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In this contribution, emphasizing new developments, we plan 
to review the group manifold-rheonomic symmetry approach to super­
gravi tyl,2 which has already been presented to other conferences 3 • 

In particular, we want to emphasize the central role of the mathe­
matical concept of the graded Lie algebra cohomology class, which 
gives a constructive criterion for Lagrangians and which was not 
discussed in previous papers. The cohomological foundations of 
geometrical theories will be fully explained in a forthcoming 
paper 1+. 

The machinery of a geometrical field theory on a (super) 
group manifold is introduced as follows. Let G be a (super) group 
and ax its (graded) Lie algebra. A basis of <Ii is given by the 
generators TA (A = 1, ••• , n) which satisfy: 

(1) 

On the manifold G, whose co-ordinates y:tf are the group para­
meters themselves, we consider a ~ -valued I-form (the pseudo­
connec tion) : 

(2) 

which will be the fundamental field of the theory. 
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d 'd 'f A h 'd In or er to wr~te own an act~on or ~ we ave to cons~ er 
two kinds of objects which can be constructed out of it. One is 
the curvature 2-form R: 

R-
(3) 

(when R = 0 we say that ~ is a left-invariant I-form); the other is 
the cochain vi. A cochain vi is a p-form with an index i in some 
finite-dimensional representation D(TA) of <Er such that it admits 
the following expansion 

(4) 

i 
where VAl ••. A are constant numbers. With respect to this defini-
tion we remar~ that any p-form can be expanded in the basis of the 
~A (which is complete) but in general its components will be func­
tions of the yM co-ordinates and not constants, as we have assumed 
to be the case for the cochain. We can perform two operations on 
the cochains: one is the covariant derivative which maps a p co­
chain into a p + 1 cochain 

• (5) 

where D(TA)~j is the matrix representation of the generator TA; 
the other operation is the contraction ~ which m!ps p cochains 
into (p - 1) cochains. For every tangent vector TA such that 

(6) 

and for every cochain (4) we define: 
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(7) 

Combining the contraction and the covariant derivative we also ob­
tain a third operation which does not change the degree of the co­
chain and which is called the Lie derivative: 

(8) 

These operations have several important formal properties and they 
all have a deep geometrical meaning which is basic to the discussion 
of Chevalley cohomology theory5; more will be said abo~t them in 
a forthcoming paper 4 ; here we just note that for any v~ we get 

(9) 

With these ingredients the action of our typical field theory will 
be the following: 

(10) 

where the integration domain Mp+2 is an arbitrary (p + 2) dimen­
sional hyp.ersurface of the manifold G, and the variational principle 
requiresJq[~J to be an extremum independently of the particular 
choice of Mp+2. From (10) we get the following equation of motion 

o (11) 

which is an equation for (p + I)-forms holding on the whole G-mani­
fold. This latter statement means that the~roiection of (10) on 
any combination of (p + 1) tangent vectors TC1,TC2' ••• , Tp+l is 
an equation of motion 
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o (12) 

lUp to this point vA is fully arbitrary and therefore there is no 
criterion for selecting a particular Lagrangian. The criterion 
comes from the physical interpretation of the group G. In a theory 
which aims to be an extension of general relativity there must be 
a vacuum solution which corresponds to a flat space (= space with­
out curvature) admitting symmetry under a group of motions. Exci­
ted states are the deformations of this flat space and are no 
longer symmetrical under the original group. The idea of geome­
trical theories on group manifolds is that G is indeed the group 
of motions of the vacuum which therefore corresponds to a left­
invariant ~A (RA = 0). Such a physical requirement has the far­
reaching consequence that RA = 0 must be a solution of (11). This 
means 

A 
R.=O (13) 

Now it is remarkable that (13) is preciyely the definition of a 
cocycle in Chevalley cohomology theory. 

A cocycle is, in fact, a cochain which is covariantly closed, 
where closed means that its covariant derivative is zero modulo 
curvature. This immediately leads us into the realm of cohomology. 
In fact, calling coboundary an wA cochain which is covariantly ex~ 
act, namely, is the covariant derivative of some other cochain: 

