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In this contribution, emphasizing new developments, we plan
to review the group manifold-rheonomic symmetry approach to super-
gravityl’2 which has already been presented to other conferences?.
In particular, we want to emphasize the central role of the mathe-
matical concept of the graded Lie algebra cohomology class, which
gives a constructive criterion for Lagrangians and which was not
discussed in previous papers. The cohomological foundations of
geometrical theories will be fully explained in a forthcoming

paper"”.

The machinery of a geometrical field theory on a (super)
group manifold is introduced as follows. Let G be a (super) group
and Q&-its (graded) Lie algebra. A basis of d:k is given by the
generators Tp (A =1, ..., n) which satisfy:

LT >T6} - < :BTL v

On the manifold G, whose co-ordinates yM are the group para-
meters themselves, we consider a di —valued l-form (the pseudo-
connection):

}L _ }LA 'T‘A _ dgH/&;A ,T.A

which will be the fundamental field of the theory.

(2)
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In order to write down an action for uA we have to consider
two kinds of objects which can be constructed out of it. One is
the curvature 2-form R:

(3)

R = d/Uv +/J//\/A.,=—'——> R,A'TA= R
A A : C
d/L(A-t- é:i— C:.BC lU-B/\}L

(when R = 0 we say that U is a left- -invariant l-form); the other is
the cochain vi. A cochain Vi is a p-form with an index i in some
finite-dimensional representation D(Tp) of ai-such that it admits
the following expansion
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where VKl...A are constant numbers. With respect to this defini-
tion we remark that any p-form can be expanded in the basis of the
YA (which is complete) but in general its components will be func-
tions of the yM co-ordinates and not constants, as we have assumed
to be the case for the cochain. We can perform two operations on
the cochains: one is the covariant derivative which maps a p co-
chain into a p + 1 cochain

ERRN S dv"+/*A’\DCR)f:jp5 )

where D(TA) j 1is the matrix representation of the generator Tj;
the other operation is the contraction A which maps p cochains

into (p - 1) cochains. For every tangent vector TA such that

A, A
M (‘T'B)z%b ©

and for every cochain (4) we define:
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Combining the contraction and the covariant derivative we also ob-
tain a third operation which does not change the degree of the co-
chain and which is called the Lie derivative:

Lyvt = vt + v(a¥) ®

These operations have several important formal properties and they
all have a deep geometrical meaning which is basic to the discussion
of Chevalley cohomology theory®:; more will be said about them in

a forthcoming paper“; here we just note that for any vl we get

VVut = RP/‘\:DCTA)}:J' VS )

With these ingredients the action of our typical field theory will
be the following:

A
ALy = Lm R LAY L] ao

where the integration domain Mp+2 is an arbitrary (p + 2) dimen-
sional hypersurface of the manifold G, and the variational principle
requires [u:]to be an extremum independently of the particular
choice of Mp42. From (10) we get the following equation of motion

B8
VVA + C—)AB R /\AVB = 0 (11)

which is an equation for (p + 1)-forms holding on the whole G-mani-
fold. This latter statement means that thg+proiection of»(lO) on
any combination of (p + 1) tangent vectors Tg;,TC,s «-.» Tp+1 is

an equation of motion
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WWp to this point v, is fully arbitrary and therefore there is no
criterion for selecting a particular Lagrangian. The criterion
comes from the physical interpretation of the group G. In a theory
which aims to be an extension of general relativity there must be
a vacuum solution which corresponds to a flat space (= space with-
out curvature) admitting symmetry under a group of motioms. Exci-
ted states are the deformations of this flat space and are no
longer symmetrical under the original group. The idea of geome-
trical theories on group manifolds is that G is indeed the group
of motions of the vacuum which therefore corresponds to a left-
invariant pA (RA = 0). Such a physical requirement has the far-
reaching consequence that RA = 0 must be a solution of (11). This
means

. A
N ¥ = 0 4% K=o (13)
A
Now it is remarkable that (13) is preciyely the definition of a
cocycle in Chevalley cohomology theory.
A cocycle is, in fact, a cochain which is covariantly closed,
where closed means that its covariant derivative is zero modulo
curvature. This immediately leads us into the realm of cohomology.

