H:

Writing arbitrary coefficients for all the terms which are per-
missible we work out the field equations and we impose that the
theonomic conditions should come out as solution of the outer projec-
tions. This fixes all the coefficients and the action {II.6.96) is
urniquely singled out.

All the mechanisms, concepts and techniques discussed in this
chapter will be essential for the development of supergravity theory
in Part Three.
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CHAPTER 11.7

K

P-MATRIX ALGEBRA AND SPTNORS IN 4< D s11

11.7.1 - The construction of ['-matrices

In order to describe spinor fields and hence supersymmetric

theories one needs the Dirac gamma matrices. These form the Clifford

algebra

{r,Tt=2n, (11.7.1)
where n,y, is the invariant metric of the D-dimensional Lorentz group

50(1,D~1):

Ny © dilag(t, =, =y ey =) (11.7.2)

To study the general properties of the Clifford algebra (¥I.7.1) ome
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e e
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can use group-thecretical techniques: we prefer a very pedestrian
approach based on the direct construction of the gamma matrices.
We begin by fixing our conventions. The matrix F0=FU correspond-

ing to the plus sign in the signature (II.7.2) is hermitean:

(11.7.3)

the matrices Fi=~Fi (i=1,2Z,...,D-1) corresponding to the minus sigas

in the signature {(II.7.3) are antihermitean:

(11.7.4)
We subdivide the vange of dimensions in the even and odd sector

D = 2v= even
In this case the representation of the Clifford algebra has

dimension

dim T =2 "= 2 {I1.7.5)

In other words the gamma {T,} are 2V x 2V matrices.
The proof is easily obtained by iteration. Suppose that we have

the gamma matrices y, corresponding to the case v' = v -1

{Yan Ybr} =2 narba (a'=0, 1, ..., D-3) (11.7.6}

1 13
znd that they are 2” divensional. We write down the following 2" H

dimensional matrices

;
:
|
|
i

1] Ya' i G
Tyo= | — : fpo ™
Ya’ 0 G -1
1] 1
Tpog = |7
-1 0 (11.7.7)

and we verify that they satisfy the Clifford algebra (I%.7.1); fur-

thermore they have the correct hermiticity properties:

rfo=-r H

D2 - (11.7.8)

The matrices (IZ.7.7) can be interpreted as the following tensor

product of the vy, “matrices with the Pauli sigma-matrices:

Fa=1,80; 3 Tp,=fteis, ; T, =1eis, (i1.7.9)
To complete the proof of our statement we just have to show that for
v=2, corresponding to D=4, we have a 4~dimensional representation of
the garma matrices, This is a well-known result; for exampie cne can

use the representation:

0 91,2,3
Yo = PoY12,3°7 I
bl
1,2,3 0
(11.7.10)
In D=2v one can construct the matrix
r.,, =a I.JT r PR LI
pe1 T % tofrtzerriper D (I1.7.11)
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vhere oy is a normalization factor to be fixed in such a way that

D+l (11.7.12)

By direct evaluation one cam verify that

Ir,r . J=0
a’ ‘Dl (11.7.13)

namely Ipyy is the generalization of the ys-matrix of 4-dimensions,

The normalization ap is easily derived. We have

. 3 D(0-1)
eresTe = (-
o1 p1 = ) Lp1Tpezs e+ Tl (11.7.14)

and therefore, imposing Eq. (II.7.12) we find:

1
2,2 D<B“1)(”)a~1 -y
D (11.7.15)
This implies
ay = 1 if v=2u+i = odd
o, =3 if v=2u=
D L = even (11.7.16)

With the same token we can show that I'pyp is hermitean. Indeed

1
3 B({b-1)

§§+1 = “; ) e (I1.7.17)

ofrr Ty = Ton
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D = 2vtl = odd

In this case the Clifford algebra (II.7.1) is represented by
2Y 1 2Y matrices, It suffices tj take the pamma matrices [;s corre-
sponding to the even case D' =D-1 and add to them the matrix
g4y = Ip-y which is antihermitean and anticommutes with all the
other ones.

iI.7.2 - The charge conjugation matrix

Since T, and their transposed PaT satisfy the same Clifford
algebra it follows that there must be a similarity transformation
connecting these two representations of the same algebra. Such state-

ment relies on Schur's lemma and it is proved in the following way.

introducing the notation

1 P
sTp T ,uee,l == ] (2T r
[2) 2, 8} ! g p(1)7 " Pp(n)

(11.7.18)

Byyevrsdd
12 “n

where ZP denotes the sum over permutations, we can easily convince

, T a constitutes a

ourselves that the wnion 1, Fa ,
1"*°D

finite group of Z{DIZ]
Furthermote the groups gemerated by Iy, -T, or FaT are the same.

s
213

-dimensional matrices,

Hence by Schur's lemma two irreducible representations of the same
group, with the same dimension and defined over the same vector
space, must be equivalent, that is there must be a similarity trans-
formation which comnects the twe. The matrix realizing such a simi~

larity is calied the gharge conjugation matrix. Instructed by this

discussion we define the charge conjugation matrix by the following

equations

e

e Y

SN T

AT T

S

—

B N
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w]

Sy ey = Faz (11.7.1%a)
w]

Coy Ta Cen = rf (£1.7.19b)

C{.} comnects the representation generated by Iy to that generated
by -FaT, while C(+) relates the 'y and FaT representations. In even
dimensions both C(_) and C(+} exist, while in odd dimensions only
one is possible. Indeed in odd dimensions [y is proportional to
Igly...Tp.p so that the $yoy and Cpyy of D-1 dimensions yield the
same result for I'p.;, namely either +p.; or -Ip.;. This decides
which C exists in a given odd dimensien.

