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|. Symplectic structure

A symplectic form on a manifold X is a 2-form ¢ such that:

@ dp=0and ¢(x) € Alt(T«(X)) non-degenerate Vx € X.
@ <= locally p=dpi Adgi+ ...+ dp, Adqg, (Darboux)

Then (X, ¢) is a symplectic manifold.

(In mechanics, typically g; < positions, p; < velocities)

~> Unlike Riemannian geometry, symplectic geometry is locally

trivial; the interesting problems are global.

All this makes sense with X complex manifold, ¢ holomorphic.

global ~» X compact, usually projective or Kahler.
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e X admits a (holomorphic) symplectic form, unique up to C*.
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Holomorphic symplectic manifolds

Definition: holomorphic symplectic manifold

@ X compact, Kahler, simply-connected;

e X admits a (holomorphic) symplectic form, unique up to C*.

Consequences : dimg X = 2r; the canonical bundle Kx := Qg{

is trivial, generated by @ A ... A ¢ (r times).
(Note : on X compact Kahler, holomorphic forms are closed)

Why is it interesting?

Arnaud Beauville Holomorphic symplectic geometry



The Decomposition theorem

Arnaud Beauville Holomorphic symplectic geometry



The Decomposition theorem

Decomposition theorem

X compact Kahler with Ky = Ox. 3 X — X étale finite and

X=Tx][[vix]][%
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The Decomposition theorem

Decomposition theorem

X compact Kahler with Ky = Ox. 3 X — X étale finite and
X=Tx H Y x sz
i J
e T complex torus (= C&/lattice);

@ Y; holomorphic symplectic manifolds;

@ Z; simply-connected, projective, dim > 3,
H%(Z;,2*) = C & Cw, where w is a generator of K.

(these are the Calabi-Yau manifolds)

Thus holomorphic symplectic manifolds (also called hyperkahler)
are building blocks for manifolds with K trivial, which are
themselves building blocks in the classification of projective (or
compact Kahler) manifolds.
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Many examples of Calabi-Yau manifolds, very few of holomorphic
symplectic.

o dim2: X simply-connected, Kx = Ox &L X K3 surface.
(Example: X C IP? of degree 4, etc.)

@ dim > 27 Idea: take S" for S K3. Many symplectic forms:

e=Mpies+...+ A pips, with A,...,\, €C".
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o dim2: X simply-connected, Kx = Ox &L X K3 surface.
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Try to get unicity by imposing A1 = ... = A,
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(Example: X C IP? of degree 4, etc.)
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o dim2: X simply-connected, Kx = Ox &L X K3 surface.
(Example: X C IP? of degree 4, etc.)

@ dim > 27 Idea: take S" for S K3. Many symplectic forms:
e=Mpies+...+ A pips, with A,...,\, €C".
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Examples?

Many examples of Calabi-Yau manifolds, very few of holomorphic
symplectic.

o dim2: X simply-connected, Kx = Ox &L X K3 surface.

(Example: X C IP? of degree 4, etc.)

@ dim > 27 Idea: take S" for S K3. Many symplectic forms:
e=Mpies+...+ A pips, with A,...,\, €C".

Try to get unicity by imposing Ay = ... = A,, i.e.
¢ invariant under &,, i.e. ¢ comes from S(") .= S"/&, =

{subsets of r points of S, counted with mu|t|pI|C|t|es}

o S is singular, but admits a natural desingularization Sl :=

{finite analytic subspaces of S of length r} (Hilbert scheme)
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gives generalized Kummer manifold K, of dimension 2r.
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For S K3, SU'l is holomorphic symplectic, of dimension 2r.

Other examples

@ Analogous construction with S = complex torus (dim. 2);

gives generalized Kummer manifold K, of dimension 2r.

@ Two isolated examples by O'Grady, of dimension 6 and 10.

All other known examples belong to one of the above families!
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For S K3, SU'l is holomorphic symplectic, of dimension 2r.

Other examples

@ Analogous construction with S = complex torus (dim. 2);

gives generalized Kummer manifold K, of dimension 2r.

@ Two isolated examples by O'Grady, of dimension 6 and 10.

All other known examples belong to one of the above families!

