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twining vielbein matrix Vlu: every coordinate index can be transformed

into an intrinsic one by Vlﬁz

i.

FLIERIRT: SRUIED (1.2.92)
e TR
and vice versa
e alee (1.2.93)
In particular
i, = i, . IO R TRV AU
R ”ij"lu" FYARE W (1.2.94)

where we have used Eq. (1.2.29).
Therefore coordinate scalars are also Lorentz scalars and vice

versa.
Other useful relations are the following omes:

gl - viu 7 (1.2.952)

A = v“iml (1.2.95b)

where @ and V are the covariant derivatives in the tangent or
natural frames respectively.

Eqs. {1.2.95) can be proved by direct computation using Eqs.
(1.2.80}. Notice that the affine connection entering (I.2.95) is
symmetric in its lower indices which implies that the tersion R is

€10,
Therefore (I.2.95) is mot true in presence of a nonvanishing

torsion.

CHAPTER 1.3

GROUP MANIFOLDS AND MAURER-CARTAN EQUATIONS

I1.3.1 - Introduction

In this chapter we discuss Lie groups from a differential geometric
peint of view. As in previous chapters we just give those main defini-
tions and properties which are relevant for the subsequent developments;
previous knowledge of group theory is required,

The chapter is divided in two parts; in the first (Section 1 to 6)
we concentrate on the study of those properties which are peculiar to
group manifolds, like the existence of left- and right-invariant vector
fields or 1-forms. This leads to the discussion of the Lie algebra
associated to Lie groups and to the dual comcept of Maurer-Cartan egqua-
tions. Within the same framework we shertly discuss the adjoint and co-
adjoint representations of groups and zlgebras and the Killing metric;
finally a short account is given of the Riemannian geometry of semi-
simple group manifolds.

The second part of this chapter is devoted to the study of mani-
folds which are locally diffeomorphic to group manifolds. They are
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obtained by softening the rigid metric structure of the group manifolds
in the same way as the manifold of the tramslation group K" can be
iocally softened to a general Riemannian manifold.

Mznifolds obtained in this way are named soft-group manifolds,
In particular we discuss the process of factorization of the cu}vatures
which gives rise to the fiber bundle structure of the manifold.

The last section of the chapter is devoted to a detailed study of
the important cases of (anti)-de Sitter and Poincaré soft group mani-
folds,

1.3.2 - Lie groups as manifolds: left and right invariant vector fields

Agroup G is a Lie group if it is a smooth manifold and if the

map
GxG+G {1.3.1)
defined by
(x,y) = xy LYEG (1.3.2)

and the inverse mapping

6+ G {1.3.38)
defined by
x+ 21 (1.3.3b)

are both smooth.
In particular if a is 2 fixed element of G, then the left
translation:

La: G+ 6 (1.3.4a)
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La{g) = ag {1.3.4b)
and the right transiation o

Ra: G+ 6 (I.3.5a)

Ra{g3 = ga {I.3.5h)
are diffeomorphisms.

From the associativity of the G multiplication

{ax)b = a(xb) ' (1.3.6)
it follows that the left and right translations commute

(L8] =0 . (1.3.7)
Let us consider the tangent space Te(ﬁ] at the identity e. The
diffeomorphism

e+rge=g o, geG (1.3.8)
induces a map between Te(G) and Tg{G) according to (I.1.123);

Vg ® (Lg)i ve- . (1.3.9)

The vector field obtained in this way is left-invariant. Indeed using
(1.1,125) and {1.3.9):

= - .10
(Mpdy Vg = (prdy (), ¥ = (), Yo = Vg (1.3.10)

This shows that the functionzl form of (Lg,)* Ve at g'g is the same
as that of vg at g,
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In an analogous way one can show that the vector field

vg = (Rg)* Ve (1.3.13
is right invariant.

Since the left- (right-} translation is a diffeomorphism, by
taking into account property (I.1.216), one sees that the subset of
left- (right-) invariant vector fields is closed under the Lie bracket
operation.

Hence the left- {right-) invariant vector fields form a Lie

algebra.

Definition: The Lie algebra, &, of the left- (right-) invariant vector
fields on G 1is cailed the Lie alpebra of the group G. As a matter of
convention in the following we shall mainly refer to left-invariant
vector fields.

' ‘Since amy left-invariant vector field is uniquely determined by its
value at e, the identity element of G, § can be identified with
Te(G).

Let us introduce & basis, TA, A=1,,.. din(G) on Te(G): then

~ C
[?A,TB] = Tc {1.3.12)
where the CABC are constants. Indeed, since the left hand side of
(I.3.12) is left-invariant, the same must be tyue for the right hand
side; this implies that the CABC are left-invariant, that is constant.
The CABC are called the structure constants of the Lie algebra of G.

Actually the presence in Eq. (I.3.12) of structure constants instead of
structure functions is what characterizes the Lie algebra of left-
invariant vector fields on G.

From the Jacobi identity of vector fields:

1
[

(1 [T ]+ [T [T Ty H] + [T 1Tl = (1.3.132)

W
one finds:

A B
Calc Cn] =0 (1.3.13b)

which is the Jacobi identity for structure constants,

We now show that the left- (right-) invariant vector fields are
the generators of right- (left-) translations and that each generator
is in a one-to-one correspondence with the one-parameter subgroups of
G. Let us consider a one-parameter subgroup H of G, that is the
homomorphic map

R+Hcg . (1.3.14)

Let R be parametrized by t and g by the n coordinates xi. Then
the right translation

Rﬂ(t}: g+ gH(t) = g (1.3.15)
is a flow (1.1.203)
s
x* = He,x) (1.3.16)

vhere x' are the coordinates of g'.
According to the definition (I.1.207), there is an infinitesimal

(R}

generator t associated to the flow whose components are given by

@®), . .
¢ b ,§,t_ H (e, %) = (0, %) ) (1.3.17)

t=0

It is easy to see that this vector is left-invariant: indeed if zeG,

associativity of the group composition law implies:

L[gH®)] = (agH(e) . (1.3.18)
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Hence, if we parametrize the left transiation

g+ag= g (1.3.19)
by

? = z2{x,y} (1.3.20)

where x,y and z are the coordinates of a,pg and g' respectively, the
value of the infinitesimal generator at g' is:

®r) 3 (R)

L - L 3.

{ a}* tg H (0,2(x,y)) . tg, {1.3.21)
The last equality expresses the fact that the functional form of the
components of (La)* t_is the same as the one of tg given in Eg.
(I.3.17). In other words tg(RJ is left-invariant. If we had started

with the left action of a one-parameter subgroup HcG.
g > H(t)g = g (1.3.22)

the corresponding generator t(L) would have been right-invariant.