(14) 

because of (9), we find that a coboundary is always a cocycle 

B 8 • 0 
C R. "cD = 0 lP 1(=0 

VA 18 t (15) 
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but the reverse is nDt always true. The equivalence classes Df 
cDcycles of degree p modulo the coboundaries of the same degree 
are called HP(G-,D), the pth cohomology group of d':r in the D re­
presentation (in our case D is the coadjoint representation). 
These cohomology classes are in a finite and small number, and 
depend entirely on the structure of the (super) group. For in­
stance, a fundamental theorems states that for any faithful 
representation of G there are no non-trivial cohomology classes 
if G is semi-simple. Now it is of the utmost importance that the 
actiDn (10) depends Dnly on the cohomology class and nDt on the 
particular cDcycle representing it. In fact, if to vA we add a 
coboundary 

the new actiDn is 

\ ') / 
Y A - (16) 

(17) 

where the second term on the right-hand side of (17) is, due to 
the Bianchi identity VRA _ 0, a pure divergence: 

(18) 

and therefore does not contribute to the equations of motion. 
Hence we conclude that the possible geometrical theories which can 
be constructed with a supergroup G are in one-to-one correspondence 
with its cohDmolDgy classes. In particular, the already quo.ted 
theorem on semi-simple gro.ups would rule out theories based on 
them. This difficulty can be overcome with the introduction of a 
larger co.ho.mology theo.ry which we shall discuss elsewhere q • For 
the purpose of this talk, we limit o.ur discussion to. the case of 
a non-semi-simple G which already includes the examples of gravity, 
ordinary D = 4 supergravity, and of the five-dimensio.nal theo.ry we 
shall discuss in the seco.nd part of this paper. 
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Once the correspondence between Lagrangians and cohomology 
has been established, a further restriction on the domain of pos­
sible theories comes from the observed fact that reasonable theo­
ries, although not invariant under the full G. are, however, ex­
a.ctly gauge invariant under some subgroup He G. In most cases, 
H is the Lorentz group. Therefore, besides being a representative 
of a cohomology class, VA must be such that the action (10) is in­
variant under gauge transformations of H: 

(19) 

(In (19) we have called H an index belonging to the subalgebra If--l 
of & and K an index belonging to the complement It< of R-t in <Gr : 
~ = 114 ~ IK ). Again the Chevalley theory comes to rescue us 
by supplying the concept of IH - orthogonal (::r cohomology classes. 
By definition, a 4 cohomology class is orthogonal to the subal­
gebra ~ if, for all its representatives vA' we have 

(20) 

In a forthcoming paper it will be shown that the orthogonality of 
vA is sufficient to guarantee the gauge invariance of the action 
under H so that we can conclude by stating the following: "For 
any pair (G,H) of a (super) group G and one of its sub-groups 
the possible geometrical theories are in one-to-one correspondence 
with the AI-orthogonal cohomology classes of (U-II. 

When VA is a cocycle its covariant derivative must be, by 
definition, proportional to the curvature and indeed we can show 
that : 

(21) 

Therefore, Eq. (11) becomes 
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(22) 

which, when projected on all possible combinations of tangent 
vectors, becomes an algebraic equation for the intrinsic curvature 
components: 

A 

R. Be 
(23) 

The essential features of the field theory described by our action 
(10) are determined by what sort of relations among R~BC we get 
from (22). In order to discuss the various cases let us write 
the (graded) Lie algebra 4Gfin the following way: 

(24) 

where ~ is the subalgebra and the complement[J( has been further 
decomposed into two subspaces which we shall call Inner and Outer, 
respectively. 

First possibility 

The only solution of (22) is R~BC = 0 for all values of A, 
B,C. In this case, the theory contains only the vacuum RA = o. 
It is a trivial theory. 

Second possibility 

Equation (22) admits solutions with some R~BC ~ O. In all 
cases the theory is non-trivial but its properties are critically 
dependent on how many and which ones are the independent intrinsic 
component R~BC parametrizing the most general solution of (22). 
The reason is that any theory on a group manifold, described by an 
action principle of type (10), being the action of a topological 
invariant, is symmetrical under an infinitesimal general co-ordinate 
transformation yM .~ yM + ~M. Such a transformation can be re­
written as the following shift of the pseudo-connection j.lA 1-> 

t-> j.lA + oj.lA, where (see (2»: 
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and 

A 
E 
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(25) 

(26) 

It is apparent from (25) that,~f some component~ R~flF2 are de­
termined to be zero, the co-ord1nate transformat10n 1n the cor­
responding direction actually becomes a gauge transformation (19). 
Because of this, a theory based on an H-orthogonal cohomology class, 
which is automatically H-gauge invariant, must be H-factorized, 
namely (22) must imply: 

H-factorization ~ 
A J R=o (27) 

