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The NISQ era

!

Ø Quantum Simulations

What can we do with near-term quantum computing hardware? 

Chiesa et al., Nature Physics 15, 455 (2019)

à Any practical quantum advantage to be expected?

Ø Quantum Machine Learning

E.g.: inelastic neutron scattering cross section
from magnetic molecules simulated on IBM-Q

Quantum 
Computing

Machine 
LearningQML

new knowledge at the forefront of
classical and quantum computing
à potential for practical advantage



Machine Learning

!

E.g., deep neural networks (DNN)

E.g., support vector machines (SVM)

D. Silver et al., 
Nature 550, 354 (2017) 

ML is based on finding suitable mathematical models
(functions) mapping input data into output predictions



An example of supervised learning

!

Credits: becominghuman.ai/building-an-image-classifier-using-deep-
learning-in-python-totally-from-a-beginners-perspective-be8dbaf22dd8

Ø Image classification through training of a DNN

Ø In general: x yf (x,q)

ML task is to learn how fmaps x into y, on varying q, such that the algorithm
can correctly predict y upon being fed with previously unknown x



Quantum Machine Learning

!

Biamonte et al., Quantum Machine Learning, Nature 549, 195 (2017) 
Schuld & Petruccione, Supervised learning with Quantum Computers (Springer, 2018) 

Applying quantum computing resources to ML tasks



Kernel methods

!

Ø Find the best separating hyperplane in the higher dimensional
feature space (through the given kernel)

Ø Define the kernel (inner product) 

x f (x)

Ø Map data into a much larger ‘feature’ space

Ø Support vector machines (SVM) belong to this class of algorithms



Quantum SVM

!

Schuld & Killoran, Quantum machine learning in feature Hilbert spaces, 
Phys. Rev. Lett. 122, 040504 (2019) 
Schuld, Machine learning in quantum spaces, 
Nature 567, 179 (2019) 
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Mapping classical data to a (exp large) feature space and 
finding distances is what a quantum computer can do best 



The IBM result on NISQ hardware

!

Havlicek et al., 
Nature 567, 209 (2019) 

1- Binary data 2- Quantum feature map

3 - Parametrized variational circuit

q is trained through classical
optimization algorithm

x |F (x)>

4 – measurement with binary output

classification
after training  à

l



Artificial neural networks (ANN)

!
Ø Basis for several AI algorithms

Ø applications in pattern recognition, 
speech recognition, classification, 
…

Each node mimics
the functionality of 
a single neuron



The classical perceptron as 
a model of artificial neuron
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Activation function

Rosenblatt, Psychol. Rev. 65, 386 (1958) 

the weights and the threshold function
can be adjusted during learning phase
(i.e., what was previously called q) 



Linear classifier

!

The classical perceptron is
the simplest linear classifier

It requires extension to a multilayer structure to be 
able to perform nonlinear tasks



Quantum neural network models

!

Rebentrost et al., Phys. Rev. A 98, 042308 (2018) 

Ø Quantum perceptrons

Torrontegui et al., EPL (Europhysics Letters) 125 (2019)

Ø Quantum algorithms for artificial neural networks

E. Farhi and H. Neven, arXiv:1802.06002 (2018)

Schuld et al., Phys. Lett. A 7, 660 (2015) 

Y. Cao, G. G. Guerreschi and A. Aspuru-Guzik, arXiv:1711.11240 (2017)
N. Wiebe, A. Kapoor and K. M. Svore, arXiv:1602.04799 (2016)

…

…

Schuld et al., EPL 119, 60002 (2017) 
Wan et al., npj Quant Info 3, 36 (2017) 

Killoran et al., Phys. Rev. Research 1, 033063 (2019) 
Grant et al., npj Quant Info 4, 65(2018) 

Cong et al., Nature Physics (2019) 
Mari et al., Quantum 4, 340 (2020) 



McCulloch-Pitts neurons on a 
quantum computer

!
𝚤 ⋅ 𝑤 =!
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𝑖!𝑤!The key function

Tacchino et al., npj Quant. Info 5, 26 (2019) 
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Ø Encoding input and weights

McCulloch-Pitts
neuron model
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Constraints on the unitaries:
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The quantum algorithm: a circuit model
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McCulloch-Pitts neurons on a 
quantum computer

Tacchino et al., npj Quant. Info 5, 26 (2019) 



Elementary pattern recognition

!
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Exact result (N = 2) Experiment (N = 2 + 1 ancilla)

Running the algorithm on NISQ-hardware

!

IBM-Q Experience 5-qubit ‘Tenerife’ processor

⋅
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= 1 [0.84]

⋅
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= 0 [0.07]

Tacchino et al., npj Quant. Info 5, 26 (2019) 



Can we train it?

!

YES! à simple perceptron update rule

• If is correct, do nothing𝚤 ⋅ 𝑤

• If is positive but should be negative (k common 
entries), randomly flip hk signs (0<h<1 ‘learning’ rate)  
𝚤 ⋅ 𝑤

• If is negative but should be positive (k opposite 
entries), randomly flip hk different signs

𝚤 ⋅ 𝑤

Chosen a target 𝑤5, build a training set by assigning
positive (negative) labels to few inputs 𝚤 for which
𝚤 ⋅ 𝑤5 > 𝜃 (𝚤 ⋅ 𝑤5 < 𝜃), then randomly initialize 𝑤 to be
trained and:



Elementary training on IBM simulator

!

Ø Theoretical simulation of the algorithm for N=4 qubits + 1 ancilla
(NOT on real quantum hardware, yet)

Ø Recognize a cross (or its negative) out of a training set of input 
vectors (e.g., 50 positive, 3000 negative)

Tacchino et al., npj Quant. Info 5, 26 (2019) 

Average over 
500 repetitions



Recently extended: 
continuous valued input data

!

Mangini et al., Mach. Learn.: Sci. Technol. 1, 045008 (2020) 

An array of real-valued input

Allows to classify grey scale images without increasing the number of qubits

with

Can be encoded as



Hybrid quantum/classical learning

!

Mangini et al., Mach. Learn.: Sci. Technol. 1, 045008 (2020) 

Quantum algorithm trained through classical backpropagation



Quantum ANN

!

A deep neural network is required to perform more 
complex ML tasks



Example (still runs on NISQ hardware)
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The corresponding quantum circuit

!

Quantum synapses à multi-controlled operations

Tacchino et al., Quant. Sci. Technol. 5, 044010 (2020) 



A classification task that is 
impossible to a single perceptron

!

Tacchino et al., Quant. Sci. Technol. 5, 044010 (2020) 

Ideal outcome
of the ANN



Implementation on IBM - Q

!

Layout of the IBM Q – Poughkeepsie NISQ processor 



!

with activation threshold at 0.5, the quantum hardware is
able to fully classify these patterns with 100% success

Results on IBM Q - Poughkeepsie

Tacchino et al., Quant. Sci. Technol. 5, 044010 (2020) 

Hybrid
configuration

Fully coherent
configuration



Open questions and challenges

!Ø How does it scale?

Ø How efficient is it?

Ø Quantum training?

Ø Test on real hardware based on different
technologies (e.g., trapped ions)

Ø Test with larger input data (possible use cases)

Ø Input quantum states (QQ) 
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