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u? being the components of the vielbein. Decomposing the indices A

and § in {[.3.132} one finds:

gl . mﬁbs“ « 530 (1.3.193)

(1.3.193b)

where we have set mgg npo Ehab, npg being the Lorentz parameters of
a generic infinitesimal Lorentz transformation hab on the fiber, and
s .

(05 0 by a coordinate choice.

Let us now substitute (1.3.193b) into the r.h.s. of (I.3.190b};
=0 because of S0(1,3) factorizaticn one finds:

v

recalling that J,

a._ a TR S v
£€V = @(Vys ) + € Bﬂ Rpodx ~ dx

TR a, i Upd .0
= v Z
9Vu€ + ﬁds + g Rngdx

1

a a a, U a i a u
g v - Ve 9 V" + Vo e +

(0 V7, = (F5V, - B Ve + DYy o

a

M a4 an M
+ 2e"R] = Ve Via g =
R = 208 * N

3
.

uo, 8o (H |
v . .3.194
ape + wu bipE {r ]

{auvg) ey
We ses that the final result differs from the genuine general coordinate
transformation (I.1.220) of the coordinate vector V: by the term
e uﬁb vV which can be interpreted as a field-dependent Lorentz

bp?
transformation of parameter Eabw hab since frem Bq. (I.3.193a):

uab, _ &b ab .
€ wB pr = (e h )pr . (r.3.195)

In other words a diffeomorphism on the soft group manifold gives rise,
on a Lorentz vector, to z diffeomorphigm on the base space plus a field

dependent lorentz transformation.

.
e

CHAPTER 1.4

POINCARE GRAVITY

I,4.1 - Poincaré Gravity

In this chapter we utilize the vielbein v? and the spin
connection wab to describe the Einstein theory of gravitation.

On one hand this formalism reveals that gravity is a gauge theory,
precisely the gauge theory of the Poinceré group IS0(L,3) (ISG(1,D-1)
in a D-dimensional space-time); on the other hand, however, the action
from which we deduce the gravitational field equations is essentially
different from the Yang-Mills actiom utilized in ordinary gauge
theories.

To understand this difference and to clarify ihe formal proper-
ties of “gravity" is esseatial for the formulation of its supersymmetric
extension, namely "supergravity'.

We begin by writing the Einstein-Cartan action:

_ ab c d
A= Ld R5w) ~ Vo Ve, . (1.4.1)
4
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The notations are these utilized in Chapter 1.2 for the study of an n-
dimensional Riemannian manifold M. Inour case n=4. In particular

“according to (I.2.35)

Rab - dwab ~ wac N UJcb (1.4.2)
is the curvature 2-form and V? is the vielbein.

We take units such that the gravitational coupling constaﬁt k is
equal te 1. Llet us show the equivalence of Eq. (I.4.1) with the action
of gravity written in tensor formalism, Expanding Rab on the complete
2-form basis Vi ~ Vj (see (I.2.34c} we get:

R v, vdeabcd - Ra‘i:'ijvi SV, vdsabcd .
= Rabijvlu,g Vév‘*ivcp"}vddgabcd éxu ~ dxv ~ dxp‘n de @
- Rabi}.viuvj chpvégs“""“sabc =
" Rabijsij“deabc detvalxs -4 Rijij detvatx . (1.4.3)
Now
R i wa = R (1.4.4)

is the scalar curvature and det VE/-g is the square root of the
metric determinant (g=det guv). Hence we get:

J RAb VO VdE
M

4
abed = fm Rv-gdix . (1.4.5)
4

4

Let us examine the group-theoretical significance of Eq. (1.4,1}.
There are two gauge fields, the spin connection wab and the
vielbein V&
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o = wﬁb ds? {1.4.6)
v . v: . g (1.4.7)

Working in first order formalism both gauge fields are treated as

independent. The equation R*=0 which allows to express W i
terms of V© is not taken as an "a priori constraint®, rather, as we
are going to see, it follows as a variational equation from (1.4.1).
This means that "off the mass-shell' the conmection wab is net

necessarily Riemannian.

ab}’ considered as a single

The key observation is that v,
entity, constitute a multiplet in the zdjoint representation of the

Poincaré group. That is we can write:

X T Y x)d v V(X l[ ' 1.4. 8
where

nA(x) = ug{x)dx {1.4.9)

is the gauge field of the Poincaré group, Jab and Pa being the
generators of the Lorentz transformations and of the four dimensional
translations, respectively. Hence gravity, as we claimed, is the "gauge
theory" of the Poincaré group.

The field strength associated to uA is defined as the Poincaré

Lie algebra-valued curvature 2-form

A_gh 1AB O 1.4.10)
R-—dp+2CBCu ~ B . (

Splitting the index AE (ab,a), we get:

L (1.4.11a)

v

T

T T N

T T e T i e e e T

T T s T i S N

s
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L P gyt (1.4.11b)

which coincide with Bqs. (I.3,174-175}. The associated Bianchi identi-
ties are given by Eqs. {1.2.62) or (I.3.176) which we rewrite here for

completeness:
28 = 0 (1.4.12a)
a8+ 8% v =0 (1.4.12b)

b

Therefore the Lorentz-algebra valued curvature is the field streagth of
the spin comnection while the vector valued curvature (or torsion} is
the field strength of the vislbein field.