Hence we have shown that to each 1-patameter subgroup H of 6
there coxresponds a generator of right- {left-) translations and the
assoclated vector field is left- (right-)} invariant, .

It follows that the Lie derivative along the generator of right

translations, t(R), of the right-invariant vector field t(L) is
ZEY0
{L) (R (L)

) t = {tv,t = {) 1,323

RO ] (1.3.23)
(Actually (I1.3.23) is the infinitesimel form of (I.3.7)].

As an example let us consider the group

G = 6L(n,R) ‘ (1.3.24)
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The coordinates of a given element geGL(n,R) can be taken to be the

entries x7 of the matrix g. The tangent space at the identity,
Te{G), is spanned by the basis fiectors

X, = (1.3.25)
1j ij
x|
so that a generic vector T at e can be written as
7= L2 (1.3.26)
axtd e

The Lie azlgebra of the tangent vectoys at the identity (I.3.2§q is thus
. i
isomorphic to the Lie algebra Mn(R) of the n Xn matrices T,

In particular, the mapping:

t + exp tT & H{t) , Te Mn{R) (1.3.27)
yields the one-parameter subgroup of GL(n,R) whose infinitesimal
generator is given by Eq. (I.3.26). o

If x7(t) denote the entries of the matrix e then

My =6ld et w0ty . (1.3.28)
Hence the components of the infinitesimal generator T are given by

i 44 . (1.3.29)

Subalgebras of MB{R) give rise to subgroups of GL{n,R). For instance
if

Ta-Tb (1.3.31)

e

I AT e

e T S e T

e e e

P

N .

e U P

—
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(i.e. T is antisymmetric) then the corresponding I-parameter subgroup

lies in S0(m).

In the following we shall often use the same notation T for both
the tangent vector (1.3.26) and for the matrix of its components:
159121, especially vhen we deal with a basis Ty, (A=l,....din G).
Wnen confusion can arise, the vector field T will be written with an

>
arrow: T.

1.3.3 - Maurer-Cartap equations

et

Now we introduce left-invariant I-forms on a group-manifold G
and we give a formulation of its Lie algebra in terms of 1-forms.

Let us consider again the diffeomorphic Tap L (1.3.8). On
1-forms « we can define the pull-back map L g-1 {recall Eq. I.1.59)):

L* 6 = {1.3.32)
g'l e g
where
R TR {£.3.33)
Lg'Ie =g e=¢g :

Writing the mapping

peglon (1.3.34)

in coordinates

2 = 206Y) {1.3.35)

-1 .
where x are the fixed coordinates of g and y are the coordinates

of h, by setting

o, = wi[x,O)dyl (I.3.36)
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we obtain

PR
W o= W, e dz? o, (1.3.37)
B 1y

The 1-form wg is left invariant, Indeed

* * * * *

= L PR ™ (1.3.38)

7] w =L w =L
ag (ag)ﬁl e g—lawl e a—l
where we have used property (I.1.169). Thus a field of left-invariant
1-forms is completely determined by its value at e.
Let us take a basis of left-invariant I-forms at Te*{G):

"} @=1,...,din 6) : ' (1.3.39)

Taking into account property (I.1.171) we have

"N A A
Ladc = dLaU = (do }a_1 . (1.3.40)

Since doA is also left-invariant we may expand it in the complete

- basis of 2-forms at ¢!

O A0 (1.3.41)

where the CABC functions being left invariant are actually constants.
Equations {I.3.41) are called the Maurer-Cartan equations for the left-

invariant 1-forms oA. The content of the Maurer-Cartan equations
{1.3.41) is completely equivalent to that of equations (I.3.12).
Indeed, Egs. (I.3.41) provide the dual formulation of the Lie algebra.
To show this, let us introduce the basis of left-invariant vectors

TA(RJ dual to the cotangent basis o of the 1eft-invariant 1-forms.

oA{TB{R)) - st . (1.3.42)
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The label R is a reminder that TA[R) generate right translations on
G; for notational simplicity in the sequel we omit the label R.
Evaluating both sides of (I.3.41) on the vectors TM,TN; we get:

A . 1A B
dO (TM)TN) = "'"C o]

c
7 Ot - a (TM'TN) . {1.3.43)

Using Eq. (1.1.244) one obtains

a1 = 2 gty - ndtay - A -

A B C
g ~ 0 (TM,T ) I (1.3.44)

H

Jle
P
. A A

Since TMG (TN) = TNU (TM) = 0 because of Bq. (I.3.42), we have:

Alnemd) = ¢y (1.3.45)

and therefore
1,0 = S\l . (1.3.46)

in this way we also see that the constants entering the Maurer-Cartan
equations are the structure constants defined by the Lie algebra.

In particular we notice that the Jacobi identity for the structure
constants, Eq. (1.3.13), can be retrieved from the integrability condi-
tion d2= 0 of the Maurer-Cartan equations. Indeed, taking the exterior
derivative of both sides of Eq. {I.3.41}, one obtains

Ay . 1 A B c_
d{do) 2 0= = 5.2 C BCéU AT =

. A B L M C
= - C BCC LMU A0 A0 . (1.3.47)
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. L M c
Taking into account the antisymmetry of ¢ . ¢ . 0 we get

& a0 (1.3.48)

that is Eq. (1.3.41}.

1.3.4 - Adjoint representation and Xilling metric

From the commutativity of the left and right translations on G,
{Eq. (1.3.7)) one easily deduces the commutativity of the correspending

. *
mapping between tangent and cotangent vecters:

[E‘a*uRa*] =0 (1.3.49a)

*

w
= 1.3.49b
[L.R] =0 ) ( )
In particular if w is a left invariant I-form then

L;(R;m} - R;L:w - R;w (1.3.5Q)

* "
that is, Rbm is also left-invariant. The szme is true for left

invariant vector fieids X

- 1.3.51
LRk = Ry,X (1.3.51)

and in gemeral for any left-invariant (k,2) tensor on G.
let us consider in particular the inner automorphism

1: 6+ 6 (1.3.52)

given by

* {La)* is now written as La*'

Py ~

P

P

sy

Vo T

P e e .

