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1 About this document

This document is an introduction to the definition and use of inductive and
co-inductive types in theCoqproof environment. It was born from the notes
written for the course about the version V5.10 ofCoq, given by Eduardo
Gimenez at the Ecole Normale Supérieure de Lyon in March 1996. This
article is a revised and improved version of that notes for the version V8.0 of
the system.

We assume that the reader has some familiarity with the proofs-as-programs
paradigm of Logic [5] and the generalities of theCoqsystem [11]. You would
take a greater advantage of this document if you first read the general tutorial
aboutCoqandCoq’s FAQ, both available on [6]. A text book [3], accompa-
nied with a lot of examples and exercises [2], presents a detailed description
of the Coq system and its underlying formalism: the Calculus of Inductive
Construction. Finally, the complete description ofCoq is given in the ref-
erence manual [11]. Most of the tactics and commands we describe have
several options, which we do not present exhaustively. If some script herein
uses a non described fetature, please refer to the Reference Manual.

If you are familiar with other proof environments based on type theory
and the LCF style —like PVS, LEGO, Isabelle, etc— then you will find not
difficulty to guess the unexplained details.

The better way to read this document is to start up theCoqsystem, type
by yourself the examples and exercises proposed, and observe the behavior
of the system. All the examples proposed in this tutorial can be downloaded
from the same site as the present document.

The tutorial is organised as follows. The next section describes how in-
ductive types are defined inCoq, and introduces some useful ones, like natu-
ral numbers, the empty type, the propositional equality type, and the logical
connectives. Section 3 explains definitions by pattern-matching and their
connection with the principle of case analysis. This principle is the most
basic elimination rule associated with inductive or co-inductive types, and
follows a general scheme that, we illustrate for some of the types introduced
in Section 2. Section 4 illustrates the pragmatics of this principle, showing
different proof techniques based on it. Section 5 introduces definitions by
structural recursion and proofs by induction. Section 6 presents some elab-
orate techniques about dependent case analysis. Finally, Section 7 is a brief
introduction to co-inductive types –i.e., types containing infinite objects– and
the principle of co-induction.

Thanks to Bruno Barras, Yves Bertot, Hugo Herbelin, Jean-François
Monin and Michel Lévy for their help.

Lexical conventions

Thetypewriter font is used to represent text input by the user, while the
italic font is used to represent the text output by the system as answers.
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Moreover, the mathematical symbols≤, 6=, ∃, ∀, →, → ∨, ∧, and⇒
stand for the character strings<=, <>, exists, forall, ->, <-, \/, /\, and
=>, respectively. For instance, theCoqstatement

forall A:Set,(exists x : A, forall (y:A), x <> y) -> 2 = 3

is written as follows in this tutorial:

∀ A:Set,(∃ x:A, ∀ y:A, x 6= y) → 2 = 3

When a fragment ofCoq input text appears in the middle of regular text,
we often place this fragment between double quotes “. . . .” These double
quotes do not belong to theCoqsyntax.

Finally, that any string enclosed between(* and*) is a comment and is
ignored by theCoqsystem.

2 Introducing Inductive Types

Inductive types are types closed with respect to their introduction rules. These
rules explain the most basic orcanonical ways of constructing an element of
that type. In this sense, they characterize the recursive type. Different rules
must be considered as introducing different objects. In order to fix ideas, let
us introduce inCoq the most well-known example of a recursive type: the
type of natural numbers.

Inductive nat : Set :=

| O : nat

| S : nat→nat.

The definition of a recursive type has two main parts. First, we establish
what kind of recursive type we will characterize (a set, in this case). Second,
we present the introduction rules that define the type (O andS), also called its
constructors. To say thatnat is closedunder these introduction rules means
thatO andS determine all the elements of this type. In other words, ifn:nat,
thenn must have been introduced either by the ruleO or by an application of
the ruleS to a previously constructed natural number. On the contrary, the
typeSet is anopentype, since we do not knowa priori all the possible ways
of introducing an object of typeSet.

After entering this command, the constantsnat, O andS are available in
the current context. We can see their types using the commandCheck :

Check nat.

nat : Set
Check O.

O : nat
Check S.

S : nat→ nat
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Moreover,Coqadds to the context three constants namednat_ind, nat_rec
andnat_rect, which correspond to different principles of structural induc-
tion on natural numbers thatCoq infers automatically from the definition.
We will come back to them in Section 5.

In fact, the type of natural numbers as well as several useful theorems
about them are already defined in the basic library ofCoq, so there is no need
to introduce them. Therefore, let us throw away the former (re)definition of
nat, using the commandReset.

Reset nat.

Print nat.

Inductive nat : Set := O : nat | S : nat→ nat
For S: Argument scope is [nat_scope]

Notice thatCoq’s interpretation scopefor natural numbers (callednat_scope)
allows us to read and write natural numbers in decimal form (see [11]). For
instance, the constructorO can be read or written as the digit0, and the term
“ S (S (S O)) ” as3.

Check O.

0 : nat.

Check (S (S (S O))).

3 : nat

Let us now take a look to some other recursive types contained in the
standard library ofCoq.

2.1 Lists

Lists are defined in libraryList:

Require Import List.

Print list.

Inductive list (A : Set) : Set :=
nil : list A | cons : A→ list A→ list A

For nil: Argument A is implicit
For cons: Argument A is implicit
For list: Argument scope is [type_scope]
For nil: Argument scope is [type_scope]
For cons: Argument scopes are [type_scope _ _]

In this definition,A is a general parameter, global to both constructors.
This kind of definition allows us to build a whole family of inductive types,
indexed over the sortSet. This can be observed if we consider the type
of identifierslist, cons andnil. Notice the notation(A := ...) which
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must be used whenCoq’s type inference algorithm cannot infer the implicit
parameterA.

Check list.

list
: Set→ Set

Check (nil (A:=nat)).

nil
: list nat

Check (nil (A:= nat → nat)).

nil
: list (nat→ nat)

Check (fun A: Set ⇒ (cons (A:=A))).

fun A : Set⇒ cons (A:=A)
: ∀ A : Set, A→ list A→ list A

Check (cons 3 (cons 2 nil)).

3 :: 2 :: nil
: list nat

2.2 Vectors.

Like list, vector is a polymorphic type: ifA is a set, andn a natural
number, “vector A n ” is the type of vectors of elements ofA and sizen.

Require Import Bvector.

Print vector.

Inductive vector (A : Set) : nat→ Set :=
Vnil : vector A 0

| Vcons : A→ ∀ n : nat, vector A n→ vector A (S n)
For vector: Argument scopes are [type_scope nat_scope]
For Vnil: Argument scope is [type_scope]
For Vcons: Argument scopes are [type_scope _ nat_scope _]

Remark the difference between the two parametersA andn: The first one
is a general parameter, global to all the introduction rules,while the second
one is anindex, which is instantiated differently in the introduction rules.
Such types parameterized by regular values are calleddependent types.

Check (Vnil nat).

Vnil nat
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: vector nat 0

Check (fun (A:Set)(a:A)⇒ Vcons _ a _ (Vnil _)).

fun (A : Set) (a : A)⇒ Vcons A a 0 (Vnil A)
: ∀ A : Set, A→ vector A 1

Check (Vcons _ 5 _ (Vcons _ 3 _ (Vnil _))).

Vcons nat 5 1 (Vcons nat 3 0 (Vnil nat))
: vector nat 2

2.3 The contradictory proposition.

Another example of an inductive type is the contradictory proposition. This
type inhabits the universe of propositions, and has no element at all.

Print False.

Inductive False : Prop :=

Notice that no constructor is given in this definition.

2.4 The tautological proposition.

Similarly, the tautological propositionTrue is defined as an inductive type
with only one elementI:

Print True.

Inductive True : Prop := I : True

2.5 Relations as inductive types.

Some relations can be also introduced in a smart way as an inductive family
of propositions. Let us take as example the ordern ≤ m on natural numbers,
calledle in Coq. This relation is introduced through the following definition,
quoted from the standard library2:

Print le.

Inductive le (n:nat) : nat→Prop :=
| le_n: n≤ n
| le_S:∀ m, n≤m→ n≤ S m.

Notice that in this definitionn is a general parameter, while the second
argument ofle is an index (see section 2.2). This definition introduces the

2In the interpretation scope for Peano arithmetic:nat_scope, “ n <= m ” is equivalent to
“ le n m ” .
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binary relationn≤m as the family of unary predicates “to be greater or equal
than a given n”, parameterized byn.

The introduction rules of this type can be seen as a sort of Prolog rules
for proving that a given integern is less or equal than another one. In fact,
an object of typen≤m is nothing but a proof built up using the constructors
le_n andle_S of this type. As an example, let us construct a proof that zero
is less or equal than three usingCoq’s interactive proof mode. Such an object
can be obtained applying three times the second introduction rule ofle, to
a proof that zero is less or equal than itself, which is provided by the first
constructor ofle:

Theorem zero_leq_three: 0 ≤ 3.

