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1 Statement

The principle of (countable) dependent choice can be formulated in the internal logic of
any elementary topos with natural numbers object.

Definition 1.1. An elementary topos £ with natural numbers object N validates de-
pendent choice if, for any object X and subobject R —— X x X,

EEVYe: X3y: X R(z,y) — Vo: X3f: XN (f(0) =2 AVn:NR(f(n), f(n+1))) .

In the special case of a Grothendieck topos, one can give a simple equivalent formulation
avoiding the internal logic.

Proposition 1.2. A Grothendieck topos € validates dependent choice if and only if, for
every wP-chain of epimorphisms

€3 €1

- Xy — Xy —r X —e X

the limit cone (L LR X)i>o itself consists of epimorphisms.

Johnstone’s topological topos 7 [Joh79] is the Grothendieck topos given by the
site defined below. The generating category is the full subcategory T of the category
of topological spaces on two objects: 1, a one point space; and N, the one point
compactification of a discrete countably infinite space. We take the underlying set of
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N* to be NU{oo}. Fori € NU{oo}, we write i: 1 — N for the function whose image
is {i}.

We often consider infinite subsets L C N as given by strictly ascending enumerations
{lo, 11,15, ...}, and we refer to n as the index of [,, in L. Given infinite sets L C K C N,
we write tg>r : N® — N for the continuous strictly increasing

, j  such that j is the index of [; in K, if i < o0
wrl) = Vo ii—oc

Note that if K C L C M then ty>x = tmorotnokx. We write tx as a shorthand for ino k.
Also, given infinite sets L, I C N, we write L; for the infinite subset {l; | i € I} C L.
Note that the identities

Ly = LLDL,; lpy = Lp Oty (1)

hold. In fact, the second follows from the first.
The Grothendieck topology consists of all sieves that contain a basic covering family
of one the following forms.

e The only basic cover of 1 is the singleton {1 — 1}.
e A family {B; ——~ N>},c; of maps into N is a basic cover if:

1. the functions {¢; }ies are jointly surjective, and
2. there exists a collection C of infinite subsets of N satisfying:

(a) for every infinite subset M C N, there exist infinite L C K € K such
that L C M, and

(b) for every K € K, there exists ¢ € I such that ¢; = 1.

The above defines the canonical Grothendieck topology J7 on the two object gener-
ating category T. This is shown in detail in [Joh79], where the covering sieves of the
topology are defined directly, avoiding a basis. Johnstone’s topological topos [Joh79] is
the category T of sheaves on the site (T, J7).

Theorem 1.3. Johnstone’s topological topos T satisfies dependent choice.



2 Proof

We begin by introducing notation. We write X; and Xy« for the sets that make up
an object X of the topological topos. Elements of X; are in one-to-one correspondence
with global points of X in 7, and we accordingly call such elements points. Any element
s € Xne determines a family of points (s;);<c via restriction along the maps 1 L N™
in T, using the presheaf structure of X. Elements s € Xn« can be understood as
specifying convergences (Sp)n<oco — Soo; that is, convergent sequences together with
their limits. However, there can be distinct s,t € XN« for which s; = ¢; for all i < oo.
As in [JohT79], one can view Xy« as a set of ‘proofs’ s of convergences (s,), — Se. We
say that s witnesses the convergence (8,), — Soo-

A morphism X vy in T is given by a pair of functions f;: X; — Y; and
fno: Xne — Yneo that together give the components of a natural transformation.
That is, for any map ¢: A —— Bin T (so A, B € {1,N*°}) and = € X, it holds that

falx-c) = fp(x)-c,

where we write x - ¢ for the element of X 4 obtained by restricting x € Xp along ¢ using
the presheaf structure of X.

Lemma 2.1. A map X Ly in T is an epimorphism if and only if f1 is surjective
and fne satisfies:

for every t € Yne, there exists s € Xnw and infinite K C N s.t. fne(s) =t 1. (2)

Proof. 1t is standard (see, e.g., [MLM94, Corollary II1.7.5]) that epimorphisms in a
Grothendieck topos are characterised by the property of local surjectivity relative to any

defining site. That is, X e Yisan epimorphism if and only if for every object A in
the underlying category of the site, it holds that

for every y € Yy, there exists a covering family {B; —— Al;c; and
family {x; € Xp, }ier such that fp,(z;) =y - ¢; for every i € I. (3)

In the case of Johnstone’s topological topos 7, when A is the object 1 of T, it is
immediate from the description of the Grothendieck topology J7 that (3) is equivalent
to the surjectivity of f;. Accordingly, we henceforth assume that f; is surjective and
show that (3) is equivalent to (2) when A is N*.

