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Some notations

K: compact simply-connected Lie group
Let G: the complexification of K
B: a Borel subgroup of G

Example

K = SU(n), the special unitary group

G = SL(n,C), the special linear group

B = {upper triangular matrics € SL(n,C)}



Two important spaces

(1) QK, the based loop space of K

Facts
1. H(QK) is a ring
» equipped with Pontryagin product, i.e. induced by pointwise
multiplication in K

2. Additively,
H(2K) = @ Zix)
neEQY
where

> QV:=expl(e)Ntis the unit lattice of a maximal torus T C K
> x, is represented by an affine Schubert variety



Two important spaces

(2) G/B, the flag variety of G

Facts
1. Additively,
H*(G/B) = €P Z(ow)
weW
where

» W is the Weyl group of G
» o, is represented by a Schubert variety

2. m(G/B) ~ QY (" K is simply connected)

= QH*(G/B) := H*(G/B) ® Z[m2(G/B)]



Two important spaces

(2) G/B, the flag variety of G
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1. Additively,
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Goal of my talk

» Recall ring homomorphisms

& : H_,(QK) — QH*(G/B)
which appear in three different contexts.

» Discuss their relationship.

» Give applications.



(1st map) A theorem of Peterson/Lam-Shimozono

Theorem (Peterson/Lam-Shimozono)
The following map is a ring homomorphism:

Ogle 1 HL(QK) — QH*(G/B)

X, = qWEl(u)gW#
where Q' — W : 1 — w,, is defined as follows:

» Pick a Weyl chamber A C t.




(1st map) A theorem of Peterson/Lam-Shimozono

Theorem (Peterson/Lam-Shimozono)
The following map is a ring homomorphism:

Ogle 1 H.L(QK) — QH*(G/B)

—1
X, — gk (“)UWM

where Q' — W : 1+ w,, is defined as follows:

» Pick a Weyl chamber A C t.

» Move each p € QV slightly, .
in the direction determined
by a vector lying in the .

interior of A.




(1st map) A theorem of Peterson/Lam-Shimozono

Theorem (Peterson/Lam-Shimozono)
The following map is a ring homomorphism:

Ogle 1 H.L(QK) — QH*(G/B)

—1
X, — gk (“)UWM

where Q' — W : 1+ w,, is defined as follows:

» Pick a Weyl chamber A C t.

» Move each p € QV slightly, .
in the direction determined )
by a vector lying in the .
interior of A.

» Then w, € W is defined to .
be the unique element such .

that 1/ € w, - A.




(1st map) A theorem of Peterson/Lam-Shimozono

Corollary

P/LS : : . .
(DG/B becomes an isomorphism after localizing those x,, with w,, = e.

Hence, the structure constants for H,(Q2K) and QH*(G/B) are identified.

Remark

1. The theorem was first stated by Peterson in his famous MIT lecture
in 1997.

2. His proof remains unpublished.
3. A published proof is given by Lam-Shimozono (2010).

4. Their proof requires good knowledge of the ring structures on both
the source and target of the map, e.g. quantum Chevalley formula
for G/B.

5. There is an analogue for G/P (later).



(2nd map) Seidel representations

Let (X, w) be a compact symplectic manifold.
Denote by Ham(X, w) the group of Hamiltonian diffeomorphisms of
(X, w).

Seidel (1997) constructed a group homomorphism
dx : mo(QHam(X, w)) — (QH*(X))™

where

» the group structure on mo(QQHam(X, w)) is given by pointwise
multiplication in Ham(X, w),

> (QH*(X))™ is the multiplicative subgroup of invertible elements of
QH*(X).



(2nd map) The construction

f e QHam(X,w) ~-

Pr(X) 1= CxXUCxX [ (z.x)~ (21 F() %)
\: 2
Pl = cuc [/ z~z?

Known: P¢(X) is a Hamiltonian fibration over P! with fibers (X, w).

holo sectlon i cont.by.holo.sect.
=T &
PD(e;)

where {e;}, {e'} are dual bases of H*(X).

Definition



(2nd map) Parametrized version
(X, w) and Ham(X, w) as before

Savelyev (2008) defined a ring map extending Seidel’'s map
®x : H_.(QHam(X, w)) — QH*(X)

f:T—= QHam(X,w) ~~

Pr(X) = CxTxXUCXTxX [ (z7,%)~ (217 6(F) %)
\: \
]P)lxr = CXFUCXF/(Zvv)N(Zilay)

P¢(X) can be considered as a smooth family {P¢ (X)},cr of Hamiltonian
fibrations parametrized by TI'.

Definition

holo. section i cont.by.holo.sect.
[f] Z#{( Y, in P (X) )}eq
PD(e;)



(2nd map) Savelyev's computation
Suppose K ~ (X, w) in the Hamiltonian fashion.
= 3 group homomorphism K — Ham(X, w).
Define
®3/° = dxoa
where a1 H_.(QK) — H_.(QHam(X, w)) is the induced map.
Theorem (Savelyev 2010)

For any p € QY such that w, is the longest element,

q,g//fg(xu) — g (). PD[pt] + (higher terms).