N

L e N A

T R Fanat P P R

P

—
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I x> bxb (1.3.53)

where b is some fixed element of G.
On the Lie algebra generators T, ¢ g, ! induces the mapping

i . , 1.3.54
LOD =t Ry =Rl (I.3.54)

This is a representation of G on the vector space § and is called
the adjoint representation of G. It will be dencted by Adj ().
In coordinates R 1 is the Jacobian of the map (1.3.53) evalu-
b"*

ated at e,
As an example we take G= GL(n,R). Using as coordinates the
entries x° of g £ GL(n,R), the map {1.3.53) becomes:

ajm): x H o= ot M hH (1.3.55)

whose Jacebian is

'ij NI
R i e (1.3.56)
A e
Therefore if
T = 7t 31_. (1.3.57)
ax e

is a generator of the Lie algebra, the components of AMj(BIT are

given by
T'ij " bik(b—l}lj,rkﬂ (1.3.58)
that is, in matrix notation

T =prd} . (1.3.59)

If b is given by a one-parameter subgroup

b=e (I.3.60}
then the corresponding representation for the Lie algebra &:

Adi(B): E » B (£.3.61}

can be obtained using the analogue of Eq. (I.3.17) applied to the
automorphism (I.3.59); one finds:

Adj gh = gd; adjetBal = & (efBactB

t=0 Ot uw0=£&ﬂ - (1.3.62)

If A and B are two basis generators of &:

asT, 5 BET (1.3.63)
then

agj T, = [1m) = chT (1.3.64)
Hence

(= My (1.3.65)

In an analogous way one can represent the automorphism (I.3.53) on the

left invariant I-forms GB. In that case one deals with the coadjoint

representation of & in & The coadjoint representation of the Lie

algebra acts on forms rather than on vectors and can be defined by

[coadj (1,)] " () , P adi (1)7) = H([1,1]) =

L B

B -
= 0 T = € (1.3.66)
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Therefore

: B_B C
coaéJ(TA}U =C i (1.3.67)

We also notice that the adjoint and the coadjoint representations give
the change of the left-invariant vector fields and 1-forms under the

Lie derivative aleng the left-imvariant generators TA(R). Indeed,
recalling that TA(R} generate right translations and using definitioms
(1.1,223} and (I.1.227), we obtain

L

QTATB = 1.1l = ¢ apTy, = AdI (T, (1.3.68)
B _ B _ 1B LM B,
zTAs = Fféjd-rd T, [)o" = Eéj(- R AL 487,) =

B
i

1B LM ML L : B
- E-C LM[G W0 - § 49 }=C = - coad](TA)c

(1.3.69)

A set of independent 1-forms, i.e. a cotangent basis on G, can be

obtained in terms of the group element g. Consider the 1-form:
-1
c=gdg . (1.3.70)

This l-form is left-invariant. Indeed, under translation through a
fixed element b&G we have

* -1 -1, -1 -1
Lbﬁ = (bg) "d(bg) =g b bdg=g dg=0 . {1.3.71)

1
Differentiating both sides of Eq. (I.3.70) one obtains

-1 ;

do = dg © . dg @ (1.3.72)
and using

dg’l'g a.- g-ldg 5 - (1,3.73)
one vbtains

do + g .0=0 . (I.3.74)

We notice that

g = g‘-ldg (1.3.75)

is a Lie algebra valued matrix of l-forms and therefore can be expanded

along the set of generators TA {in their matrix realization):

o= GATA . (1.3.76)

This can be proved by evaluating g'ldg at the origin e. The l-forms
UA span & cotangent basis.

Intreducing the expansion (I.3.76) in (1.3.74) snd using (1.3.12)
one obtains again the Maurer-Cartan Egs. {I.3.41). In a matrix repre-
sentation of G, Eq. (I.3.74) is a matrix equation for a set of dim G
linearly independent 1-forms, and can be used to explicitly compute the
structure constants of G.

As an example let us derive the Maurer-Cartan equations for the
Poincaré group in D dimeasions (the group of rigid motions in D
dimensions}.

As in the four dimensional case it is defined to be the semi-

direct product of the Lorventz group, S0(1,D-1), with the D-dimensional

translations and will be dencted by ISO(%,D-1). It can be realized as
the group of (D+1) x (D+1) matrices g of the form:

e Vot Pt Ea Pl

Fan LN

-

@E

P T e T W

S e~

SN e e e e e ot e

B

o~



12 1 .
W
A T, {2 Tt (1.3.84)
g =
0 1 (1.3.77) Pa and Jah being respectively the generators of the transiations and

where A is & matrix of S0(1,D-1) im the vector representation and
Eeiﬂn, the group of translations in D dimensions (with the vector
addition as composition law).

The inverse of {1.3.77} is given by:

A
f 1 (1.3.78)
5o that the matrix g”ldg of left-invariant 1-forms is:
v\ & Wy
5 1 0 0 0 0] (1.3.79)

where we have defined

Cntan = anta (1.3.80)

=
S

V= A'ldE (1.3.51)
By differentiation we immediately see that
do = 0 . W (1.3.82)

= -ptah A RE =AY (1.3.83)

that is we obtain the Maurer-Cartan equations of 180(1,0-1).
To arrive at the usual formulation of the Lie aigebra of
180(1,D-1) in terms of commutation reldtions among generators, we

introduce the dual tangent vectors TA:

of the Lorentz transformations; by definition of dual algebra:
a _ 2 s a
v (Pb} = 6b 3 v {ch) =0 (1.3.85)

ab _ cab ab
W=ty s eI =0 (I.3.86)

Evaluating Eqs. {I.3.83-4) on the couples of vectors {Pa’Pb}’
{Pa,ch} and {Jab’ch} respectively and using Eq. {(1.1.244) we
obtain the commitation relations of the Poincaré group in D-dimensions:

[pa,r»b] =0 (1.5.87a)

; .1
Uandedd = = 7 Taca * Todlac ™ Jade ~ Thclag) {15570

1
UgprPed == 5 Mok = ocPa) (1.3.87c)

1.3.5 - Killing metric

Now we imtroduce a metric on G which is biinvariant, namely it
is both left- and right-invariant.

Suppose we take a wetric @e at Te(G}:

$: xe’Ye -+ @e{xe,Ye) ¢ R . (1.3.88)

By left translation we determine a metric field on G

(1.3.89)
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As in the case of 1-forms one easily shows that ¢g is left-invariant:

&

Lo 56 1 =0, .. (1.3.90)

P ag &

*
Analogously R —1¢e is a right-invariant metric.