Suppose that A is N*° and (3) holds. To show (2), consider any ¢ € Yn~. Using

(3), let {B; LI N*>},c; be covering (generated by a family K of infinite subsets) with

3



{z; € Xp, }icr such that fp,(x;) =t-¢; for every ¢ € I. By the definition of covers in Jr
(one can take M = N), there exists K € K such that, for some i € I, we have ¢; = 1.
Thus s = x; and K are the data required by (2).

Conversely, suppose (2) holds for A = N*. To show (3), consider any y € ¥Yn~ and
define:

K = {K C N| K infinite, there exists x5 € XN s.t. fNo(Tg) =y i} .

We show that {1 —— N*®},coo U {N> £ N*} i is covering. Joint surjectivity is
immediate from the left half of the union. Also, since the right-hand part involves a set
K satisfying (2b) in the definition of cover, we just need to show (2a). Accordingly, let
M C N be infinite. By (2) using t = y o ¢y, there exist s € Xn~ and an infinite subset
K’ C N such that fx<(s) =y tar - tir. So, defining K = Mg, we have K C M and
fneo(8) =y - Lk, hence also K € K, establishing (2a) with L = K.

We have shown that {1 —— N>}, U {N> £+ N*} .k is covering. By the
surjectivity of fi, for any i < oo, there exists x; € X7 such that fi(z;) =y -i. By the
definition of K, for every K € K, we have xj € XN such that fn=(2x) =y - tx. This
shows that the family {z; € Xj}icoo U{zx € Xn=}kex enjoys the property required
by (3). (The use of an uncountable instance of the axiom of choice in the definition of
the family {xx € XN~ }xex can be avoided by taking {(K,z) | fx<(x) =y -1k} as the
index set instead of K.) O

Proof of Theorem 1.3. Suppose that we have a sequence of epimorphisms in 7

el

3 2 0
LI 'C NI ' LI ' LI 'd

k
Let (L —. X*)g>o be the limit of the above diagram. We need to show that every

[* is epimorphic. It suffices to show that [° is epimorphic, since then so is every I¥, by
k/
the same argument applied to the limit cone (L Lx M)k of the truncated diagram
3 k+1> Xk—|—1 e” . Xk

Since limits in Grothendieck toposes are pointwise we have

le{ Miso € [ X4 | vk ch(a ’f“>=x’f} B((a™),) = 2

keN

Lnee = {(Sk)kzo < HXlliToo | Vk R (s"1) = Sk} INeo ((5™)n) = 5* .

keN



We show that [ satisfies the conditions of Lenma 2.1. The surjectivity of I{ holds
by using surjectivity of every ef and applying dependent choice in the meta-theory. It
remains to show that (.. satisfies property (2).

Consider any t° € X%.. Applying property (2) to eQ«, there exist t! € X}w
and infinite L' C N such that eQe(t') = t° - 171, Tteratively, for every k > 1, given
t* € Xk, we apply property (2) to ek to obtain t*+! € Xt and infinite L+ C N,
such that eXoo(t*™1) = t* . 11411, By dependent choice in the meta-theory, the above
gives us a sequence (t*);, € [ oy XK~ and a sequence L., of infinite subsets of N.
We define a derived sequence of infinite subsets (K*), by K° = N and K*™' = K¥, .
Clearly K D K' D K?... is a descending sequence of sets. Also, by (1), we have
Lpe+t = Uik peh+r and Lgkt1 = Lk O Lpkt.

We elucidate the above in terms of convergences. The starting convergence t° wit-
nesses that (t9) — % in X° Then ¢! witnesses that (t!), — t. in X' and the
preservation of this convergence by e” gives us (e§(t1)), — €}(tL.) in X° witnessed by

k

Qe (t1), ice., by 0 - 1go. In general, for any k > 0, we write X* . X0 for the com-
posite e’ oel o+ 0ef™1 (50 for example d = idxo and d' = €°). Then t* witnesses that
(tk),, — t& in X* and the preservation of this convergence by d* gives us a convergence
(d5 (%)), — d5(t%) in X° witnessed by di(t*) which is equal to t° - txs. That is, the
convergence associated with di.(t¥) is the subconvergence of (t2) — t% obtained by
restricting to the subsequence with indices from K.