(3rd map) Moment correspondences

Let (X, w) be a compact monotone Hamiltonian K-manifold with

moment map u, i.e.
K™ (X, w) & e

Weinstein (1981) constructed a Lagrangian correspondence, called the
moment correspondence:

C = {(k,u(x),x, k-x)| ke K,xe X} C(TK)” x X~ x X
(Here, T*K ~ K x £V by left translation.)
Key property

The geometric composition T K o C is embedded and equal to the
diagonal A € X~ x X.



(3rd map) Quilted Floer theory

By the machinery developed by Ma'u-Wehrheim-Woodward and
Evans-Lekili, C induces an A, homomorphism

SO CWHT;K, TK) — CF*((T;K,C),(T;K, C)).

It is defined by counting pseudoholomorphic quilts:

Xout

where xj, and x,,; are Hamiltonian chords for the input and output of ®¢



(3rd map) Quilted Floer theory

The cohomology groups of the source and target of ¢ are not new:

H*(¢
HW*(T:K, T:K) % HF*((T¢K, C),(TZK, C))

Wehrheim-Woodward /
Lekili-Lipyanskiy

HF*(A, A)
Piunikhin-

~ | Salamon-
—lSchwarz

H_(QK) QH*(X)

: Abbondandolo-
Abouzaid Schwarz

~ ~



(3rd map) Quilted Floer theory

The cohomology groups of the source and target of ¢ are not new:

H*(¢
HW*(T:K, T:K) % HF*((T¢K, C),(TZK, C))

Wehrheim-Woodward /
Lekili-Lipyanskiy
Abouzaid Abbondandolo-

Schwarz HF* A A)
= = Piunikhin-
~ | Salamon-
—lSchwarz
H_.(2K) QH*(X)

Define
OMWWIEL . f (QK) — QH*(X)

to be the composition of the above maps.



(3rd map) Computation for X = G/B

Theorem (Bae-C.-Leung 2021)
For any p € QV,

HMWW/EL

G/B (xu) = qw“_l(“)awu + (higher terms)

Moreover,

(i) there are no higher terms for x, with w,, = e.

(ii) CDIC\’./I/V};W/EL becomes an isomorphism after localizing those x,, in (i)

= recovers the corollary of Peterson/Lam-Shimozono's theorem.



P/LS ? .S/S ? . MWW/EL
e =5 = Pgs

Theorem (C.)

For any compact monotone (X, w), q>f</5 — ¢$‘</’WW/EL

Proof
» Consider the closed string analogue for cbi\(/’WW/EL

» A cobordism argument:

1

its projection into K

1
X~ x X

1 is an element of the

hy X h> ! input cycle f of QK
K A
a
a _\y \T\ N
holo. section MWW/EL
# s in Pr,(X) ¢X,closed © ASclosed([f])
hy ha



Proof (cont.)

» The result follows from

1.
hy
holo. section cobordant holo. section holo. sphere
N ~ . P X q .
in P (X) in Pg (X) evp N evq in X
Y v
h1 ha
h2
2.

AS MWW /EL
Ho (QK) 220 HW (T K, TAK) =22 QH*(X)
H_.(inc.) Abouzaid ¢ Ritter-Smith dual of *

MWW /EL
AS closed

H_ (LK) —22=0 SH*(T*K) =205 QH*(X~ x X)



P/LS ? .S/S L MWW/EL
ch/B - CDG/B - q)G/B

Recall we have

S .
q%//% = ¢Z% + (higher terms)

Theorem (C.)

P/LS _ . S/S
q)G/P = q)G/P

Remark
1. New features:
(i) A higher terms
(i) extended to G/P
2. The proof is independent of that of Lam-Shimozono
= recovers Peterson/Lam-Shimozono's theorem.



Parabolic case
Following Lam-Shimozono's paper, define (W*),r C QY to be {¢}:

Define ®¢// : H_.(2K) — QH*(G/P) by
—1 v
<I>P/LS( )= q"'n (“)JFQP(T.,VH JIBS (WP)af
/P 0 otherwise
where
> Qp is the coroot lattice of P

» W, is the minimal length representative of w,, in W /Wp.

In the same paper, Lam-Shimozono proved that CIZ'CP;//;5 is a ring map.



Step 1: Finding a specific J

Theorem (Pressley-Segal)
1. QK is an infinite-dimensional complex manifold.
2. 3 a natural bijection

_ holo. _ [ holo principal G-bd| P¢ over I' x P!
{f a QK} - {w/ a trivialization over I' x (P! \ {0}) -

Given a holomorphic map f : I — QK, put Ps(G/P) := Pr x¢ G/P.
P¢(G/P) is the holomorphic analogue of the family of Hamiltonian
fibrations defined earlier. It is a smooth projective variety if I is.

Fact
Every x,, is represented by a holomorphic cycle f, : T, — QK such that

1. T, has a B™-action (B~ := opposite Borel)
2. f, is B™-equivariant

3. Pt,(G/P) has a B™-action

4

. the associated trivialization over I, x (P! \ {0}) is B -equivariant.



Step 1: Finding a specific J

Define D := {oo} x [, x G/P C Pf,(G/P) wrt the associated

trivialization.