Proof.

1 subgoal

============================
0≤ 3

Proof.

constructor 2.

1 subgoal
============================
0≤ 2

constructor 2.

1 subgoal
============================
0≤ 1

constructor 2

1 subgoal
============================
0≤ 0

constructor 1.

Proof completed
Qed.

When the current goal is an inductive type, the tactic “constructor i ”
applies thei-th constructor in the definition of the type. We can take a look
at the proof constructed using the commandPrint:

Print Print zero_leq_three.

zero_leq_three =
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zero_leq_three = le_S 0 2 (le_S 0 1 (le_S 0 0 (le_n 0)))
: 0 ≤ 3

When the parameteri is not supplied, the tacticconstructor tries to
apply “ constructor 1 ”, “ constructor 2 ”,. . . , “ constructor n ”
wheren is the number of constructors of the inductive type (2 in our example)
of the conclusion of the goal. Our little proof can thus be obtained iterating
the tacticconstructor until it fails:

Lemma zero_leq_three': 0 ≤ 3.

repeat constructor.

Qed.

Notice that the strict order onnat, calledlt is not inductively defined:

Print lt.

lt = fun n m : nat⇒ S n≤m
: nat→ nat→ Prop

Lemma zero_lt_three : 0 < 3.

Proof.

unfold lt.

====================
1≤ 3

repeat constructor.

Qed.

2.6 The propositional equality type.

In Coq, the propositional equality between two inhabitantsa and b of the
same typeA , noteda = b, is introduced as a family of recursive predicates
“ to be equal to a ”, parameterised by botha and its typeA. This family
of types has only one introduction rule, which corresponds to reflexivity.
Notice that the syntax “a = b ” is an abbreviation for “eq a b ”, and that
the parameterA is implicit, as it can be infered froma.

Print eq.

Inductive eq (A : Type) (x : A) : A→ Prop :=
refl_equal : x = x

For eq: Argument A is implicit
For refl_equal: Argument A is implicit
For eq: Argument scopes are [type_scope _ _]
For refl_equal: Argument scopes are [type_scope _]
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Notice also that the first parameterA of eq has typeType. The type
system ofCoqallows us to consider equality between various kind of terms:
elements of a set, proofs, propositions, types, and so on. Look at [11, 3]
to get more details onCoq’s type system, as well as implicit arguments and
argument scopes.

Lemma eq_3_3 : 2 + 1 = 3.

Proof.

reflexivity.

Qed.

Lemma eq_proof_proof : refl_equal (2*6) = refl_equal (3*4).

Proof.

reflexivity.

Qed.

Print eq_proof_proof.

eq_proof_proof =
refl_equal (refl_equal (3 * 4))

: refl_equal (2 * 6) = refl_equal (3 * 4)

Lemma eq_lt_le : ( 2 < 4) = (3 ≤ 4).

Proof.

reflexivity.

Qed.

Lemma eq_nat_nat : nat = nat.

Proof.

reflexivity.

Qed.

Lemma eq_Set_Set : Set = Set.

Proof.

reflexivity.

Qed.

Lemma eq_Type_Type : Type = Type.

Proof.

reflexivity.

Qed.
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2.7 Logical connectives.

The conjunction and disjunction of two propositions are also examples of
recursive types:

Inductive or (A B : Prop) : Prop :=

or_introl : A → A ∨ B | or_intror : B → A ∨ B

Inductive and (A B : Prop) : Prop :=

conj : A → B → A ∧ B

The propositionsA andB are general parameters of these connectives.
Choosing different universes forA andB and for the inductive type itself
gives rise to different type constructors. For example, the typesumbool is a
disjunction but with computational contents.

Inductive sumbool (A B : Prop) : Set :=

left : A → {A} + {B} | right : B → {A} + {B}

This type –noted{A}+{B} in Coq– can be used inCoq programs as a
sort of boolean type, to check whether it isA or B that is true. The values
“ left p ” and “ right q ” replace the boolean valuestrue andfalse, re-
spectively. The advantage of this type overbool is that it makes available the
proofsp of A or q of B, that could be necessary to construct a verification
proof about the program. For instance, let us consider the certified program
le_lt_dec of the Standard Library.

Require Import Compare_dec.

Check le_lt_dec.

le_lt_dec
: ∀ n m : nat, {n≤m} + {m < n}

We usele_lt_dec to build a function for computing the max of two
natural numbers:

Definition max (n p :nat) := match le_lt_dec n p with

| left _ ⇒ p

| right _ ⇒ n

end.

In the following proof, the case analysis on the term “le_lt_dec n p ”
gives us an access to proofs ofn ≤ p in the first case,p < n in the other.

Theorem le_max : ∀ n p, n ≤ p → max n p = p.

Proof.
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intros n p ; unfold max ; case (le_lt_dec n p); simpl.

2 subgoals

n : nat
p : nat
============================
n≤ p→ n≤ p→ p = p

subgoal 2 is:
p < n→ n≤ p→ n = p

trivial.

intros; absurd (p < p); eauto with arith.

Qed.

Once the program verified, the proofs are erased by the extraction proce-
dure:

Extraction max.

(** val max : nat→ nat→ nat **)

let max n p =
match le_lt_dec n p with
| Left→ p
| Right→ n

Another example of use ofsumbool is given in Section 5.3.

2.8 The existential quantifier.

The existential quantifier is yet another example of a logical connective in-
troduced as an inductive type.

Inductive ex (A : Type) (P : A → Prop) : Prop :=

ex_intro : ∀ x : A, P x → ex P

Notice that Coq uses the abreviation “ ∃ x:A, B ” for
“ ex (fun x:A ⇒ B) ”.
The former quantifier inhabits the universe of propositions. As for conjunc-
tion and disjunction connectives, there is also another version of existential
quantification inhabiting the universeSet, which is notedsig P . The syn-
tax “ {x:A | B} ” is an abreviation for “sig (fun x:A ⇒ B) ”.
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2.9 Mutually Dependent Definitions

Mutually dependent definitions of recursive types are also allowed inCoq. A
typical example of these kind of declaration is the introduction of the trees of
unbounded (but finite) width:

Inductive tree(A:Set) : Set :=

node : A → forest A → tree A

with forest (A: Set) : Set :=

nochild : forest A |

addchild : tree A → forest A → forest A.

Yet another example of mutually dependent types are the predicateseven

andodd on natural numbers:

Inductive

even : nat→Prop :=

evenO : even O |

evenS : ∀ n, odd n → even (S n)

with

odd : nat→Prop :=

oddS : ∀ n, even n → odd (S n).

Lemma odd_49 : odd (7 * 7).

simpl; repeat constructor.

Qed.

3 Case Analysis and Pattern-matching

3.1 Non-dependent Case Analysis

An elimination rule for the typeA is some way to use an objecta : A in order
to define an object in some typeB. A natural elimination for an inductive
type iscase analysis.

For instance, any value of typenat is built using eitherO or S. Thus, a
systematic way of building a value of typeB from any value of typenat is
to associate toO a constanttO : B and to every term of the form “S p ” a
termtS : B. The following construction has typeB:

match n return B with O ⇒ tO | S p ⇒ tS end

In most of the cases,Coqis able to infer the typeB of the object defined,
so the “return B” part can be omitted.

The computing rules associated with this construct are the expected ones
(the notationtS{q/p} stands for the substitution ofp by q in tS :)

match O return b with O ⇒ tO | S p ⇒ tS end =⇒ tO

match S q return b with O ⇒ tO | S p ⇒ tS end =⇒ tS{q/p}

14



3.1.1 Example: the predecessor function.

An example of a definition by case analysis is the function which computes
the predecessor of any given natural number:

Definition pred (n:nat) := match n with

| O ⇒ O

| S m ⇒ m

end.

Eval simpl in pred 56.

= 55
: nat

Eval simpl in pred 0.

= 0
: nat

Eval simpl in fun p ⇒ pred (S p).

= fun p : nat⇒ p
: nat→ nat

As in functional programming, tuples and wild-cards can be used in pat-
terns . Such definitions are automatically compiled byCoqinto an expression
which may contain several nested case expressions. For example, the exclu-
siveor on booleans can be defined as follows:

Definition xorb (b1 b2:bool) :=

match b1, b2 with

| false, true ⇒ true

| true, false ⇒ true

| _ , _ ⇒ false

end.

