A Tutorial on [Co-]Inductive Types in Coq

Eduardo GiméneRierre Castérdn

May 1998/ draft : January 5, 2005

Abstract

This documeritis an introduction to the definition and use of inductive
and co-inductive types in theoqproof environment. It explains how types
like natural numbers and infinite streams are definedag and the kind of
proof techniques that can be used to reason about them (case analysis, induc-
tion, inversion of predicates, co-induction, etc). Each technique is illustrated
through an executable and self-contai@mt script.

*Eduardo.Gimenez@inria.fr
tPierre.Casteran@Ilabri.fr
1The first versions of this document were entirely written by Eduardo Gimenez. Pierre Castéran

wrote the 2004 revision.

Contents

1 About this document 4
2 Introducing Inductive Types 5
21 Lists 6
2.2 VeCtOrs. e 7
2.3 The contradictory proposition. 8
2.4 Thetautological proposition. 8
2.5 Relations asinductivetypes. 8
2.6 The propositional equality type. 10
2.7 Logicalconnectives. oo 12
2.8 The existential quantifier. 13
2.9 Mutually Dependent Definitions 14
3 Case Analysis and Pattern-matching 14
3.1 Non-dependent Case Analysis 14
3.1.1 Example: the predecessor function. 15
3.2 DependentCaseAnalysis 16
3.2.1 Example: strong specification of the predecessor func-
tion. 16
3.3 Some Examples of Case Analysis 18
331 TheEmptyType 18
3.3.2 TheEqualtyType 19
3.3.3 ThePredicate<m 21
334 Vectors 23
3.4 Case Analysis and Logical Paradoxes 23
3.4.1 The Positivity Condition 24
3.4.2 Impredicative Inductive Types 27
3.4.3 Extraction Constraints 28
3.4.4 Strong Case Analysison Proofs 29
3.45 Summaryof Constraints 30

4 Some Proof Techniques Based on Case Analysis
4.1 Discrimination of introductionrules 30
4.2 Injectiveness of introductionrules 32
4.3 Inversion Techniques 33
4.3.1 Interactvemode 35
432 Staticmode L. 35
5 Inductive Types and Structural Induction 37
5.1 Proofs by Structural Induction 39
5.2 Using Elimination Combinators. 41
5.3 Well-founded Recursion 44

6 A case study in dependent elimination 49

30

7 Co-inductive Types and Non-ending Constructions
7.1 Extensional Properties
7.2 About injection, discriminate, and inversion

1 About this document

This document is an introduction to the definition and use of inductive and
co-inductive types in th€oqproof environment. It was born from the notes
written for the course about the version V5.10@bq given by Eduardo
Gimenez at the Ecole Normale Supérieure de Lyon in March 1996. This
article is a revised and improved version of that notes for the version V8.0 of
the system.

We assume that the reader has some familiarity with the proofs-as-programs
paradigm of Logic [5] and the generalities of tBeqsystem [11]. You would
take a greater advantage of this document if you first read the general tutorial
aboutCogandCoqs FAQ, both available on [6]. A text book [3], accompa-
nied with a lot of examples and exercises [2], presents a detailed description
of the Coq system and its underlying formalism: the Calculus of Inductive
Construction. Finally, the complete description@dqis given in the ref-
erence manual [11]. Most of the tactics and commands we describe have
several options, which we do not present exhaustively. If some script herein
uses a non described fetature, please refer to the Reference Manual.

If you are familiar with other proof environments based on type theory
and the LCF style —like PVS, LEGO, Isabelle, etc— then you will find not
difficulty to guess the unexplained details.

The better way to read this document is to start upQbgsystem, type
by yourself the examples and exercises proposed, and observe the behavior
of the system. All the examples proposed in this tutorial can be downloaded
from the same site as the present document.

The tutorial is organised as follows. The next section describes how in-
ductive types are defined ©og and introduces some useful ones, like natu-
ral numbers, the empty type, the propositional equality type, and the logical
connectives. Section 3 explains definitions by pattern-matching and their
connection with the principle of case analysis. This principle is the most
basic elimination rule associated with inductive or co-inductive types, and
follows a general scheme that, we illustrate for some of the types introduced
in Section 2. Section 4 illustrates the pragmatics of this principle, showing
different proof techniques based on it. Section 5 introduces definitions by
structural recursion and proofs by induction. Section 6 presents some elab-
orate techniques about dependent case analysis. Finally, Section 7 is a brief
introduction to co-inductive types —i.e., types containing infinite objects— and
the principle of co-induction.

Thanks to Bruno Barras, Yves Bertot, Hugo Herbelin, Jean-Francois
Monin and Michel Lévy for their help.

Lexical conventions

The typewriter font is used to represent text input by the user, while the
italic font is used to represent the text output by the system as answers.

Moreover, the mathematical symbots #, 3, V, —», — V, A, and=
stand for the character strings, <>, exists, forall, ->, <-, \/, /\, and
=>, respectively. For instance, tidogstatement

forall A:Set,(exists x : A, forall (y:A), x <> y) -> 2 =3
is written as follows in this tutorial:
VA:Set,(dx:A, Vy:A, x #y) — 2 =3

When a fragment o€oqinput text appears in the middle of regular text,
we often place this fragment between double quotes “....” These double
guotes do not belong to ti&oqsyntax.

Finally, that any string enclosed betweénand*) is a comment and is
ignored by theCoqgsystem.

2 Introducing Inductive Types

Inductive types are types closed with respect to their introduction rules. These
rules explain the most basic agnonical ways of constructing an element of
that type. In this sense, they characterize the recursive type. Different rules
must be considered as introducing different objects. In order to fix ideas, let
us introduce inCoqthe most well-known example of a recursive type: the
type of natural numbers.

Inductive nat : Set :=
| 0 : nat
| S : nat—nat.

The definition of a recursive type has two main parts. First, we establish
what kind of recursive type we will characterize (a set, in this case). Second,
we present the introduction rules that define the typ&n(ds), also called its
constructors. To say thahat is closedunder these introduction rules means
that0 andS determine all the elements of this type. In other words;ift,
thenn must have been introduced either by the bz by an application of
the rules to a previously constructed natural number. On the contrary, the
typeSet is anopentype, since we do not kno priori all the possible ways
of introducing an object of typget.

After entering this command, the constan#s:, 0 andsS are available in
the current context. We can see their types using the comgtesk :

Check nat.
nat : Set
Check 0.

O :nat
Check S.

S : nat— nat

Moreover,Cogadds to the context three constants named ind, nat_rec
andnat_rect, which correspond to different principles of structural induc-
tion on natural numbers th&oq infers automatically from the definition.
We will come back to them in Section 5.

In fact, the type of natural numbers as well as several useful theorems
about them are already defined in the basic librarf@ad, so there is no need
to introduce them. Therefore, let us throw away the former (re)definition of
nat, using the commanRBeset.

Reset nat.

Print nat.

Inductive nat : Set:= O :nat|S: nat> nat
For S: Argument scope is [nat_scope]

Notice thatCods interpretation scop&or natural numbers (calletht _scope)
allows us to read and write natural numbers in decimal form (see [11]). For
instance, the constructadrcan be read or written as the digitand the term
“S (S (8 0))"as3.

Check 0.
0 : nat.

Check (S (S (S 0))).
3:nat

Let us now take a look to some other recursive types contained in the
standard library o€oq

2.1 Lists

Lists are defined in librariist:

Require Import List.
Print list.

Inductive list (A : Set) : Set ;=
nil : list A cons: A— list A— list A
For nil: Argument A is implicit
For cons: Argument A is implicit
For list: Argument scope is [type_scope]
For nil: Argument scope is [type_scope]
For cons: Argument scopes are [type_scope _ _]

In this definition,A is ageneral parameterglobal to both constructors.
This kind of definition allows us to build a whole family of inductive types,
indexed over the soiget. This can be observed if we consider the type
of identifierslist, cons andnil. Notice the notation(A := ...) which

must be used whe@ods type inference algorithm cannot infer the implicit
parametea.

Check list.
list
. Set— Set

Check (nil (A:=nat)).
nil
: list nat
Check (nil (A:= nat — nat)).
nil
- list (nat — nat)
Check (fun A: Set = (cons (A:=A))).

fun A : Set= cons (A:=A)
1V A Set, A— listA— listA

Check (cons 3 (cons 2 nil)).

3:2:nil
: list nat
2.2 \Vectors.

Like 1ist, vector is a polymorphic type: ifA is a set, anch a natural
number, “vector A n”is the type of vectors of elements df and sizen.

Require Import Bvector.
Print vector.

Inductive vector (A : Set) : nat> Set :=
Vnil : vector AQ
| Veons : A— V n: nat, vector A n— vector A (S n)
For vector: Argument scopes are [type_scope nat_scope]
For Vnil: Argument scope is [type_scope]
For Vcons: Argument scopes are [type_scope _ nhat_scope]

Remark the difference between the two parameteaadn: The first one
is a general parameter, global to all the introduction rules,while the second
one is anindex, which is instantiated differently in the introduction rules.
Such types parameterized by regular values are cdépendent types

Check (Vnil nat).
Vnil nat

s vector nat 0

Check (fun (A:Set)(a:A)= Vcons _ a _ (Vnil _.)).
fun (A : Set) (a: A= Vcons A a0 (Vnil A)
:V A:Set, A~ vectorAl

Check (Vcons _ 5 _ (Vcons _ 3 _ (Vnil _))).
Vcons nat5 1 (Vcons nat 3 0 (Vnil nat))
: vector nat 2

2.3 The contradictory proposition.

Another example of an inductive type is the contradictory proposition. This
type inhabits the universe of propositions, and has no element at all.

Print False.
Inductive False : Prop :=

Notice that no constructor is given in this definition.

2.4 The tautological proposition.

Similarly, the tautological propositionrue is defined as an inductive type
with only one element:

Print True.
Inductive True : Prop := | : True

2.5 Relations as inductive types.

Some relations can be also introduced in a smart way as an inductive family
of propositions. Let us take as example the ordet m on natural numbers,
calledle in Cog This relation is introduced through the following definition,
quoted from the standard libr&ry

Print le.

Inductive le (n:nat) : nat-Prop :=
| le_n:n<n

| le. SV m,n<m—-n<Sm.

Notice that in this definitiom is a general parameter, while the second
argument ofle is an index (see section 2.2). This definition introduces the

“

2In the interpretation scope for Peano arithmetiit_scope, “ n <= m ” is equivalent to

“lenm”.

binary relationn<m as the family of unary predicates‘be greater or equal
than a given n”, parameterized by..

