

One can calculate the free midpoint algebra in ωCont (and hence, by Theo-
rem 7.4, in TP) over the four point lattice S×S (where S is Sierpinski space).
This free algebra is ω-algebraic with least element. However, it is not bifinite,
since the two compact elements (⊥,⊥) ⊕ (⊤,⊤) and (⊥,⊤) ⊕ (⊤,⊥) have
infinitely many minimal upper bounds. One can then argue, similarly to [4,
Proposition 5.3], that the function space from this free algebra to itself in
TD does not carry the Scott topology. This example is, admittedly, not com-
putationally motivated. 9 Nonetheless it does illustrate that combining free
algebra constructions and function spaces can lead to disagreements between
ordinary and topological domain theory.

The reason for emphasising such potential differences is that, when dis-
agreement does occur, we argue that the constructions of topological domain
theory are to be preferred to the ordinary domain-theoretic ones. A concep-
tual argument for this is that the constructions of topological domain theory
support the analysis in terms of physical feasibility presented in Section 3.
In Section 10 we shall argue that there are also pragmatic reasons for pre-
ferring topological domain theory. (Of course, in cases in which there is no
disagreement, one can equivalently use ordinary domain theory.)

8 Computability

In this section, we discuss the way in which topological domains can be used as
a basis for developing a theory of computability, thereby addressing desider-
atum (ii) from Section 1. In principle, such a theory of computability for
topological domains should allow questions of computability and definability

9 Although midpoint algebras do have a close connection to the probabilistic powerdomain,
see [17].



to be addressed for datatypes that cannot be modelled as ω-continuous dcppos
(for example, if combinations of free algebras and function spaces are used,
as in the previous section). However, the theory we have at present is not
yet in a sufficiently mature shape for such applications to be straightforward.
Improving this situation is an interesting direction for further work.

Having abstracted away from representations and worked with “exten-
sional” topological structure throughout Sections 4–7, in order to present our
approach to computability, we now return to the more “intensional” idea of
considering spaces as coming equipped with representations in the sense of Sec-
tion 3. To this end, we consider the category Rep whose objects are quotient
representations and whose morphisms are the physically feasible functions.
Equivalently (and preferably), one can ignore the topology on the represented
space entirely, and take the objects to be partial surjections from Nω onto
sets. By the results surveyed in Section 4, the full subcategory AdmRep of
admissible quotient representations in Rep is equivalent to QCB. Moreover,
one can obviously cut down further to obtain a full subcategory TPAdmRep
equivalent to TP.

The category Rep has a subcategory Repeff whose morphisms are those
physically feasible functions for which there exists an associated function on
names that is computable by a type two Turing machine (cf. [54], where such
functions are called relatively computable). There is thus a natural sense in
which one can identify the effective morphisms in Rep. Such considerations
immediately apply also to full subcategories of Rep such as AdmRep and
TPAdmRep. Hence, by working directly with admissible quotient represen-
tations, rather than with the spaces they represent, one has immediate access
to a theory of effectivity.

This theory is, however, unsatisfactory. For the effective categories to be
of any use, one needs to ensure that all constructions of interest “effectivize”.
For example, to obtain the cartesian closedness of the subcategory of effective
maps, one needs to cut down the admissible quotient representations to those
that are effectively admissible in the sense of [47]. When one further restricts
to topological domains, additional restrictions need to be placed on the cat-
egory to ensure that the domain-theoretic constructions (e.g., fixed points)
also effectivize. In fact, as we now outline, such concerns can be dealt with
in an automatic way by exploiting a very useful connection between topolog-
ical domain theory and domain theory in “realizability models” as studied
in [35,22,30,42,34].

By the description of objects of Rep as partial surjections, one sees that
Rep is simply the category Mod(Nω) of so-called modest sets on Nω, cf. [29]. 10

Remarkably, the category AdmRep turns out to be exactly the full subcat-

10 As is well known, Nω can be construed as a partial combinatory algebra (Kleene’s second
model), see, e.g., [29].



egory of extensional (sometimes called regular) objects of Mod(Nω) in the
sense of synthetic domain theory, cf. [22,34]. 11 Further, its full subcategory
TPAdmRep is exactly the full subcategory of complete extensional objects
in Mod(Nω), in the sense of [30,34]. Thus TP is equivalent to the category of
complete extensional objects in Mod(Nω). Full proofs of these equivalences
appear in Battenfeld’s Diploma dissertation [2].