This kind of definition is compiled inCoqas follows3:

Print xorb.

xorb =

fun b1 b2 : bool ⇒
if b1 then if b2 then false else true

else if b2 then true else false

: bool → bool → bool

3Coq uses the conditional “ if b then a else b ” as an abreviation to
“ match b with true ⇒ a | false ⇒ b end ”.
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3.2 Dependent Case Analysis

A more general typing rule for case expressions is obtained considering that
not only the object defined may depend onn, but also its type. For instance,
let us consider some functionQ : nat→Set, andn : nat. In order to build a
term of typeQ n, we can associate to the constructorO some termtO : Q O

and to the pattern “S p ” some termtS : Q (S p). Notice that the termstO
andtS do not have the same type.

The syntax of thedependent case analysisand its associated typing rule
make precise how the resulting type depends on the argument of the pattern
matching, and which constraint holds on the branches of the pattern match-
ing:

Q : nat→Set tO : Q O p : nat ` tp : Q (S p) n : nat
match n as n0 return Q n0 with | O ⇒tO | S p ⇒tS end : Q n

The interest of this rule ofdependent pattern-matching is that it can be
also read as the following logical principle (replacingSet by Prop in the
type ofQ): in order to prove that a propertyQ holds for alln, it is sufficient
to prove thatQ holds forO and that for allp : nat, Q holds for(S p). The
former, non-dependent version of case analysis can be obtained from this
latter rule just takingQ as a constant function onn.

Notice that destructuringn into O or “ S p ” doesn’t make appear in the
goal the equalities “n = O ” and “ n = S p ”. They are “internalized” in the
rules above (see section 4.3.)

3.2.1 Example: strong specification of the predecessor function.

In Section 3.1.1, the predecessor function was defined directly as a function
from nat to nat. It remains to prove that this function has some desired
properties. Another way to proceed is to, first introduce a specification of
what is the predecessor of a natural number, under the form of aCoq type,
then build an inhabitant of this type: in other words, a realization of this
specification. This way, the correctness of this realization is ensured byCoq’s
type system.

A reasonable specification forpred is to say that for alln there exists
anotherm such that eitherm = n = 0, or (S m) is equal ton. The function
pred should be just the way to compute such anm.

Definition pred_spec (n:nat) :=

{m:nat | n=0∧ m=0 ∨ n = S m}.

Definition predecessor : ∀ n:nat, pred_spec n.

intro n; case n.
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n : nat
============================
pred_spec 0

unfold pred_spec;exists 0;auto.

=========================================
∀ n0 : nat, pred_spec (S n0)

unfold pred_spec; intro n0; exists n0; auto.

Defined.

If we print the term built byCoq, we can observe its dependent pattern-
matching structure:

predecessor = fun n : nat ⇒
match n as n0 return (pred_spec n0) with

| O ⇒
exist (fun m : nat ⇒ 0 = 0 ∧ m = 0 ∨ 0 = S m) 0

(or_introl (0 = 1) (conj (refl_equal 0) (refl_equal 0)))

| S n0 ⇒
exist (fun m : nat ⇒ S n0 = 0 ∧ m = 0 ∨ S n0 = S m) n0

(or_intror (S n0 = 0 ∧ n0 = 0) (refl_equal (S n0)))

end : ∀ n : nat, pred_spec n

Notice that there are many variants to the pattern “intros ...; case

... ”. Look at the reference manual and/or the book: tacticsdestruct,
“ intro pattern ”, etc.
The commandExtraction can be used to see the computational contents
associated to thecertifiedfunctionpredecessor:

Extraction predecessor.

(** val predecessor : nat→ pred_spec **)

let predecessor = function
| O→ O
| S n0→ n0

Exercise 3.1 Prove the following theorem:

Theorem nat_expand : ∀ n:nat,

n = match n with

| 0 ⇒ 0

| S p ⇒ S p

end.

17



3.3 Some Examples of Case Analysis

The reader will find in the Reference manual all details about typing case
analysis (chapter 4: Calculus of Inductive Constructions, and chapter 15:
Extended Pattern-Matching).

The following commented examples will show the different situations to
consider.

3.3.1 The Empty Type

In a definition by case analysis, there is one branch for each introduction rule
of the type. Hence, in a definition by case analysis onp : False there are
no cases to be considered. In other words, the rule of (non-dependent) case
analysis for the typeFalse is (for s in Prop, Set or Type):

Q : s p : False
match p return Q with end : Q

As a corollary, if we could construct an object inFalse, then it could
be possible to define an object in any type. The tacticcontradiction cor-
responds to the application of the elimination rule above. It searches in the
context for an absurd hypothesis (this is, a hypothesis whose type isFalse)
and then proves the goal by a case analysis of it.

Theorem fromFalse : False → 0=1.

intro H.

contradiction.

Qed.

In Coqthe negation is defined as follows :

Definition not (P:Prop) := P → False

The proposition “not A ” is also written “∼ A ”.
If A andB are propositions,a is a proof ofA andH is a proof of∼

A, the term “match H a return B with end ” is a proof term ofB.
Thus, if your goal isB and you have some hypothesisH :∼ A, the tactic
“ case H ” generates a new subgoal with statementA, as shown by the
following example4.

Fact Nosense : 0 6= 0 → 2 = 3.

Proof.

intro H; case H.

===========================
0 = 0

4Notice thata6=b is just an abreviation for “∼a= b ”
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reflexivity.

Qed.

The tactic “absurd A ” (whereA is any proposition), is based on the
same principle, but generates two subgoals:A and∼ A, for solvingB.

3.3.2 The Equality Type

Let A : Type, a, b of typeA, andπ a proof ofa = b. Non dependent case
analysis ofπ allows us to associate to any proof of “Q a ” a proof of “ Q b ”,
whereQ : A→s (wheres ∈ {Prop, Set, Type}). The following term is a
proof of “ Q a→Q b ”.

fun H : Q a ⇒
match π in (_ = y) return Q y with

refl_equal ⇒ H

end

Notice the header of thematch construct. It expresses how the resulting type
“ Q y ” depends on thetypeof p. Notice also that in the pattern introduced
by the keywordin, the parametera in the type “a = y ” must be implicit,
and replaced by a wildcard ’_’.

Therefore, doing case analysis on a proof of the equalitya = b amounts
to replace all the occurrences of the termb with the terma in the goal to be
proven. Let us illustrate this through an example: the transitivity property of
this equality.

Theorem trans : ∀ n m p:nat, n=m → m=p → n=p.

Proof.

intros n m p eqnm.

n : nat
m : nat
p : nat
eqnm : n = m
============================
m = p→ n = p
case eqnm.

n : nat
m : nat
p : nat
eqnm : n = m
============================
n = p→ n = p
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trivial.

Qed.

Exercise 3.2 Prove the symmetry property of equality.

Instead of usingcase, we can use the tacticrewrite . If H is a proof of
a = b, then “rewrite H ” performs a case analysis on a proof ofb = a, ob-
tained by applying a symmetry theorem toH. This application of symmetry
allows us to rewrite the equality from left to right, which looks more natural.
An optional parameter (either→ or←) can be used to precise in which sense
the equality must be rewritten. By default, “rewrite H ” corresponds to
“ rewrite → H ”

Lemma Rw : ∀ x y: nat, y = y * x → y * x * x = y.

intros x y e; do 2 rewrite <- e.

1 subgoal

x : nat
y : nat
e : y = y * x
============================
y = y

reflexivity.

Qed.

Notice that, ifH : a = b, then the tactic “rewrite H ” replacesall the
occurrences ofa by b. However, in certain situations we could be interested
in rewriting some of the occurrences, but not all of them. This can be done
using the tacticpattern . Let us consider yet another example to illustrate
this.

Let us start with some simple theorems of arithmetic; two of them are
already proven in the Standard Library, the last is left as an exercise.

mult_1_l
: ∀ n : nat, 1 * n = n

mult_plus_distr_r
: ∀ n m p : nat, (n + m) * p = n * p + m * p

mult_distr_S :∀ n p : nat, n * p + p = (S n)* p.

Let us now prove a simple result:

Lemma four_n : ∀ n:nat, n+n+n+n = 4*n.
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Proof.

intro n;rewrite <- (mult_1_l n).

n : nat
============================
1 * n + 1 * n + 1 * n + 1 * n = 4 * (1 * n)

We can see that therewrite tactic call replacedall the occurrences of
n by the term “1 * n ”. If we want to do the rewriting ony on the leftmost
occurrence ofn, we can mark this occurrence using thepattern tactic:

Undo.

intro n; pattern n at 1.

n : nat
============================
(fun n0 : nat⇒ n0 + n + n + n = 4 * n) n

Applying the tactic “pattern n at 1 ” allowed us to explicitly abstract the
first occurrence ofn from the goal, putting this goal under the form “Q n ”,
thus pointing torewrite the particular predicate onn that we search to
prove.

rewrite <- mult_1_l.

1 subgoal

n : nat
============================
1 * n + n + n + n = 4 * n

repeat rewrite mult_distr_S.

n : nat
============================
4 * n = 4 * n

trivial.

Qed.