In order to get a biinvariant metric we need:

* *
LgRg_m = Adj(gdo, =9, - (1.3.91)

To fulfill this requirement one defines the metric on ?e[G) by the
so-called Killing foim:

g(Xy,Y,) = Tr(Adj(X,) Adj(Y.)) . (1.3.92)

This form is obviously bilinear and symmetric and therefore defines a
metric on Te{G). Moreover it is biinvariant; indeed, using the cyclic

property of the trace and recalling Eq. (I.3.89), one has

11

Adj (@)g (X, Y,) < Trla Adj (X )2l ahdj(y )a™h)

[H

g(X,, Y} ‘ (1.3.93)

If we take Xe = TA’ Y =T, then

[ B
. : I A
AGj (1,)+Ad3 (T) (T) = Adj (T, )C" T, =
L
= C BCCMALTM X (1.3.94)
Hence
) . L
g5 = 8(T,,Ty) = Tr(Adi (T,) Adj (1)) = C W - (1.3.95)
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If the Killing form is non-degenerate the group is said to be semi-
simple. For compact groups one can prove that Zan is negative
definite. To see what is the’implication of biinvariance of g5 et

us rewrite Eq. (I.3.93) using &% etA: one has

Tr (e "MAdj (xe)e“AetAAdj{Ye)e“A) - Tr(adj (XA} (¥,))  (1.3.96)

Differentiating with respect to t at t=0 one obtains:

([, Adj (X )Adj (Ye)}} = Tr([A, Adj (Xe}]Adj Y+ Adj(X) X
x (&, adi(Y]) = 0 (1.3.97)

that is

glax ).y + e, layy=0 . (1.3.98)

Taking AZT,, X =T

FERISEY Ye=‘T we obtain

CJ

L L - 1.3.99
Captic * © acte, = 0 ¢ )

Therefore defining

. L 1.3.100}
Canc = 8 ge (

one obtains

- (1.3.101)
Capc * Cac = ©

C .
Taking into account the antisymmetry of C7pp in A, B Bq. (I.3.101)

implies complete antisymmetry of the lowered structure constants
(1.3.100}.

— R N

T T

A P

e
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T A

B
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Finally we note that for semisimple groups the Killing metric
can be used to lower or raise the indices of the Lie algebra; in parti-
cular the adjoint and coadjoint representations of the algebra are

equivalent.

1.3.6 - Riemannian geometry of sepisimple groups

On semisimple groups the Killing metric gp is non degenerate
and, after some linear transformation on the gemerators, it can always

be reduced to the diagonal form:

= diag(s ..ot moeen ) {1.3.102)

$ap = s
p-times  g-times

In this basis the Killing metric coincides with the tangent metric used
in Chapter 1.2 to define Riemannian geometry on an arbitrary manifold.
For this reascn in this section we cenfine ourselves to the study of
the Riemannian geometry of semisimple Lie groups.

A Riemannian conmection is introduced in the following way: let

us consider again the Maurer-Cartan equations for the left-invariant
A
i~-forms o :

A LA R G (1.3.103)

do o+ E‘ BCG ~0 =10

Siace the oA are a set of n independent l-forms on G they can be
used as a set of vielbeins on G. The associated dual moving frame is
given by the Lie algebra vector fields TA’

As commection we take the left-invariant 1-form mAB defined by:

by:

A C.lpimalh C
50 E E—[AdJ(TC)] 3 O (1.3.104)

1
W'y =5 Oy

—
-~

Then the Maurer-Cartan eguations merely express the fact the G is

torsionless:

2t el - “AB Labzo {1.3.105)
Moreover using the Killing metric:

g = gACch s -uy, (1.3.106)

We conclude that wAB is a Riemannian comnection (see Eqs. (I.2.37-38)}.
Let us compute the corresponding curvature: using the definition
{1.2.275) we find:

A A A c _ 1 ,.4AL 6 LD B
R B = doy g W aligE - 7 (CBCCDE + CCQCBE]O A=
1A CD E
= - 7 Ceplp? ~ O (1.3.107)

where in the last step we have used the Jacobi identity for the struc-
ture constants (I.3.13). Hence the intrinsic components of the curva-

ture are constants.

A 1A

) C AL
Rpjoe = - 5 (o

ce%ep ~ CooCee’ (1.3.108)

Using the Killing metric gy, to contract indices, one computes the

Ricci tensor and the scalar curvature:

LA AL L

Ryg = Rpglap = " § “cepa ™ B BaE (1.3.109)
BE , 1.

R=g Rgg=cdmG . (1.3.110)
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In particular from Eq. (1.3.109) we see that any semisimple group

menifold is an Einstein space with respect to the Riemannian conmection
(1.3.104),

It is also possible to introduce a (non Riemannian) left-invariant

- AL, . .
cornection on G such that R g is identically zero. It is sufficient
to set

A A C_ L AC
@y = o7 = (adj T " . {1.3.111)

Again we find:

= - (1.3.112}
but now the corresponding torsion is diffevent from zero:
LT ~A 3_1 A B C
RA@) = do - & REAEL N (I.3.113)

A, . .
Hence o n is non Riemannian.

The intrinsic components of the toxsion are given by the structure
constants

Ay 1A
Riflge = 2 Cge (1.3.114)

The curvature tensor is:

Ao  AC AD CF 1AL
R _ ) ) AL.D F
Bfw) Cppdo Cop® ~ Cgpt = - —-{CBCCDF + ZCCDCB?]G PR
L AL 1AL 1 AC.D F.
-3 CQCCBF - E—CéDCBF * 3 Coplpp)d A0 20, (1.3.115)

In deriving (I.3.115) we have used (I1.3.103) and the Jacobi identities
(1.3.13).
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A manifeld M is said to be parallelizable if one can find a
connection 1-form mi. such that the curvature Rij{w) defined by
{I.2.27b} is identically zero. ;EF. is called the parallelizing con-
nection. Thus Eq. (I.3.115) exprelses the fact that every semisimple
group manifold is parallelizable.

Any other left invariant connection not given by (I1.3.104) or
{1.3.111) gives rise to a non Riemannian manifold with nen vanishing

curvature.

1.3.7 - Soft group manifolds

Group manifelds G have a rigid structure: the left- or right-
invariant vector fields aznd 1-forms have (in & given chart) a fixed
coordinate dependence and, moreover, the Riemannian geometry of & is
{locally) fixed in terms of its structure constants. As such they can-
not be used as domains of definition of fields which should dynamically
describe the space-time structure.

Nevertheless, as we show in a moment, the group manifolds 6 can
be identified with the vacuum configurations of gravitational theories.

So we are led to consider manifolds & in which the rigid topo-
logical and metric structure of G has been “softened” in order to
describe non trivial physical configurations. G manifolds are locally
diffeomorphic to G and will be called soft group marifolds.