Example: V C P cubic fourfold. F(V) := {lines contained in V'}
is holomorphic symplectic, deformation of S[2 with S K3.
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The period map

A fundamental tool to study holomorphic symplectic manifolds is

the period map, which describes the position of [¢] in H?(X,C).

Proposition
@ 3 g: H*(X,Z) — 7 quadratic and f € Z such that

/ o = fqg(a)" for a € H*(X,Z) .
X
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The period map

A fundamental tool to study holomorphic symplectic manifolds is

the period map, which describes the position of [¢] in H?(X,C).

@ 3 g: H*(X,Z) — 7 quadratic and f € Z such that

/ o = fqg(a)" for a € H*(X,Z) .
X

@ For L lattice, there exists a complex manifold M para-
metrizing isomorphism classes of pairs (X, \), where
A (H*(X,Z),q) = L.
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The period map

A fundamental tool to study holomorphic symplectic manifolds is

the period map, which describes the position of [¢] in H?(X,C).

@ 3 g: H*(X,Z) — 7 quadratic and f € Z such that

/ o = fqg(a)" for a € H*(X,Z) .
X

@ For L lattice, there exists a complex manifold M para-
metrizing isomorphism classes of pairs (X, \), where
A (H*(X,Z),q) = L.

(Beware that M, is non Hausdorff in general.)
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Let Q:={x € P(Lc) | g(x) =0, g(x,x) > 0}.
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o M — P(Lc) is the period map.

Let Q:={x € P(Lc) | g(x) =0, g(x,x) > 0}.

@ (AB) ¢ is a local isomorphism M; — Q.
@ (Huybrechts) ¢ is surjective.

© (Verbitsky) The restriction of ¢ to any connected component

of M is generically injective.
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The period package

(X, A) € My, Ac : H?*(X,C) == Lg; put p(X, A) == Ac(Cyp).
o M — P(Lc) is the period map.

Let Q:={x € P(Lc) | g(x) =0, g(x,x) > 0}.

@ (AB) ¢ is a local isomorphism M; — Q.
@ (Huybrechts) ¢ is surjective.

© (Verbitsky) The restriction of ¢ to any connected component

of M is generically injective.

Gives very precise information on the structure of M/ and the

geometry of X.
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For h function on M, X, := ©#(dh): hamiltonian vector field of h.
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h~1(s) connected, smooth, compact, Lagrangian (¢p-1(s) = 0).
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Symplectic geometry provides a set-up for the differential
equations of classical mechanics:

M real symplectic manifold; ¢ defines ¢f : T*(M) == T(M).
For h function on M, X, := ©#(dh): hamiltonian vector field of h.

Xp-h=0, i.e. hconstant along trajectories of X},
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dim(M)=2r. h: M — R", h= (hy,...,h;). Suppose:

h~1(s) connected, smooth, compact, Lagrangian (¢p-1(s) = 0).

Arnold-Liouville theorem
h=1(s) = R"/lattice; Xp, tangent to h~1(s), constant on h=1(s).
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Completely integrable systems

Symplectic geometry provides a set-up for the differential
equations of classical mechanics:

M real symplectic manifold; ¢ defines ¢f : T*(M) == T(M).
For h function on M, X, := ©#(dh): hamiltonian vector field of h.

Xp-h=0, i.e. hconstant along trajectories of X},
(“integral of motion™)

dim(M)=2r. h: M — R", h= (hy,...,h;). Suppose:

h~1(s) connected, smooth, compact, Lagrangian (¢p-1(s) = 0).

Arnold-Liouville theorem
h=1(s) = R"/lattice; Xp, tangent to h~1(s), constant on h=1(s).

~» explicit solutions of the ODE X}, (e.g. in terms of § functions):
“algebraically completely integrable system”. Classical examples:
geodesics of the ellipsoid, Lagrange and Kovalevskaya tops, etc.
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No global functions ~~ replace R" by P".

Definition

X holomorphic symplectic, dim(X) = 2r. Lagrangian fibration:

h: X — P, general fiber connected Lagrangian.
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Holomorphic set-up

No global functions ~~ replace R" by P".

Definition

X holomorphic symplectic, dim(X) = 2r. Lagrangian fibration:

h: X — P", general fiber connected Lagrangian.