3.3.3 The Predicaten≤m

The last but one instance of the elimination schema that we will illustrate is
case analysis for the predicaten≤m:

Let n andp be terms of typenat, andQ a predicate of typenat→Prop.
If H is a proof of “ n ≤ p ”, H0 a proof of “ Q n ” and HS a proof of
“ ∀ m:nat, n ≤ m → Q (S m) ”, then the term
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match H in (_ ≤ q) return (Q q) with

| le_n ⇒ H0

| le_S m Hm ⇒ HS m Hm

end

is a proof term of “Q p ”.
The two patterns of thismatch construct describe all possibles forms of

proofs of “n ≤ m ” (notice again that the general parametern is implicit in
the “ in ... ” clause and is absent from the match patterns.

Notice that the choice of introducing some of the arguments of the pred-
icate as being general parameters in its definition has consequences on the
rule of case analysis that is derived. In particular, the typeQ of the object
defined by the case expression only depends on the indexes of the predicate,
and not on the general parameters. In the definition of the predicate≤, the
first argument of this relation is a general parameter of the definition. Hence,
the predicateQ to be proven only depends on the second argument of the
relation. In other words, the integern is also a general parameter of the rule
of case analysis.

An example of an application of this rule is the following theorem, show-
ing that any integer greater or equal than1 is the successor of another natural
number:

Lemma predecessor_of_positive :

∀ n, 1 ≤ n → ∃ p:nat, n = S p.

Proof.

intros n H;case H.

n : nat
H : 1 ≤ n
============================
∃ p : nat, 1 = S p

exists 0; trivial.

n : nat
H : 1 ≤ n
============================
∀ m : nat, 0≤m→ ∃ p : nat, S m = S p

intros m _ .

exists m.

trivial.

Qed.
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3.3.4 Vectors

Thevector polymorphic and dependent family of types will give an idea of
the most general scheme of pattern-matching.

For instance, let us define a function for computing the tail of any vector.
Notice that we shall build atotal function, by considering that the tail of an
empty vector is this vector itself. In that sense, it will be slightly different
from theVtail function of the Standard Library, which is defined only for
vectors of type “vector A (S n) ”.

The header of the function we want to build is the following:

Definition Vtail_total

(A : Set) (n : nat) (v : vector A n) : vector A (pred n):=

Since the branches will not have the same type (depending on the param-
etern), the body of this function is a dependent pattern matching onv. So
we will have :

match v in (vector _ n0) return (vector A (pred n0)) with

The first branch deals with the constructorVnil and must return a value
in “ vector A (pred 0) ”, convertible to “vector A 0 ”. So, we pro-
pose:

| Vnil ⇒ Vnil A

The second branch considers a vector in “vector A (S n0) ” of the
form “ Vcons A n0 v0 ”, with “ v0:vector A n0 ”, and must return a
value in “vector A (pred (S n0)) ”, convertible to “v0:vector A n0 ”.
This second branch is thus :

| Vcons _ n0 v0 ⇒ v0

Here is the full definition:

Definition Vtail_total

(A : Set) (n : nat) (v : vector A n) : vector A (pred n):=

match v in (vector _ n0) return (vector A (pred n0)) with

| Vnil ⇒ Vnil A

| Vcons _ n0 v0 ⇒ v0

end.

3.4 Case Analysis and Logical Paradoxes

In the previous section we have illustrated the general scheme for generating
the rule of case analysis associated to some recursive type from the defini-
tion of the type. However, if the logical soundness is to be preserved, certain
restrictions to this schema are necessary. This section provides a brief expla-
nation of these restrictions.
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3.4.1 The Positivity Condition

In order to make sense of recursive types as types closed under their introduc-
tion rules, a constraint has to be imposed on the possible forms of such rules.
This constraint, known as thepositivity condition, is necessary to prevent the
user from naively introducing some recursive types which would open the
door to logical paradoxes. An example of such a dangerous type is the “in-
ductive type”Lambda, whose only constructor islambda :(Lambda→False)→Lambda.
Following the pattern given in Section 3.3, the rule of (non dependent) case
analysis forLambda would be the following:

Q : Prop p : Lambda h : Lambda→False ` t : Q
match p return Q with lambda h ⇒ t end : Q

In order to avoid paradoxes, it is impossible to construct the typeLambda

in Coq:

Inductive Lambda : Set :=

lambda : (Lambda → False) → Lambda.

Error: Non strictly positive occurrence of "Lambda" in
"(Lambda→ False)→ Lambda"

In order to explain this danger, we will declare some constants for simu-
lating the construction ofLambda as an inductive type.

Let us open some section, and declare two variables, the first one for
Lambda, the other for the constructorlambda.

Section Paradox.

Variable Lambda : Set.

Variable lambda : (Lambda → False) →Lambda.

SinceLambda is not a truely inductive type, we can’t use thematch
construct. Nevertheless, we can simulate it by a variablematchL such that
“ matchL l Q (fun h : Lambda → False ⇒ t) ” should be under-
stood as “match l return Q with | lambda h ⇒ t) ”

Variable matchL : Lambda →
∀ Q:Prop, ((Lambda →False) → Q) →
Q.

From these constants, it is possible to define application by case analysis.
Then, through auto-application, the well-known looping term(λx.(x x) λx.(x x))
provides a proof of falsehood.

Definition application (f x: Lambda) :False :=

matchL f False (fun h ⇒ h x).
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Definition Delta : Lambda :=

lambda (fun x : Lambda ⇒ application x x).

Definition loop : False := application Delta Delta.

Theorem two_is_three : 2 = 3.

Proof.

elim loop.

Qed.

End Paradox.

This example can be seen as a formulation of Russell’s paradox in type theory
associating(application x x) to the formulax 6∈ x, andDelta to the set
{x | x 6∈ x}. If matchL would satisfy the reduction rule associated to case
analysis, that is,

matchL (lambda f) Q h =⇒ h f

then the termloop would compute into itself. This is not actually surprising,
since the proof of the logical soundness ofCoqstrongly lays on the property
that any well-typed term must terminate. Hence, non-termination is usually
a synonymous of inconsistency.

3.4.1.1 In this case, the construction of a non-terminating program comes
from the so-callednegative occurrence of Lambda in the argument of the con-
structorlambda.

The reader will find in the Reference Manual a complete formal definition
of the notions ofpositivity conditionandstrict positivity that an inductive
definition must satisfy.

Notice that the positivity condition does not forbid us to put functional
recursive arguments in the constructors.

For instance, let us consider the type of infinitely branching trees, with
labels inZ.

Require Import ZArith.

Inductive itree : Set :=

| ileaf : itree

| inode : Z → (nat → itree) → itree.

In this representation, thei-th child of a tree represented by “inode z
s ” is obtained by applying the functions to i. The following definitions
show how to construct a tree with a single node, a tree of height 1 and a tree
of height 2:

Definition isingle l := inode l (fun i ⇒ ileaf).
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Definition t1 := inode 0 (fun n ⇒ isingle (Z_of_nat n)).

Definition t2 :=

inode 0

(fun n : nat ⇒
inode (Z_of_nat n)

(fun p ⇒ isingle (Z_of_nat (n*p)))).

Let us define a preorder on infinitely branching trees. In order to compare
two non-leaf trees, it is necessary to compare each of their children without
taking care of the order in which they appear:

Inductive itree_le : itree→ itree → Prop :=

| le_leaf : ∀ t, itree_le ileaf t

| le_node : ∀ l l' s s',

Zle l l' →
(∀ i, ∃ j:nat, itree_le (s i) (s' j))→
itree_le (inode l s) (inode l' s').

Notice that a call to the predicateitree_le appears as a general parame-
ter of the inductive typeex (see Sect.2.8). This kind of definition is accepted
by Coq, but may lead to some difficulties, since the induction principle au-
tomatically generated by the system is not the most appropriate (see chapter
14 of [3] for a detailed explanation).

The following definition, obtained by skolemising the proposition
∀ i,∃ j, (itree_le (s i) (s′ j)) in the type ofitree_le, does not present
this problem:

Inductive itree_le' : itree→ itree → Prop :=

| le_leaf' : ∀ t, itree_le' ileaf t

| le_node' : ∀ l l' s s' g,

Zle l l' →
(∀ i, itree_le' (s i) (s' (g i))) →
itree_le' (inode l s) (inode l' s').

Another example is the type of trees of unbounded width, in which a
recursive subterm(ltree A) instantiates the type of polymorphic lists:

Require Import List.

Inductive ltree (A:Set) : Set :=

lnode : A → list (ltree A) → ltree A.

This declaration can be transformed adding an extra type to the definition,
as was done in Section 2.9.
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3.4.2 Impredicative Inductive Types

An inductive typeR inhabiting a universeS is predicative if the introduction
rules ofR do not make a universal quantification on a universe containing
S. All the recursive types previously introduced are examples of predicative
types. An example of an impredicative one is the following type:

Inductive prop : Prop :=

prop_intro : Prop → prop.