Let {h& h% h% ...} enumerate K* in strictly ascending order. Since K*** C K* we
have hE < hE*1 for all n. For each k > 0, define the diagonal set D¥ = {h™ | m > k}.
Then each D is an infinite subset of K* in which h}*" is the element with index n. For
later convenience, we note the identity

Lpk+1 O Lgk+15pk+1 = Lk k+1 O Lgk+15 Dk+1 by (1)
= Lgk>pk+1
= LgkDpk O LDpkDpDk+1

= LKk:_)Dk O L{n‘n21} ; (4)

where the last equality holds because the element with index n in D¥! is h{T 17" which
has index n + 1 in D*.

We complete the proof that [« satisfies property (2) by constructing (s*); € Lne
such that (% ((s*)) = t° - tpo. Accordingly, define s® = % - 1po. It remains to extend
sY to a sequence (s¥), € L.

To help orientate the reader, we first give an informal description of the construc-
tion of (s¥), and then follow with the formal treatment. We already have s° € X«



which witnesses the convergence (t9,), — ¢°

oo, Which can be equivalently written as

t0 — t% . Given s* for k > 0, we define s**! so that the associated con-
05 po(n) n o0

) — sk satisfies: for n < k, the point sF™ is some chosen zF™ € Xkt
n

such that e¥(2%™!) = s* (such an element exists by the surjectivity of €%); for n with

k < n < oo, we have sht1 = tffﬂ pir (n—(kt1))> and sk+l = ¢F+1 The above properties
Kk+t1opk
k+1

imply that e¥(si*t!) = s¥, for all i < co. The formal definition of s**! below, which is
given via the sheaf structure, implies the stronger property that ek (s*™!) = s* holds.
This ensures that the resulting sequence (s¥); resides in L.

Formally, we iteratively, for k = 0,1,..., define s* together with {zf € X},
such that: (i) s = 2% for all n < k, and (ii) s* - t(uusky = t* - tgropr. Note that
(i) and (ii) together determine s, because they express that s is the amalgamation
of {zf € Xi}uck U{tF - tgropr € XFo}, which is a matching family for the cover

{1 SN N>}, op U{N>® Lninzk} N>}, (As the cover is disjoint the matching property
is vacuous, as will also be the case in all subsequent applications of the sheaf property
in this proof.) In the case k = 0, the family {29 € X9}, is empty, and (i) and (ii)
hold for the s° = tY - 1po because K° = N and ty is the identity. In the case k > 0,
using the surjectivity of €%, let 2% € X¥ be such that e¥~!(2F) = s~ for every n < k.
Define s* to be the amalgamation of the family {2* € X}, U{t" - tgropr € X }

with respect to the cover {1 —— N}, U {N> “2"2*L N} Then (i) and (ii) are
satisfied by construction.

By dependent choice in the meta-theory, the above defines a sequence (s¥),. To
see that this indeed lies in Ly, we must show that eX..(s**!) = s* for all k. By
the characterisation of s* via (i) and (ii), it is enough to show that ek (s**1) is an
amalgamation of the matching family {z¥ € X}, U{t" txe5pr € X} for the cover

{1 = N>, U{N® Hninzk} N>}, When n < k, we have:

vergence (S

(eReoo (8" ))n = € (sh™) naturality of e*
= ey(z,) property (i)
= st choice of 2"
=k

It remains to verify e’f\po(sk“) CUnnsky = th . tgropk. This holds because both sides

restrict along the cover {1 o, N>} U{N> Hoin21} N>} to the same matching family;



that is, the two identities below hold.

(61’i100(sk+1))l’{n‘n2k}(0) = thk;Dk(O) (5)
eNeo (5°11) - Lnlnzky * Lnlnz1y = 1 koD Lnlnz1) - (6)

Indeed, (5) holds because

(elf\IOO (Sk+1))t{n\nzk}(0) = (elllg\TOO (Sk+1))k

= b (sf) naturality of ef

= ey (2 ) property (i)

= ¥ choice of xi“

k ..
= tLKk;Dk ) property (ii) ,
and (6) because
en (8711 - Un|n>k} " Unln>1} = en (8711 - U{n|n>k}

= e{i]oo(skﬂ Unln>k}) naturality of e*
= fpoe (T - Lk s i) property (ii)
= R (1) - Lprtioprnt naturality of e*
=tF e LEck+15Dh+1 definition of t*!
=tk. LEkSDE * Unjn>1} by (4)
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