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Some notations

Let
K : compact simply-connected Lie group
G : the complexification of K
B : a Borel subgroup of G

Example
K = SU(n), the special unitary group
G = SL(n,C), the special linear group
B = {upper triangular matrics ∈ SL(n,C)}



Two important spaces

(1) ΩK , the based loop space of K

Facts
1. H∗(ΩK ) is a ring

I equipped with Pontryagin product, i.e. induced by pointwise
multiplication in K

2. Additively,
H∗(ΩK ) =

⊕
µ∈Q∨

Z〈xµ〉

where
I Q∨ := exp−1(e) ∩ t is the unit lattice of a maximal torus T ⊂ K
I xµ is represented by an affine Schubert variety



Two important spaces

(2) G/B , the flag variety of G

Facts
1. Additively,

H∗(G/B) =
⊕
w∈W

Z〈σw 〉

where
I W is the Weyl group of G
I σw is represented by a Schubert variety

2. π2(G/B) ' Q∨ (∵ K is simply connected)

=⇒ QH∗(G/B) := H∗(G/B)⊗ Z[π2(G/B)]

=
⊕
µ∈Q∨
w∈W

Z〈qµσw 〉
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Goal of my talk

I Recall ring homomorphisms

Φ : H−∗(ΩK )→ QH∗(G/B)

which appear in three different contexts.
I Discuss their relationship.
I Give applications.



(1st map) A theorem of Peterson/Lam-Shimozono
Theorem (Peterson/Lam-Shimozono)
The following map is a ring homomorphism:

Φ
P/LS
G/B : H−∗(ΩK ) → QH∗(G/B)

xµ 7→ qw
−1
µ (µ)σwµ

where Q∨ →W : µ 7→ wµ is defined as follows:

I Pick a Weyl chamber Λ ⊂ t.
Move each µ ∈ Q∨ slightly,
in the direction determined
by a vector lying in the
interior of Λ.
Then wµ ∈W is defined to
be the unique element such
that µ′ ∈ wµ · Λ.

Q∨ = { }

µ
µ′
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(1st map) A theorem of Peterson/Lam-Shimozono

Corollary
Φ
P/LS
G/B becomes an isomorphism after localizing those xµ with wµ = e.

Hence, the structure constants for H∗(ΩK ) and QH∗(G/B) are identified.

Remark
1. The theorem was first stated by Peterson in his famous MIT lecture

in 1997.
2. His proof remains unpublished.
3. A published proof is given by Lam-Shimozono (2010).
4. Their proof requires good knowledge of the ring structures on both

the source and target of the map, e.g. quantum Chevalley formula
for G/B .

5. There is an analogue for G/P (later).



(2nd map) Seidel representations

Let (X ,w) be a compact symplectic manifold.
Denote by Ham(X ,w) the group of Hamiltonian diffeomorphisms of
(X ,w).

Seidel (1997) constructed a group homomorphism

ΦX : π0(ΩHam(X ,w))→ (QH∗(X ))×

where
I the group structure on π0(ΩHam(X ,w)) is given by pointwise

multiplication in Ham(X ,w),
I (QH∗(X ))× is the multiplicative subgroup of invertible elements of

QH∗(X ).



(2nd map) The construction

f ∈ ΩHam(X ,w)  

Pf (X ) := C× X ∪ C× X / (z , x) ∼ (z−1, f ( z
|z|) · x)

↓ ↓

P1 := C ∪ C/ z ∼ z−1

Known: Pf (X ) is a Hamiltonian fibration over P1 with fibers (X ,w).

Definition

ΦX ([f ]) :=
∑
i

#

 holo. section
in Pf (X )

PD(ei )

 e iqcont.by.holo.sect.

where {ei}, {e i} are dual bases of H∗(X ).