Notice that the constructor of this type can be used to inject any propo-
sition –even itself!– into the type. A careless use of such a self-contained
objects may lead to a variant of Burali-Forti’s paradox. The construction of
Burali-Forti’s paradox is more complicated than Russel’s one, so we will not
describe it here, and point the reader interested in it to [1, 4].

Lemma prop_inject: prop.

Proof prop_intro prop.

Another example is the second order existential quantifier for proposi-
tions:

Inductive ex_Prop (P : Prop → Prop) : Prop :=

exP_intro : ∀ X : Prop, P X → ex_Prop P.

Notice that predicativity on sortSet forbids us to build the following
definitions.

Inductive aSet : Set :=

aSet_intro: Set → aSet.

User error: Large non-propositional inductive types must be in Type

Inductive ex_Set (P : Set → Prop) : Set :=

exS_intro : ∀ X : Set, P X → ex_Set P.

User error: Large non-propositional inductive types must be in Type

Nevertheless, one can define types likeaSet andex_Set, as inhabitants
of Type.

Inductive ex_Set (P : Set → Prop) : Type :=

exS_intro : ∀ X : Set, P X → ex_Set P.

In the following example, the inductive typetyp can be defined, but the
term associated with the interactive Definition oftyp_inject is incompati-
ble withCoq’s hierarchy of universes:
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Inductive typ : Type :=

typ_intro : Type → typ.

Definition typ_inject: typ.

split; exact typ.

Proof completed
Defined.

Error: Universe Inconsistency.

Abort.

One possible way of avoiding this new source of paradoxes is to restrict
the kind of eliminations by case analysis that can be done on impredicative
types. In particular, projections on those universes equal or bigger than the
one inhabited by the impredicative type must be forbidden [4]. A conse-
quence of this restriction is that it is not possible to define the first projection
of the type “ex_Prop P ”:

Check (fun (P:Prop→Prop)(p: ex_Prop P) ⇒
match p with exP_intro X HX ⇒ X end).

Error:
Incorrect elimination of "p" in the inductive type
"ex_Prop", the return type has sort "Type" while it should be
"Prop"

Elimination of an inductive object of sort "Prop"
is not allowed on a predicate in sort "Type"
because proofs can be eliminated only to build proofs.

3.4.3 Extraction Constraints

There is a final constraint on case analysis that is not motivated by the poten-
tial introduction of paradoxes, but for compatibility reasons withCoq’s ex-
traction mechanism . This mechanism is based on the classification of basic
types into the universeSet of sets and the universeProp of propositions. The
objects of a type in the universeSet are considered as relevant for computa-
tion purposes. The objects of a type inProp are considered just as formalised
comments, not necessary for execution. The extraction mechanism consists
in erasing such formal comments in order to obtain an executable program.
Hence, in general, it is not possible to define an object in a set (that should
be kept by the extraction mechanism) by case analysis of a proof (which will
be thrown away).

Nevertheless, this general rule has an exception which is important in
practice: if the definition proceeds by case analysis on a proof of asingleton
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proposition or an empty type (e.g. False), then it is allowed. A single-
ton proposition is a non-recursive proposition with a single constructorc, all
whose arguments are proofs. For example, the propositional equality and the
conjunction of two propositions are examples of singleton propositions.

3.4.4 Strong Case Analysis on Proofs

The plain Calculus of Inductive Constructions allows us to define a proposi-
tion Q by case analysis on the proofs of another recursive propositionR. As
we will see in Section 4.1, this enables one to prove that different introduc-
tion rules ofR construct different objects. However, this property is in con-
tradiction with the principle of excluded middle of classical logic, because
this principle entails that the proofs of a proposition cannot be distinguished.
This principle is not provable inCoq, but it is frequently introduced by the
users as an axiom, for reasoning in classical logic. For this reason, the defi-
nition of propositions by case analysis on proofs is currently not allowed in
Coq.

Definition comes_from_the_left (P Q:Prop)(H:P ∨ Q): Prop :=

match H with

| or_introl p ⇒ True

| or_intror q ⇒ False

end.

Error:
Incorrect elimination of "H" in the inductive type
"or", the return type has sort "Type" while it should be
"Prop"

Elimination of an inductive object of sort "Prop"
is not allowed on a predicate in sort "Type"
because proofs can be eliminated only to build proofs.

On the other hand, if we replace the propositionP∨Q with the informa-
tive type{P}+ {Q}, the elimination is accepted:

Definition comes_from_the_left_sumbool

(P Q:Prop)(x:{P} + {Q}): Prop :=

match x with

| left p ⇒ True

| right q ⇒ False

end.
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3.4.5 Summary of Constraints

To end with this section, the following table summarizes which universeU1

may inhabit an object of typeQ defined by case analysis onx : R, depending
on the universeU2 inhabited by the inductive typesR.5

x : R :
U2

Q : U1

Set Prop Type
Set yes yes yes

Prop if R singleton yes no
Type yes yes yes

4 Some Proof Techniques Based on Case Analy-
sis

In this section we illustrate the use of case analysis as a proof principle,
explaining the proof techniques behind three very usefulCoq tactics, called
discriminate, inject andinversion.

4.1 Discrimination of introduction rules

In the informal semantics of recursive types described in Section 2 it was
said that each of the introduction rules of a recursive type is considered as
being different from all the others. It is possible to capture this fact inside
the logical system using the propositional equality. We take as example the
following theorem, stating thatO constructs a natural number different from
any of those constructed withS.

Theorem S_is_not_O : ∀ n, S n 6= 0.

In order to prove this theorem, we first define a proposition by case anal-
ysis on natural numbers, so that the proposition is true forO and false for any
natural number constructed withS. This uses the empty and singleton type
introduced in Sections 2.

Definition Is_zero (x:nat):= match x with

| 0 ⇒ True

| _ ⇒ False

end.

Then, we prove the following lemma:

5In the box indexed byU1 = Type andU2 = Set, the answer “yes” takes into account the
predicativity of sortSet. If you are working with the option “impredicative-set”, you must put in
this box the condition “ifR is predicative”.
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Lemma O_is_zero : ∀ m, m = 0 → Is_zero m.

Proof.

intros m H; subst m.

================
Is_zero 0

simpl;trivial.

Qed.

Finally, the proof ofS_is_not_O follows by the application of the previous
lemma toS n.

red; intros n Hn.

n : nat
Hn : S n = 0
============================
False

apply O_is_zero with (m := S n).

assumption.

Qed.

The tacticdiscriminate is a special-purpose tactic for proving dise-
qualities between two elements of a recursive type introduced by different
constructors. It generalizes the proof method described here for natural num-
bers to any [co]-inductive. This tactic is also capable of proving disequalities
where the difference is not in the constructors at the head of the terms, but
deeper inside them. For example, it can be used to prove the following theo-
rem:

Theorem disc2 : ∀ n, S (S n) 6= 1.

Proof.

intros n Hn; discriminate.

Qed.

When there is an assumptionH in the context stating a false equality
t1 = t2, discriminate solves the goal by first proving(t1 6= t2) and then
reasoning by absurdity with respect toH:

Theorem disc3 : ∀ n, S (S n) = 0 → ∀ Q:Prop, Q.

Proof.

intros n Hn Q.

discriminate.

Qed.
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In this case, the proof proceeds by absurdity with respect to the false equality
assumed, whose negation is proved by discrimination.

4.2 Injectiveness of introduction rules

Another useful property about recursive types is theinjectiveness of intro-
duction rules, i.e., that whenever two objects were built using the same in-
troduction rule, then this rule should have been applied to the same element.
This can be stated formally using the propositional equality:

Theorem inj : ∀ n m, S n = S m → n = m.

Proof.

This theorem is just a corollary of a lemma about the predecessor function:

Lemma inj_pred : ∀ n m, n = m → pred n = pred m.

Proof.

intros n m eq_n_m.

rewrite eq_n_m.

trivial.

Qed.

Once this lemma is proven, the theorem follows directly from it:

intros n m eq_Sn_Sm.

apply inj_pred with (n:= S n) (m := S m); assumption.

Qed.

This proof method is implemented by the tacticinjection . This tactic
is applied to a termt of type “ c t1 . . . tn = c t′1 . . . t′n ”, wherec is some
constructor of an inductive type. The tacticinjection is applied as deep as
possible to derive the equality of all pairs of subterms ofti andt′i placed in
the same position. All these equalities are put as antecedents of the current
goal.

Like discriminate, the tacticinjection can be also applied ifx does
not occur in a direct sub-term, but somewhere deeper inside it. Its applica-
tion may leave some trivial goals that can be easily solved using the tactic
trivial.

Lemma list_inject : ∀ (A:Set)(a b :A)(l l':list A),

a :: b :: l = b :: a :: l' → a = b ∧ l = l'.