= on h~}(C") — C’, Arnold-Liouville situation.
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No global functions ~~ replace R" by P".

Definition

X holomorphic symplectic, dim(X) = 2r. Lagrangian fibration:

h: X — P", general fiber connected Lagrangian.

= on h~}(C") — C’, Arnold-Liouville situation.

f : X — B surjective with connected fibers =

@ his a Lagrangian fibration (Matsushita);
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Holomorphic set-up

No global functions ~~ replace R" by P".

Definition

X holomorphic symplectic, dim(X) = 2r. Lagrangian fibration:

h: X — P", general fiber connected Lagrangian.

= on h~}(C") — C’, Arnold-Liouville situation.

f : X — B surjective with connected fibers =

@ his a Lagrangian fibration (Matsushita);
@ If X projective, B = P" (Hwang).
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Holomorphic set-up

No global functions ~~ replace R" by P".

Definition

X holomorphic symplectic, dim(X) = 2r. Lagrangian fibration:

h: X — P", general fiber connected Lagrangian.

= on h~}(C") — C’, Arnold-Liouville situation.

f : X — B surjective with connected fibers =

@ his a Lagrangian fibration (Matsushita);
@ If X projective, B = P" (Hwang).

Is there a simple characterization of Lagrangian fibration?

3 X --» P’ Lagrangian <= JLon X, g(ca(L)) =0.
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SCPPgivenby P=Q=R=0, P,Q, R quadratic = S K3.

N = {quadrics > S} = {\P + uQ + vR} = PP?
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An example

Many examples of such systems. Here is one:

SCPPgivenby P=Q=R=0, P,Q, R quadratic = S K3.

N = {quadrics > S} = {\P + uQ + vR} = PP?

M* = dual projective plane = {pencils of quadrics D S}.
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An example

Many examples of such systems. Here is one:

SCPPgivenby P=Q=R=0, P,Q, R quadratic = S K3.

M = {quadrics D S} ={AP+uQ +vR} = P2
M* = dual projective plane = {pencils of quadrics D S}.

h:SPl " : h(x,y) = {quadrics of M D (x,y)}.
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Many examples of such systems. Here is one:

SCPPgivenby P=Q=R=0, P,Q, R quadratic = S K3.

M = {quadrics D S} ={AP+uQ +vR} = P2
M* = dual projective plane = {pencils of quadrics D S}.

h:SPl " : h(x,y) = {quadrics of M D (x,y)}.

By the theorem, h Lagrangian fibration =
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An example

Many examples of such systems. Here is one:

SCPPgivenby P=Q=R=0, P,Q, R quadratic = S K3.
N = {quadrics D S} = {\P + uQ + vR} = P?
M* = dual projective plane = {pencils of quadrics D S}.
h:SPl " : h(x,y) = {quadrics of M D (x,y)}.
By the theorem, h Lagrangian fibration =

h1((P,@)) = {lines C {P = Q = 0} C P°} = 2-dim’l complex torus,
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An example

Many examples of such systems. Here is one:

SCPPgivenby P=Q=R=0, P,Q, R quadratic = S K3.
N = {quadrics D S} = {\P + uQ + vR} = P?
M* = dual projective plane = {pencils of quadrics D S}.

h:SPl " : h(x,y) = {quadrics of M D (x,y)}.
By the theorem, h Lagrangian fibration =
h=1((P,Q)) = {lines C {P = Q =0} C P°} = 2-dim’l complex torus,

a classical result of Kummer.
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What about odd dimensions?

A contact form on a manifold X is a 1-form 7 such that:
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What about odd dimensions?

A contact form on a manifold X is a 1-form 7 such that:

o Kern(x) = Hx & T«(X) and dny, non-degenerate Vx € X;
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lI. Contact geometry

What about odd dimensions?

A contact form on a manifold X is a 1-form 7 such that:

o Kern(x) = Hx & T«(X) and dny, non-degenerate Vx € X;

@ <= locally n=dt+ pidgs + ...+ p,dq, .
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lI. Contact geometry

What about odd dimensions?

A contact form on a manifold X is a 1-form 7 such that:

o Kern(x) = Hx & T«(X) and dny, non-degenerate Vx € X;

@ <= locally n=dt+ pidgs + ...+ p,dq, .