The above equivalences adapt to the effective case as follows. By mim-
icking the definitions of extensional and complete extensional objects in the
category of Repeff (rather than in Rep) one obtains full subcategories of
Repeff of effectively extensional and effectively complete extensional objects
respectively. The former is exactly Schröder’s category of effectively admissi-
ble representations, and hence the “correct” effective analogue of the category
QCB. The latter is the desired effective version of the category of topological
predomains. Thus, we do indeed end up with an appropriate full subcategory
of Repeff of effective maps between effectivized topological domains. How-
ever, the route followed above has not given rise to any pleasant description
of what the objects of this category actually are.

In our view, the main unsatisfactory feature of the entire approach consid-
ered above is that the objects of the categories considered are representations,
and thus spaces have to be encoded, often in unnatural ways, as subquotients
of Nω. The topology of a represented space plays no role beyond being struc-
ture that is ultimately derivable from any given representation of the space.

It would be desirable instead to have a more direct theory of effectively
presented qcb spaces. Such an effective presentation should consist of a qcb
space, together with sufficient additional information (e.g., an enumeration of
a pseudobase, possibly supporting various additional operations) for it to be
possible to recover an effectively admissible quotient representation from the
information. Moreover, every effectively admissible quotient representation
should be so recoverable (up to isomorphism) from some effectively presented
qcb space. In addition, one would like a direct account of effective maps
between effectively presented qcb spaces, so that the effective maps correspond
exactly to those that are effective between the induced effectively admissible
representations. 12 Having achieved this, one should be able to refine the
approach to obtain a corresponding theory of effectively presented topological
domains.

11 This equivalence depends on first identifying a dominance in Mod(Nω), in the sense
of [44]. For this, one can take any admissible quotient representation of Sierpinski space.
12 An analogy might help the reader to understand what is being envisaged here. The notion
of effectively presented qcb space should be considered analogous to the notion of effectively
given domain in [38, Ch. 7]. The induced effectively admissible quotient representation is
then analogous to the standard enumeration of recursive elements in an effectively given
domain of [38, Ch. 7 Definition 1]. Finally, the equivalence of the two notions of effective
map is analogous to the similar equivalence of [38, Ch. 7 Theorem 1].



At present, we do not know what precise form such notions of effective
presentation will take. So we leave this as a challenge for future research.

Problem 8.1 Find a theory of effectively presented qcb spaces along the lines
outlined above.

Problem 8.2 Refine this to obtain theory of effectively presented topological
domains.

9 Polymorphism

In this section we briefly discuss a further interesting property of topological
domains: they provide a model of full impredicative polymorphism. Once
again, the development relies crucially on the relationship with realizability
models, discussed above.

In Section 8, we stated that QCB is equivalent to the category of ex-
tensional objects in the category of modest sets Mod(Nω), and that TP is
equivalent to the category of complete extensional objects. It is known that
the categories of extensional and complete extensional objects in any category
of modest sets are (equivalent to) “small complete” categories (in the sense of
[21,23]) within an ambient category of assemblies, cf. [30]. This alone provides
sufficient structure for interpreting full impredicative polymorphism (i.e., the
Girard/Reynolds second-order λ-calculus). Thus, albeit in a roundabout way,
it is possible to model full impredicative polymorphism in the category TP of
topological predomains. In fact one can even ensure that the model satisfies
Reynolds’ useful principle of relational parametricity, cf. [43].

In order to combine parametric polymorphism and domain-theoretic con-
structs a subtler approach is required, since full relational parametricity is
inconsistent with fixed points. In his invited talk at LiCS 1993 [39], Plotkin
proposed second-order intuitionistic linear type theory as a suitable frame-
work for resolving the problem. Under this approach, linearity is used to
represent strictness in domain theory, and the appropriate notion of relational
parametricity accounts for the universal properties of the various domain con-
structors in the category of strict maps, cf. Section 6. This elegant framework
for parametric polymorphism is compatible with topological domain theory.
The observations made above about “small completeness” do indeed suffice to
construe the category TD⊥ as a relationally parametric model of second-order
intuitionistic linear type theory, cf. [45].

The above discussion indicates that topological domains do indeed model
an appropriate polymorphic calculus for domain-theoretic constructions. How-
ever, we find the roundabout route we have taken to obtain the model far from
satisfactory. As in Section 8, the drawback with the approach we have fol-
lowed is that it depends crucially on considering spaces as being given via



representations. Thus we pose the following two challenges, the first being a
natural precursor to the second.

Problem 9.1 Find a direct topological account of how QCB provides a (re-
lationally parametric) model of second-order λ-calculus.

Problem 9.2 Find a direct topological account of how TD⊥ provides a (re-
lationally parametric) model of second-order intuitionistic linear type theory.