Therefore, for a geometrical theory based on vA of type (20), the 
only non-vanishing components are those in the directions of IK . 
However, not all these components are independent; we call II 
(= inner) )the space spanned by those directions of I~ such that the 
components of the curvature along them are independent. The com­
plementary space ® (= outer) is such that all the curvature com­
ponents in such directions are just linear combinations of the 
inner components: 

A 

ROX - (28) 

where X is any index, 0 belo.ngs to @, II' 12 belong to II and 
~,II12 are some constant coefficients. O,x,B 
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Rheonomic symmetry 

We say that a theory is rheonomic symmetrical when the subspace 
II can be identified with space-time and ® is non-empty. Identifi­
cation with space-time means that II is spanned by the translation 
generators whose number d matches the number of dimensions of the 
Lorentz group 80(1,D - 1) contained in H. For example, in ordinary 
D = 4 supergravity d3ris the graded Poincare algebra, if the 80(1,3) 
Lorentz algebra and IK ~ P e Q the direct sum of the trans­
lations ~ and of the super symmetries ~. The theory is rheonomic 
symmetrical because tt = P which conta1ns exactly four translations, 
and @> =~ • 

When a theory is rheonomic symmetrical Eq. (25), supplemented 
with Eq. (28), tells us that the restriction of theory to space-
time II contains as many extra symmetries besides H-t as there are 
generators in @). In fact, every @ general co-ordinate transforma­
tion is, due to (28), a transformation which involves only the space­
time fields and their derivatives. In the case of supergravity, as 
discussed in Refs 2) and 3), the extra symmetry (rheonomic symmetry) 
is supersymmetry: however, the fermionic character of the trans­
formation is accidental. In the D = 5 supergravity, which we shall 
presently discuss, we encounter an example of bosonic rheonomic sym­
metry. 

D 5 supergravity 

It is well known that a super symmetric theory of gravitation 
is 5-space-time dimensions besides the graviton must contain a com­
plex spin 3/2 gravitino and also a spin-l field. This is in order 
to match the number of physical degrees of freedom in the bosonic 
and in the fermionic sector 6 • In fact, in D = 5 the graviton has 
five and the vector field three degrees of freedom which together 
make eight; on the other hand, eight is precisely the number of 
polarizations of the complex gravitino. In view of this, the mini­
mal supergroup G apt to describe D = 5 supergravity must have the 
following 24 generators: 

Lorentz ?O(:f/~) . .ToR,. = ::10 T 

Translations '1"5 • fQ.. 5 + -
l.\ (:i) (29) 

Internal ~ - i -r 
8upersymmetry {~ - B -

.24 
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It turns out that with these generators we can span the graded 
Lie algebra of SU(2,2Il) 7,8 or of one of its contractions. If we 
call wan, Va, B, S, ~ the components of the pseudoconnection~, res­
pectively, along Jab' Pa , Z, Q, and Q the structure of SU(2,2Il) is 
given by the Maurer-Cartan equations which we obtain when the cur­
vature is equal to zero in the following definitions: 

R~- d oh- AC..&.~ yell.. b . ~ ~ t£.E 
W + c.u AW 11u4 + 1\ V - ..c.. S'" z.; ) 

it. ~ Q.b c . - r dl ~ 
R = dV - w "V Ike. - i~)\ ~ 

R®,: dB (30) 

where nab is the flat metric of D = 5 Minkowski space and fa the 
D = 5 gannna matrices (Lab = i/4 [fa' fb]. SU(2,2 1) is a semi-simple 
supergroup and therefore we do not expect non-trivial cohomology 
classes. We can, however, obtain a non-semi-simple supergroup with 
the same number of generators performing the contraction. This is 
done by redefining 

, 
6.:.eB j 
ReI oe = e ,"- j 

46/ oIr ya l ,r 4 
CO =W; =eVj 

~~ fe'~ j 

f'= Vi' .f 
RQJ Dill • = e I\. ) 

and performing the limit e ~ 0 in Eq. (30). In this way we obtain 
the structural equations of the contracted non-serni-simple SU(2,2Il): 
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R o.Qr- G< rub-

R Q. == ~Vct._ i ~A rdl.~ 
R® _ dB -..l. ~A~ 

~ - ~~ 
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(31) 

where Rab is the curvature of the 80(1,4) Lorentz subgroup Rab = 
dwab + wac Wbdl1cd and /:)Va and I>E; are the 80(1,4) covariant deri­
vatives of V a and E;, respectively: 

C'i'\ 6.. elVa.. QC. Vd 
tiU V = - W A 'ctl 

Given the group and its curvature, in order to write an action 
we have to find the cohomology classes in the co-adjoint represen­
tation. To do this we have to know the form of the covariant de­
rivative V in such a representation. Let then, the action written 
as: 