@ A contact structure on X is a family Hy & T (X) Vx € X,

defined locally by a contact form.
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lI. Contact geometry

What about odd dimensions?

A contact form on a manifold X is a 1-form 7 such that:

o Kern(x) = Hx & T«(X) and dny, non-degenerate Vx € X;

@ <= locally n=dt+ pidgs + ...+ p,dq, .

@ A contact structure on X is a family Hy & T (X) Vx € X,

defined locally by a contact form.

Again the definition makes sense in the holomorphic set-up ~~
holomorphic contact manifold. We will be looking for projective

contact manifolds.
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Examples
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Examples

Examples of contact projective manifolds

@ PT*(M) for every projective manifold M
(={(m,H) | HC Tpn(M)}: “contact elements”);

@ g simple Lie algebra; Opin C P(g) unique closed adjoint orbit.
(example: rank 1 matrices in P(sl,).)

These are the only contact projective manifolds.

( = classical conjecture in Riemannian geometry: classification

of compact quaternion-Kahler manifolds (LeBrun, Salamon).)
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@ If X is not Fano, X = PT*(M)
(Kebekus, Peternell, Sommese, Wisniewski + Demailly)
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Partial results

Definition : A projective manifold X is Fano if Kx negative, i.e.
K;N has “enough sections” for N > 0.

X contact manifold; L := T(X)/H line bundle; then Kx = L=k
with k = 3(dim(X) + 1). Thus X Fano <= LN has enough
sections for N > 0.

Theorem

@ If X is not Fano, X = PT*(M)
(Kebekus, Peternell, Sommese, Wisniewski + Demailly)

@ X Fano and L has “enough sections” = Z = Op, C P(g)
(AB)
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such that (f,g) — {f,g} Lie algebra structure.
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[1l1. Poisson manifolds

Few symplectic or contact manifolds ~» look for weaker structure.

¢ symplectic ~ ¢f 1 T(X) = T*(X) ~ 7€ A2T(X) ~
(f,g) — {f,g} = (r,df Ndg) for f,g functions on U C X .

Fact: dp =0 <= Lie algebra structure (Jacobi identity).

Definition

Poisson structure on X: bivector field 7 : x — 7(x) € A2 T,(X),

such that (f,g) — {f,g} Lie algebra structure.

Again this makes sense for X complex manifold, 7 holomorphic.
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@ dim(X) = 2: any global section of A2T(X) = Ky * is Poisson.

@ dim(X) = 3; wedge product A’ T(X) ® T(X) — Ky ' gives
AT (X) = Qf @ K. Then a € HO(Q} @ K ') is Poisson
<— aANda=0 < locally a = fdg.

@ On P, P, Q quadratic
~ a=PdQ— QdP € Ql,(4) = Ql; ® K;;' Poisson.

@ A holomorphic symplectic manifold is Poisson.

@ If X is Poisson, any X x Y is Poisson.
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7 Poisson, x € X. 7y : T}(X) — T«(X) skew-symmetric, rk even.

Xy ={xe X | k(7<) =r} (r even) X = HX

Proposition
If Xy # @, dim X, > r.

Proof : X, is a Poisson submanifold, i.e. at a smooth x € X,
T € N2To(X;) C A2T(X) = r1k(7x) < dim X,. u

Conjecture (Bondal)
X compact Poisson manifold, X, # @ = dim X, > r.

Example: Xo = {x € X | 7x = 0} contains a curve.

(e.g.: on P2, PdQ — QdP vanishes on the curve P = Q = 0.)
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Proposition (Polishchuk)

7 Poisson on P3, vanishes along smooth curve C. Then C elliptic,
deg(C) =3 or 4;
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The Bondal conjecture 2

Some evidence
@ True for X projective threefold (Druel: Xo = @ or dim > 1).
@ 1k(7x) = r for x general = true for X,_» if ¢i1(X)9#0,
g=dimX —r+1.

Proposition (Polishchuk)

7 Poisson on P3, vanishes along smooth curve C. Then C elliptic,
deg(C) =3 or4;if =4, 7=PdQ — QdP and C : P = Q = 0.

THE END
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