The introduction rules of this type can be seen as a sort of Prolog rules
for proving that a given integer is less or equal than another one. In fact,
an object of typex<m is nothing but a proof built up using the constructors
le_n andle_S of this type. As an example, let us construct a proof that zero
is less or equal than three usi@gds interactive proof mode. Such an object
can be obtained applying three times the second introduction rule,db
a proof that zero is less or equal than itself, which is provided by the first
constructor ofie:

Theorem zero_leq_three: 0 < 3.
Proof.
1 subgoal

0<3

Proof.
constructor 2.

1 subgoal

0<2

constructor 2.
1 subgoal

0<1

constructor 2
1 subgoal

0<0
constructor 1.

Proof completed
Qed.

When the current goal is an inductive type, the tactichstructor i’
applies the-th constructor in the definition of the type. We can take a look
at the proof constructed using the comma&mdnt:

Print Print zero_leq_three.
zero_leq_three =

zero_leq_three=le_ S02(le S01(le_S00(le_nQ)))
:0<3

When the parameteris not supplied, the tactieonstructor tries to
apply “ constructor 17, “ constructor 2”,..., “ constructor n’
wheren is the number of constructors of the inductive type (2 in our example)
of the conclusion of the goal. Our little proof can thus be obtained iterating

the tacticconstructor until it fails:

Lemma zero_leq_three’: 0 < 3.
repeat constructor.
Qed.

Notice that the strict order amat, called1t is not inductively defined:

Print 1t.

t=funnm:nat=Sn<m
*nat — nat— Prop

Lemma zero_lt_three : 0 < 3.
Proof.
unfold 1t.

1<3

repeat constructor.
Qed.

2.6 The propositional equality type.

In Cog, the propositional equality between two inhabitamtand b of the
same typed , noteda = b, is introduced as a family of recursive predicates
“ to be equal to a ", parameterised by both and its typeA. This family

of types has only one introduction rule, which corresponds to reflexivity.
Notice that the syntaxd’ = b " is an abbreviation foréq o b ", and that
the parameted is implicit, as it can be infered from.

Print eq.

Inductive eq (A : Type) (x: A) : A> Prop :=
refl_equal : x =x

For eq: Argument A is implicit

For refl_equal: Argument A is implicit

For eq: Argument scopes are [type_scope _ _]

For refl_equal: Argument scopes are [type_scope _]

10

Notice also that the first parametdr of eq has typeType. The type
system ofCoqallows us to consider equality between various kind of terms:
elements of a set, proofs, propositions, types, and so on. Look at [11, 3]
to get more details o€oqs type system, as well as implicit arguments and
argument scopes.

Lemma eq_3.3 : 2 + 1 = 3.
Proof.

reflexivity.

Qed.

Lemma eq_proof_proof : refl_equal (2%6) = refl_equal (3%4).
Proof.

reflexivity.

Qed.

Print eq_proof_proof.
eq_proof_proof =
refl_equal (refl_equal (3 * 4))

. refl_equal (2 * 6) =refl_equal (3 * 4)

Lemma eq_lt_le : (2 < 4) = (3 < 4).
Proof.

reflexivity.

Qed.

Lemma eq_nat_nat : nat = nat.
Proof.

reflexivity.

Qed.

Lemma eq_Set_Set : Set = Set.
Proof.

reflexivity.

Qed.

Lemma eq_Type_Type : Type = Type.
Proof.

reflexivity.

Qed.

11

2.7 Logical connectives.

The conjunction and disjunction of two propositions are also examples of
recursive types:

Inductive or (A B : Prop) : Prop :=
or_introl : A — A V B | or_intror : B — A V B

Inductive and (A B : Prop) : Prop :=
conj : A—-B —AAB

The propositionsd and B are general parameters of these connectives.
Choosing different universes fot and B and for the inductive type itself
gives rise to different type constructors. For example, the typébool is a
disjunction but with computational contents.

Inductive sumbool (A B : Prop) : Set :=
left : A — {A} + {B} | right : B — {A} + {B}

This type —noted A}+{B?} in Cog- can be used i€oqprograms as a
sort of boolean type, to check whether itdsor B that is true. The values
“left p”and“right ¢ " replace the boolean valuesie andfalse, re-
spectively. The advantage of this type obeol is that it makes available the
proofsp of A or ¢ of B, that could be necessary to construct a verification
proof about the program. For instance, let us consider the certified program
le_1t_dec of the Standard Library.

Require Import Compare_dec.
Check le_lt_dec.

le It dec
¥V nm:nat, {n<m}+{m<n}

We usele_lt_dec to build a function for computing the max of two
natural numbers:

Definition max (n p :nat) := match le_lt_dec n p with
| left _ = p
| right _ = n
end.

In the following proof, the case analysis on the terfre” 1t_dec n p”
gives us an access to proofsroK p in the first casep < n in the other.

Theorem le_max : V np, n < p — max n p = p.
Proof.

12

intros n p ; unfold max ; case (le_lt_dec n p); simpl.
2 subgoals

n:nat
p : nat

n<p—n<p—p=p

subgoal 2 is:
p<n—n<p—n=p

trivial.
intros; absurd (p < p); eauto with arith.
Qed.

Once the program verified, the proofs are erased by the extraction proce-
dure:

Extraction max.
(** val max : nat— nat— nat **)

letmaxnp=
match le_It_dec n p with
| Left— p
| Right— n

Another example of use @fumbool is given in Section 5.3.

2.8 The existential quantifier.

The existential quantifier is yet another example of a logical connective in-
troduced as an inductive type.

Inductive ex (A : Type) (P : A — Prop) : Prop :=
ex_intro : V x : A, PxXx — ex P

Notice that Coq uses the abreviation “Jz:A, B for

“ex (fun z:A = B)".

The former quantifier inhabits the universe of propositions. As for conjunc-
tion and disjunction connectives, there is also another version of existential
guantification inhabiting the universet, which is notedsig P. The syn-

tax“{z:A | B} ”isan abreviation for ‘sig (fun z:4 = B)".

13

2.9 Mutually Dependent Definitions

Mutually dependent definitions of recursive types are also allowé&wbip A
typical example of these kind of declaration is the introduction of the trees of
unbounded (but finite) width:

Inductive tree(A:Set) : Set :=
node : A — forest A — tree A
with forest (A: Set) : Set :=

nochild : forest A |
addchild : tree A — forest A — forest A.

Yet another example of mutually dependent types are the predicasas
andodd on natural numbers:

Inductive
even : nat—Prop :=
even0 : even 0 |
evenS : V n, odd n — even (S n)
with
odd : nat—Prop :=
0oddS : V n, even n — odd (S n).

Lemma odd_49 : odd (7 * 7).
simpl; repeat constructor.
Qed.

3 Case Analysis and Pattern-matching

3.1 Non-dependent Case Analysis

An elimination rule for the typeA is some way to use an object A in order
to define an object in some tyge. A natural elimination for an inductive
type iscase analysis

For instance, any value of typat is built using eithei0 or S. Thus, a
systematic way of building a value of tyge from any value of typeat is
to associate t@ a constanty : B and to every term of the form$ p” a
termtgs : B. The following construction has type:

match n return B with 0 = top | S p = tg end

In most of the case§;oqis able to infer the typds of the object defined,
so the ‘return B” part can be omitted.

The computing rules associated with this construct are the expected ones
(the notationts{q/p} stands for the substitution pfby ¢ in t5:)

match O return b with 0 = tp | Sp = tg end = {o
match S ¢ return b with 0 = to | S p = tg end = ts{q/p}

14

3.1.1 Example: the predecessor function.

An example of a definition by case analysis is the function which computes
the predecessor of any given natural number:

Definition pred (n:nat) := match n with
| 0 =0
| Sm = m
end.

Eval simpl in pred 56.
=55
> nat

Eval simpl in pred O.
=0
I nat

Eval simpl in fun p = pred (S p).
=funp:nat=p
:nat — nat

As in functional programming, tuples and wild-cards can be used in pat-
terns . Such definitions are automatically compiledoyginto an expression
which may contain several nested case expressions. For example, the exclu-
siveor on booleans can be defined as follows:

Definition xorb (bl b2:bool) :=
match bl, b2 with

| false, true = true

| true, false = true

| _ ., _ = false

end.

This kind of definition is compiled i€ogas follows':

Print xorb.

xorb =

fun bl b2 : bool =

if bl then if b2 then false else true
else if b2 then true else false
: bool — bool — bool

”

3Coq uses the conditional “ if b then a else b as an abreviation to

‘match b with true = a | false = b end’.

«

15

3.2 Dependent Case Analysis

A more general typing rule for case expressions is obtained considering that
not only the object defined may dependrarbut also its type. For instance,
let us consider some functidp : nat—Set, andn : nat. In order to build a
term of type@ n, we can associate to the construd@ome ternmto : Q 0
and to the pattern § p " some termts : @ (S p). Notice that the termg&,
andtg do not have the same type.

The syntax of thelependent case analysigad its associated typing rule
make precise how the resulting type depends on the argument of the pattern
matching, and which constraint holds on the branches of the pattern match-

ing:

@ :nat—Set tp:Q0 p:natkt,:Q (Sp) n:nat
match n as ng return Q ng with | 0 =to | S p =tg end: @ n

The interest of this rule ofiependent pattern-matching is that it can be
also read as the following logical principle (replaciggt by Prop in the
type of Q): in order to prove that a property holds for alln, it is sufficient
to prove thaty holds for0 and that for allp : nat, Q holds for(S p). The
former, non-dependent version of case analysis can be obtained from this
latter rule just taking) as a constant function on

Notice that destructuring into 0 or “ S p ” doesn’t make appear in the
goal the equalities» =0"and “n =S p”. They are “internalized” in the
rules above (see section 4.3.)

3.2.1 Example: strong specification of the predecessor function.

In Section 3.1.1, the predecessor function was defined directly as a function
from nat to nat. It remains to prove that this function has some desired
properties. Another way to proceed is to, first introduce a specification of
what is the predecessor of a natural number, under the formCaitgype,
then build an inhabitant of this type: in other words, a realization of this
specification. This way, the correctness of this realization is ensur€d gy
type system.

A reasonable specification ferred is to say that for alln there exists
anothenmn such that eithem = n = 0, or (S m) is equal ton. The function
pred should be just the way to compute suchran

Definition pred_spec (n:nat) :=
{m:nat | n=0A m=0 V n = S m}.

Definition predecessor : V n:nat, pred_spec n.
intro n; case n.