Proof.

intros A a b l l' e.

e : a :: b :: l = b :: a :: l’
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============================
a = b ∧ l = l’

injection e.

============================
l = l’ → b = a→ a = b→ a = b ∧ l = l’

auto.

Qed.

4.3 Inversion Techniques

In section 3.2, we motivated the rule of dependent case analysis as a way
of internalizing the informal equalitiesn = O andn = (S p) associated
to each case. This internalisation consisted in instantiatingn with the cor-
responding term in the type of each branch. However, sometimes it could
be better to internalise these equalities as extra hypotheses –for example, in
order to use the tacticsrewrite, discriminate or injection presented
in the previous sections. This is frequently the case when the element anal-
ysed is denoted by a term which is not a variable, or when it is an object of
a particular instance of a recursive family of types. Consider for example the
following theorem:

Theorem not_le_Sn_0 : ∀ n:nat, ~ (S n ≤ 0).

Intuitively, this theorem should follow by case analysis on the hypothesis
H : (S n ≤ O), because no introduction rule allows to instantiate the
arguments ofle with respectively a successor and zero. However, there is
no way of capturing this with the typing rule for case analysis presented in
section 2, because it does not take into account what particular instance of
the family the type ofH is. Let us try it:

Proof.

red; intros n H; case H.

2 subgoals

n : nat
H : S n≤ 0
============================
False

subgoal 2 is:
∀ m : nat, S n≤m→ False

Undo.
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What is necessary here is to make available the equalities “S n = O ” and
“ S m = O ” as extra hypotheses of the branches, so that the goal can be
solved using theDiscriminate tactic. In order to obtain the desired equal-
ities as hypotheses, let us prove an auxiliary lemma, that our theorem is a
corollary of:

Lemma not_le_Sn_0_with_constraints :

∀ n p , S n ≤ p → p = 0 → False.

Proof.

intros n p H; case H .

2 subgoals

n : nat
p : nat
H : S n≤ p
============================
S n = 0→ False

subgoal 2 is:
∀ m : nat, S n≤m→ S m = 0→ False

intros;discriminate.

intros;discriminate.

Qed.

Our main theorem can be now solved by an application of this lemma:

Show.

2 subgoals

n : nat
p : nat
H : S n≤ p
============================
S n = 0→ False

subgoal 2 is:
∀ m : nat, S n≤m→ S m = 0→ False

eapply not_le_Sn_0_with_constraints; eauto.

Qed.

The general method to address such situations consists in changing the
goal to be proven into an implication, introducing as preconditions the equal-
ities needed to eliminate those cases that make no sense. This proof tech-
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nique is implemented by the tacticinversion . In order to prove a goal
G ~q from an object of typeR ~t, this tactic automatically generates a lemma
∀, ~x.(R ~x) → ~x = ~t → ~B → (G ~q), where the list of propositions~B corre-
spond to those sub-goals that cannot be directly proven usingdiscriminate.
This lemma can be either saved for further use, or generated interactively. In
this latter case, the subgoals yield by the tactic are the hypotheses~B of the
lemma. If the lemma has been stocked, then the tactic
“ inversion ...using ... ” can be used to apply it.

Let us show both techniques on our previous example:

4.3.1 Interactive mode

Theorem not_le_Sn_0' : ∀ n:nat, ~ (S n ≤ 0).

Proof.

red; intros n H ; inversion H.

Qed.

4.3.2 Static mode

Derive Inversion le_Sn_0_inv with (∀ n :nat, S n ≤ 0).

Theorem le_Sn_0'' : ∀ n p : nat, ~ S n ≤ 0 .

Proof.

intros n p H;

inversion H using le_Sn_0_inv.

Qed.

In the example above, all the cases are solved using discriminate, so it
remains no sub-goal to be proven (i.e. the list~B is empty). Let us present a
second example, where this list is not empty:

TTheorem le_reverse_rules :

∀ n m:nat, n ≤ m →
n = m ∨
∃ p, n ≤ p ∧ m = S p.

Proof.

intros n m H; inversion H.

2 subgoals

n : nat
m : nat
H : n ≤m
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H0 : n = m
============================
m = m∨ (∃ p : nat, m≤ p∧m = S p)

subgoal 2 is:
n = S m0∨ (∃ p : nat, n≤ p∧ S m0 = S p)

left;trivial.

right; exists m0; split; trivial.

Proof completed

This example shows how this tactic can be used to “reverse” the intro-
duction rules of a recursive type, deriving the possible premises that could
lead to prove a given instance of the predicate. This is why these tactics are
calledinversion tactics: they go back from conclusions to premises.

The hypothesis corresponding to the propositional equalities are not needed
in this example, since the tactic does the rewriting necessary to solve the sub-
goals. When the equalities are no longer needed after the inversion, it is better
to use the tacticInversion_clear. This variant of the tactic clears from the
context all the equalities introduced.

Restart.

intros n m H; inversion_clear H.

n : nat
m : nat
============================
m = m∨ (∃ p : nat, m≤ p∧m = S p)

left;trivial.

n : nat
m : nat
m0 : nat
H0 : n≤m0
============================
n = S m0∨ (∃ p : nat, n≤ p∧ S m0 = S p)

right; exists m0; split; trivial.

Qed.

Exercise 4.1 Consider the following language of arithmetic expression, and
its operational semantics, described by a set of rewriting rules.
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Inductive ArithExp : Set :=

| Zero : ArithExp

| Succ : ArithExp → ArithExp

| Plus : ArithExp → ArithExp → ArithExp.

Inductive RewriteRel : ArithExp → ArithExp → Prop :=

| RewSucc : ∀ e1 e2 :ArithExp,

RewriteRel e1 e2 → RewriteRel (Succ e1) (Succ e2)

| RewPlus0 : ∀ e:ArithExp,

RewriteRel (Plus Zero e) e

| RewPlusS : ∀ e1 e2:ArithExp,

RewriteRel e1 e2 →
RewriteRel (Plus (Succ e1) e2) (Succ (Plus e1 e2)).

1. Prove thatZero cannot be rewritten any further.

2. Prove that an expression of the form “Succ e ” is always rewritten
into an expression of the same form.

5 Inductive Types and Structural Induction

Elements of inductive types are well-founded with respect to the structural
order induced by the constructors of the type. In addition to case analysis,
this extra hypothesis about well-foundness justifies a stronger elimination
rule for them, calledstructural induction. This form of elimination consists
in defining a value “f x ” from some elementx of the inductive typeI,
assuming that values have been already associated in the same way to the
sub-parts ofx of typeI.

Definitions by structural induction are expressed through theFixpoint

command . This command is quite close to thelet-rec construction of
functional programming languages. For example, the following definition
introduces the addition of two natural numbers (already defined in the Stan-
dard Library:)

Fixpoint plus (n p:nat) {struct n} : nat :=

match n with

| 0 ⇒ p

| S m ⇒ S (plus m p)

end.

The definition is by structural induction on the first argument of the func-
tion. This is indicated enclosing by the “struct n ” directive in the func-
tion’s header6. In order to be accepted, the definition must satisfy a syn-
tactical condition, called theguardedness condition. Roughly speaking, this

6This directive is optional in the case of a function of a single argument
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condition constrains the arguments of a recursive call to be pattern variables,
issued from a case analysis of the formal argument of the function pointed
by thestruct directive. In the case of the functionplus, the argumentm
in the recursive call is a pattern variable issued from a case analysis ofn.
Therefore, the definition is accepted.

Notice that we could have defined the addition with structural induction
on its second argument:

Fixpoint plus' (n p:nat) {struct p} : nat :=

match p with

| 0 ⇒ n

| S q ⇒ S (plus' n q)

end.

In the following definition of addition, the second argument ofplus�

grows at each recursive call. However, as the first one always decreases, the
definition is sound.

Fixpoint plus'' (n p:nat) {struct n} : nat :=

match n with

| 0 ⇒ p

| S m ⇒ plus'' m (S p)

end.

Moreover, the argument in the recursive call could be a deeper compo-
nent ofn. This is the case in the following definition of a boolean function
determining whether a number is even or odd:

Fixpoint even_test (n:nat) : bool :=

match n

with 0 ⇒ true

| 1 ⇒ false

| S (S p) ⇒ even_test p

end.

Mutually dependent definitions by structural induction are also allowed.
For example, the previous functioneven could be alternatively defined using
an auxiliary functionodd :

Reset even_test.

Fixpoint even_test (n:nat) : bool :=

match n

with

| 0 ⇒ true

| S p ⇒ odd_test p

end

with odd_test (n:nat) : bool :=

match n
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with

| 0 ⇒ false

| S p ⇒ even_test p

end.

Definitions by structural induction are computed lazily, i.e. they are ex-
panded only when they are applied, and the decreasing argument is a term
having a constructor at the head. We can check this using theEval com-
mand, which computes the normal form of a well typed term.