In fact, calling coboundary an wp cochain which is covariantly ex-
act, namely, is the covariant derivative of some other cochain:

oOA= VCPA (14)

because of (9), we find that a coboundary is always a cocycle

8 B . RE
Vo= VW= = CpaRagg=o tg 0 o9
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but the reverse is not always true. The equivalence classes of
cocycles of degree p modulo the coboundaries of the same degree
are called HP(G,D), the pth cohomology group of'(E; in the D re-
presentation (in our case D is the coadjoint representation).
These cohomology classes are in a finite and small number, and
depend entirely on the structure of the (super) group. For in-
stance, a fundamental theorem® states that for any faithful
representation of G there are no non-trivial cohomology classes
if G is semi-simple. Now it is of the utmost importance that the
action (10) depends only on the cohomology class and not on the
particular cocycle representing it. In fact, 1if to vy, We add a
coboundary

/
J)A =))A+V$?A (16)

the new action is

VQ l[/w] = (/4 [/C] + KA’\V‘;,@ (17)

Hetg

where the second term on the right-hand side of (17) is, due to
the Bianchi identity VRA = 0, a pure divergence:

SRAAV‘-PA = SO‘ CRAACPA) (18)

and therefore does not contribute to the equations of motion.

Hence we conclude that the possible geometrical theories which can
be constructed with a supergroup G are in one-to-one correspondence
with its cohomology classes. In particular, the already quoted
theorem on semi-simple groups would rule out theories based on
them. This difficulty can be overcome with the introduction of a
larger cohomology theory which we shall discuss elsewhere“. For
the purpose of this talk, we limit our discussion to the case of

a non-semi-simple G which already includes the examples of gravity,
ordinary D = 4 supergravity, and of the five-dimensional theory we
shall discuss in the second part of this paper.
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Once the correspondence between Lagrangians and cohomology
has been established, a further restriction on the domain of pos-
sible theories comes from the observed fact that reasonable theo-
ries, although not invariant under the full G. are, however, ex-—
actly gauge invariant under some subgroup HC G. 1In most cases,

H is the Lorentz group. Therefore, besides being a representative
of a cohomology class, Vp must be such that the action (10) is in-
variant under gauge transformations of H:

€K=O
€H=;Eo

(19)

)uf — /uA ¢ ve

(In (19) we have called H an index belonging te the subalgebra'+4
of and K an index belonging to the complement IK of f4in @- :
= H@“{ ). Again the Chevalley theory comes to rescue us
by supplying the concept of “{-orthogonal d}r cohomology classes.

By definition, a cohomology class is orthogonal to the subal-

gebra if, for all its representatives Vys We have

_JiJ }i\==»c9

l~H %i =0

,Lé r’;e/H

(20)

In a forthcoming paper it will be shown that the orthogonality of
vp is sufficient to guarantee the gauge invariance of the action
under H so that we can conclude by stating the following: 'For
any pair (G,H) of a (super) group G and one of its sub-groups

the possible geometrical theories are in one—to—one correspondence
with thezﬂl-orthogonal cohomology classes of ",

When vy is a cocycle its covariant derivative must be, by
definition, proportional to the curvature and indeed we can show

that :
B

(21)

Therefore, Eq. (l1) becomes
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which, when projected on all possible combinations of tangent
vectors, becomes an algebraic equation for the intrimsic curvature
components:

RA

' BC

A -_ -3 (23)
R

The essential features of the field theory described by our action
(10) are determined by what sort of relations among RABC we get
from (22). 1In order to discuss the various cases let us write

the (graded) Lie algebra (}-in the following way:

G=HekK=HoIle o (24)

where HJ is the subalgebra and the complemau:”<'has been further
decomposed into two subspaces which we shall call Inner and Outer,
respectively.

First possibility

The only solution of (22) is RéBc = 0 for all values of A,
B,C. 1In this case, the theory contains only the vacuum RA = 0.
It is a trivial theory.

Second possibility

Equation (22) admits solutions with some RéBC # 0. In all
cases the theory is non-trivial but its properties are critically
dependent on how many and which ones are the independent intrinsic
component Rip~ parametrizing the most general solution of (22).

The reason is that any theory on a group manifold, described by an
action principle of type (10), being the action of a topological
invariant, is symmetrical under an infinitesimal general co-ordinate
transformation yM ‘> yM + gM. Such a transformation can be re-
written as the following shift of the pseudo-connection p# +—

> pA + Sut, where (see (2)):
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and

éA= %M A (26)
o

It is apparent from (25) that, if some components RéFle are de-
termined to be zero, the co-ordinate transformation in the cor-
responding direction actually becomes a gauge transformation (19).
Because of this, a theory based on an H-orthogonal cohomology class,
which is automatically H-gauge invariant, must be H-factorized,
namely (22) must imply:

A
H-factorization @ _H_,I R. =0 ‘L§ 7;6 H (27)