A well known example is space-time itself which, being diffeo-
morphic to m“, can be thought of as the soft group manifold of the
four-dimensional translations. As a further example let us consider
the soft Poincaré group manifold, naturally appearing in the vielbein
formulation of gravity,

We first consider a flst Minkowskian space-time: its geometry
is described by the vielbein v® and a spin connection wab fulfilling

. Egs. (I.2.12). In a particular Lorentz gauge the solution is

VA = (I.3.116a)

R (1.3.116b)
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while in a general Lorentz gauge it reads:

v x,n) = (A‘l{n)dx)a {(1.3.117a}
W (x,n) = (A'l{n)dA(n)}ab £1.3.117b)
(nab are the Lorentz parameters).

The solution (I.3.117) corresponds to the left-invariant l-forms
(1.3.81,82) of the Poincaré group (in four dimensions). Indeed we can
identify the x% and the nab with the parameters associated to the
translstions and the Lorentz rotations respectively. Therefore {I.3.117)
satisfy the Maurer-Cartan equations {1.3.83-84). Moreover, since the
Poincaré group, 1S0(1,3), is locally isomerphic to ®e50(1,3), it
can alse be considered as a (trivial) principal bundle, P{R4, s0{1,3)},

with base space givea by

B = 150(1,3)/50(1,3) (1.3.118)

and S0{1,3) as fiber.

It follows that the rigid Poincaré group manifold describes the
trivial configuration corresponding to flat Minkowski space.

Now suppose that the space-time M4 is not flat: the fields V°
and wab, subject to the gauge transformation laws (I.2.48) and
(i.2.51} are now defined on a fiber bundle P(M,, S0(1,3)].

P(K, SO(1,3)) is not isomorphic, but just locally diffeomorphic to
G=180(1,3) due to the diffecmorphism M4QJR4. In other words we have

"softened” the rigid structure of the base space, Rﬁ-+M4, maintaining

the structural group S0(1,3), which guarantees Lorentz covariance.

ab

Notice that the curvatures R° and R~ associated to v and

wab are defined on the bundie through the gauge transformations
(1.2.52) and these in turn imply "horizontality': the 2-forms Ra, Rab

do not contain the differential dnab; we express this by the equations:

o
"

S S E
Jp|E = fﬂ]k =0 {1.3.119)

s
2]
i

where Jab is the left invariant vector field associated to the fiber
s0(1,3).

If we now soften the Poincaré proup manifold also in the direction
of the fiber, we obtain the soft Poincar€ group manifold, a manifold
diffeomorphic to IS0(1,3) with no fiber bundle structure.

On this manifold the configurations of the ¥ and o

1-forms
are more peneral since their dependence on the parameters which were
previously associated to Loventz transformations is wo loager factorized

ab
are no longer

by a Lorentz transformation, and the curvatures Ra, R
horizontal. .

In the particular case we are now discussing, this extension of
the f£ield configurations to the soft group manifold is not very signi-
ficant from the physical point of view. Indeed a gravitational theory
must be locally lorentz imvariant: hence we must end up with fields
Va, wab having the correct gauge dependence on the Lorentz parameters.

The usual way to obtain this is to start directly with v® and
wah defined on the principal bundle F(Mg, $0{1,3)), (In Chapter 1.4
we will show that the fiber bundle structure can also be obtained from
the variational principle startimg with an action defined on the soft
group manifold. This is certainly am interesting possibility from the
point of view of the economy of concepts, but it is not of any funda-
mental importance).

In more general theories like supergravity theories, we will see
that it is neither required nor desirable to factorize all the coordi-
nates which are not associated to the translations. Indeed, starting
from the super Poincaré group, only the Lorentz gauge transformations
wiil be factorized: the gauge transformations of supersymmetry will
not, The resulting theory will be described.on z principal fiber
buadle P(M4/4, $0(1,3)) whose base space is'the superspace M4/4.
This is discussed in detail in Chapters I1.6 and ITI.3.

With this motivation in mind we now turn to the formal definiticns

and the important formulae concerning soft group manifolds.
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Soft forms and curvatures

Let us start with the ripid group ¢ and the set of left-

invariant 1-forms UA sgtisfying the Maurer-Cartan equatiens (3.3.41):
pcd A0 =0 . (1.3.320)

We soften G to the locally diffeomorphic soft group manifold G by

introducing new Lie alpebra valued 1-forms

p=y TA {1.3,121)

which are alsc soft, that is, non left-invariant. We note that the Lie

algebra generators are considered in their matrix realization as in

Eq. (1.3.76}. The uA do not satisfy the Maurer-Cartan equations; the
A

shift from zero of the i.h.s. of (I.3.120} defines the curvature of u":

def

A A LA B C

B o= dy o+ EICBCU T} {1.3,120)
or, using R= RATA

R=dp+)Wau . (1.3.123)

We note that the definition of the soft l-forms and of the associated
curvature is the same as in Yang-Mills theory except that in our case
uA is defined on a manifold & which does not have an "a priori”
fiber bundle structure,

When a fiber bundle structure is imposed on G then pA becomes
a Yang-Mills potential on G=G(G/E, H) if H is the fiber.

The uA, A=1,...,dim G, span a basis on the cotangent plane of

G; therefore, they have to be interpreted as vielbein and not as Yang-

Mills comnections on & (there is no structural group acting on TP(G))‘

123

Fig. 1.3.1

let us take the exterior derivative of both sides of Eq. (1.3.122):
fron d2=0 we get the Bianchi identity:

P T (1.3.124)

which can alse be rewritten as:

weo . (1.3.125)

In (1.3.125) we have introduced the covariant derivatlve operator V.
On a tensor AL} with indices [] in a representation D of B,

V is defined as follows
ol o @B D(TB))A['J , (.3.126)

In the case of A{‘] = RA:

[D(TB)]AC } Cgc (1.3.127)

and (1,3.125) follows.
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Applying the covariant exterior derivative to both sides of Eq. (I.3.122) can be rewritten as
{I,3.126} one obtains
A 1 A A.B C
di’ + = (C,. - 2R N = 0 . 1.3.131
ve = aa) + W o DTGV - W o (Cgp - PRy~ ¥ ( )
- dUB . D(TBJA . UB . D(TB)dA ‘ Therefore, in the same way as we derived Eq. (I.3.46} from (1.3.413,
taking the value of both sides on TL’ TM’ we obtain:
ML TCRETRNEN Te A A [T c e
(T,,T) = (o - RlTe (1.3.132)

1A B

-t c .
= (dy= + E‘CBCU a1 )D(TA}A =

=gt . DTJA (1.3.128)

We have intvoduced the soft forms starting from the dual formulation of
the Lie algebra, namely the Maurer-Cartan equations. The same can be
done in the language of vector fields. It suffices to consider a basis

of soft vectors dual to the 1-forms uA:

A _ GA
wity) =& . (1.3.129)

The new vector fields” TB’ being the dual of the soft I-forms uA are
ﬂmsﬁt&mlﬁbﬂmﬁmﬂ.1%mhthydweamed¢Mamm
structure fumctions rather than structure constants, according to the
general formula (I.1.213).