Eval simpl in even_test.

= even_test
: nat→ bool

Eval simpl in (fun x : nat ⇒ even x).

= fun x : nat⇒ even x
: nat→ Prop

Eval simpl in (fun x : nat⇒ even_test (plus 5 x)).

= fun x : nat⇒ odd_test x
: nat→ bool

Eval simpl in (fun x : nat ⇒ even_test (plus x 5)).

= fun x : nat⇒ even_test (x + 5)
: nat→ bool

5.1 Proofs by Structural Induction

The principle of structural induction can be also used in order to define
proofs, that is, to prove theorems. Let us call anelimination combinator
any function that, given a predicateP , defines a proof of “P x ” by struc-
tural induction onx. In Coq, the principle of proof by induction on natural
numbers is a particular case of an elimination combinator. The definition
of this combinator depends on three general parameters: the predicate to be
proven, the base case, and inductive hypothesis:

Section Principle_of_Induction.

Variable P : nat → Prop.

Hypothesis base_case : P 0.

Hypothesis inductive_hyp : ∀ n:nat, P n → P (S n).

Fixpoint nat_ind (n:nat) : (P n) :=

match n return P n with
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| 0 ⇒ base_case

| S m ⇒ inductive_hyp m (nat_ind m)

end.

End Principle_of_Induction.

As this proof principle is used very often,Coq automatically generates
it when an inductive type is introduced. Similar principlesnat_rec and
nat_rect for defining objects in the universesSet andType are also au-
tomatically generated7. The commandScheme can be used to generate an
elimination combinators from certain parameters, like the universe that must
inhabit the object defined, whether the case analysis in the definitions must be
dependent or not, etc. For example, it can be used to generate an elimination
combinator for reasoning on even natural numbers from the mutually depen-
dent predicates introduced in page 14. We do not display the combinators
here by lack of space, but you can see them using thePrint command.

Scheme Even_induction := Minimality for even Sort Prop

with Odd_induction := Minimality for odd Sort Prop.

Theorem even_plus_four : ∀ n:nat, even n → even (4+n).

Proof.

intros n H.

elim H using Even_induction with (P0 := fun n ⇒ odd (4+n));

simpl;repeat constructor;assumption.

Qed.

Another example of an elimination combinator is the principle of double
induction on natural numbers, introduced by the following definition:

Section Principle_of_Double_Induction.

Variable P : nat → nat →Prop.

Hypothesis base_case1 : ∀ m:nat, P 0 m.

Hypothesis base_case2 : ∀ n:nat, P (S n) 0.

Hypothesis inductive_hyp : ∀ n m:nat, P n m → P (S n) (S m).

Fixpoint nat_double_ind (n m:nat){struct n} : P n m :=

match n, m return P n m with

0 , x ⇒ base_case1 x

| (S x), 0 ⇒ base_case2 x

| (S x), (S y) ⇒ inductive_hyp x y (nat_double_ind x y)

end.

End Principle_of_Double_Induction.

7In fact, whenever possible,Coqgenerates the principleI_rect, then derives from it the weaker
principlesI_ind andI_rec. If some principle has to be defined by hand, the user may try to build
I_rect (if possible). Thanks toCoq’s conversion rule, this principle can be used directly to build
proofs and/or programs.
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Changing the type ofP into nat → nat → Set, another combinator
nat_double_rec for constructing (certified) programs can be defined in ex-
actly the same way. This definition is left as an exercise.

For instance the function computing the minimum of two natural num-
bers can be defined in the following way:

Definition min : nat → nat → nat :=

nat_double_rec (fun (x y:nat) ⇒ nat)

(fun (x:nat) ⇒ 0)

(fun (y:nat) ⇒ 0)

(fun (x y r:nat) ⇒ S r).

Eval compute in (min 5 8).

= 5 : nat

5.2 Using Elimination Combinators.

The tacticapply can be used to apply one of these proof principles during the
development of a proof. Consider for example the proposition “∀ n:nat, n 6= S n ”.

Lemma not_circular : ∀ n:nat, n 6= S n.

Proof.

intro n.

apply nat_ind with (P:= fun n ⇒ n 6= S n).

2 subgoals

n : nat
============================
0 6= 1

subgoal 2 is:
∀ n0 : nat, n06= S n0→ S n06= S (S n0)

discriminate.

red; intros n0 Hn0 eqn0Sn0;injection eqn0Sn0;trivial.

Qed.

The tacticelim is a refinement ofapply, specially conceived for the
application of elimination combinators. Ift is an object of an inductive type
I, then “elim t ” tries to find an abstractionP of the current goalG such
that(P t) ≡ G. Then it solves the goal applying “I_ind P ”, whereI_ind
is the combinator associated toI. The different cases of the induction appears
then as sub-goals that remain to be solved. In the preceding proof, the tactic
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call “ apply nat_ind with (P:= fun n ⇒ n 6= S n) ” can be simply
replaced with “elim n ”.

The option “ elim t using C ” allows to use a derived combinator
C instead of the default one. Consider the following theorem, stating that
equality is decidable on natural numbers:

Lemma eq_nat_dec : ∀ n p:nat, {n=p}+{n 6= p}.

Proof.

intros n p.

Let us prove this theorem using the combinatornat_double_rec of sec-
tion 5.1. The example also illustrates howelim may sometimes fail in find-
ing a suitable abstractionP of the goal. Note that if “elim n ” is used
directly on the goal, the result is not the expected one.

elim n using nat_double_rec.

4 subgoals

n : nat
p : nat
============================
∀ x : nat, {x = p} + {x 6= p}

subgoal 2 is:
nat→ {0 = p} + {0 6= p}

subgoal 3 is:
nat→ ∀ m : nat, {m = p} + {m 6= p}→ {S m = p} + {S m 6= p}

subgoal 4 is:
nat

The four sub-goals obtained do not correspond to the premises that would
be expected for the principlenat_double_rec. The problem comes from
the fact that this principle for eliminatingn has a universally quantified for-
mula as conclusion, which confuseselim about the right way of abstracting
the goal.

Therefore, in this case the abstraction must be explicited using the tactic
pattern. Once the right abstraction is provided, the rest of the proof is
immediate:

Undo.

pattern p,n.
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n : nat
p : nat
============================
(fun n0 n1 : nat⇒ {n1 = n0} + {n1 6= n0}) p n

elim n using nat_double_rec.

3 subgoals

n : nat
p : nat
============================
∀ x : nat, {x = 0} + {x 6= 0}

subgoal 2 is:
∀ x : nat, {0 = S x} + {0 6= S x}
subgoal 3 is:
∀ n0 m : nat, {m = n0} + {m6= n0}→ {S m = S n0} + {S m6= S n0}

destruct x; auto.

destruct x; auto.

intros n0 m H; case H.

intro eq; rewrite eq ; auto.

intro neg; right; red ; injection 1; auto.

Defined.

Notice that the tactic “decide equality ” generalises the proof above
to a large class of inductive types. It can be used for proving a proposition of
the form∀ (x, y : R), {x = y}+{x6=y}, whereR is an inductive datatype all
whose constructors take informative arguments —like for example the type
nat:

Definition eq_nat_dec' : ∀ n p:nat, {n=p} + {n6=p}.

decide equality.

Defined.

Exercise 5.1 1. Define a recursive functionnat2itreemapping any nat-
ural numbern into an infinitely branching tree of heightn.

2. Provide an elimination combinator for these trees.

3. Prove that the relationitree_le is a preorder (i.e. reflexive and tran-
sitive).

Exercise 5.2 Define the type of lists, and a predicate “being an ordered
list” using an inductive family. Then, define the function(from n) = 0 ::
1 . . . n :: nil and prove that it always generates an ordered list.
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5.3 Well-founded Recursion

Structural induction is a strong elimination rule for inductive types. This
method can be used to define any function whose termination is based on
the well-foundedness of certain order relationR decreasing at each recursive
call. What makes this principle so strong is the possibility of reasoning by
structural induction on the proof that certainR is well-founded. In order to
illustrate this we have first to introduce the predicate of accessibility.

Print Acc.

Inductive Acc (A : Set) (R : A→ A→ Prop) : A→ Prop :=
Acc_intro :∀ x : A, (∀ y : A, R y x→ Acc R y)→ Acc R x

For Acc: Argument A is implicit
For Acc_intro: Arguments A, R are implicit

. . .

This inductive predicate characterize those elementsx of A such that any
descendingR-chain . . . x2 R x1 R x starting fromx is finite. A well-
founded relation is a relation such that all the elements ofA are accessible.
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Consider now the problem of representing inCoqthe following ML func-
tion div(x, y) on natural numbers, which computesdx

y e if y > 0 and yields
x otherwise.

let rec div x y =

if x = 0 then 0

else if y = 0 then x

else (div (x-y) y)+1;;

The equality test on natural numbers can be represented as the function
eq_nat_dec defined page 42. Givingx andy, this function yields either the
value(left p) if there exists a proofp : x = y, or the value(right q) if there
existsq : a 6= b. The subtraction function is already defined in the library
Minus.