Let us emphasize that, although uAE (mab,va) is a Yang-Mills
potential and RA E(Rab,Ra) the corresponding field strength the
action (I.4.1) is not of the Yang-Mills type; a Yang-Mills action for

uA would have the following form:

H

f R P8 e, a . adf -

f RA *R
" A o, w “Alpo

4
A up Vo 4
= -4 R R gg V-gdx . (1.4.13)

w “Aloa
Mg

The main differences between an action of the form {1.4.13) and the

Einstein-Cartan action (I.4.1) aze the following:

a) A Yang-Milis action is invariant under the whole gauge group
G of which the uA.s are the Lie algebra valued potentiais.

The action (I.4.1) instead is not invariant under the whole gauge
group IS0(1,3), but only under the Lorentz subgroup S0{1,3).

The ipvariance under Lorentz gauge transformations is mamifest

since Rab, v and eade are good Lorentz tensors.

o
%

To show the nom invariance of (I.4.1) under a gauge translation
we recall that under any Poincaré gauge transformation we have (see
Bq. (I1.3.141))

Ao ged (1.4.14)

6gauge u

where ¥ is the Poincaré covariant derivative, and b is the gauge

parameter: eA E(aab,ea).

The Lorentz content of {I.4.14} is easily obtained by setting

_zJRab e ¢]r? =0 (1.4.15)

in Eqs. {1.3.183); we obtain

ghauge W30 - (Ve)ab - @Eab {I.4.1%a)

agauge va « {VE}a = @ea . Eab Vb (14.16]3}

and setting Eab: ) we get the infinitesimal action of the gauge

translation on the fields

52 = 9 (1.4.17a)

A W . (1.4.170)

Since (I.4.17a) implies ﬁRab= G, the variation of the action under

(1.4.17) is:

_ ab c ¢ _ ab dc
5A = 2§M R~ @e” A V €abed = Z[R ~ Rg €abed #90

4
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where we have used (I1.4.12a} and (I.4.11b). Notice that we cannot use
the constraint R°= 0 since it is not invariant under the gauge
translation:

SR = 5DVE = 362 = 9967 - - Rabs;b 40

the non invariance of the Cartan-Einstein action under a gauge transla-
tion seems at first sight strange since one usually thirks of a trans-
laticn as a coordinate transformation. This however is not right since
the generator of a coordinate transformations is not a gauge translation,

vather a Lie derivative. Indeed, the Lie-derivative along the tangent
vector

= pHy = B3 pq U
= E P 4,
£ =€ Bu € 2t wg Jpqs (1.4.18}
where
et = vﬁa“ (1.4.192)
and
5 - . wPa
Pa Va{au wu Jpq) (1.4.191)
yields the transformation laws (I.3.190):
e L (1.4.208)
8V = ge® g (1.4.208)

The Einstein-Cartan action is cbviously invariant under general coordi-
nate transformations generated by Lie derivatives of the type (I.4.20).

Indeed since the integrand of (1.4.1) is written using only exterior

47

products of forms and exterior derivatives d thereof, invariance
under diffeomorphisms is guaranteed by the general law of transforma-
tion of forms under diffeomorphisms {see Egs. {I.1.17¢-171)}.
Furtherpore invariance under diffeomorphisms can be directly
checked using the explicit form of the Lie derivative (I.1.236). We

obtain

P g J L £ - J @) +cly . (1.4.21)
M, C ",

Now the second term is zero since the 5-form d% vanishes identically
on the 4-dimensional space-time M,: hence 6A=0 since the first
term is a total derivative,
; dby e =c™W 3
Sometimes the gauge translations generated by a a
(P_ being left-invariant) are confused with the general coordinate
a

tyansformations generated by the f{non left-invaziant] tangent vector

2 P , the relation between the two generators being given in (I.3.191}.
a

As we have just seen, however, the associated transformations (I.4.20)
and (1.4.17) are quite distinct; actually the former leaves the action
(I.4.1) invariant, while the latter does not.

What really people do when speaking of “equivalence between the
two kinds of transformations" is to observe that the gauge transforma-
tion (1.4.17) can be traded with the diffeomorphism (1.4.20) if one
keeps R*s 0 (second order formalism) and amend the transformation law
of mab, which is a dependent field, in such a way that it coincides
with (I1.4.20a).