Indeed the structure functions can be immediately computed
evaluating Eq. (I.3.122} on two tangent vectors %L’ %M‘ Expanding

RA along the intrinsic basis aA P T

A_ A B C
R" = RBC“ AU (I.3.130}

* We omit the arrow on TA for notational clarity. However one must
keep in mind the distinction between T, the Lie algebra generator
in its matrix realization, and %A the vector field dual to uA.

Notice that T thought as a vecto} field, is dual to GA.

A’

We note that the structure functions are given in terms of the curvature

intrinsic componeats.

Lie derivative on soft group manjfolds

We now study the Lie derivative of the soft forms uA along the
generic vector field TA‘
Let us consider a generic infinitesimal diffeomorphism on uA

generated by
t = eAi‘A (1.3.135)

A

where eA= 5¥" is the infinitesimal parameter associated to the shift

A A

Aoy @a-1,2,....di06 . (1.3.134)

We want to compute the Lie derivative R’t uA; using the definition
(I.1,227}, we obtain

ntu“ sgfa vt - gat el i WA -

s elat e et (1.3.135)

A

Adding and subtracting 1/2 Cgcpg Auc to dy" and using the definition

{I.3,122) and (I.3.126), we reconstruct the curvatures RA:
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A A 1 A B ¢ LA C A
fu" = t](du +_2'CBC” A;A)-eci‘cu + de” =

= @t s gt (1.3.136)

The first term {Ve:}A corresponds to an infinitesimal gauge transforma-
tion of the group G. '

Hence an infinitesimal diffeomorphism on the soft manifold G is

a G-gauge transformation plus curvature corrvection terms.

In particular if the curvature B has vanishing projectior along
& tangent vector t:

A_,BA C_
t|R" = 2¢ Byck = 0 (1.3.137)

then the action of the Lie derivative %, coincides with a gauge
transformation.

Horizontality and factorization

Because of property (1.1.239}, the set of vectors {t} satisfying
{1.3.137) must span a subalgebra H of the general algebra of diffeo-
moxphisms (I.3,132). Let us denote by TH’ (H=1,...,dim H) a basis
of vector fields in H. Then the condition

A A
E{JR = 0 &> Ryp = 0 {1,3.138)
reduces {1.3,132} to:

HH
[TH,TH!] = Cygr T . (1.3.139)

That is, H is the Lie algebra spanned by the left invariant vector
fields of HcG. Condition {1.3.138) will be referred to as the H-

horizontality condition for the curvatures RY. e see that gauge

transformations of uA can be considered as diffecmorphisms along the
directions of the Lie algebra vector fislds Ty

e st i
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This is strictly related to the fact that H-horizontality of the
curvature is the condition under which the manifold G assumes the
structure of a principal fiber bindle with base space M = G/H and
fiber H:

G = G(E/E, 1) ) (1.3.140)

Indeed when (I.3.138) holds the gauge transformation generated by

Y

6égange) UA - £epA - (VE)A (1.3.141)

can be explicitly integrated.

To obtain the explicit expression of the finite transformation
associated to (1.3.141) we split the coordinates xA of the soft group
manifold G into coordinates xK relative to the base space and co-
ordinates nH relative to the fiber, which is the rigid group-manifold
of the subgroup H.

If the horizontality condition {I.3.138) holds then the dependence
of uA(x,n) on nH is factorized.

By factorization we mean that every uA(x,n} is determined by its

boundary value on the base space:

Wzt n=o (1.3.142)
Indeed taking any set of i-forms

Ve < wieoed (1.3.143)

on the base manifold we can Lift them to forms defined on the whole G
via a finite gauge transformation of the subgroup H.
Let

h(n) = exp(n” T,) (1.3.144)

L e T =
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be an element of H and let Ty be the H-generators in the coadjoint
representation of G (see Eq. (I.3.66)}: h(n) is a dim Gxdin G
matrix with the block form:

coade h(n) ‘ 0 } dim H

hin) = coade hin) = (1.3.145}

o ¥(r{n)) | } dim 6/H

coadj(H) h{n) is the coadjoint representation of K and M(h(n)) 1is
the representation of H on the X subspace of the G-lie algebra, K
being the coset generators (see Chapter [.6).

Let us define the lifted l-form

W = oomT, (1.3.146)
as the h(n)-gauge transform of n() =u(0T,:

W eem = it eueonm) « B imydnm) (1.3.147)
Expanding along the generators we have:

Wi = [eoads o], o 00+ (1.3.1482)

o = M(h{n))KK. e {I.3.148h)

which gives the general expression of the 1-forms uA where the 1
dependence is factorized through a gauge transformation.

It is instructive to see the reason behind the integrability of
the gauge transformation (I.3.137).

A complete set of initial data for the integration of the fiow
{1.3.137) is given by the boumdary value of BA{x,O} and its "normal

derivatives", that is

1) at ' (1.3.149)

1249

since the ?H span the orthogonal complement to G/H. Now since

I A B

Y | Copm w
BT Ty = = Gy’ a MTT)) (I.3.150)

the horizontality conrdition RA(TH,TL) =0 determines the "normal deri-

vatives" making the flow integrable in terms of its boundary value

T T~ )

T

80 (x,0)

4

Fig. I.3.11

The conclusion is that we can interpret the original vielbein uA(x,n}
on G asa Yang-Mills G-Lie algebra valued comnection uA{x} defined
on a general base space M = G/H and subject to the transformation
Taw (I.3.147) or (I.3.148).