(2nd map) Parametrized version
(X ,w) and Ham(X ,w) as before
Savelyev (2008) defined a ring map extending Seidel’s map

ΦX : H−∗(ΩHam(X ,w))→ QH∗(X )

f : Γ→ ΩHam(X ,w)  

Pf (X ) := C× Γ× X ∪ C× Γ× X / (z , γ, x) ∼ (z−1, γ, fγ( z
|z|) · x)

↓ ↓

P1 × Γ := C× Γ ∪ C× Γ/ (z , γ) ∼ (z−1, γ)

Pf (X ) can be considered as a smooth family {Pfγ (X )}γ∈Γ of Hamiltonian
fibrations parametrized by Γ.

Definition

ΦX ([f ]) :=
∑
i

#


γ, holo. section

in Pfγ (X )
PD(ei )

 e iqcont.by.holo.sect.



(2nd map) Savelyev’s computation
Suppose K

y
(X ,w) in the Hamiltonian fashion.

=⇒ ∃ group homomorphism K → Ham(X ,w).
Define

Φ
S/S
X := ΦX ◦ α

where α : H−∗(ΩK )→ H−∗(ΩHam(X ,w)) is the induced map.

Theorem (Savelyev 2010)
For any µ ∈ Q∨ such that wµ is the longest element,

Φ
S/S
G/B(xµ) = qw

−1
µ (µ) · PD[pt] + (higher terms).

In particular, α(xµ) 6= 0 ∈ H∗(ΩHam(G/B)) for these µ.



(3rd map) Moment correspondences

Let (X ,w) be a compact monotone Hamiltonian K -manifold with
moment map µ, i.e.

K
y

(X ,w)
µ−→ k∨

Weinstein (1981) constructed a Lagrangian correspondence, called the
moment correspondence:

C := {(k , µ(x), x , k · x)| k ∈ K , x ∈ X} ⊂ (T ∗K )− × X− × X

(Here, T ∗K ' K × k∨ by left translation.)

Key property
The geometric composition T ∗e K ◦ C is embedded and equal to the
diagonal ∆ ⊂ X− × X .



(3rd map) Quilted Floer theory

By the machinery developed by Ma’u-Wehrheim-Woodward and
Evans-Lekili, C induces an A∞ homomorphism

ΦC : CW ∗(T ∗e K ,T
∗
e K )→ CF ∗((T ∗e K ,C ), (T ∗e K ,C )).

It is defined by counting pseudoholomorphic quilts:

xout xin

T ∗e K

T ∗e K

X− × X T ∗KC

where xin and xout are Hamiltonian chords for the input and output of ΦC



(3rd map) Quilted Floer theory

The cohomology groups of the source and target of ΦC are not new:

HW ∗(T ∗e K ,T
∗
e K ) HF ∗((T ∗e K ,C ), (T ∗e K ,C ))

H∗(ΦC )

Abbondandolo-
Schwarz

'
Abouzaid

'

H−∗(ΩK )

Wehrheim-Woodward/
Lekili-Lipyanskiy

HF ∗(∆,∆)

'

Piunikhin-
Salamon-
Schwarz

QH∗(X )

'

Define
Φ
MWW /EL
X : H−∗(ΩK )→ QH∗(X )

to be the composition of the above maps.
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(3rd map) Computation for X = G/B

Theorem (Bae-C.-Leung 2021)
For any µ ∈ Q∨,

Φ
MWW /EL
G/B (xµ) = qw

−1
µ (µ)σwµ + (higher terms)

Moreover,
(i) there are no higher terms for xµ with wµ = e.

(ii) Φ
MWW /EL
G/B becomes an isomorphism after localizing those xµ in (i)

=⇒ recovers the corollary of Peterson/Lam-Shimozono’s theorem.