16

n:nat

pred_spec 0

unfold pred_spec;exists O;auto.

Vv nO : nat, pred_spec (S n0)

unfold pred_spec; intro nO; exists nO; auto.
Defined.

If we print the term built byCog, we can observe its dependent pattern-
matching structure:

predecessor = fun n : nat =
match n as n0 return (pred_spec nO) with
| 0=

exist (funm : nat = 0=0Am=0V 0=S8m) 0
(or_introl (0 = 1) (conj (refl_equal 0) (refl_equal 0)))
| Sno =
exist (funm : nat = Sn0 =0 Am =0V S n0=Sm no
(or_intror (S n0 = 0 A n0 = 0) (refl_equal (S n0)))
end : V n : nat, pred_spec n

Notice that there are many variants to the patteiatros ...; case

". Look at the reference manual and/or the book: tactiestruct,
intro pattern ”, etc.
The commandxtraction can be used to see the computational contents
associated to theertifiedfunctionpredecessor:

Extraction predecessor.
(** val predecessor : nat- pred_spec **)

let predecessor = function
|O—0
| Sn0— n0O

Exercise 3.1 Prove the following theorem:

Theorem nat_expand : V n:nat,
n = match n with
| 0=0
| Sp=Sp
end.

17

3.3 Some Examples of Case Analysis

The reader will find in the Reference manual all details about typing case
analysis (chapter 4: Calculus of Inductive Constructions, and chapter 15:
Extended Pattern-Matching).

The following commented examples will show the different situations to
consider.

3.3.1 The Empty Type

In a definition by case analysis, there is one branch for each introduction rule
of the type. Hence, in a definition by case analysipanFalse there are

no cases to be considered. In other words, the rule of (hon-dependent) case
analysis for the typ@alse is (for s in Prop, Set or Type):

Q:s p:False
match p return () with end: Q)

As a corollary, if we could construct an objectialse, then it could
be possible to define an object in any type. The tagfictradiction cor-
responds to the application of the elimination rule above. It searches in the
context for an absurd hypothesis (this is, a hypothesis whose tyaa i=)
and then proves the goal by a case analysis of it.

Theorem fromFalse : False — 0=1.
intro H.
contradiction.

Qed.

In Coqthe negation is defined as follows :
Definition not (P:Prop) := P — False

The proposition ‘not A " is also written “~ A .

If A andB are propositionsg is a proof of A and H is a proof of~
A, the term “match H a return B with end " is a proof term ofB.
Thus, if your goal isB and you have some hypothedis :~ A, the tactic
“ case H " generates a new subgoal with statemdntas shown by the
following examplé.

Fact Nosense : 0 # 0 — 2 = 3.
Proof.
intro H; case H.

0=0

“Notice thata£b is just an abreviation for “a=b ”

18

reflexivity.
Qed.

The tactic “absurd A " (where A is any proposition), is based on the
same principle, but generates two subgodlsind~ A, for solving B.

3.3.2 The Equality Type

Let A : Type, a, b of type A, andw a proof ofa = b. Non dependent case
analysis ofr allows us to associate to any proof af)'a " a proof of “Q b ",
where@ : A—s (wheres € {Prop, Set, Type}). The following term is a
proof of “ Q a—Q b".

fun H : Q a =
match 7 in (_ = y) return Q y with
refl_equal = H
end

Notice the header of theatch construct. It expresses how the resulting type
“Q y " depends on théypeof p. Notice also that in the pattern introduced
by the keywordin, the parametes in the type “a = y " must be implicit,
and replaced by a wildcard”.

Therefore, doing case analysis on a proof of the equalityb amounts
to replace all the occurrences of the terwith the terma in the goal to be
proven. Let us illustrate this through an example: the transitivity property of
this equality.

Theorem trans : V n m p:nat, n=m — m=p — n=p.
Proof.
intros n m p eqnm.

n:nat
m : nat
p : nat
eqnm:n=m

m=p—n=p
case eqnm.

n: nat
m : nat
p : nat
egnm:n=m

n=p—n=p

19

trivial.
Qed.

Exercise 3.2 Prove the symmetry property of equality.

Instead of usingase, we can use the tacticewrite . If H is a proof of
a =b,then“rewrite H ”performs acase analysis on a proobcf a, ob-
tained by applying a symmetry theorem#fi This application of symmetry
allows us to rewrite the equality from left to right, which looks more natural.
An optional parameter (either or <) can be used to precise in which sense
the equality must be rewritten. By defaultréwrite H " corresponds to
“rewrite — H"”

Lemma Rw : V x y: nat, y =y *x X — y * X * X = y.
intros x y e; do 2 rewrite <- e.

1 subgoal

X1 nat
y @ nat
ely=y*x

y=y

reflexivity.
Qed.

Notice that, ifH : a = b, then the tactic ‘rewrite H ”replacesall the
occurrences of by b. However, in certain situations we could be interested
in rewriting some of the occurrences, but not all of them. This can be done
using the tactipattern . Let us consider yet another example to illustrate
this.

Let us start with some simple theorems of arithmetic; two of them are
already proven in the Standard Library, the last is left as an exercise.

mult_1 |
:Vn:nat,1*n=n

mult_plus_distr_r
¥ynmp:nat, (h+m)*p=n*p+m*p

mult_distr S¥ np:nat,n*p+p=(Sn)*p.
Let us now prove a simple result:

Lemma four_n : V n:nat, n+n+n+n = 4x*n.

20

Proof.
intro n;rewrite <- (mult_1_1 n).

n: nat

1*n+1*n+1*n+1*n=4*(1*n)

We can see that theewrite tactic call replaceall the occurrences of
n by the term “1 * n". If we want to do the rewriting ony on the leftmost
occurrence of,, we can mark this occurrence using fectern tactic:

Undo.
intro n; pattern n at 1.

n: nat

(funnO:nat==n0+n+n+n=4*n)n

Applying the tactic “pattern n at 1 ”allowed us to explicitly abstract the
first occurrence ofi from the goal, putting this goal under the fornd)' n ”,
thus pointing torewrite the particular predicate on that we search to
prove.

rewrite <- mult_1_1.
1 subgoal

n:nat

l1*n+n+n+n=4*n
repeat rewrite mult_distr_S.

n: nat

4*n=4%*n

trivial.
Qed.

3.3.3 The Predicaten.<m

The last but one instance of the elimination schema that we will illustrate is
case analysis for the predicatem:

Letn andp be terms of typaat, and@ a predicate of typaat—Prop.
If H is a proof of “n < p ", Hy a proof of “@Q n ” and Hg a proof of
“Vm:nat, n < m — Q (S m) ", thentheterm

21

match H in (_ < q) return (Q q) with
| le.n = HO
| le.S m Hn = HS m Hm

end

is a proof term of “Q p".

The two patterns of thimatch construct describe all possibles forms of
proofs of “n < m” (notice again that the general parametds implicit in
the“in ... " clause and is absent from the match patterns.

Notice that the choice of introducing some of the arguments of the pred-
icate as being general parameters in its definition has consequences on the
rule of case analysis that is derived. In particular, the tgpef the object
defined by the case expression only depends on the indexes of the predicate,
and not on the general parameters. In the definition of the prediGatiee
first argument of this relation is a general parameter of the definition. Hence,
the predicate) to be proven only depends on the second argument of the
relation. In other words, the integeris also a general parameter of the rule
of case analysis.

An example of an application of this rule is the following theorem, show-
ing that any integer greater or equal thais the successor of another natural
number:

Lemma predecessor_of_positive :

V n, 1 <n — 3J p:nat, n = S p.
Proof.

intros n Hj;case H.

n: nat
H:1<n

dp:nat,1=Sp

exists 0; trivial.

n: nat
H:1<n

Ym:nat,0<m—3p:nat,Sm=Sp

intros m _

exists m.

trivial.
Qed.

22

3.3.4 Vectors

Thevector polymorphic and dependent family of types will give an idea of
the most general scheme of pattern-matching.

For instance, let us define a function for computing the tail of any vector.
Notice that we shall build #otal function, by considering that the tail of an
empty vector is this vector itself. In that sense, it will be slightly different
from thevtail function of the Standard Library, which is defined only for
vectors of type ‘vector A (S n) "

The header of the function we want to build is the following:

Definition Vtail_total
(A : Set) (n : nat) (v : vector A n) : vector A (pred n):=

Since the branches will not have the same type (depending on the param-
etern), the body of this function is a dependent pattern matching.o80
we will have :

match v in (vector _ n0) return (vector A (pred n0)) with

The first branch deals with the constructaril and must return a value
in “ vector A (pred 0) ", convertible to “vector A 0". So, we pro-
pose:

| Vnil = Vnil A

The second branch considers a vector ie¢tor A (S n0) " of the
form “ Vcons A n0O vO ", with “ vO:vector A n0 ”, and must return a
valuein“vector A (pred (S n0))”, convertibleto“vO:vector A n0O”".
This second branch is thus :

| Vcons _ n0 vO = vO

Here is the full definition:

Definition Vtail_total
(A : Set) (n : nat) (v : vector A n) : vector A (pred n):=
match v in (vector _ n0) return (vector A (pred n0)) with
| Vnil = Vnil A
| Vcons _ n0 vO = vO
end.

3.4 Case Analysis and Logical Paradoxes

In the previous section we have illustrated the general scheme for generating
the rule of case analysis associated to some recursive type from the defini-
tion of the type. However, if the logical soundness is to be preserved, certain

restrictions to this schema are necessary. This section provides a brief expla-
nation of these restrictions.

23

3.4.1 The Positivity Condition

In order to make sense of recursive types as types closed under their introduc-

tion rules, a constraint has to be imposed on the possible forms of such rules.
This constraint, known as thsitivity condition, iS necessary to prevent the

user from naively introducing some recursive types which would open the

door to logical paradoxes. An example of such a dangerous type is the “in-
ductive type"Lambda, whose only constructor isambda : (Lambda—False) —Lambda.
Following the pattern given in Section 3.3, the rule of (non dependent) case
analysis fof.ambda would be the following:

Q@ :Prop p:Lambda h:Lambda—False - ¢t : @
match p return () with lambda h = ¢ end: Q

In order to avoid paradoxes, it is impossible to construct the typdda
in Coqg

Inductive Lambda : Set :=
lambda : (Lambda — False) — Lambda.

Error: Non strictly positive occurrence of "Lambda” in
"(Lambda— False)— Lambda"

In order to explain this danger, we will declare some constants for simu-
lating the construction dfambda as an inductive type.