/

ev
M(f,, B) == Mo1(Pr,(G/P), B) Xev DmG/P

Mo1(Py,(G/P), B) ——— Pr,(G/P)



Step 1: Finding a specific J

Define D := {oo} x [, x G/P C Pf,(G/P) wrt the associated

trivialization.

/

ev
M(fﬁ“ﬁ) = movl(Pfu(G/P%B) Xev DMG/P

Mo1(Py,(G/P), B) ——— Pr,(G/P)

S/S A vir
= |00 = Y. eVl [M(f,B)]
ﬁsclection




Step 2: J is regular!

Key lemma
For any section class 3, M(f,, 3) is an orbifold of expected dimension.

Proof

| 4
>

>

Notice T " P (G/P)and T " D = T " M(f,, B).

It suffices to show all T-invariant stable maps € M(,, 3) are
smooth points.

They are T-invariant sections u lying over some v € I';Lr, possibly
with bubbles which lie in a finite disjoint union of fibers ~ G/P.

G /P is convex => can ignore these bubbles.
Verify H'(P*; u* TP, (G/P)) = 0 directly, using the SES

0— u" TP (G/P) = u" TP, (G/P) — T,, — 0.



Step 3: The computation

Bott-Samelson
variety

e/ BT -equiv. lB—equiv.

M(f, B) =D =Ty x G/P—=F G/P



Step 3: The computation

Bott-Samelson
variety

ev/ __B-equiv. lB—equiv.
M(fiB) = D =Ty x G/P—3G/P
Fact
B~-orbit h B-orbit => M(f,,, 3) Xe, (BS var.) is regular

Advantage of our J
Tc =B NB= Tc " M(fy, 8) Xev (BS var.)



Step 3: The computation

Bott-Samelson
variety

ev/ __B-equiv. lB—equiv.
M(fiB) = D =Ty x G/P—3G/P
Fact
B~-orbit h B-orbit => M(f,,, 3) Xe, (BS var.) is regular

Advantage of our J
Tc=B NB= Tc " M(fy, 8) Xev (BS var.)

= 0-dim. component C {T¢-invariant sections}



Step 3: The computation

Bott-Samelson
variety

ev/ __B-equiv. lB—equiv.

M(f, 3) =D =T x G/P—F G/P

Fact
B~-orbit h B-orbit => M(f,,, 3) Xe, (BS var.) is regular
Advantage of our J
Tc=B NB= Tc " M(fy, 8) Xev (BS var.)
= 0-dim. component C {T¢-invariant sections}
— complete the proof by finding these sections
Remark

The ideas for this step are mostly due to Fulton-Woodward who proved
quantum Chevalley formula.



Application 1
Theorem A

dimker (m.(K) ® Q — m.(Ham(G/P)) ® Q) < rank(Lp/Z(Lp))

where
» [pis the Levi factor of P
» Z(Lp) is the center of Lp.

Example

* ¥

C SL(4,C)

o
Il
* % % %



Application 1
Theorem A

dimker (m.(K) ® Q — m.(Ham(G/P)) ® Q) < rank(Lp/Z(Lp))

where
» [pis the Levi factor of P
» Z(Lp) is the center of Lp.

Example

* ¥

C SL(4,C)

o
Il
* % % %

* %
* %

= Lp= and rank(Lp/Z(Lp)) =1



Application 1

Corollary
T+«(K) ® Q = m.(Ham(G/B)) ® Q is injective.

Remark

For P = B, Kedra proved a much stronger result based on the work of
Reznikov, Kedra-McDuff, Gal-Kedra-Tralle:

H*(BHomeo(G/B); Q) — H*(BK;Q) is surjective.

His result does not hold for general G/P.



Application 2

Let (X, w) be a symplectic manifold.

Let {¢+} be a path or loop in Ham(X, w).

There exists a unique family {H; : X — R}, called the normalized
generating Hamiltonian of {¢;}, satisfying

ot = Xy, 00t
fX HtWtop = 0

Define the L>°-Hofer norm of {y;}

1
LT ({¢:}) ::/0 m)?th dt.

Theorem (Hofer/Lalonde-McDuff)
The function

dT (g0, 1) = inf{LT({¢:})| {¢¢} joins @o and ©1}

is a metric on Ham(X, w).



Application 2

A variational problem
Given a homology class A € H.(QHam(X, w)), minimize

mrax Ltof

over all smooth cycles f : I — QHam(X, w) representing A.



Application 2
Define o : H.(QK) — H.(QHam(G/P)) to be the natural map.

Theorem B

For any i € (WF).r € QY. There exists a constant Cu such that for any
smooth cycle f : I — QHam(G/P) representing a(x,),

mlgzle+ of > C,.

Moreover, C, is attained by an explicit Bott-Samelson cycle.

Remarks

» The key ingredient for the proof of Theorem A and B is the

computation of CDZ//‘;

» The arguments are standard, e.g. Seidel/ Akveld-Salamon/
McDuff-Slimowitz.

» Notice Savelyev has proved Theorem B for those y such that

d)g//‘;(xu) was computed by him (up to higher terms).



Thank you!