Therefore, for a geometrical theory based on vj of type (20), the
only non-vanishing components are those in the directions of |K .
However, not all these components are independent; we call II

(= inner) ,the space spanned by those directions of \K such that the
components of the curvature along them are independent. The com-
plementary space ©® (= outer) is such that all the curvature com—
ponents in such directions are just linear combinations of the
inner components:

A AIT B8
R CER -

oxX OX,8 I,I,

4

where X is any index, O belongs to®, I,, I, belong to II and

’}];1%2 are some constant coefficients.
] >
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Rheonomic symmetry

We say that a theory is rheonomic symmetrical when the subspace
II can be identified with space~time and ® is non-empty. Identifi-
cation with space-time means that II is spanned by the translation
generators whose number d matches the number of dimensions of the
Lorentz group SO(1,D - 1) contained in H. For example, in ordinary
D = 4 supergravity is the graded Poincaré algebra, W+ the SO(1,3)
Lorentz algebra and 'K =P & Q the direct sum of the trans-—
lations fP and of the supersymmetries . The theory is rheonomic
symmetrical because IL = JP which contains exactly four translations,
and @ =(Q .

When a theory is rheonomic symmetrical Eq. (25), supplemented
with Eq. (28), tells us that the restriction of theory to space-
time II contains as many extra symmetries besides H as there are
generators in @. In fact, every @general co-ordinate transforma-
tion is, due to (28), a transformation which involves only the space-
time fields and their derivatives. In the case of supergravity, as
discussed in Refs 2) and 3), the extra symmetry (rheonomic symmetry)
is supersymmetry: however, the fermionic character of the trans-
formation is accidental. In the D = 5 supergravity, which we shall
presently discuss, we encounter an example of bosonic rheonomic sym—
metry.

D = 5 supergravity

It is well known that a supersymmetric theory of gravitation
is 5-space-time dimensions besides the graviton must contain a com-—
plex spin 3/2 gravitino and also a spin-l1 field. This is in order
to match the number of physical degrees of freedom in the bosonic
and in the fermionic sector®. In fact, in D = 5 the graviton has
five and the vector field three degrees of freedom which together
make eight; on the other hand, eight is precisely the number of
polarizations of the complex gravitino. In view of this, the mini-
mal supergroup G apt to describe D = 5 supergravity must have the
following 24 generators:

Lorentz SO(:I,/.,) : J‘a@_ = 40 +
Translation T, M = 5 -+

nslations 5 fq (29
Internal l/L(iB  Z = 4 +
& =

Supersymmetry .{8 : =
Q

4
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It turns out that with these generators we can span the graded
Lie algebra of SU(2,2]1) 728 or of one of its contractions. If we
call w?P, v&, B, £, £ the components_of the pseudoconnection U, res-—

pectively, along J,,, Py, Z, Q, and Q the structure of SU(2,2|1) is
given by the Maurer-Cartan equations which we obtain when the cur-
vature is equal to zero in the following definitions:

RYZ dw®ts wo g +VEVE- L Ta e

R™= dV'_ W™ aVn,, - & EAT"E

R®= dB - + _§A§ (30)
= df + R ag +fVRRE % oS

§=gr

where N, is the flat metric of D = 5 Minkowski space and T, the

D = 5 gamma matrices ()op = i/4 [Fa, Tp]. SU(2,2 1) is a semi-simple
supergroup and therefore we do not expect non-trivial cohomology
classes. We can, however, obtain a non—-semi-simple supergroup with

the same number of generators performing the contraction. This is
done by redefining

wa@.;wa@-) V-a.,.-.- eV;a
=eB ; £=VEE; RELRE ;R eRY
R@=€R®) j’=\r€_'f

and performing the limit e + 0 in Eq. (30). In this way we obtain
the structural equations of the contracted non-semi-simple SU(2,2[1):
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where R? ab is the curvature of the S0(1,4) Lorentz subgroup r? ab _
dwdb + yac wbdn cd and DVva and D& are the SO(1l,4) covariant deri-
vatives of.\}-a and £, respectively:

@V&.—_- dva:— Vd/t] d ) @§ d§+ «w AZ_,, g_f

Given the group and its curvature, in order to write an action
we have to find the cohomology classes in the co-adjoint represen—
tation. To do this we have to know the form of the covariant de-—

rivative V in such a representation. Let then, the action written
as:

- (8 e _  _
An | f-3 KRR R g o
(32)

It follows that the covariant derivative of the adjoint cochain
(Vabs Vas Ve m) of degree p is the following one:

Vrig = Dogg Vg Voo -1 (gm0 75 )
@ Y, (33)
dvg

Q 3
Um = dm — ‘&—"4 r §AVQ+Z’L§AV®
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Now as the theory we want to construct has got to include
five-dimensional grav1tatlon, V,p must have, in addition, the
Einstein term €abij kvl/\ VIAVK (in fact the component of the pseu-
doconnection along the translation generator P, is to be identified
with the funfbein). This means that Vv should be the most general
cohomology class of order three containing the Einstein term. By
explicit computations we have determined the complete cohomology
group of order three of G = SU(2,2]1) orthogonal to the Lorentz
group H = SO(1,4) “. It turnms out to be composed of four elements
so that the most general v, which is a linear combination of these
elements, contains three arbitrary parameters (in fact the over-all
constant in front of the v is irrelevant). Explicitly we find

))ag_=—— &\/AV AV +(o£ 3>VA‘VLAB + K gAZ—rg_?AB

+ g gAr[’Q £ AV,
V= oy (£ 8AGEAB - £ E~EAE)
%__: < _g/\gx\% - 24 g/\l—'&_%/\\/q'

(34)
M = -3 6'-r

z;'@%,\v%\v
(3- 3% l,"mf,\v"f\'s .

&

+ =
<

<, z‘:&@@v‘,ﬁv
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In a recent paper9, two of us have studied the bosonic limit of
(34) as an independent theory. In this limit one sets & = O and
disregards the corresponding Q generators. In this way G becomes
IS0(1,4) ® U(1), namely, the direct product of the Poincaré group
in D = 5 times a U(1l) internal group. The mu1t1p1et V reduces to
Vg -€ VIAVIAVK + cost xV,AVp AB which is the most ge-
neral SO(l i§ orthogonal cohomology class of order three for
IS0(1,4) ® U(1). The corresponding action:

A = f{ R VAVARY &‘faéjjl% + m/’ﬁaf‘éA‘/l,AB} (35)

is, as it should be, gauge invariant under SO(l,4) but not under
U(l). From the equations of motion, however, it follows that the
theory is factorized and rheonomic symmetrical. In fact, the com-
ponents of the curvature along S0(1,4) are all zero while on the

other hand, we have:
&”"M’Fcf ®
R

e
R’-@c - e'%t N\b/m”lcm,e ‘P9

a o o ®
R'Q'm= et i R@ (36)
Ri&@m: ©

g2 s abe *’t
R ok = et €% R g mip

These equations tell us that the independent curvature components

are Rg)pq and R pq. All the other components can be expressed in
terms of these. Such an occurrence is indeed what we named rheonomic
symmetry and it guarantees that the original theory (35) restricted
to the inner subspace II (spanned by the 5V 2) admits an extra

U(1) symmetry whose infinitesimal form is:



184 R.D'AURIA ET AL.

DV b x €®VERTY ﬂzak

B - de® t-
® bxs
<é)(&;12:= Ch’ﬁt-)< & 'VF a5t Sf‘ 77 A%'?%U

(37)

The meaning of this symmetry transformation becomes apparent when
one turns from the first to the second order formalism for the
space-time restriction of the theory (35). The transition to the
second order description is obtained by the feed-back into (35) of
Eqs (36) which can be solved for the spinor connection w2P in terms
of Vﬂ > By and their derivatives. Once this is done the resulting
second order action is

(wd cder)

A {@etV) Rﬁi + ent };,F/‘Vf

+m¢é>r"’f e Fp B fd‘

(38)

where Rﬁg is the usual curvature scalar and Fu = 1/2(8qu - SvBu)
This theory is obviously invariant under the transformation

%v/f; = coot €% V&I¥ Fope; 55}59@‘

which is the component transcription of (37) and quite remarkably
exhibits the trilinear coupling of the spin 1 field which is a
well-established feature of D = 5 supergravity'’.

The conclusion is that the cohomology argument has reproduced
the correct bosonic sector of D = 5 supergravity in the same way
as it has reproduced D = 4 supergravity. It is therefore very sur-
prising that the complete theory based on the most general cohomo-
logy class (34) admits only the vacuum solution (all components of
the curvature equal to zero) for all values of the parameters.



SUPERGRAVITY AND COHOMOLOGY THEORY 185

This result, which will be fully discussed in Ref. 4), seems
to suggest that some of the existing second order supersymmetric
theories have no first order parents on the group manifold and
this might be the explanation why no action in superspace has been
found for them.
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