Let us open some section, and declare two variables, the first one for
Lambda, the other for the construct@ambda.

Section Paradox.
Variable Lambda : Set.
Variable lambda : (Lambda — False) —Lambda.

SinceLambda is not a truely inductive type, we can't use thetch
construct. Nevertheless, we can simulate it by a variabte-hL such that
“matchl [Q (fun h : Lambda — False = t) " should be under-
stood as ‘match [return) with | lambda h = ¢)”

Variable matchl. : Lambda —
V Q:Prop, ((Lambda —False) — Q) —
Q.

From these constants, it is possible to define application by case analysis.
Then, through auto-application, the well-known looping tédm.(z x) Az.(x x))
provides a proof of falsehood.

Definition application (f x: Lambda) :False :=
matchl f False (fun h = h x).

24

Definition Delta : Lambda :=
lambda (fun x : Lambda =- application x x).

Definition loop : False := application Delta Delta.

Theorem two_is_three : 2 = 3.
Proof.

elim loop.

Qed.

End Paradox.

This example can be seen as a formulation of Russell's paradox in type theory
associating application x x) to the formulax ¢ x, and Delta to the set

{z | x ¢ z}. If matchL would satisfy the reduction rule associated to case
analysis, that is,

matchl (lambda f) Q h=—=h f

then the ternloop would compute into itself. This is not actually surprising,
since the proof of the logical soundnesgQufqstrongly lays on the property
that any well-typed term must terminate. Hence, non-termination is usually
a synonymous of inconsistency.

3.4.1.1 Inthiscase, the construction of a non-terminating program comes
from the so-calledegative occurrence of Lambda in the argument of the con-
structorlambda.

The reader will find in the Reference Manual a complete formal definition
of the notions ofpositivity conditionand strict positivity that an inductive
definition must satisfy.

Notice that the positivity condition does not forbid us to put functional
recursive arguments in the constructors.

For instance, let us consider the type of infinitely branching trees, with
labels inZ.

Require Import ZArith.
Inductive itree : Set :=

| ileaf : itree
| inode : Z — (nat — itree) — itree.

In this representation, theth child of a tree represented byitiode z
s " is obtained by applying the function to i. The following definitions
show how to construct a tree with a single node, a tree of height 1 and a tree
of height 2:

Definition isingle 1 := inode 1 (fun i = ileaf).

25

Definition t1 := inode O (fun n = isingle (Z_of_nat n)).
Definition t2 :
inode 0
(fun n : nat =
inode (Z_of_nat n)
(fun p = isingle (Z_of_nat (nx*p)))).

Let us define a preorder on infinitely branching trees. In order to compare
two non-leaf trees, it is necessary to compare each of their children without
taking care of the order in which they appear:

Inductive itree_le : itree— itree — Prop :=
| le_leaf : V t, itree_le ileaf t
| le_node : V 1 1’ s s’,
Zle 1 17 —
(V i, 3 j:nat, itree_le (s i) (s’ j))—
itree_le (inode 1 s) (inode 1’ s?).

Notice that a call to the predicateree_le appears as a general parame-
ter of the inductive typex (see Sect.2.8). This kind of definition is accepted
by Coqg but may lead to some difficulties, since the induction principle au-
tomatically generated by the system is not the most appropriate (see chapter
14 of [3] for a detailed explanation).

The following definition, obtained by skolemising the proposition
Vi,37, (itree_le (s i) (s’ j)) in the type ofitree_le, does not present
this problem:

Inductive itree_le’ : itree— itree — Prop :=
| le_leaf’ : V t, itree_le’ ileaf t
| le.node’ : V 11’ s s’ g,
Zle 11’ —

(V i, itree_le’ (s i) (s’ (g 1))) —
itree_le’ (inode 1 s) (inode 1’ s’).

Another example is the type of trees of unbounded width, in which a
recursive subternfltree A) instantiates the type of polymorphic lists:

Require Import List.

Inductive ltree (A:Set) : Set :=
1lnode : A — list (ltree A) — 1ltree A.

This declaration can be transformed adding an extra type to the definition,
as was done in Section 2.9.

26

3.4.2 Impredicative Inductive Types

An inductive typeR inhabiting a universé' is predicative if the introduction
rules of R do not make a universal quantification on a universe containing
S. All the recursive types previously introduced are examples of predicative
types. An example of an impredicative one is the following type:

Inductive prop : Prop :=
prop_intro : Prop — prop.

Notice that the constructor of this type can be used to inject any propo-
sition —even itselfl- into the type. A careless use of such a self-contained
objects may lead to a variant of Burali-Forti’s paradox. The construction of
Burali-Forti’s paradox is more complicated than Russel's one, so we will not
describe it here, and point the reader interested in it to [1, 4].

Lemma prop_inject: prop.
Proof prop_intro prop.

Another example is the second order existential quantifier for proposi-
tions:

Inductive ex_Prop (P : Prop — Prop) : Prop :=
exP_intro : V X : Prop, P X — ex_Prop P.

Notice that predicativity on soiget forbids us to build the following
definitions.

Inductive aSet : Set :=
aSet_intro: Set — aSet.

User error: Large non-propositional inductive types must be in Type

Inductive ex_Set (P : Set — Prop) : Set :=
exS_intro : V X : Set, P X — ex_Set P.

User error: Large non-propositional inductive types must be in Type

Nevertheless, one can define types higet andex_Set, as inhabitants
of Type.

Inductive ex_Set (P : Set — Prop) : Type :=
exS_intro : V X : Set, P X — ex_Set P.

In the following example, the inductive typsp can be defined, but the
term associated with the interactive Definitiontgp_inject is incompati-
ble with Cods hierarchy of universes:

27

Inductive typ : Type :=
typ_intro : Type — typ.

Definition typ_inject: typ.
split; exact typ.

Proof completed

Defined.

Error: Universe Inconsistency.

Abort.

One possible way of avoiding this new source of paradoxes is to restrict
the kind of eliminations by case analysis that can be done on impredicative
types. In particular, projections on those universes equal or bigger than the
one inhabited by the impredicative type must be forbidden [4]. A conse-
guence of this restriction is that it is not possible to define the first projection
of the type “ex_Prop P

Check (fun (P:Prop—Prop)(p: ex_Prop P) =
match p with exP_intro X HX = X end).

Error:

Incorrect elimination of "p" in the inductive type

"ex_Prop", the return type has sort "Type" while it should be
"Prop"

Elimination of an inductive object of sort "Prop"
is not allowed on a predicate in sort "Type"
because proofs can be eliminated only to build proofs.

3.4.3 Extraction Constraints

There is a final constraint on case analysis that is not motivated by the poten-
tial introduction of paradoxes, but for compatibility reasons v@itgs ex-
traction mechanism . This mechanism is based on the classification of basic
types into the universget of sets and the univergeop of propositions. The
objects of a type in the univerSet are considered as relevant for computa-
tion purposes. The objects of a typePitop are considered just as formalised
comments, not necessary for execution. The extraction mechanism consists
in erasing such formal comments in order to obtain an executable program.
Hence, in general, it is not possible to define an object in a set (that should
be kept by the extraction mechanism) by case analysis of a proof (which will
be thrown away).

Nevertheless, this general rule has an exception which is important in
practice: if the definition proceeds by case analysis on a proofifedeton

28

proposition or an empty typed.g. False), then it is allowed. A single-

ton proposition is a non-recursive proposition with a single construglt
whose arguments are proofs. For example, the propositional equality and the
conjunction of two propositions are examples of singleton propositions.

3.4.4 Strong Case Analysis on Proofs

The plain Calculus of Inductive Constructions allows us to define a proposi-
tion @) by case analysis on the proofs of another recursive propogitigks

we will see in Section 4.1, this enables one to prove that different introduc-
tion rules of R construct different objects. However, this property is in con-
tradiction with the principle of excluded middle of classical logic, because
this principle entails that the proofs of a proposition cannot be distinguished.
This principle is not provable i€oq, but it is frequently introduced by the
users as an axiom, for reasoning in classical logic. For this reason, the defi-
nition of propositions by case analysis on proofs is currently not allowed in
Cog

Definition comes_from_the_left (P Q:Prop)(H:P V Q): Prop :=
match H with

| or_introl p = True

| or_intror q = False
end.

Error:

Incorrect elimination of "H" in the inductive type

"or", the return type has sort "Type" while it should be
"Prop"

Elimination of an inductive object of sort "Prop"
is not allowed on a predicate in sort "Type"
because proofs can be eliminated only to build proofs.

On the other hand, if we replace the proposition(with the informa-
tive type{ P} + {@}, the elimination is accepted:

Definition comes_from_the_left_sumbool
(P Q:Prop) (x:{P} + {Q}): Prop :=
match x with
| left p = True
| right q = False
end.

29

3.4.5 Summary of Constraints

To end with this section, the following table summarizes which univeise
may inhabit an object of typ@ defined by case analysis ean R, depending
on the universé/, inhabited by the inductive type?.®

Q:U;
+ R: Set Prop | Type
U Set yes yes | yes
2 Prop | if R singleton| yes no
Type yes yes | yes

4 Some Proof Techniques Based on Case Analy-
Sis

In this section we illustrate the use of case analysis as a proof principle,
explaining the proof techniques behind three very uséfudtactics, called
discriminate, inject andinversion.

4.1 Discrimination of introduction rules

In the informal semantics of recursive types described in Section 2 it was
said that each of the introduction rules of a recursive type is considered as
being different from all the others. It is possible to capture this fact inside
the logical system using the propositional equality. We take as example the
following theorem, stating thad constructs a natural number different from
any of those constructed with

Theorem S_is_not_0 : V n, S n # 0.

In order to prove this theorem, we first define a proposition by case anal-
ysis on natural numbers, so that the proposition is tru@ fomd false for any
natural number constructed wigh This uses the empty and singleton type
introduced in Sections 2.

Definition Is_zero (x:nat):= match x with
| 0 = True
| = False

end.

Then, we prove the following lemma:

®In the box indexed by/; = Type andU, = Set, the answer “yes” takes into account the
predicativity of sortSet. If you are working with the option “impredicative-set”, you must put in
this box the condition “ifR is predicative”.

30

Lemma 0_is_zero : V m, m = 0 — Is_zero m.
Proof.
intros m H; subst m.

Is_zero 0

simpl;trivial.
Qed.

Finally, the proof ofS_is_not_0 follows by the application of the previous
lemma toS n.

red; intros n Hn.

n: nat
Hn:Sn=0

False

apply 0O_is_zero with (m := S n).
assumption.
Qed.