Another important property of the charge conjupation matrix fol-

lows by iteratiag (I1.7.19). Using Schur's lemma one finds that
Cey) = aC(_)T {idem for C{‘)) so that iterating again «’=1. In other

vords Cry) and C(.) are efther symmetric ov antisymmetric.

It”;; very E;;brtaat to decide which is the case in every dimen-
sion.

We do not dwell on the derivation which can be based either on
general arguments or on an explicit construction in a gamma matrix

basis. We simply collect the results in Table II.7.I1.

TABLE II.7.I

CHARGE CONJUGATEON MATRICES IN 4< D g1l

4D

D | ¢4 = €y (xeal) €*(-) = ©(-) (rea)

i | ot =t St =t | et = s Gt e -
501 et = Gy Oen? =1

6 | o= Sy St = | Gl =Gy G =

7 6 = ¢y St =

O CLE R BUSIL OUE O

9 | )t = St =

10| e’ = o G’ = ! S)" = Ceys GyP =
L ¢)" = 03 Oyt =
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IT,7.3 - Majorana, Weyl and Maiorapa-Weyl spinors

The Dirac conjugate of a spinor ¢ is defined by

- 1«
b=, (I1.7.20)

v =Cy {11.7.21)

where C is the charge conjugation matrix. When we have fhe option in
(11.7.21) we can use either C(4) or Cg.y. By definition a Majorana

spinor A satisfies the following condition

38 _ A 7T T %
h=A"=C) =¢ FO A {11.7.22)

which means that A is its own conjugate. Eq. (II.7.22) is not always

self consistent. Indeed by iterating it a second time

T %
A=CT.C T, X (11.7.23)

we get the consistency condition

T
CT,C=T, (11.7.24)

in which we have used the yreality of c(c* = ¢y,

It can be shown that there are two possible solutions to equation
(I1.7.24): either C(_) is antisymmetrie, or C(+) is symmetrie.
Hence looking at Table I1.7.I we conclude that Majorana spinors exist

only in
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D=4,8 9,10, 11 (11.7.25)

In B = 4,10,11 they are defineg using C(_), vhich is antisymmetric
while in D = 8,9 they are defined using C(4) which is symmetrie.

Majorama spinors do not exist in:

D=3 67 (I1.7.26)
Weyl spinors, on the contrary exist in every even dimension; by defi-
nition they are eigenstates of the Ipy(-matrix, corresponding to the
+1 or ~1 eigenvalue:

o b =20
Hi 7L L
() () (11.7.27)

As a matter of convention the spinors belonging to the positive
eigenvalue are named 'left-handed”, while those belonging to the

negative one are called "right-handed”.

In gome special dimensions we can define Majorana-Weyl spinors
which are both eigenstates of Ip;; and satisfy Eq. (I1.7.22). In

order for this to be possible we must have

T % %
ClogTop ¥ =Ty ¥ (11.7.28)

Using (I1.7.24) equation (II.7.28) becomes

00l 0 bl (11.7.28)

Since I'yyp is hermitean this relation can also be written as



T

-1 T
Iy =~ Thu

o T.T
¢ Tpy €= Tg Tpn
(11.7.30)

Recalling that I'py; is defined by equation (II.7.11), we can verify
in which dimensions this relation holds.

IfC~= C(+) we have

D(d-1)
~1 _ T T T _ 52 T
" Tyyy €= 0y T TpovvnaTpy = O T (11.7.31)
while if C = C(_) we find
H
| ""Z*D(D-1)+D -
¢r,, €= (=) r
D+l i (11.7.32)
Hence we get
. -1 T
d =4 c {‘5 ¢ I‘S
_ -1 T
d =8 c Fg C= i‘g
-1 T

(17.7.33)

and we see that in the range 4¢ D £il the only dimension for which
Majorana-Weyl spinors can be defined is D=10.

The results are summarized in Table II.7.II.

TABLE II.7.II

SPINORS IN 42 D 211

b Dirac Majorana Weyl Majorana-Weyl
4 Yes Yes Yes No
5 Yes Ne No No
& Yes No Yes No
7 Yos No No No
8 Yes Tes Yes No
9 Yes Yes No No
10 Yes Yes Yes Yes
i1 Yes Yes No No
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I1.7.4 = Useful formulae in [-matrix algebra

Ir every dimension it is important to know which Ta a
TERL

matrices are symmetric and which are antisyemetric. By this we mean

the following

Byvaes Ayeeal => sytnmel:ric
1 n i n

cr y=-CT

= antisymmetyi
PP | Byaeod txic
i n 1 n

(11.7.34)

C being either C¢4) or G(-). In odd-dimensions there is no ambipguity;
in those even dimensions where Majorana spinors exist we choose C to
coineide with the charge copnjugation matrix entering the Majorana
condition. ¥inally in D=6 where no criterion is available we select
¢ = Cgoy.