10 Summary and discussion

In this paper, we have motivated and introduced the notion of topological
domain. Although topological domains are themselves dcppos, the distin-
guishing feature that differentiates between topological domain theory and
ordinary domain theory is that topological domains are not required to carry
the Scott topology. The benefit one obtains from this relaxation is that one
achieves a category of domains supporting a range of constructions not avail-
able for any of the dcpo-based categories of domains. Specifically, we have
shown that, in addition to the standard constructions of domain theory cov-
ered in Sections 5 and 6: topological domains support the construction of free
algebras for a wide class of (in)equational theories, thereby allowing a variety
of computational effects to be modelled; they have an associated theory of
computability; and they model parametric polymorphism.

Notwithstanding such pragmatic considerations, the definition of topolog-
ical domain also enjoys the property of having strong conceptual motivation.
Essentially, we combined just two features: the idea that datatypes should
be modelled by topological spaces for which the topology can be explained in
terms of physical feasibility, which led to the restriction to qcb spaces; and
the desire to model recursion using fixed points.

In our route to identifying qcb spaces in Sections 3 and 4, the idea of
having concrete representations of elements of spaces (as streams of natural
numbers) is crucial to the argument. This is intriguing because it runs contrary
to a popular view of topology, that of locale theory [24,53], according to which
elements of spaces should be disregarded in favour of considering the algebraic
structure of the lattice of open sets as the primary description of a space.

It is an open question whether there is a natural localic analogue of the cat-
egory of qcb spaces carrying the same useful categorical structure as QCB.
In fact, certain interesting technical difficulties lie in the way of developing
one. The standard adjunction between topological spaces and locales yields
an equivalence between the full subcategories of sober spaces and spatial lo-
cales [24]. By going round the adjunction, an arbitrary space gets mapped to
its sobrification. It turns out not to be possible to cut down this familiar situa-
tion to qcb spaces, since Gruenhage and Streicher have shown that qcb spaces



are not closed under sobrification [16]. Nevertheless, it may still be possible
to abstract from the lattices of opens of qcb spaces on the localic side, and
relate such locales to qcb spaces by mapping a locale to its associated replete
qcb space in the sense of [22], which is determined up to homeomorphism.
One simplifying aspect of such an account would be that it would no longer
be necessary to consider any notion of predomain, since replete qcb spaces are
already contained in the category TP. However, we leave it as a question for
future research whether any useful localic abstraction of the lattices of opens
of qcb spaces is possible. We find it plausible that there is none, in which
case the good properties of qcb spaces would seem entirely dependent on their
development taking place in the setting of point-set topology.

For the traditional domain theorist, the most unpalatable aspects of topo-
logical domain theory are likely to be the descriptions of the topologies on
products, function spaces and subspaces, as presented in Section 4, all of which
involve sequentializations. Such descriptions seem unavoidable whenever one
allows more general topologies on domains than the Scott topology. In fact,
one can show that the constructions on qcb spaces are, in an empirical sense,
canonical. Although there are many different approaches to obtaining “topo-
logical” (in a broad sense) cartesian closed categories, the category of QCB
appears (perhaps unexpectedly) as a common core within all approaches. For
example, in [8], it is shown that QCB lives as a full cartesian closed sub-
category 13 of all the main cartesian closed categories of topological spaces;
and, in [31], it is shown that it also lives as a full cartesian closed subcat-
egory of Scott’s category of equilogical spaces, introduced in [5], which is a
supercategory of Top. 14 Such embeddings provide alternative descriptions of
the products and function spaces of qcb (though no more transparent than
those given here). The embeddings in cartesian closed categories of topological
spaces, also allow connections between the convenient domain theory of the
present paper and the subject of convenient topology, as presented in [6,52,41],
to be established. This is developed in detail in [4].

The immediate avenues for future development concern obtaining more
explicit accounts of computability and polymorphism, as outlined in Sections 8
and 9. Furthermore, the particular features we have highlighted of topological
domains (points (i)–(iv) in the introduction) are by no means exhaustive as
desiderata to place on a category of domains. One might, for example, also
like to establish well-behavedness properties of the various functor categories
used for modelling local variables and similar. More generally, one would
like the category to provide as adaptable and flexible a toolkit for semantic

13 By cartesian closed subcategory we mean that the inclusion preserves the cartesian closed
structure.
14 A gap in the literature that still needs filling here is to show that QCB is a full cartesian
closed subcategory of Hyland’s category of filter spaces [20].



constructions as possible. This desire is necessarily open-ended, and it will
be interesting to see to what extent the “convenient” category of topological
domains meets the challenge.
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