Φ
P/LS
G/B

?
= Φ

S/S
G/B

?
= Φ

MWW /EL
G/B

Theorem (C.)
For any compact monotone (X ,w), Φ

S/S
X = Φ

MWW /EL
X

Proof
I Consider the closed string analogue for Φ

MWW /EL
X

I A cobordism argument:

T ∗KX− × X C

a

h1 × h2

its projection into K
is an element of the
input cycle f of ΩK

a→ 0

#

{(
γ, holo. section

in Pfγ (X )
h2h1

)}
a→ +∞

Φ
MWW /EL
X ,closed ◦ ASclosed([f ])



Proof (cont.)

I The result follows from
1.

{
holo. section
in Pfγ (X )

h2h1

}
cobordant∼

{
pholo. section

in Pfγ (X )

}
evp×evq

q
holo. sphere

in X

h1

h2


2.

H−∗(ΩK ) HW ∗(T ∗e K ,T
∗
e K ) QH∗(X )

Abouzaid Ritter-Smith

H−∗(LK ) SH∗(T ∗K ) QH∗(X− × X )

H−∗(inc.)

ASopen Φ
MWW/EL
X,open

OC dual of ?

ASclosed
Φ

MWW/EL
X,closed



Φ
P/LS
G/B

?
= Φ

S/S
G/B = Φ

MWW /EL
G/B

Recall we have
Φ
S/S
G/B = Φ

P/LS
G/B + (higher terms)

Theorem (C.)
Φ
P/LS
G/P = Φ

S/S
G/P

Remark
1. New features:

(i) 6 ∃ higher terms
(ii) extended to G/P

2. The proof is independent of that of Lam-Shimozono
=⇒ recovers Peterson/Lam-Shimozono’s theorem.



Parabolic case
Following Lam-Shimozono’s paper, define (W P)af ⊂ Q∨ to be { }:

Define Φ
P/LS
G/P : H−∗(ΩK )→ QH∗(G/P) by

Φ
P/LS
G/P (xµ) :=

{
qw
−1
µ (µ)+Q∨P σw̃µ µ ∈ (W P)af

0 otherwise

where
I Q∨P is the coroot lattice of P
I w̃µ is the minimal length representative of wµ in W /WP .

In the same paper, Lam-Shimozono proved that Φ
P/LS
G/P is a ring map.



Step 1: Finding a specific J
Theorem (Pressley-Segal)

1. ΩK is an infinite-dimensional complex manifold.
2. ∃ a natural bijection{

f : Γ
holo.−−−→ ΩK

}
'
{
holo principal G -bdl Pf over Γ× P1

w/ a trivialization over Γ× (P1 \ {0})

}/
∼

Given a holomorphic map f : Γ→ ΩK , put Pf (G/P) := Pf ×G G/P .
Pf (G/P) is the holomorphic analogue of the family of Hamiltonian
fibrations defined earlier. It is a smooth projective variety if Γ is.

Fact
Every xµ is represented by a holomorphic cycle fµ : Γµ → ΩK such that
1. Γµ has a B−-action (B− := opposite Borel)
2. fµ is B−-equivariant
3. Pfµ(G/P) has a B−-action
4. the associated trivialization over Γµ × (P1 \ {0}) is B−-equivariant.



Step 1: Finding a specific J

Define D := {∞} × Γµ × G/P ⊂ Pfµ(G/P) wrt the associated
trivialization.

evM0,1(Pfµ(G/P), β) Pfµ(G/P)

D ' Γµ × G/P

fiber prod.

M0,1(Pfµ(G/P), β)×ev DM(fµ, β) :=
pr

G/P

ev′

=⇒ Φ
S/S
G/P(xµ) =

∑
β section

class

ev′∗[M(fµ, β)]vir
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Step 2: J is regular!

Key lemma
For any section class β,M(fµ, β) is an orbifold of expected dimension.

Proof
I Notice T

y
Pfµ(G/P) and T

y
D =⇒ T

yM(fµ, β).
I It suffices to show all T -invariant stable maps ∈M(fµ, β) are

smooth points.
I They are T -invariant sections u lying over some γ ∈ ΓT

µ , possibly
with bubbles which lie in a finite disjoint union of fibers ' G/P .