With these conventions and using the general inmversion formula

r = (=122,

...0 R S
1 n non-1 T

{I11.7.35)

we obtain the results of Table II.7.I11%

TABLE II.7.III

SYMMETRIC AND AN%ISYMMETRIC T-MATRICES

531

D | Symmetric Antisymmetric
4 ‘Ya) Yab 4 » YS; Y5 Ya
3 (T4 4 1, T,
12
6 19,7 a5 Taaa Tas T3Tas Ty a
2 1 23 2
7 %:Taaa Fas Ty a
12 3 T2
8%, Iy rgral..aa’ ?al..aq Fglas 1-‘a.laz' Pgralaz’ i-‘alazaa
9 t,r1,T r T Iy .
+ fas a a’a..a alaz’ a..a
10 § Tz Tg 2> F11Far T137a L. 1.0 ,arTa,a>Tlaa
12 1 1 4 13
r 'yila ..
a1 as 11 a1 a3
r., F r 1,7 ry ..
1 a* azaz' a ..a * 31"33’ a..a

—

Mo

e

-

—

ST T e e

A
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Note that in D = 2v +] = odd we congider P-matrices with, at wmost,
[D/2?] indices. Those with more indices are redundant since they are
proportional to the ones considered. Indeed we can utilize the

duality relation:

T = const € r (11.7.36)

ayeea al"anbl"'bawn

Finally we write some formulae of imvaluable help in practical caleu-

lations:

810448 Cpuel
1 n’l

r ir =
Cl"cqbl"bn
inf{n,m . [al..ak ak+1..an}
= Celosmom) Sy T b ..b ]
k=1 1"k k1" m
{I1.7.37a)
Ck(q,n,m) =
q é{q~1) E(k—(-l)“"l) D~k
- 2t (20T dalk!
h k kY g
(11.7.375)
a ab a,..8 [a .a a ]
rt SRR Y (11.7.37¢)
ba,..a a;..4a [a 8peed ]
L (11.7.37d)

furthermore if ©
CIRRRL M

is an irreducible (3/2)™(1/2)

e

[p/2]-n

spiror,

namely an antisymmetric spinor tensor satisfying the T-trace condition

r- @ =0
.8 (11.7.38)
then we have:
.48 Cyu. ¢,..c b, ..b
T 1% % g 1 cq I
q E'(ﬂ_+l) " {a ..a a PO ]b ..b
o (=) 2 ot s [ ] 8 gl i S |
(n-q)! (I1.7.392)
b .v.b c,.. .. [
B 1 n1 Cq ?cl anl ®a -
q L(gt) booub [a,..a e al
2 n! I L ] r abl" T
(n=q) ! (I1.7.398)
Cpeet
F T ] =
[c1 cqal..an bl. bm}
(q-1)
B (_)Q 7 (g+n) ! (n+m) } (Dn—2m} !
n!f (ntmq) ! {D~n~q-2m}! [ﬂz"an bl"bm]
(I1.7.39)
N
- 1 q
8 T r =
[bl bm al..anci..c]
-1)
e S )t (v ! eyt
n! (n+atq) H{D-n~2m-g)}! 1% B

(I1.7.39d)
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Moreover in D=4 we write the explicit form of the duality relation on

Yab

Eabcdled = 2175 Yy (11.7.40)

and we conclude the chapter with another useful formula valid in

every dimension:

g
! Tapa Yo e = el N (11.7.41)

In (I1.7.41) the coefficient En(q) is determined by the recurrence

relation:

(n} _ _(n}_{(n)

=P - @ne-grl, (13.7.422)
(n)

i =1 (11.7.42b)
(m)

Il =D-In (II.7.42¢c)

535

CHAPTER II.8

BB

FIERZ IDENTITIES AND GROUP THEORY

11.8.1 - Introduction

This chapter is very technical but nonetheless very important for

all what follows. It deals with a very specific problem which arises
in the development of both globally and lecally supersymmetric field

theories.
As we saw in Chapter II.6, in order to comstruct the action of a

supersymmetric field-theory model we have, in general, to solve exterior

form equations on superspace which arise either as Bianchi identities
or as field equations associated to a Lagrangian which is itself an
extericr form.

A complete cotangent frame on SUpEISpAce is provided by the
vielbein V? and the gravitine 1-form $A which is a spin 1/2 repre-
sentation of the Lorentz group SC(1,D-1) and has, morecver, an index A
enumerating the supersymmetries (A=1,2,...,8}.

Henceforth an arbitrary p-form w(P) on superspace can be ex-

panded as follows