The tacticdiscriminate is a special-purpose tactic for proving dise-
gualities between two elements of a recursive type introduced by different
constructors. It generalizes the proof method described here for natural num-
bers to any [co]-inductive. This tactic is also capable of proving disequalities
where the difference is not in the constructors at the head of the terms, but
deeper inside them. For example, it can be used to prove the following theo-
rem:

Theorem disc2 : V n, S (S n) # 1.
Proof.

intros n Hn; discriminate.
Qed.

When there is an assumptidi in the context stating a false equality
t; = tq, discriminate solves the goal by first provin@; # ¢2) and then
reasoning by absurdity with respectit

Theorem disc3 : V n, S (Sn) = 0 — V Q:Prop, Q.
Proof.

intros n Hn Q.

discriminate.
Qed.

31

In this case, the proof proceeds by absurdity with respect to the false equality
assumed, whose negation is proved by discrimination.

4.2 Injectiveness of introduction rules

Another useful property about recursive types is itjectiveness of intro-
duction rules, i.e., that whenever two objects were built using the same in-
troduction rule, then this rule should have been applied to the same element.
This can be stated formally using the propositional equality:

Theorem inj : V nmy, Sn=Sm — n =m.
Proof.

This theorem is just a corollary of a lemma about the predecessor function:

Lemma inj_pred : V nm, n = m — pred n = pred m.
Proof.

intros n m eq_n_m.

rewrite eq_n_m.

trivial.

Qed.

Once this lemma is proven, the theorem follows directly from it:

intros n m eq_Sn_Sm.
apply inj_pred with (n:= S n) (m := S m); assumption.
Qed.

This proof method is implemented by the tacticjection . This tactic
is applied to atermoftype “cty ... t, =ct} ... !, ", wherecis some
constructor of an inductive type. The tactitjection is applied as deep as
possible to derive the equality of all pairs of subterms;aindt; placed in
the same position. All these equalities are put as antecedents of the current
goal.

Like discriminate, the tacticinjection can be also applied if does
not occur in a direct sub-term, but somewhere deeper inside it. Its applica-
tion may leave some trivial goals that can be easily solved using the tactic
trivial.

Lemma list_inject : V (A:Set)(a b :A)(1 1’:1list A),
a::b::1=>b::a::1” —a=bA1=1".
Proof.
intros Aa bl 1’ e.

e:a:b:l=bza:l

32

a=bAl=l

injection e.

I=' =b=a—a=b—a=bAl=Tl

auto.
Qed.

4.3 Inversion Techniques

In section 3.2, we motivated the rule of dependent case analysis as a way
of internalizing the informal equalities = O andn = (S p) associated

to each case. This internalisation consisted in instantiatimgth the cor-
responding term in the type of each branch. However, sometimes it could
be better to internalise these equalities as extra hypotheses —for example, in
order to use the tacticsewrite, discriminate Or injection presented

in the previous sections. This is frequently the case when the element anal-
ysed is denoted by a term which is not a variable, or when it is an object of
a particular instance of a recursive family of types. Consider for example the
following theorem:

Theorem not_le_Sn_0 : V n:nat, ~ (S n < 0).

Intuitively, this theorem should follow by case analysis on the hypothesis
H : (S n < 0), because no introduction rule allows to instantiate the
arguments ofLe with respectively a successor and zero. However, there is
no way of capturing this with the typing rule for case analysis presented in
section 2, because it does not take into account what particular instance of
the family the type off is. Let us try it:

Proof.
red; intros n H; case H.
2 subgoals

n: nat
H:Sn<O0

False

subgoal 2 is:
¥ m:nat, S n< m— False

Undo.

33

What is necessary here is to make available the equalittes = 0 " and

“S m = 0" as extra hypotheses of the branches, so that the goal can be
solved using th®iscriminate tactic. In order to obtain the desired equal-
ities as hypotheses, let us prove an auxiliary lemma, that our theorem is a
corollary of:

Lemma not_le_Sn_O_with_constraints :
Vnp,Sn<p— p=0 — False.
Proof.

intros n p H; case H .

2 subgoals
n: nat

p : nat
H:Sn<p

S n=0— False

subgoal 2 is:
YV m:nat,Sn< m— Sm=0— False

intros;discriminate.
intros;discriminate.
Qed.

Our main theorem can be now solved by an application of this lemma:
Show.

2 subgoals

n: nat
p : nat
H:Sn<p

S n=0— False

subgoal 2 is:
Vm:nat,S.<m— Sm=0— False

eapply not_le_Sn_O_with_constraints; eauto.
Qed.

The general method to address such situations consists in changing the
goal to be proven into an implication, introducing as preconditions the equal-
ities needed to eliminate those cases that make no sense. This proof tech-

34

nigue is implemented by the tactimversion . In order to prove a goal
G ¢ from an object of typeR t, this tactic automatically generates a lemma
V,Z.(R &) — ¥ = — B — (G), where the list of propositions corre-
spond to those sub-goals that cannot be directly proven dsgriminate.
This lemma can be either saved for further use, or generated interactively. In
this latter case, the subgoals yield by the tactic are the hypottﬁ*sé:the
lemma. If the lemma has been stocked, then the tactic
“inversion ...using ... " can be used to apply it.

Let us show both techniques on our previous example:

4.3.1 Interactive mode

Theorem not_le_Sn_0’ : V n:nat, ~ (S n < 0).
Proof.

red; intros n H ; inversion H.

Qed.

4.3.2 Static mode

Derive Inversion le_Sn_O_inv with (V n :mat, Sn < 0).
Theorem le_Sn_ 0’ : V np : nat, ~ Sn < 0 .
Proof.
intros n p H;
inversion H using le_Sn_O_inv.
Qed.

In the example above, all the cases are solved using discriminate, so it
remains no sub-goal to be proven (i.e. the Iists empty). Let us present a
second example, where this list is not empty:

TTheorem le_reverse_rules :
V nm:nat, n < m —
n=m}V
I p,n< pAm=Sp.
Proof.
intros n m H; inversion H.

2 subgoals

n: nat
m : nat
H:n<m

35

HO:n=m

m=mV (3 p:nat, m<pAM=Sp)

subgoal 2 is:
N=SmOv (3 p:nat, n<pASmMO=Sp)

left;trivial.
right; exists mO; split; trivial.

Proof completed

This example shows how this tactic can be used to “reverse” the intro-
duction rules of a recursive type, deriving the possible premises that could
lead to prove a given instance of the predicate. This is why these tactics are
calledinversion tactics: they go back from conclusions to premises.

The hypothesis corresponding to the propositional equalities are not needed
in this example, since the tactic does the rewriting necessary to solve the sub-
goals. When the equalities are no longer needed after the inversion, itis better
to use the tacti€@nversion_clear. This variant of the tactic clears from the
context all the equalities introduced.

Restart.
intros n m H; inversion_clear H.

n: nat
m : nat

m=mV (3 p:nat, m<pAM=Sp)
left;trivial.

n:nat
m : nat
moO : nat
HO:n<mO

N=SmOv (3 p:nat,n<pASmMO=Sp)

right; exists mO; split; trivial.
Qed.

Exercise 4.1 Consider the following language of arithmetic expression, and
its operational semantics, described by a set of rewriting rules.

36

Inductive ArithExp : Set :=
| Zero : ArithExp
| Succ : ArithExp — ArithExp
| Plus : ArithExp — ArithExp — ArithExp.

Inductive RewriteRel : ArithExp — ArithExp — Prop :=
| RewSucc : V el e2 :ArithExp,
RewriteRel el e2 — RewriteRel (Succ el) (Succ e2)
| RewPlusO : V e:ArithExp,
RewriteRel (Plus Zero e) e
| RewPlusS : V el e2:ArithExp,
RewriteRel el e2 —
RewriteRel (Plus (Succ el) e2) (Succ (Plus el e2)).

1. Prove thatZero cannot be rewritten any further.

2. Prove that an expression of the formSucc e " is always rewritten
into an expression of the same form.

5 Inductive Types and Structural Induction

Elements of inductive types are well-founded with respect to the structural
order induced by the constructors of the type. In addition to case analysis,
this extra hypothesis about well-foundness justifies a stronger elimination
rule for them, calledstructural induction. This form of elimination consists

in defining a value “f x ” from some element: of the inductive typel,
assuming that values have been already associated in the same way to the
sub-parts of: of type .

Definitions by structural induction are expressed throughFthepoint
command . This command is quite close to flkee-rec construction of
functional programming languages. For example, the following definition
introduces the addition of two natural numbers (already defined in the Stan-
dard Library:)

Fixpoint plus (n p:nat) {struct n} : nat :=
match n with
| 0=p
| Sm = S (plus m p)
end.

The definition is by structural induction on the first argument of the func-
tion. This is indicated enclosing by thestruct n ” directive in the func-
tion’s headet. In order to be accepted, the definition must satisfy a syn-
tactical condition, called thguardedness condition. Roughly speaking, this

5This directive is optional in the case of a function of a single argument

37

condition constrains the arguments of a recursive call to be pattern variables,
issued from a case analysis of the formal argument of the function pointed
by thestruct directive. In the case of the functigrius, the argumeni
in the recursive call is a pattern variable issued from a case analysis of
Therefore, the definition is accepted.

Notice that we could have defined the addition with structural induction
on its second argument:

Fixpoint plus’ (n p:nat) {struct p} : nat :=
match p with
| 0 =n
| Sq = S (plus’ n q)
end.

In the following definition of addition, the second argumentpafis’
grows at each recursive call. However, as the first one always decreases, the
definition is sound.

Fixpoint plus’’ (n p:nat) {struct n} : nat :=
match n with
| 0= p
| Sm = plus’’ m (S p)
end.

Moreover, the argument in the recursive call could be a deeper compo-
nent ofn. This is the case in the following definition of a boolean function
determining whether a number is even or odd:

Fixpoint even_test (m:nat) : bool :=
match n
with 0 = true
| 1 = false
| S (S p) = even_test p
end.

Mutually dependent definitions by structural induction are also allowed.
For example, the previous functiemen could be alternatively defined using
an auxiliary functiorodd:

Reset even_test.
Fixpoint even_test (n:nat) : bool :=

match n
with
| 0 = true
| S p = odd_test p
end
with odd_test (n:nat) : bool :=
match n

38

with

| 0 = false

| S p = even_test p
end.

Definitions by structural induction are computed lazily, i.e. they are ex-
panded only when they are applied, and the decreasing argument is a term
having a constructor at the head. We can check this usingvag com-
mand, which computes the normal form of a well typed term.