I G/P is convex =⇒ can ignore these bubbles.
I Verify H1(P1; u∗TPfµ(G/P)) = 0 directly, using the SES

0→ u∗TP(fµ)γ (G/P)→ u∗TPfµ(G/P)→ TγΓµ → 0.



Step 3: The computation

pr
M(fµ, β) D ' Γµ × G/P G/P

ev′

Bott-Samelson
variety

B−-equiv. B-equiv.

B−-orbit t B-orbit =⇒M(fµ, β)×ev (BS var.) is regular

TC = B− ∩ B=⇒ TC
yM(fµ, β)×ev (BS var.)ariant sectionson

=⇒ 0-dim. component ⊆ {TC-invariant sections}
=⇒ complete the proof by finding these sections

The ideas for this step are mostly due to Fulton-Woodward who proved
quantum Chevalley formula.
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Application 1
Theorem A

dim ker (π∗(K )⊗Q→ π∗(Ham(G/P))⊗Q) 6 rank(LP/Z (LP))

where
I LP is the Levi factor of P
I Z (LP) is the center of LP .

Example

P :=



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗


 ⊂ SL(4,C)

=⇒ LP =



∗ ∗
∗ ∗

∗
∗


 and rank(LP/Z (LP)) = 1



Application 1
Theorem A

dim ker (π∗(K )⊗Q→ π∗(Ham(G/P))⊗Q) 6 rank(LP/Z (LP))

where
I LP is the Levi factor of P
I Z (LP) is the center of LP .

Example

P :=



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗


 ⊂ SL(4,C)

=⇒ LP =



∗ ∗
∗ ∗

∗
∗


 and rank(LP/Z (LP)) = 1



Application 1

Corollary
π∗(K )⊗Q→ π∗(Ham(G/B))⊗Q is injective.

Remark
For P = B , Kędra proved a much stronger result based on the work of
Reznikov, Kędra-McDuff, Gal-Kędra-Tralle:

H∗(BHomeo(G/B);Q)→ H∗(BK ;Q) is surjective.

His result does not hold for general G/P .



Application 2
Let (X ,w) be a symplectic manifold.
Let {ϕt} be a path or loop in Ham(X ,w).
There exists a unique family {Ht : X → R}, called the normalized
generating Hamiltonian of {ϕt}, satisfying{

ϕ̇t = XHt ◦ ϕt∫
X Htw

top = 0

Define the L∞-Hofer norm of {ϕt}

L+({ϕt}) :=

∫ 1

0
max
X

Ht dt.

Theorem (Hofer/Lalonde-McDuff)
The function

d+(ϕ0, ϕ1) := inf{L+({ϕt})| {ϕt} joins ϕ0 and ϕ1}

is a metric on Ham(X ,w).



Application 2

A variational problem
Given a homology class A ∈ H∗(ΩHam(X ,w)), minimize

max
Γ

L+ ◦ f

over all smooth cycles f : Γ→ ΩHam(X ,w) representing A.



Application 2
Define α : H∗(ΩK )→ H∗(ΩHam(G/P)) to be the natural map.

Theorem B
For any µ ∈ (W P)af ⊂ Q∨. There exists a constant Cµ such that for any
smooth cycle f : Γ→ ΩHam(G/P) representing α(xµ),

max
Γ

L+ ◦ f > Cµ.

Moreover, Cµ is attained by an explicit Bott-Samelson cycle.

Remarks
I The key ingredient for the proof of Theorem A and B is the

computation of Φ
S/S
G/P .

I The arguments are standard, e.g. Seidel/ Akveld-Salamon/
McDuff-Slimowitz.

I Notice Savelyev has proved Theorem B for those µ such that
Φ
S/S
G/B(xµ) was computed by him (up to higher terms).



Thank you!