Since the transformation law of wab is uninteresting in second
order formalism one finds that on the vielbein field Vi the two

transformations are the same. ‘
Tt is evident however from our discussion, that what one 15 really
performing is in any case a general coordinate transformation, since the
a .
Gwab as calculated from (1.4.20b) at R%=0 exactly reproduces
{1.4.208). _
As a final remark we notice that the algebra of the diffeomor-

phisms being given by (I,1.239), it closes with structure functions

T e T e W

o

o

PN

B T T e

—

.
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rather than with structure constants as it would be the case for the

group of translations. Indeed using (I.1.239) and (I.3.132) and
ax b x
=g, P

setting ¢ 1 Pa’ g,% €, Py ome has:

17 %

g0 ]=2 2 1.4.22
[ CH 52] le),6,] ™ ey { a)

where €, 1is given by:

3

- 5 x1 .3 b A Ax
g = {el P, oey Pb] = €] e, (C - RIT, =

(1.4.22b)

a b.c = cd
ik & &5 Ry P * Ryp Jed)
and we have used the fact that the structure constants of two transla-

tions are zero for ISQ(1,3}.

b} A second difference we want to discuss between the Einstein-
Cartan and the Yang-Mills action is the following: the action (I.4.1)
is linear in the curvature forms RA, while the Yang-Mills action
{1.4.13) is quadratic. A quadratic action is necessary in ordinary
Yang-Mills theories to produce second order propagation equations for
the potential Ag' How is it, then, that the Cartan-Einstein action,
which is linear, gives second order propagation equations for the
graviton?

The answer is that we are using first order formalism. As anti-

cipated, the variation of (I1.4.1) in Gwab yields the torsion equation

which can be algebraically solved for the spin connection o®® in terms
of the vielbein first order derivatives. Substituting this result iato
the other field equation, obtained by varying {I1.4.1) with respect to

6Va, we get a second order differential equation for the vielbein ad

a3

tet us study how this works in more detail. Varying (I.4.1) with
respect to the vielbein field we get:

ab o _
R AV Gabcd =0 . (I.4.23)

I order to retrieve from (1.4.23) the corresponding equation for the

COmpONents Rabmn we proceed as follows: we expand the 2-form Rab

along a complete basis of vielbeins as in (I.2.34¢c) znd we obtain:

gb B n ¢ N
R N L (1.4.24a)
Setting
WP e Mg (1.4.245)

where 91 is a non zerc 3-form, one deduces:

ab encl i mf ab
R & Fabea = " 3 Oapg Rpn = 0
that is
Al lgag. 1.4.75
Ry > 6b R=20 { ]

which is the usual Einstein field eguation of pure gravity (the only
difference being that we are using imtrinsic components of the curva-
ture instead of the world-components). Equation (I.4.25) is a lst-
order equation for the fisld w;b_

Another equation is obtained if we vary the independent field

wab; this variation is easily derived using the following formula:

st = v (1.4.26)
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which is an immediate consequence of the definitions (I1.3.122} and
(1.3.126}. In our case (I.4.26) becomes:

827 = 982 = g 6,0 (1.4.27a)

where the last equality follows from the definition of the Poincaré

covariant derivatives of an adjoint multiplet (see Eq. {I.4.1%5a)).
Therefore the 5wab variation of (I.4.1) yields

ab c 4
JGR AV AV Eabed

ab c d _
J@(éw J AV LV € hed =

2{5«;“’ AovE v (1.4.27)

abed

Notice that there is no minus sign in the partial integration since we
are partially inteprating a 1-form. It foliows that:

d

RE W Ve, =0 (1.4.28)

where we have used the definition (I.4.11h).
It is easy to verify that (I.4.28) implies

R°=0 . (1.4.29)
Indeed, let us expand the torsion RS along the vielbein basis
R = RS Y™ WM (1.4.30)
mn

(1I.4.28) becomes:

- Shea= 0 - (1.4.31)
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Setting as before:
d _ _mnd? i (1.4.32)
W v e 2,
we get:
¢ mndd .t gty (1.4.33)
R € €bcd = R 5t éabc
that is
2 n L (1.4.34}
Rab+2Rm{a6b} 0
Contracting & with a we obtain:
£ (1.4.35)
R g = 0o .
Hence we find:
Ri -0 . (1.4.36)

Therefore formula (1.4.29) holds.

From R°=0 (and wab: - ba) we deduce that the Riemannian
manifold M4 is endowed with a Riemannian spin comnection. ™ 1is
given in terms of the vielbeln through formula {1.2.44) and (1.2.:§}.
Insexting (I.2.44) into Eq. (I.4,25) which is 1st-order in the mu
we get a second-order equation for the vielbein field (since (1.2.44}
is first order in avvi). ‘ |

The conclusion is that starting from the Cartan-Einstein action
(1.4.1}, which is linear in the curvature, the yropagatigt of the viel-
bein field V® is obtained via the torsion mechanism R™= 0; which

h i ion i . ere-
allows the elimination of the spin conmection in terms of Vg Ther

fore only the degrees of freedom of Vz are physical since they corres-

pond to a propagating field.

e

o~

P T

N
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1.4.2 - Extension to the soft group manifold