Eval simpl in even_test.

=even_test
: nat — bool

Eval simpl in (fun x : nat = even x).

= fun x : nat= even X
> hat — Prop

Eval simpl in (fun x : nats- even_test (plus 5 x)).

=fun x : nat= odd_test x
: nat — bool

Eval simpl in (fun x : nat = even_test (plus x 5)).

=fun x : nat= even_test (x + 5)
: nat — bool

5.1 Proofs by Structural Induction

The principle of structural induction can be also used in order to define
proofs, that is, to prove theorems. Let us call dimination combinator

any function that, given a predicaf® defines a proof of ‘P z " by struc-

tural induction onz. In Cog, the principle of proof by induction on natural
numbers is a particular case of an elimination combinator. The definition
of this combinator depends on three general parameters: the predicate to be
proven, the base case, and inductive hypothesis:

Section Principle_of_Induction.

Variable P : nat — Prop.

Hypothesis base_case : P O.

Hypothesis inductive_hyp : V n:nat, Pn — P (S n).
Fixpoint nat_ind (mn:nat) : (P n) :=

match n return P n with

39

| 0 = base_case
| S m = inductive_hyp m (nat_ind m)
end.

End Principle_of_Induction.

As this proof principle is used very ofte@oqautomatically generates
it when an inductive type is introduced. Similar principkest_rec and
nat_rect for defining objects in the univers&et andType are also au-
tomatically generatel The commandcheme can be used to generate an
elimination combinators from certain parameters, like the universe that must
inhabit the object defined, whether the case analysis in the definitions must be
dependent or not, etc. For example, it can be used to generate an elimination
combinator for reasoning on even natural numbers from the mutually depen-
dent predicates introduced in page 14. We do not display the combinators
here by lack of space, but you can see them usin@thet command.

Scheme Even_induction := Minimality for even Sort Prop
with 0Odd_induction := Minimality for odd Sort Prop.

Theorem even_plus_four : V n:nat, even n — even (4+n).
Proof.
intros n H.
elim H using Even_induction with (PO := fun n = odd (4+n));
simpl;repeat constructor;assumption.
Qed.

Another example of an elimination combinator is the principle of double
induction on natural numbers, introduced by the following definition:

Section Principle_of_Double_Induction.

Variable P : nat — nat —Prop.

Hypothesis base_casel : V m:nat, P O m.

Hypothesis base_case2 : V n:inat, P (S n) O.

Hypothesis inductive_hyp :V nm:nat, Pnm — P (S n) (Sm.

Fixpoint nat_double_ind (n m:nat){struct n} : Pnm :=
match n, m return P n m with
0, X = base_casel x
| (S x), 0 = base_case2 x
| (S x), (Sy) = inductive_hyp x y (nat_double_ind x y)
end.
End Principle_of_Double_Induction.

"In fact, whenever possibl€oggenerates the principle_rect, then derives from it the weaker
principles/_ind and_rec. If some principle has to be defined by hand, the user may try to build
I_rect (if possible). Thanks t&€ods conversion rule, this principle can be used directly to build
proofs and/or programs.

40

Changing the type of into nat — nat — Set, another combinator
nat_double_rec for constructing (certified) programs can be defined in ex-
actly the same way. This definition is left as an exercise.

For instance the function computing the minimum of two natural num-
bers can be defined in the following way:

Definition min : nat — nat — nat :=
nat_double_rec (fun (x y:nat) = nat)
(fun (x:nat) = 0)
(fun (y:nat) = 0)
(fun (x y r:nat) = S r).
Eval compute in (min 5 8).

=5:nat

5.2 Using Elimination Combinators.

The tacticapply can be used to apply one of these proof principles during the
development of a proof. Consider for example the propositioni:nat, n # S n”".

Lemma not_circular : V n:nat, n # S n.
Proof.

intro n.

apply nat_ind with (P:= funn = n # S n).

2 subgoals

n: nat

041

subgoal 2 is:
Vv nO : nat, n0# S n0— S n0#£ S (S n0)

discriminate.
red; intros nO HnO egnOSn0;injection egnOSnO;trivial.
Qed.

The tacticelim is a refinement okpply, specially conceived for the
application of elimination combinators. 4fis an object of an inductive type
I, then “elim ¢ ” tries to find an abstractio® of the current goalz such
that(P t) = G. Then it solves the goal applyingl'_ind P ", wherel_ind
is the combinator associatedioThe different cases of the induction appears
then as sub-goals that remain to be solved. In the preceding proof, the tactic

41

call“ apply nat_ind with (P:= fun n = n # S n) ”can be simply
replaced with “elim n "

The option “elim ¢t using C ” allows to use a derived combinator
C instead of the default one. Consider the following theorem, stating that
equality is decidable on natural numbers:

Lemma eq_nat_dec : V n p:nat, {n=p}+{n # p}.
Proof.
intros n p.

Let us prove this theorem using the combinaiat_double_rec of sec-
tion 5.1. The example also illustrates hewim may sometimes fail in find-
ing a suitable abstractio® of the goal. Note that if “e1im n " is used
directly on the goal, the result is not the expected one.

elim n using nat_double_rec.
4 subgoals

n:nat
p : nat

YV X : nat, {x =p} + {x # p}

subgoal 2 is:
nat— {0 =p} +{0 # p}

subgoal 3 is:
nat— v m: nat, {m = p} + {m # p} — {S m = p} + {S m+# p}

subgoal 4 is:
nat

The four sub-goals obtained do not correspond to the premises that would
be expected for the principleat_double_rec. The problem comes from
the fact that this principle for eliminating has a universally quantified for-
mula as conclusion, which confusesim about the right way of abstracting
the goal.

Therefore, in this case the abstraction must be explicited using the tactic
pattern. Once the right abstraction is provided, the rest of the proof is
immediate:

Undo.
pattern p,n.

42

n: nat
p : nat

(funnONnl:nats{n1=n0}+{nl#n0})pn
elim n using nat_double_rec.
3 subgoals

n:nat
p : nat

v x:nat, {x =0} + {x # 0}

subgoal 2 is:

V x:nat,{0=Sx}+{0# S x}

subgoal 3 is:

¥ n0Om: nat, {m = n0} + {m= n0} — {S m = S n0} + {S Mm# S n0}

destruct x; auto.

destruct x; auto.

intros n0 m H; case H.

intro eq; rewrite eq ; auto.

intro neg; right; red ; injection 1; auto.
Defined.

Notice that the tactic decide equality” generalises the proof above
to a large class of inductive types. It can be used for proving a proposition of
the formV (x,y : R), {z = y}+{x#y}, whereR is an inductive datatype all
whose constructors take informative arguments —like for example the type
nat:

Definition eq_nat_dec’ : V n p:nat, {n=p} + {n#p}.
decide equality.
Defined.

Exercise 5.1 1. Define arecursive functiomat21tree mapping any nat-
ural numbern into an infinitely branching tree of height

2. Provide an elimination combinator for these trees.

3. Prove that the relatiori tree_ e is a preorder (i.e. reflexive and tran-
sitive).

Exercise 5.2 Define the type of lists, and a predicate “being an ordered
list” using an inductive family. Then, define the functigfrom n) = 0 =
1 ... n:: nil and prove that it always generates an ordered list.

43

5.3 Well-founded Recursion

Structural induction is a strong elimination rule for inductive types. This
method can be used to define any function whose termination is based on
the well-foundedness of certain order relati®mlecreasing at each recursive
call. What makes this principle so strong is the possibility of reasoning by
structural induction on the proof that certaihis well-founded. In order to
illustrate this we have first to introduce the predicate of accessibility.

Print Acc.

Inductive Acc (A : Set) (R: A~ A— Prop) : A— Prop :=
Acc_intro:V x: A, (v y: A, Ry x— Acc Ry)— Acc Rx

For Acc: Argument A is implicit

For Acc_intro: Arguments A, R are implicit

This inductive predicate characterize those element$ A such that any
descendingR-chain...zo2 R x; R x starting fromz is finite. A well-
founded relation is a relation such that all the elementd afe accessible.

44

Consider now the problem of representin@ioqthe following ML func-
tion div(x, y) on natural numbers, which computby%] if y > 0 and yields
x otherwise. '

let rec div x y =
if x = 0 then O
else if y = 0 then x
else (div (x-y) y)+1;;

The equality test on natural numbers can be represented as the function
eq_nat_dec defined page 42. Giving andy, this function yields either the
value (left p) if there exists a progp : = = y, or the valug(right q) if there
existsq : a # b. The subtraction function is already defined in the library
Minus.

Hence, direct translation of the ML functiaiiv would be:

Require Import Minus.

Fixpoint div (x y:nat){struct x}: nat :=
if eq_nat_dec x O
then O
else if eq_nat_dec y O
then x
else S (div (x-y) y).

Error:

Recursive definition of div is ill-formed.
In environment

div : nat— nat — nat

X : hat

y : nat

_X#0

_iy#0

Recursive call to div has principal argument equal to
VY
instead of a subterm of x

The programiiv is rejected byCogbecause it does not verify the syn-
tactical condition to ensure termination. In particular, the argument of the
recursive call is not a pattern variable issued from a case analysis \b/fe
would have the same problem if we had the directifetruct y} ”instead
of “ {struct x} . However, we know that this program always stops. One
way to justify its termination is to define it by structural induction on a proof
thatx is accessible trough the relatien Notice that any natural number
is accessible for this relation. In order to do this, it is first necessary to prove

45

some auxiliary lemmas, justifying that the first argumend of decreases at
each recursive call.

Lemma minus_smaller_S : V x y:nat, x - y < S x.
Proof.

intros x y; pattern y, x;

elim x using nat_double_ind.

destruct x0; auto with arith.

simpl; auto with arith.

simpl; auto with arith.

Qed.

Lemma minus_smaller_positive :
V x yinat, x #0 -y # 0 - x - y < X.
Proof.
destruct x; destruct y;
(simpl;intros; apply minus_smaller ||
intros; absurd (0=0); auto).
Qed.

The last two lemmas are necessary to prove that for any pair of positive nat-
ural numbers: andy, if = is accessible with respect 1@, then so isc — y.

Definition minus_decrease : V x y:nat, Acc 1t x —
x#0 —
y#0—
Acc 1t (x-y).
Proof.
intros x y H; case H.
intros z Hz posz posy.
apply Hz; apply minus_smaller_positive; assumption.
Defined.

Let us take a look at the proof of the lemmanus_decrease, since the
way in which it has been proven is crucial for what follows.