Let us observe that the definitions of curvaéures and Bianchi
identities on G keep the same form when we restrict uA and B to

the base space; this is a comsequence of the fact that under the mapping

th: G+ G/H

the wedge-product and the exterior derivative commute with the pull
*
back ¢ (see Eq. {(I.1.170-171}).
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Before concluding this section we give the explicit expression
of the curvatures associated to the 1.h.s. of (I.3.148) in the special
case where the Lie algebra of G:

G=H+K

H

is {weskly) reductive and symmetric, namely (ses Chapter I.6) CH’K=

C;, gn® 0 or equivalently:
3

[H,H) £ H  (H is a subalgebra) (1.3.150a)
[H,Rﬂ g K (K is weakly reductive) (1.3.150b}
[K,x] ¢ H (X is symsetric) (I.3.150¢)
In this case the curvatures of (I.3.148) read:
H _H 1_H K K
R' = @/ + 2 CKK' TR (X.3.151a)
RE = g K (1.3.151b)
where
H 1 t 1t
ﬁ“ = dy + §'CE‘H" aH A UH (I.3.152)
is the curvature of the subgroup H and
) X H
g agyg, + o~ o]t (1.3.153a)
X K
DI = S (1.3.153b)

defines the H-covariant derivative in the coadjoint representation.
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The same decompesition on the Lie derivative (see Eq. {I.3.136})

gives: .
‘;,.
i, H H' H H K.H K H .
LW = de -6 el - €010 + ER
I (1.3.154)
K . K KK H HXK K K _
L= de” - e Gl - e 4 elR
- oK Ak K e (1.3.154b)
where
e =€, + EKTK ) (1.3.155)

If g= SHTH and EJRKzgngHu 0 then the Lie derivative coincides with

the H-gauge transformation:

nau” x 5£8a“833 P LOR {1.3.156a)
K_ ,(gauge) X _ _ HX K 1.3.156b
R 66 uo= - E G . { )

1.3.8 - The example of Poincaré and anti de Sitter soft group manifold

These groups are of particular relevance to the formulation of
gravity and supergravity. We discuss first the de Sitter or anti-de

Sitter group in D dimensions:
de Sitter: 6 = 80(1,D) (1.3.157a)
Anti de-Sitter: § = 50(2,D-1) {1.3.157h)

and their Lorentz subgroup H=S0{1,D-1}.
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The Poincaré group
G = ISG(1,0-1) (1.3.158)

will be discussed afterwards as an Inonii-Wigner costraction of G. We

begin by copputing the curvatures of the soft-manifold G.

De Sitter curvatures

Let A be an 50(2,D-1) or an S0{1,D} matrix, for convenience in
the defining representation, and let Uas be the corresponding matzrix

of left-invariant l-forms:

5= UATA = A laa (1.3.159)

satisfying the Maurer-Cartan equatioms
dvy + 0 ~0=0 . (1.3.160)

Being 50(Z,D-1) or S0(t,D) Lie algebra valued ¢ is antisymmetric with

respect to the metric Nt

N e (1.3.1602)
nat = (1, Lol 5 4 bzo,..,0 {1.3.160b)
S
p-1 times

where the 2 sigﬁs in the D-D component of nﬁé distinguish between
the anti-de Sitter and .de Sitter case respectively.
The soft potential wmﬁf %ﬁhut@smewmﬁwpmmp

ties; the asscciated curvature is

2% & @ - u"T L, . (1.3.161)
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Decomposing the indices with respect to the Lorentz subgroup
56(1,b-1):

ab ab  aD
e M 1.3.162
§0(1,0-1) ( »
Jap —————J ,, J 1.3.162b
ab s0(1,5-1) ab? “ab ( )
RO g3 peD (1.3.162¢)
S0{1,D-1}
al Da al} Da
I = - = - = - =
o ; R R H JaD JDa = Pa (1.3.162d}
(3,6} = {0,1,...,0} ; {a,b} = {0,...,D-1} (1.3.162¢)
{1.3.161) split as follows:
ab _ . ab ac b ap Pb
R = dw™ ~ w W, W A W Ny {1.3.163a)
aD ap g bD
R = da™ - w0 ~u (1.3,163b)
We set
aD -
=282 (1.3.164a)
ab - a4
R =2¢eR {1.3.164b)
3=t
aD it (1.3.184¢)
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where & is an arbitrary scaling factor (introduced in order to pexr-
form the contraction to the Poincaré group). Egs. {I.3.163a-b) becoms
Rab - dwab ! cb b

W s 4@V Ly (1.3.165a)

R = v - o W - gy (1.3.165b)

where 22 is the lLorentz covarignt derivative
ab
P =3+ D(Jab} {1.3.165)

according to (I.3.126}.

The plus and minus signs (in I1.3.165a) refer to the $0{2,b-1) or
80(1,D} cases respectively. 1In the following we restrict our attention
to the 50{2,D-1) (anti de Sitter) case only, bearing in mind that the
80{1,D) case can be obtained from 50(2,D-1) by the replacement

4é2 *o- 452 . (1.3.167)

Comparing {I.3.165) with (I.3.151-153) and using the identification

we find that the Lie algebra valued curvatures of 50(2,D-1) are those
of a weakly reductive and symmetric algebra.

With the same decomposition of indices the SO{2,D-1) Bianchi
identities

o(80(2,D-1)) 46 _ o3 & ble _

- Zwe[ 0 (1.3.168)

split as follows:

135
29(_30{133“’1”1-{317 - 852 V[a N Rb] = { (1.3.169a)
g{80(1,D-1))pa  pab v, =0 _ (1.3.169b)

The explicit form of the curvature {I.3.165) completely specify the
Lie algebra of S0(2,D-1); indeed one may extract the structure constants
by comparing (I.3.165) with the general definition (I.3.122).

If we are interested in the commutation relations among the
generators we set Rab=Ra=G so that wab and V® become left-

invariant; then setting

T = 62 (I.3.170)
O Ugg) = 0
that is
G =82 33 = 1.3.171a)
W) = 8 ; V(I g =0 {
b a7 a
w? ) =0 5 VI(Ry) = 8 {1.3.171b)

one finds ($ee Eqs. (1.3.43-46) and {I.1.244}):

[aggded) = - 3 Vs s g e - Jaa e - Jpe ) (1)
Wpedegl = - %- T Mg * Jbd Mac = Yad e - T Mad) (1.3.173a)
[P 1= = 5 0Py - 1y 2 (1.3.173b)
0] = - 28 I (1.3.173¢)
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Poincaré group curvatures

The Poincaré group in D dimensions, 1S0(1,D-1) can be retrieved
as the Inoni-Wigner contraction of $0(2,0-1). Indeed, performing the
contraction limit &-0 one obtains from (I.3.165) the Poincaré

curvatures:
R L (1.3.178)
c
=g Ead - . W (1.3.175)

and setting Rabx %= 0 one recovers the Maurer-Cartan equations of
the Poincaré group given in Egs. (I.3.83-84) [for D=4).
The same limit applied to Egs. (I.3.169) and to the lie algebra