The Cartan-Einstein Lagrangian has still another striking dif-
ference as compared with the Yang-Mills one {I.4.13}. It is built
using only forms, wedge products and exterior derivative with exclusion

of the Hodge duality operator * (see Eqs. (I.1.181-182)j:

AL %A o oA L pg oA
R R T Ll g {1.4.37)

appearing instead in (I.4.13). As a consequence, the equations of
motion, stating that certain 3-forms are zero, can be naturally extended

to a larger manifold by an inclusion mapping:

M, > G oM, . (1.4.38)
In presence of the Hodge duality operator this would be forbidden since
in the definition {1.1.191) of the operator * the dimension of the mani-
fold enters in an essential way,

In cur case the forms {mab, Va}, being Yang-Mills potentials
subject to the gauge transformations (I.4.16}, are already defined

on a larger manifold G o> My which is the principal fiber bundle

G = G[G/H, H] (1.4.39)

where G is defined by the structure Egs. (I.3.174-175) and

G/H=M

A (1.4.40a}

HZ80(1,%) . (1.4.40b)
As discussed in the previous chapter, this means that the inclusion

mapping extending the fields from M4 to & is given by the Lozentz
transformations (1.2.48) and (I1.2.51-52) and that the curvatures

AL
T

(1.4,11) are horizontal. It is therefore possible to extend the field
equations (1.4.23) and (I.4.28) to go- Md'

We will now show that it is not necessary to start with the fiber
bundle structure (I.4.39) in constructing the action {I.4.1}.

Indeed the fiber bundle structure can be obtained as a result of
the (suitable extended) variational principle, if we start with a field

uA defined on the soft Poincaré group manifold EEEEE?ES. In other

words, we will show that SG(1,3) horizontality of the curvatures can be
obtained as a variational equation from the same Cartan-Einstein actlonm,
According to the discussion of the pzevious chapter we start with
a set of fields uA which are Poincaré Lie algebra valued soft 1-forms
spanning a basis of the cotangent plame to the 10-dimensional soft
3 - » M
Poincaré manifold ISO(1,3).
The group curvatures are given by

A LA 1 AR C
R = 5O o0 (1.4.41)

or, in terms of 50(1,3) representations by (1.3.174-175). A priori
. . _ ab
these forms are not horizontal. The Lagrangian for the fields uA £ ,

Vs formally taken to be the same as before

ab

v v e (1.4.42)

abed

but, being a 4-form, it must be integrated on a 4-dimensional submani-

fold of G.

Therefore we write

ab c d
o= j R AV AV Eabcd (1.4.43}
M, c

here M' is any 4-dimensional submanifold of G.
In principle when we vary (I.4.43) we should consider not only
arbitrary variations of the fields mab, v* put also arbitrary varia-

tions of Mﬁ. Observe, however, that a variation of M4 can always
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be compensated by a diffeomorphism on the fields mab, v under which
the lagrangian is invaziant. It suffices, therefore, to restrict our
attention to the field.variations,

The equations of motion

ab c _
R . v Cabeq = © (1.4.44}

a b
R AV e, 420 (1.4.45)

are identical in form to the previous ones, (I1.4,23) and (1.4.28),
except for the fact that they hold now on the whole 10-dimensional
menifold G.

To examine their content we must expand the curvatures RA on a
cotangent basis of G which is given by the set of 2-forms:

HA . HB - {Va . Vb; wab ¢ ab cd}

AV o aw (1.4.46)
Hence the expansion of the curvature in this local frame is
A_ A B C_Lh,2 b A a be
R = RBCU Al = Rabv AV 4 ZRa,ch AT+
A ab cd
+ Rab,cdm ~ W . (1.4.47)

It is now easy to verify that on the larger manifold & the equations

of motion (I.4.44-45) imply SO(1,3) horizontality of RA, besides the

usual implications for Ramn and Rabcd obtained on M,.

4
Using (1.4.47) with (A) 2 (2b) we have:

ab p .8 ¢ ab p m c
R ?qV ~¥E LV €bed * 2R p.Rmv AW LY €obed ¥

ab in TS e

+ R 2m,rsw AW AV €abed ® 0o . (1.4.48)

;
H
:
;
!
i
i
!
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Since WV, VoV and wx are independent 3-forms each term of

{1.4.48) nust be separately zer?:

»

ab q c = (I.4.49a)
R qupﬁv AV e g0

ab D AmC - {1.4.499)
R an’ ~ O AV Egeg ™0

ab fm rs e =0 {1.4.48¢)
R gm,rs” MY abed

Equation {I.4.48a} is formally the same a5 Eq. {I.4.22) and we deduce
again {1.4.25). Moreover from {1.4.49b) and {I.4.49c) it easily

follows that:

Rab =0 {1I.4.50a)
p.im
B e (1.4.500)
R fm,rs 0
In an analogous way the torsien equation gives:
2 (1.4.51a)
RS =0
R, =0 (I.4.51b)
p.im
(1.4.51c)
a -
R tm,rs ¢ :

Fgs. (1.4.50a,b) and (1.4,51b-c) are encompassed by the single equation:

A sl A {I1.4.52)
R um. TB) - ka’g 0

which is equivalent to:

e e T

TR TN T T T TN T N s e

e

R
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RP=0 . (I.4.53)

Since the S0(1,3) horizontality condition is satisfied, we may restrict
the equations (I.4.44) and (I.4.45) to the base space My £8/5001,3)
and they coincide with (1.4.23) and (I1.4.28}.