Print minus_decrease.

minus_decrease =
fun (xy : nat) (H : Acc It x=
match H in (Acc _yO0) return (y& 0 — y # 0 — Acc It (yO - y)) with
| Acc_intro z Hz=
fun (posz : z£ 0) (posy : y# 0) =
Hz (z - y) (minus_smaller_positive z y posz posy)
end
¥V xy:nat, Accltx—x#0—-y#0— Acclt(x-y)

46

Remark that the function caflhinus_decrease n m H) indeed yields an
accessibility proof that istructurally smaller than its argument, because
it is (an application of) its recursive compondiit. This enables to justify
the following definition ofdiv_aux:

Definition div_aux (x y:nat)(H: Acc 1t x):nat.

fix 3.
intros.
refine (if eq_nat_dec x O
then 0
else if eq_nat_dec y O
then y

else div_aux (x-y) y _).

div_aux:V x: nat, nat— Acc It x— nat
X : nat

y : nat

H: Acc It x

_:X#0

_0:y#0

Acclt (x-y)

apply (minus_decrease x y H);auto.
Defined.

The main division function is easily defined, using the theotenuf of
the librarywf _nat. This theorem asserts thait is well founded w.r.t1t,
thus any natural number is accessible.

Definition div x y := div_aux x y (lt_wf x).

Let us explain the proof above. In the definitiondifv_aux, what de-
creases is nat but theproof of the accessibility of. The tactic “fix 3”
is used to indicate that the proof proceeds by structural induction on the third
argument of the theorem —that is, on the accessibility proof. It also introduces
a new hypothesis in the context, named as the current theorem, and with the
same type as the goal. Then, the proof is refined with an incomplete proof
term, containing a hole. This hole corresponds to the proof of accessibility
for z — y, and is filled up with the (smaller!) accessibility proof provided by
the functionminus_decrease

47

Lets take a look to the termfiv_aux defined:

Print div_aux.

div_aux =
(fix div_aux (x y : nat) (H : Acc It x) {struct H} : nat :=
match eq_nat_dec x 0 with
|left_=0
| right =
match eq_nat_dec y 0 with
[left_=vy
| right _0=-div_aux (x - y) y (minus_decrease xy H _ _0)
end
end)
1V X nat, nat— Acc It x— nat

If the non-informative parts from this proof —that is, the accessibility
proof— are erased, then we obtain exactly the program that we were look-
ing for.

Extraction div.

letdivxy=
div_aux xy

Extraction div_aux.

letrec div_aux xy =
match eq_nat_dec x O with
| Left— O
| Right—
(match eq_nat_dec y O with
| Left—y
| Right— div_aux (minus x y) y)

This methodology enables the representation of any program whose ter-
mination can be proved iBog Once the expected properties from this pro-
gram have been verified, the justification of its termination can be thrown
away, keeping just the desired computational behavior for it.

48

6 A case study in dependent elimination

Dependent types are very expressive, but ignoring some useful techniques
can cause some problems to the beginner. Let us consider again the type of
vectors (see section 2.2). We want to prove a quite trivial property: the only
value of type “vector A 0”is"“ Vnil A"

Ouir first naive attempt leads tocal-de-sac

Lemma vectorO_is_vnil :

YV (A:Set) (v:vector A 0), v = Vnil A.
Proof.

intros A v;inversion v.

1 subgoal

A Set
v:vectorAO

v =Vnil A

Abort.

Another attempt is to do a case analysis on a vector of any lengthder
an explicit hypothesia = 0. The tacticdiscriminate will help us to get
rid of the casen = S p. Unfortunately, even the statement of our lemma is
refused!

Lemma vector(O_is_vnil_aux :
V (A:Set)(n:nat)(v:vector An), n =0 — v = Vnil A.

Error: In environment

A Set

n: nat

v :vectorAn

e:n=0

The term "Vnil A" has type "vector A 0" while it is expected to have type
"vector An"

In effect, the equality “v = Vvnil A " is ill typed, because the type
‘ vector A n”is notconvertiblewith “ vector A 0”

This problem can be solved if we consider the heterogeneous equality
JMeq [10] which allows us to consider terms of different types, even if this
equality can only be proven for terms in the same type. The aditsg_eq,
from the library JMeq allows us to convert a heterogeneous equality to a
standard one.

49

Lemma vectorO_is_vnil_aux :
V (A:Set)(n:nat) (v:vector A n),
n= 0 — JMeq v (Vnil A).

Proof.

destruct v.

auto.

intro; discriminate.

Qed.

Our property of vectors of null length can be easily proven:

Lemma vectorO_is_vnil : V (A:Set)(v:vector A 0), v = Vnil A.
intros a v;apply JMeq_eq.

apply vectorO_is_vnil_aux.

trivial.

Qed.

It is interesting to look at another proof ekctor0_is_vnil, which
illustrates a technique developed and used by various people (consult in
the Cog-clubmailing list archive the contributions by Yves Bertot, Pierre
Letouzey, Laurent Théry, Jean Duprat, and Nicolas Magaud, Venanzio Capretta
and Conor McBride). This technique is also used for unfolding infinite list
definitions (see chapterl3 of [3]). Notice that this definition does not rely on
any axiom €.g9.JMeq_eq).

We first give a new definition of the identity on vectors. Before that,
we make lighter the use of constructors and selectors thanks to the implicit
arguments feature:

Implicit Arguments Vcons [A n].
Implicit Arguments Vnil [A].

Implicit Arguments Vhead [A n].
Implicit Arguments Vtail [A n].

Definition Vid : V (A : Set)(n:nat), vector A n — vector A n.
Proof.

destruct n; intro v.

exact Vnil.

exact (Vcons (Vhead v) (Vtail v)).
Defined.

Then we prove thatid is the identity on vectors:

Lemma Vid_eq : V (n:nat) (A:Set)(v:vector A n), v=(Vid _ n v).
Proof.
destruct v.

A Set

50

Vnil = Vid A 0 Vnil

subgoal 2 is:
Vconsav=Vid A (Sn) (Vcons av)

reflexivity.
reflexivity.
Defined.

Why defining a new identity function on vectors ? The following dia-
logue shows thatid has some interesting computational properties:

Eval simpl in (fun (A:Set)(v:vector A 0) = (Vid _ _ v)).
=fun (A : Set) (_: vector A 0 Vnil
1V A Set, vector A - vector AO

Notice that the plain identity on vectors doesn’t conweirito Vnil.

Eval simpl in (fun (A:Set)(v:vector A 0) = v).
=fun (A : Set) (v : vector A Ox- v
:V A Set, vector A - vector AO

Then we prove easily that any vector of length @ig1:

Theorem zero_nil : V A (v:vector A 0), v = Vnil.
Proof.

intros.

change (Vnil (A:=A)) with (Vid _ 0 v).

1 subgoal

A Set
v:vectorAO

v=VidAOvV

apply Vid_eq.
Defined.

A similar result can be proven about vectors of strictly positive lehght

Theorem decomp :
V (A : Set) (n : nat) (v : vector A (S n)),
v = Vcons (Vhead v) (Vtail v).

8As for vid,Vid_eq, this definition is from Jean Duprat.

51

Proof.
intros.

change (Vcons (Vhead v) (Vtail v)) with (Vid (Sn) v.

1 subgoal

A Set
n: nat
v :vector A (S n)

v=VidA(Sn)v

apply Vid_eq.
Defined.

Both lemmas:zero_nil and decomp, can be used to derive easily a
double recursion principle on vectors of same length:

Definition vector_double_rect :
V (A:Set) (P: V (n:nat),(vector A n)—(vector A n) — Type),
P 0 Vnil Vnil —
(V n (vl v2 : vector An) ab, Pn vl v2 —
P (S n) (Vcons a vl) (Vcons b v2)) —

V n (vl v2 : vector A n), P n vl v2.

induction n.

intros; rewrite (zero_nil _ v1); rewrite (zero_nil _ v2).

auto.

intros vl v2; rewrite (decomp _ _ vl);rewrite (decomp _ _ v2).
apply X0; auto.
Defined.

Notice that, due to the conversion rule@bgs type system, this function
can be used directly witArop or Set instead of type (thus it is useless to
build from scratchvector_double_ind andvector_double_rec).

We finish this example with showing how to define the bitwiseon
boolean vectors of the same length, and proving a little property about this
operation.

Definition bitwise_or n vl v2 : vector bool n :=
vector_double_rect bool
(fun n vl v2 = vector bool n)
Vnil
(fun n vl v2 a b r = Vcons (orb a b) r) n vl v2.

Let us define recursively the-th element of a vector. Notice that it must
be a partial function, in caseis greater or equal than the length of the vector.

52

SinceCoqonly considers total functions, the function returns a value in an
optiontype.

Fixpoint vector_nth (A:Set)(n:nat) (p:nat)(v:vector A p){struct v}
: option A :=
match n,v with
, Vnil = None

| 0 , Vcons b _ _ = Some b
| Sn’, Vcons _ p’ v’ = vector_nth A n’> p’ v’
end.

Implicit Arguments vector_nth [A p].

We can now prove — using the double induction combinator — a simple
property relyingvector_nth andbitwise_or:

Lemma nth_bitwise : V (n:nat) (vl v2: vector bool n) i a b,
vector_nth i vl = Some a —
vector_nth i v2 = Some b —
vector_nth i (bitwise_or
Proof.
intros =n vl v2; pattern n,vil,v2.

vl v2) = Some (orb a b).

apply vector_double_rect.

simpl.

destruct i; discriminate 1.

destruct i; simpl;auto.

injection 1; injection 2;intros; subst a; subst b; auto.
Qed.

7 Co-inductive Types and Non-ending Construc-
tions

The objects of an inductive type are well-founded with respect to the con-
structors of the type. In other words, such objects are built by applying
finite number of timethe constructors of the type. Co-inductive types are
obtained by relaxing this condition, and may contain non-well-founded ob-
jects [9, 8]. An example of a co-inductive type is the type of infinite se-
quences formed with elements of tyde also called streams. This type can
be introduced through the following definition:

CoInductive Stream (A: Set) :Set 1=
| Cons : A—Stream A—Stream A.

If we are interested in finite or infinite sequences, we consider the type of
lazy lists

53

CoInductive LList (A: Set) : Set :=
| LNil : LList A
| LCons : A — LList A — LList A.

It is also possible to define co-inductive types for the trees with infinite
branches (see Chapter 13 of [3]).