(I.3.173) gives the Poincaré-Bianchi identities

R = 0 (1.3.176a)

@R3+Rabn‘fb=0

and the Poincaré group algebra:

L - - 1.3.177a
Ljab’ch} 7 Wagha * Jpatac ~ Jad™be jbcﬂad] ( )
.. 1 - {1.3.177h)
{Jab’?c] T3 Py My oPa)
. (1.3.177¢)
(o201 =0

Fiber bundle structure

Let us now suppose that the H-horizontality conditions (I.3,138)

are satisfied by H=S50(1,D-1):

ﬁﬂk":(}

A = {ab;a} (I.3.178)
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Eq. (I1.3.178) amounts to saying that the general expansion of R =

{Rab,Ra} on the cotangent basis:
A_ AR C. A.a b A im A
RY = Rpaht w2 RGVE WV Ry 0 Vs
A & q
* Rin pq® P {1.3.179)
reduces to
A A b
R = Rabv A Y . (1.3,180)

As we previously discussed, Eg. (I.3.178) implies that 8 acquires a
fiber bundie structure, where S0(%,D-1} is the gauge group and

T —
$0(2,D-1)/50(1,D-1)

=
11

(1.3.181)

or

T ——
150(1,D-1}/50(1,D~1)

=
11

(1.3.182)

are the base manifolds, for the de Sitter or Peingaré case respectively.
In this case Eqs. (I.3.174-175) and (1.3.176) become the curva-
tures and the Bianchi identities of the connections wab and v
gauging the Poincaré (or de Sitter) group.
Restricting now our attention to the Poincaré group we study the
explicit form of the Lie derivative of wab, v® when condition
(1.3.178) holds. Considering the effect of an infipitesimal diffeo-

morphism on G generated by t we have that (I.3.136) split as follows:

o« 9™ 4 1]e®®

t {1.3.183a}

Rtva = 9e° - Eab"b + t|R? (1.3.183b)
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_.ab az
where t=¢ J®+EP{

Taking sa=0, i.e.

t = aabjab . (1.3.184)

we have that an infinitesimal coordinate transformation in the Jab
directions colncides with a Lozentz gauge transformation; indeed from

{1.3.178)
b ab v =
EJRE = R Cch’TA} =0 {I.3.185a}

a a v x>
tir® = R UpeoTd = 0 {1.3.1850)

and (I,3,183) become

M =D (1.3.186a)

8V = gabvb (1.3.186b)

that is an infinitesimal Lorentz gauge transformation of the fields.
According to the general discussion given in Section I1.3.6 the vector
fields Eab £J,, are left-inveriant and close the Lie algebra of
S0(1,D-13.

Eqs. (1.3.186) can be integrated to & finite gauge transformation
according to (I.3.148a); we obtain

1

w (x,n} = A"lﬁniw(x,G)A(n) - A'ltn)dh(m (1.3.187a}

Viom = AT v, 0 . (1.3.187b)
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Thus we recover the gauge transformation law of the vielbein and of
the commection fields describing the Riemannian geometry of a D-

T

dimensional space: a

~ T
MD = G/H 2 1S0{1,B-13/50(1,D-1) (1.3.188)

givern in (1,2.48) and {{.2.51),
On the other hand the Lie derivatives on MD along the tangent
vectors

&g ab

t=gt b (" = 0 (1.3.189)

generate infinitesimal coordinate transformations on MD:

ab .8k, c.ab @ 1.3.190a)
Lu” = t]RT = 26°R a’ (

d_ g . ggt Cp2 M 1.3,190b
8V = 9e +QR—@E+ZERC§§V { )

Notice that the 53 vector fields are not left-invariant since they

are related to the generator of translations Pp= By by

= vE B ab (1.3.181a)
au = Vp ?a + uh Jab
w B o yMen L Do (1.3.191b)
Pa = va{ap uh ch)

It is worth to see in more detail the relation between the coordinate
transformation (I.3.190) and the Poincarzé transformations {1.3.183}.
Writing a generic tangent vector € on § in the intrinmsic

basis %A or in the coordinate basis Tz one has

A AL {1.3.192)

T e N

e

.

B T T e N

e e

N
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u? being the components of the vielbein. Decomposing the indices A

and § in {[.3.132} one finds:

gl . mﬁbs“ « 530 (1.3.193)

(1.3.193b)

where we have set mgg npo Ehab, npg being the Lorentz parameters of
a generic infinitesimal Lorentz transformation hab on the fiber, and
s .

(05 0 by a coordinate choice.

Let us now substitute (1.3.193b) into the r.h.s. of (I.3.190b};
=0 because of S0(1,3) factorizaticn one finds:

v

recalling that J,

a._ a TR S v
£€V = @(Vys ) + € Bﬂ Rpodx ~ dx

TR a, i Upd .0
= v Z
9Vu€ + ﬁds + g Rngdx

1

a a a, U a i a u
g v - Ve 9 V" + Vo e +

(0 V7, = (F5V, - B Ve + DYy o

a

M a4 an M
+ 2e"R] = Ve Via g =
R = 208 * N

3
.

uo, 8o (H |
v . .3.194
ape + wu bipE {r ]

{auvg) ey
We ses that the final result differs from the genuine general coordinate
transformation (I.1.220) of the coordinate vector V: by the term
e uﬁb vV which can be interpreted as a field-dependent Lorentz

bp?
transformation of parameter Eabw hab since frem Bq. (I.3.193a):

uab, _ &b ab .
€ wB pr = (e h )pr . (r.3.195)

In other words a diffeomorphism on the soft group manifold gives rise,
on a Lorentz vector, to z diffeomorphigm on the base space plus a field

dependent lorentz transformation.

.
e

CHAPTER 1.4

POINCARE GRAVITY

I,4.1 - Poincaré Gravity

In this chapter we utilize the vielbein v? and the spin
connection wab to describe the Einstein theory of gravitation.

On one hand this formalism reveals that gravity is a gauge theory,
precisely the gauge theory of the Poinceré group IS0(L,3) (ISG(1,D-1)
in a D-dimensional space-time); on the other hand, however, the action
from which we deduce the gravitational field equations is essentially
different from the Yang-Mills actiom utilized in ordinary gauge
theories.

To understand this difference and to clarify ihe formal proper-
ties of “gravity" is esseatial for the formulation of its supersymmetric
extension, namely "supergravity'.

We begin by writing the Einstein-Cartan action:

_ ab c d
A= Ld R5w) ~ Vo Ve, . (1.4.1)
4