Eq. (I.4.53) enforcing the S0(1,3) fiber bundle structure of the
theory is due to its Lorentz gauge invariance, that is to the absence
of the bare field mab in the Lagrangian. Heace the Lorentz gauge
invariznce of the extended action (I.4.43) is responsible for the fac-
torization of the Lorentz coordinates: effectively the theory lives
only on the base space M4=‘E§EEI:33/SO(1,S). This is so because the
fields depend on the "Lorentz coordinates' only via the finite Lorentz
trensformations (I.3.148). Since the Lagrangian is invariant (by
constructicn!) under such transformations, the dependence on the
Lorentz cocrdinates disappears.

In supergravity theories we will always confine ourselves, for
obvious physical ressons, to Lorentz invariant Lagrangians, so that,
starting from soft super-group manifolds, factorization of the Lorentz
coordinates will always be guaranteed and the fields will effectively
depend only on the base space coordinates.

The use of the entire (soft}group manifold & instead of
5/56(1,3) has therefore a rather formal value. Furthermore we have
pursued a pedagegical goal since, in the future, we will compare the
"almost factorization” of the supersymmetry parameters of supergravity
theories, due to rheonomy, with the complete factorization of the
Lorentz parameters due to Lorentz invariance.

It is in this spirit that in the next section we will insist on
giving the building principles for a geometrical theory on a soft group-
manifeld G, vather than on a coset manifold G/H, The problems con-
nected with the extension from G&/H to G, which is in itself trivial
in the present case without supersymmetry, are however similar to the
problems connected with the extension from space to superspace which is

non trivial and crucial for the geometric formulastion of supergravities.

o/

I.4.3 - Building rules for the gravity Lagrangians

Let us summarize our discussion. We started with the potential
uA and its correspording curvature {I.4.11) defined on the whole soft
group manifold 150{1,3). Variation of the action (I.4.43) gave
the 3-form equations of motion (1.4.44) and (1.4.45}.

These imply the vanishing of the curvature RA along the Lorentz
directions (I.4.53) and the consequent factorization of the Lorsniz
parameters through gauge transformations.

Projection of the equations of motion along the directions of the

base space

(I.4.54)

[
=

~ o —
G/H = 1S0(1,3)/56(1,3)

identified with the physical space-time, gave the equatioms of motion

on M4 (I.4.23) and (1.4.28) for the factorized curvatures and

potentials.
As we have seen, they are the usual Einstein equations of gravity

in first order formalism.

One may woader how one could have invented the Lagrangian ([.4.43)
possessing all the aforementioned good properties without previous know-
ledge of gravitational theory.

It is worthwhiie to note that (I.4.1), or its extended form
(1.4.43), can be uniguely determined using & small set of building
rufes which appear to be very different from the usual ones used in the
derivation of the Eimstein action in the theory of gravitation. The
formal nature of these principles will prove useful in finding generali-
zations of gravity lagrangians to supergravity Légraﬁgiaﬂs, one of the
main goals of this book,

Before giving and discussing the aforementioned buiiding princi-
ple for the construction of the action let us discuss the general philoe-
sophy behind them.

We observe the following: if we want to identify the space-time
components of the 1-forams {mab, v®} with the physical fields Vﬁ and
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wﬁb, without destroying their geometrical nmeaning, we should construct
the action in a way consistent with the equations (I1,4.8,9), (1.4.11,12)
R0, B,

Now Eqs. (1.4.11-12) have a number of properties and a gymmetries
that we want to be conserved by the action describing the physical
theory. They are:

defining (mab, Va) and their curvatures [

1) Coordinate invariance: this is an obvious consequence of

the fact that (1.4.11-12) are equations among forms, where only the
coordinate invariant operations of exterior product and derivative are
used; in other words the equations defining the curvatures and their

Bianchi identities have an intrinsic geometrical meaning.

ii)  80(1,3) pauge invariance: ia fact all the equations

(1.4,11-12) are covariantly defined in terms of good Lorentz tensors.
We notice that, in contrast, (I.4.11-12) are not invariant under
{1.4.17}, the gauge translation.

iii) RA= 0 is a solution of (I.4.11-12): indeed in this case
(1.4,11) reduce to the Maurer-Cartan equations for the IS0(1,3) left-
Va, wab and (I1.4.12) to the Jacobi identities for

the structure constaats.

invariant 1-forms

iv}  Rigid scale invariance: (1.4,11-12) are invariant under

the rigid transformation

R (1.4.55a)
L I (1.4.55b)

where e is a constant non zero parameter,
Accordingly we shall require that the action constructed in

terms of wab

, v® and Rab, R® will respect all the symmetries and
properties expressed by i)-iv). This leads us to formulate the foliow-

ing building rules:

L35 i e e T
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i) The Lagrangian must be geometrical: by that we mean thaf
it must be a 4-form constructed using the petential i-form W on G
and the diffeomorphic invariantjbperations among them, the wedge product
nt o and the exterior differential Md".