Jl- J /-1 r<~v.t_R~~+~ R~~-h1'f-fA1 
(32) 

It follows that the covariant derivative of the adjoint cochain 
(vab' va' V® ' m) of degree p is the following one: 

\7voir= ~~~ tXA~ -~,,~ - ~ (~Z:4g.tn.- (-l~ IYlZiI-~) 

\7).JQ,.::' ~l/a.. (33) 

\7V®= d~e 
C\ • "'E 3 · ~ \7/Yl, =- cUlYt - t r ~ A).)Q.. + 7;). S A Vs 
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Now as the theory we want to construct has got to include 
five-dimensional grav~tation, vaQ must have, in addition, the 
Einstein term £abijkV1 1\ VJ 1\ Vk (1n fact the component of the pseu­
doconnection along the translation generator Pa is to be identified 
with the funfbein). This means that V should be the most general 
cohomology class of order three containing the Einstein term. By 
explicit computations we have determined the complete cohomology 
group of order three of G = SU(2,2Il) orthogonal to the Lorentz 
group H = SO(1,4) 4. It turns out to be composed of four elements 
so that the most general V, which is a linear combination of these 
elements, contains three arbitrary parameters (in fact the over-all 
constant in front of the V is irrelevant). Explicitly we find 

~,~ --J{s.= - 6Qb~~ V"V.)AV ;- (olj3}'{AVi,1\ B+.teX.t, ~A~e. fA 8 

+ .t 01. 3 g,,~a. ~ A Vb] 
Va..= cX:i(~ IA~~AB- i~~AB) 

~= 1, §A ~A & -~1 gA r6t. ~AVq, 

3 z;;.e. ~ Ay 6LAy t- -t 
(34) 

+ ~ [3- ~7 I;., SA V:: B -t 
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In a recent paper9, two of us have studied the bosonic limit of 
(34) as an independent theory. In this limit one sets ~ = 0 and 
disregards the corresponding Q generators. In this way G becomes 
IS0(1,4) ® U(1), namely, the direct product of the Poincare group 
in D = 5 times ~ U(~) internal group. The multiplet V reduces to 
vab = -E: bi·k V~,A VJ AVk + cost xV a A Vb AB which is the most ge­
neral SO(l,a) orthogonal cohomology class of order three for 
ISO(1,4) ® U(l). The corresponding action: 

(35) 

is, as it should be, gauge invariant under SO(1,4) but not under 
U(l). From the equations of motion, however, it follows that the 
theory is factorized and rheonomic symmetrical. In fact, the com­
ponents of the curvature along SO(1,4) are all zero while on the 
other hand, we have: 

&.. 

R.. • -i-e = 

a.. 
R,Q = 

• 101 tm 

R~R\ = 0 
elOftW\ 

>tS 
R. ®~_ 

(36) 

These equations tell us that the independent curvature components 
are R® pq and Ral> pq. All the other components can be expressed in 
terms of these. Such an occurrence is indeed what we named rheonomic 
symmetry and it guarantees that the original theory (35) restricted 
to the inner subspace II (spanned by the 5~a) admits an extra 
U(l) symmetry whose infinitesimal form is: 
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(37) 

The meaning of this symmetry transformation becomes apparent when 
one turns from the first to the second order formalism for the 
space-time restriction of the theory (35). The transition to the 
second order description is obtained by the feed-back into (35) of 
Eqs (36) which can be solved for the spinor connection w~b in terms 
of VU • B~ and their derivatives. Once this is done the resulting 
second order action is 

(38) 

where R~~ is the usual curvature scalar and F~v = 1/2(a~Bv - avB~). 
This theory is obviously invariant under the transformation 

which is the component transcription of (37) and quite remarkably 
exhibits the trilinear coupling of the spin I field which is a 
well-established feature of D = 5 supergravitylO 

The conclusion is that the cohomology argument has reproduced 
the correct bosonic sector of D = 5 supergravity in the same way 
as it has reproduced D = 4 supergravity. It is therefore very sur­
prising that the complete theory based on the most general cohomo­
logy class (34) admits only the vacuum solution (all components of 
the curvature equal to zero) for all values of the parameters. 
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This result, which will be fully discussed in Ref. 4), seems 
to suggest that some of the existing second order supersymmetric 
theories have no first order parents on the group manifold and 
this might be the explanation why no action in superspace has been 
found for them. 
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