Structural induction is the way of expressing that inductive types only
contain well-founded objects. Hence, this elimination principle is not valid
for co-inductive types, and the only elimination rule for streams is case anal-
ysis. This principle can be used, for example, to define the destruatads
andtail.

Definition head (A:Set)(s : Stream A) :=
match s with Cons a s’ = a end.

Definition tail (A : Set)(s : Stream A) :=
match s with Cons a s’ = s’ end.

Infinite objects are defined by means of (non-ending) methods of con-
struction, like in lazy functional programming languages. Such methods can
be defined using th@oFixpoint command . For example, the following
definition introduces the infinite ligt, a, a, . . .J:

CoFixpoint repeat (A:Set)(a:A) : Stream A :=
Cons a (repeat a).

However, not any co-recursive definition is an admissible method of con-
struction. Similarly to the case of structural induction, the definition must
verify a guardedness condition to be accepted. This condition states that any
recursive call in the definition must be protected —i.e, be an argument of—
some constructor, and only an argument of constructors [7]. The following
definitions are examples of valid methods of construction:

CoFixpoint iterate (A: Set)(f: A — A)(a : A) : Stream A:=
Cons a (iterate f (f a)).

CoFixpoint map
(A B:Set)(f: A — B)(s : Stream A) : Stream B:=
match s with Cons a tl = Cons (f a) (map f tl) end.

Exercise 7.1 Define two different methods for constructing the stream which
infinitely alternates the valuesrue and false.

Exercise 7.2 Using the destructorgead and tas 1, define a function which
takes the n-th element of an infinite stream.

54

A non-ending method of construction is computed lazily. This means that
its definition is unfolded only when the object that it introduces is eliminated,
that is, when it appears as the argument of a case expression. We can check
this using the commarigval.

Eval simpl in (fun (A:Set)(a:A) = repeat a).
=fun (A: Set) (a: A= repeat a
1V A Set, A— Stream A

Eval simpl in (fun (A:Set)(a:A) = head (repeat a)).
=fun (A: Set) (a: A= a
YV A:Set,A— A

7.1 Extensional Properties

Case analysis is also a valid proof principle for infinite objects. However, this
principle is not sufficient to provextensional properties, that is, properties
concerning the whole infinite object [8]. A typical example of an extensional
property is the predicate expressing that two streams have the same elements.
In many cases, the minimal reflexive relatiog- b that is used as equality for
inductive types is too small to capture equality between streams. Consider
for example the streamterate f (f z) and (map f (iterate f z)).

Even though these two streams have the same elements, no finite expansion
of their definitions lead to equal terms. In other words, in order to deal with
extensional properties, it is necessary to construct infinite proofs. The type
of infinite proofs of equality can be introduced as a co-inductive predicate,
as follows:

CoInductive EqSt (A: Set) : Stream A — Stream A — Prop :=
egst : V sl s2: Stream A,
head s1 = head s2 —
EgSt (tail s1) (tail s2) —
EqSt s1 s2.

It is possible to introduce proof principles for reasoning about infinite
objects as combinators defined throu@iFixpoint. However, oppositely
to the case of inductive types, proof principles associated to co-inductive
types are not elimination buttroduction combinators. An example of such
a combinator is Park’s principle for proving the equality of two streams, usu-
ally called theprinciple of co-induction. It states that two streams are equal
if they satisfy abisimulation A bisimulation is a binary relatiof® such that
any pair of streams; ad s, satisfying R have equal heads, and tails also
satisfyingR. This principle is in fact a method for constructing an infinite
proof:

Section Parks_Principle.
Variable A : Set.

55

Variable R : Stream A — Stream A — Prop.
Hypothesis bisiml : V sl s2:Stream A, R sl s2 —
head s1 = head s2.

Hypothesis bisim2 : V sl s2:Stream A, R sl s2 —
R (tail s1) (tail s2).

CoFixpoint park_ppl
V sl s2:Stream A, R s1 s2 — EgSt sl s2 :=
fun s1 s2 (p : R sl s2) =
eqst sl s2 (bisiml sl s2 p)
(park_ppl (tail s1) (tail s2) (bisim2 sl s2 p)).
End Parks_Principle.

Let us use the principle of co-induction to prove the extensional equality
mentioned above.

Theorem map_iterate : V (a:Set)(f:A—A)(x:4),
EqSt (iterate f (f x)) (map f (iterate f x)).

Proof.

intros A f x.

apply park_ppl with

(R:= fun sl s2 =
d x: A, sl = iterate £ (f x) A
s2 = map f (iterate f x)).

intros s1 s2 (x0,(egsl,eqs2));rewrite eqsl;rewrite eqs2;reflexivity.
intros s1 s2 (x0,(egsl,eqs2)).

exists (f x0);split;[rewrite eqsl|rewrite eqs2]; reflexivity.

exists x;split; reflexivity.
Qed.

The use of Park’s principle is sometimes annoying, because it requires
to find an invariant relation and prove that it is indeed a bisimulation. In
many cases, a shorter proof can be obtained trying to construct an ad-hoc
infinite proof, defined by a guarded declaration. The tacti€ofix f " can
be used to do that. Similarly to the tacti¢x indicated in Section 5.3, this
tactic introduces an extra hypothegidnto the context, whose type is the
same as the current goal. Note that the applicatiorfsiothe proofmust be
guarded. In order to prevent us from doing unguarded calls, we can define a
tactic that always apply a constructor before usfng

Ltac infiniteproof f :=
cofix f; constructor; [clear f| simpl; try (apply f; clear f)].

In the example above, this tactic produces a much simpler proof that the
former one:

56

Theorem map_iterate’ : V ((A:Set)f:A—A)(x:4),
EqSt (iterate f (f x)) (map f (iterate f x)).
Proof.
infiniteproof map_iterate’.
reflexivity.
Qed.

Exercise 7.3 Define a co-inductive typ& at containing non-standard natu-
ral numbers —this is, verifying

dm € Nat,Vn € Nat,n < m

Exercise 7.4 Prove that the extensional equality of streams is an equivalence
relation using Park’s co-induction principle.

Exercise 7.5 Provide a suitable definition of “being an ordered list” for in-
finite lists and define a principle for proving that an infinite list is ordered.
Apply this method to the li$d, 1, . . .]. Compare the result with exercise 5.2.

7.2 About injection, discriminate, and inversion

Since co-inductive types are closed w.r.t. their constructors, the techniques
shown in Section 4 work also with these types.

Let us consider the type of lazy lists, introduced on page 53. The follow-
ing lemmas are straightforward applicationgioécriminate andinjection:

Lemma Lnil_not_Lcons : V (A:Set)(a:A)(1:LList A),
LNil # (LCons a 1).
Proof.
intros;discriminate.
Qed.

Lemma injection_demo : V (A:Set)(a b : A)(1 1’: LList A),
LCons a (LCons b 1) = LCons b (LCons a 1’) —
a=bA1l=1.
Proof.
intros A a b1l 1’ e; injection e; auto.
Qed.

In order to showinversion at work, let us define two predicates on lazy
lists:

57

Inductive Finite (A:Set) : LList A — Prop :=
| Lnil_fin : Finite (LNil (A:=A))
| Lcons_fin : V a 1, Finite 1 — Finite (LCons a 1).

CoInductive Infinite (A:Set) : LList A — Prop :=
| LCons_inf : V a 1, Infinite 1 — Infinite (LCons a 1).

First, two easy theorems:

Lemma LNil_not_Infinite : V (A:Set), ~ Infinite (LNil (A:=A)).
Proof.

intros A H;inversion H.
Qed.

Lemma Finite_not_Infinite : V (A:Set)(1:LList A),
Finite 1 — 7~ Infinite 1.

Proof.

intros A 1 H; elim H.

apply LNil_not_Infinite.

intros a 10 FO IO’ I1.

case I0’; inversion_clear I1.

trivial.

Qed.

On the other hand, the next proof uses thé&ix tactic. Notice the de-
structuration ofi, which allows us to apply the constructa@ons_inf, thus
satisfying the guard condition:

Lemma Not_Finite_Infinite : V (A:Set)(1:LList A),
~ Finite 1 — Infinite 1.
Proof.
cofix H.
destruct 1.
intro; absurd (Finite (LNil (A:=A)));[auto|constructor].

1 subgoal

H : forall (A : Set) (I: LList A), ~ Finite | -> Infinite |
A: Set

a:A

|: LList A

HO : ~ Finite (LCons a)

Infinite |

At this point, one must not applg! . It would be possible to solve the
current goal by an inversion of Finite (LCons a 1) ”, but, since the

58

guard condition would be violated, the user would get an error message after
typeingQed. In order to satisfy the guard condition, we apply the constructor
of Infinite, thenapplyH.

constructor.

apply H.

red; intro H1l;case HO.
constructor.

trivial.
Qed.

The reader is invited to replay this proof and understand each of its steps.

References

[1] B. Barras. A formalisation of Burali-Forti's paradox in coq. Dis-
tributed within the bunch of contribution to the Coq system, March
1998.http://pauillac.inria.fr/coq.

[2] Y. Bertot and P. Castéran. Coq'Art: examples and exerciaesp:
//www.labri.fr/Perso/~casteran/CogArt.

[3] Y. Bertot and P. Castérarinteractive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructidiexts
in Theoretical Computer Science. An EATCS series. Springer Verlag,
2004.

[4] T. Coquand. An Analysis of Girard’s Paradox. $ygmposium on Logic
in Computer Scienge&Cambridge, MA, 1986. IEEE Computer Society
Press.

[5] T. Coquand. Metamathematical investigations on a calculus of con-
structions. In P. Odifreddi, editot,ogic and Computer SciencAca-
demic Press, 1990.

[6] Development team. Th€oq proof assistant. Documentation, system
download. Contactittp://coq.inria.fr/.

[7] E. Giménez. Codifying guarded definitions with recursive schemes. In
Workshop on Types for Proofs and Programsmber 996 in LNCS,
pages 39-59. Springer-Verlag, 1994.

[8] E.Giménez. An application of co-inductive types in coq: verification of
the alternating bit protocol. lWorkshop on Types for Proofs and Pro-
grams number 1158 in LNCS, pages 135-152. Springer-Verlag, 1995.

[9] E. GiménezA Calculus of Infinite Constructions and its application to
the verification of communicating systen®hD thesis, Ecole Normale
Supérieure de Lyon, 1996.

[10] C. McBride. Elimination with a motive. ITypes for Proofs and Pro-
grams’200Q volume 2277, pages 197-217, 2002.

59

[11] C. D. Team. The Coq reference manual. LogiCal Project,
http://coq.inria.fr/.

60