Actually the requirement that the only physical fieldi of the
theory should be given by the Lie algebra valued 1-forms | turms out
to be too restrietive for more general theories, In particular, when
coupling matter multiplets to gfavity or supergravity, or considering
extended supergravities, one must also allow new fields which are -
forms, i.e. functions on G. For the moment we restrict ourselves to

these "strong geometricity" allowing; the presence of 0-forms will be

discussed in the next chapters, .

Notice that we have excluded the duality operator ¥+ K since
it depends on the dimensions of the embedding space. As our Lagrangian
is a 4-form it must be integrated on a 4-dimensional surface embedded in
the ten-dimensional manifold &, The duality mapping would bring potenr-
tials and their curvatures out of the 4-dimensional integration domain.

ii) The Lagrangian must be invariant under the subgroup
H=80(1,3) of G. To this we also add the obvious physical require-
ment that it must be a scalar demsity of definite parity.

111} The Lagrangian must be such that the eqs. of motion should

admit as a particular solution the zere-curvature solution:

4,56
=0 A= {ab; a} (1.4.56)

. i iant
so that the corresponding potential UA are given by the left invarian
1-forms OA.

t
The solution (1.4.56) will be referred to as the "vacuum of the

theory. In our case G=180(1,3) and on G we have:

- .4.57
= 1 lman® (1.4.57a)

A

- 1.4.57
v oot o) o (14,57

T

N

i

e

AN T

e .

e,
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. - 4 : = P \ b
or in a particular cross section (A=1) G/HZR 5 Va T Yapgt ~ ¥ (.4.60b)
u)ab = 0 (1.4.58a) : v c (1.4.60)
: = .4.60¢
A L i AB AB
g = g
Ve ad (I.4.58) 2 . ) 0
A( ) is a scalar, U£ ) is in the coadjoint representation and ugB]

which correspond to the vielbein and spin connection of flat Minkowski in the coadjoint e coadjoint representation.

Moreover requirement ii) implies that the constant temsors C

space. ABCD?

Cqu, CAB be Lorentz (S0{1,3})) invariant tensors.

iv)  Finally we impose that the Lagrangian should scale homo- . :
Now we show that the quadratic terms can always be dropped since

geneously with respect to the transformation (1.4.58): if it were not iR ; . .
+ they are eguivalent to & total differential.

so the equations of motion derived from it would give relations among
ab R®

inconsistent with the Bianchi identities (1.4.12) which scale homo-

Indeed the only constant tensors CAB which are invariant under

depending on the parameter e; this would be ]
80{1,3) are the following

the curvatures R

geneously in e.

Let us see how one can retrieve the action (I.4.43) from these //,/’C(ab),{cd] # €abed
. _ _ sab
principles, CAB Céb,cd = ch
Condition i) implies that the Lagrangian is a 4-form expressible \\\\\ _ .
; Ca b= 6b (1.4.61}
H

as a polynowial (in the exterior calculus sense) in the uA.s and the

curvature RA. Indeed the exterior differential duA can be written

. A s , : A
in terms of the curvature R : moreover the exterior differential dR therefore we can write:

is linear in RA due to the Bianchi identities, Therefore the most

general lagrangian is given by: ; A B ab od ab a
B . R VAB = clR ~ R €obed CZR ~ Rab + c3R ~ Ra
¥ = Atq) + RA ~ vcz) + l—RA ~ RB U(OJ + total differential j {I.4.62)
A 2 AB !
(1.4.59) J where Cps Gy €y are constants.
The first two terms are closed forms. Indeed
since the Lagrangian is defined modulo a total divergence.
Here A(4} v(z) w0 are polynomials of degree four, two and | ab cd ab _cd
* VAT Vg g ’ i AR R ey ) s FRY AR ey g) = 0 (1.4.63)

zero, respectively, in the W''s and their coefficients are constant

tensors.

where @ 1is the Lorentz covariant derivative.

@ A B C D
A = CABCDU FNR IR RPN | {1.4.698)

e

3
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. ab cd .
In this proof we have used the fact the R® . R Eabed 1S
lorentz invariant and the Bianchi identity (I.4.12a).
In the same way we find:
dr®® LRy =0 (1.4.64)
~ Ry . A,
ab cd . ab
From these results we conclude that R™ . R ¢ and R AR
abed ab
are locally exact. Explicitly we can write:
ab ed N ab cd ak b od
R AR abed ~ d{eabcduJ AR Eed® - Wy ~® )
(1.4.65)
ab _ zb 1 & I 2
R . Rab = d{w™ . Rah -3 [ a” Wy o 3 (1.4.66)

Since our manifold Mé is without boundary the integral is either zero

or a topological number; indsed

1 J ab .
Ty RU AR, 2D (1.4.67)
81T2 v ab 1
7
H J ab _cd
5| Egpeg® AR =B (1.4.68)
32,"2 M4 abed

where the integer Py is the first Pontriagyn nmumber and the inzeger
E is the Euler characteristic of the manifold Ma.

In any case the two terms {I.4.65) end (I.4.66) give no contribu-
tion to the variation of the action and we cen drop them. (Let us
stress, however, that this concliusion holds because ¢ and ¢, dre
constant npumbers; if we allow ¢ and ¢, to be functions on & which
is the case when we couple gravity to matter fields, then the contribu-
tion of these two terms to the variation of the action is not zerc since

in the partial integration the derivative hits €, and cz}.

e o
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We may arrive at the same conclusion in a quicker way by using
the requirement iv), namely the ?omogeaeous scaling of all the terms of
the Lagrangian under (I.4.55). %iace as we shall see in a moment the
linear temms of the Lagrangian contain of course the Einstein term
RwaﬁAWEww mnhmﬂ%as{3]uMw(L&%LtMsmemﬁ
be true for all the other terms; we see that the first two terms in
{1.4.62) have the wrong scale [eo] 21 so that they must not be
included in the Lagrangian in order to have a consistent theozy. (Agfin
the argument fails if those terms appear multiplied by functions on G
which scale as {ez] due to the presence of some dimensional constant}.

The last term in (I.4.62)

a (I.4.69)
R® AR

(which scales as [ez]) can be reduced to a linear term in the curva-

ture R through partial integration. Indeed we have:

& - a ~ a T
R" . R =3V A@va-@{v Aef?vawv 9 N

1

3 a b 1.4.70)
v ,Qva}+v A(-Rab,\V) (

where we have used the Bianchi identity (%.4.12b}. Therefore

2R =-8P. V, ~ V, + total divergence (1.4.78)

j i h fficient of Rab A~V AV
s0 that (1.4.60) just redefines the coeffici a b

A
already present in the gemeral term R° .V, of Eg. (1.4.59).
Therefore the most genersl Lagrangian can be rewritten as follows

R (1.4.72)

=

A

P

e

—

~
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Now we observe that yequirement ii} ailows the appearance of wab, the

bare gauge field of $0(1,3}, only through the S0{1,3)-covariant

curvature Rab; therefore (1.4.72) becomes

G AT

L=t bed

b ¢ d
aich\faﬂv AV,

+ Y Rab A~V AV

2~ Y {1.4.73)

; _ . ‘s sth
and the constant §-tensor GABCD and CAPQ have beer identified wi

the Lorentz invariant tensors as follows:

, 474
Capcp ~ Cabcd = @ Eabed (1.4.742)
/ Clabyed * B Fabed
c
APQ
N Chapyea = ¥ aii (1.4.74b)

with o, B, v constant numbers.
Moreover requirement iii) implies a=0; indeed if we vary the

action with respect to the vielbein field Vd, we find:

ad a b c ab e
2YRTT A Va + 4{xeabcdv AV AV 28 EabcdR ~¥ =90
(I.4.75)
Requiring the "vacuum" (or flat group-manifold)
LI (1.4.76)
to be a solution of (I.4.75) implies:
2P v ! 1.4.77
4aea‘£)cdv PO A ¢ { )

-

e e e b = v e s

e e B e e s

S

i85

and this can be true only if o=0 since vd . Vb . VE

is an indepen-
dent 3-form on G.
Finally since ii) requires a definite parity for ¥ we must

discard either

g a®  ve v S ihed (1.4.78)
or

v & Vv (1.4.79)
The equations of motion resultiag from the second choice are

S (1.4.80)

RV v (1.4.81)
which are identically satisfied by the choice

R® =0 (1.4.82)

since Bianchi identity (I.4.12b) implies (I.4.80) when (1.4.82) holds.
The curvature Rab remains therefore completely free. We conclude
that (I.4.79) is not a physical Lagrangian.

We are thus left with the Einstein-Cartan action

b d

_ a <
& = R AV .V € bed {1.4.83)

Mdc G

extended to the soft group manifold &, or, if horizontality has been
assumed, to its restriction te M4 EE/SO{I,S).
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1.4.4 - Gravity in de Sitter and anti de Sitter space

In the previous section we have discussed the formal properties
of the Cartan-Einstein formulation of pure gravity. This study will
prove to be extremely useful when we try to comstruct more sophisticated
theories generalizing gravity: that is supergravity, matter coupling in.
gravity and supergravity, higher dimensional theories,

In this section we present the very simple extension of the
Cartan-Einstein Lagrangian to the case where the potentials yA are
defined on a de Sitter or anti de Sitter soft group manifold G. The

twp cases are respectively:

~ T —

Gy g = S0{1,4) (1.4.84a)
or

~ T —

Gy 45 ~ 50(2,3) . {1.4.84b)

In the following we restrict ourselves to the anti-de Sitter case; the
modification needed for the de Sitter case were discussed in Section
1.3.7.

As we are going te see the mew Lagrangian corresponds in tensor
calculus formalism to ordinary gravity plus a cosmelogical temm. To
construct the action of anti de Sitter gravity we apply the building
rules discussed in the previous section.

We start frem the soft 1-form uA of the 50(2,3) Lie algebra:

A

W T, e U dgp i, b=(0,1,...,8) . (1.4.85)

We use the formalism developed in Section I.3.8 with D=d; here we

just rewrite the anti de Sitter curvatures and Bianchi identities:

S
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R a® P o0 4 g WP s e 2B W (1.4.86a)
;

R = av® - o Wz gy (1.4.86b)

2ar® . gs2 vl2 @l oo (1.4.87a)

g+ 2™ v =0 . (1.4.87)

b

From Egs. (I.4.86a) we see that, for &€#0, the (anti) de Sitter

curvature Rab differs from the Lorentz curvature

b dmab BTN me (1.4.88}

f
C

by the term 4é2Va ~ Vb.

In particular zero anti-de Sitter curvature corresponds to a

constant Riemenn tensor: indeed we have

LI S T s (1.4.89)
which implies:

b 4?0 1.4.90

g7 - 48 écd . { )

Hence the anti de Sitter "vacuum" (Ran Rab: 0) is a 4-dimensional
msnifold characterized by a constant megative curvature (- 452).
Since we are going to require Lorent:z invariance we assume that
the snti de Sitter curvature is already horizontal; hence all the
fields live on the base space M45 §6(2,3)/SG(1,3}. The extension to
the soft group manifold can be done exactly in the same way as in the

Poincarg case.

_——

T,

ST g

—,
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The Lagrangian in the anti de Sitter case can be written down
following closely the procedure and the notations of the Poincaré case,
indeed if one decompeses the adjoint $0(2,3) indices of the general
Lagrangian (1.4,59) with respect to $0{1,3} and uses the Lorentz
invariant temsors 6: and €bed 2 required by Lorentz gauge inva-
riance, then one gets exactly the same terms as in (I1.4.62) and (1.4.73)
the only difference being that the curvature Rab is given by (I.4.86a}
instead of (I.4.11a). Using

@0 - @ gt WP (1.4.91)

where ﬂﬁb is given by (f.4.88), we see that the argument which permits

to drop the guadratic teyms is still valid. Indeed we have:

ab cd _ oAb cd -2, b ed
R AR €abed = g & Eabcd + 88V LV A8 Eabcd +
d.a b c d
+ 168V AV AV AV Eabcd £1.4,92)
and
ab _ ab Wi B b
R . Rab =& . aab v 88V LV A ﬂab (1.4.93)

Hence the new quadratic terms differ from those occurring in the Poincaré
case by terms of lower order in the curvatures and these just redefine
the constant coefficients of the linear terms. The thixd quadratic term
R . Ra’ {Eq. (1.4.70)3, is eliminated exactly as before, Therefore we
are left with the Lagrangian linear in the curvatures given in Eq.
{I1.4.73). By the same argument which leads from (I.4.73) to (I.4.75)

we get

d £
abed

(1.4.943

d

P Ve LY PR LV LV

- a
Zipdsy = % Caped’

where A% s given by Eq. (I.4.86a) and where we have already dis-
carded the parity non conserving tern” Rab ~ Va " Vb (see the discus-

sion following (1.4.79}).

Ted

A mon trivial difference with respect to the Poincard case comes
into play when we require the existence of the "'vacuum" solution; indeed,
recalling (I.4.86a) the variation of the vielbein field gives:

b b

v a c al c
(4o + 8B B)Eabcdv A VLV 28 EabcdR AV =0

(1.4.95)

in order for the vacuum Rab: R*=0 o be a solution we must set:
a= - 28" B . (1.4.96)

Choosing B=1 the Lagrangian (I.4.94) becomes

ab

- v e i3 WP

d
gabcd - 2BV LV

~ ve ~VE

“aa9) abed

(1,4.97)

or in terms of the Lorentz curvature ﬂ?b

aab,\vcﬁvdebdwézvaﬂbAvcﬂvde

Finds) = abe abed

(1.4.98)

In the tensor formaliem (I.4.98) reads:

_ ab -2 4
K(Ads} = - 4R+ 128 1Y lgdx (1.4.99)

This is the Binstein Lagrangian with the addition of the cosmological
tem 128,
Finally we cbserve that in the contraction limit é2~>0 from

(1.4.98) we recover the Cartan-Einstein action {I.4.1) (or its extended

form (I.4.43)).