Hence, direct translation of the ML functiondiv would be:

Require Import Minus.

Fixpoint div (x y:nat){struct x}: nat :=

if eq_nat_dec x 0

then 0

else if eq_nat_dec y 0

then x

else S (div (x-y) y).

Error:
Recursive definition of div is ill-formed.
In environment
div : nat→ nat→ nat
x : nat
y : nat
_ : x 6= 0
_ : y 6= 0

Recursive call to div has principal argument equal to
"x - y"
instead of a subterm of x

The programdiv is rejected byCoqbecause it does not verify the syn-
tactical condition to ensure termination. In particular, the argument of the
recursive call is not a pattern variable issued from a case analysis onx. We
would have the same problem if we had the directive “{struct y} ” instead
of “ {struct x} ”. However, we know that this program always stops. One
way to justify its termination is to define it by structural induction on a proof
thatx is accessible trough the relation<. Notice that any natural numberx
is accessible for this relation. In order to do this, it is first necessary to prove
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some auxiliary lemmas, justifying that the first argument ofdiv decreases at
each recursive call.

Lemma minus_smaller_S : ∀ x y:nat, x - y < S x.

Proof.

intros x y; pattern y, x;

elim x using nat_double_ind.

destruct x0; auto with arith.

simpl; auto with arith.

simpl; auto with arith.

Qed.

Lemma minus_smaller_positive :

∀ x y:nat, x 6=0 → y 6= 0 → x - y < x.

Proof.

destruct x; destruct y;

( simpl;intros; apply minus_smaller ||

intros; absurd (0=0); auto).

Qed.

The last two lemmas are necessary to prove that for any pair of positive nat-
ural numbersx andy, if x is accessible with respect tolt, then so isx− y.

Definition minus_decrease : ∀ x y:nat, Acc lt x →
x 6= 0 →
y 6= 0 →
Acc lt (x-y).

Proof.

intros x y H; case H.

intros z Hz posz posy.

apply Hz; apply minus_smaller_positive; assumption.

Defined.

Let us take a look at the proof of the lemmaminus_decrease, since the
way in which it has been proven is crucial for what follows.

Print minus_decrease.

minus_decrease =
fun (x y : nat) (H : Acc lt x)⇒
match H in (Acc _ y0) return (y06= 0→ y 6= 0→ Acc lt (y0 - y)) with
| Acc_intro z Hz⇒

fun (posz : z6= 0) (posy : y6= 0)⇒
Hz (z - y) (minus_smaller_positive z y posz posy)

end
: ∀ x y : nat, Acc lt x→ x 6= 0→ y 6= 0→ Acc lt (x - y)
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Remark that the function call(minus_decrease n m H) indeed yields an
accessibility proof that isstructurally smaller than its argumentH, because
it is (an application of) its recursive componentHz. This enables to justify
the following definition ofdiv_aux:

Definition div_aux (x y:nat)(H: Acc lt x):nat.

fix 3.

intros.

refine (if eq_nat_dec x 0

then 0

else if eq_nat_dec y 0

then y

else div_aux (x-y) y _).

div_aux :∀ x : nat, nat→ Acc lt x→ nat
x : nat
y : nat
H : Acc lt x
_ : x 6= 0
_0 : y 6= 0
============================
Acc lt (x - y)

apply (minus_decrease x y H);auto.

Defined.

The main division function is easily defined, using the theoremlt_wf of
the libraryWf_nat. This theorem asserts thatnat is well founded w.r.t.lt,
thus any natural number is accessible.

Definition div x y := div_aux x y (lt_wf x).

Let us explain the proof above. In the definition ofdiv_aux, what de-
creases is notx but theproof of the accessibility ofx. The tactic “fix 3 ”
is used to indicate that the proof proceeds by structural induction on the third
argument of the theorem –that is, on the accessibility proof. It also introduces
a new hypothesis in the context, named as the current theorem, and with the
same type as the goal. Then, the proof is refined with an incomplete proof
term, containing a hole_. This hole corresponds to the proof of accessibility
for x− y, and is filled up with the (smaller!) accessibility proof provided by
the functionminus_decrease.
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Lets take a look to the termdiv_aux defined:

Print div_aux.

div_aux =
(fix div_aux (x y : nat) (H : Acc lt x) {struct H} : nat :=

match eq_nat_dec x 0 with
| left _⇒ 0
| right _⇒

match eq_nat_dec y 0 with
| left _⇒ y
| right _0⇒ div_aux (x - y) y (minus_decrease x y H _ _0)
end

end)
: ∀ x : nat, nat→ Acc lt x→ nat

If the non-informative parts from this proof –that is, the accessibility
proof– are erased, then we obtain exactly the program that we were look-
ing for.

Extraction div.

let div x y =
div_aux x y

Extraction div_aux.

let rec div_aux x y =
match eq_nat_dec x O with
| Left→ O
| Right→

(match eq_nat_dec y O with
| Left→ y
| Right→ div_aux (minus x y) y)

This methodology enables the representation of any program whose ter-
mination can be proved inCoq. Once the expected properties from this pro-
gram have been verified, the justification of its termination can be thrown
away, keeping just the desired computational behavior for it.
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6 A case study in dependent elimination

Dependent types are very expressive, but ignoring some useful techniques
can cause some problems to the beginner. Let us consider again the type of
vectors (see section 2.2). We want to prove a quite trivial property: the only
value of type “vector A 0 ” is “ Vnil A ”.

Our first naive attempt leads to acul-de-sac.

Lemma vector0_is_vnil :

∀ (A:Set)(v:vector A 0), v = Vnil A.

Proof.

intros A v;inversion v.

1 subgoal

A : Set
v : vector A 0
============================
v = Vnil A

Abort.

Another attempt is to do a case analysis on a vector of any lengthn, under
an explicit hypothesisn = 0. The tacticdiscriminate will help us to get
rid of the casen = S p. Unfortunately, even the statement of our lemma is
refused!

Lemma vector0_is_vnil_aux :

∀ (A:Set)(n:nat)(v:vector A n), n = 0 → v = Vnil A.

Error: In environment
A : Set
n : nat
v : vector A n
e : n = 0
The term "Vnil A" has type "vector A 0" while it is expected to have type
"vector A n"

In effect, the equality “v = Vnil A ” is ill typed, because the type
“ vector A n ” is not convertiblewith “ vector A 0 ”.

This problem can be solved if we consider the heterogeneous equality
JMeq [10] which allows us to consider terms of different types, even if this
equality can only be proven for terms in the same type. The axiomJMeq_eq,
from the libraryJMeq allows us to convert a heterogeneous equality to a
standard one.
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Lemma vector0_is_vnil_aux :

∀ (A:Set)(n:nat)(v:vector A n),

n= 0 → JMeq v (Vnil A).

Proof.

destruct v.

auto.

intro; discriminate.

Qed.

Our property of vectors of null length can be easily proven:

Lemma vector0_is_vnil : ∀ (A:Set)(v:vector A 0), v = Vnil A.

intros a v;apply JMeq_eq.

apply vector0_is_vnil_aux.

trivial.

Qed.

It is interesting to look at another proof ofvector0_is_vnil, which
illustrates a technique developed and used by various people (consult in
the Coq-clubmailing list archive the contributions by Yves Bertot, Pierre
Letouzey, Laurent Théry, Jean Duprat, and Nicolas Magaud, Venanzio Capretta
and Conor McBride). This technique is also used for unfolding infinite list
definitions (see chapter13 of [3]). Notice that this definition does not rely on
any axiom (e.g.JMeq_eq).

We first give a new definition of the identity on vectors. Before that,
we make lighter the use of constructors and selectors thanks to the implicit
arguments feature:

Implicit Arguments Vcons [A n].

Implicit Arguments Vnil [A].

Implicit Arguments Vhead [A n].

Implicit Arguments Vtail [A n].

Definition Vid : ∀ (A : Set)(n:nat), vector A n → vector A n.

Proof.

destruct n; intro v.

exact Vnil.

exact (Vcons (Vhead v) (Vtail v)).

Defined.

Then we prove thatVid is the identity on vectors:

Lemma Vid_eq : ∀ (n:nat) (A:Set)(v:vector A n), v=(Vid _ n v).

Proof.

destruct v.

A : Set
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============================
Vnil = Vid A 0 Vnil

subgoal 2 is:
Vcons a v = Vid A (S n) (Vcons a v)

reflexivity.

reflexivity.

Defined.

Why defining a new identity function on vectors ? The following dia-
logue shows thatVid has some interesting computational properties:

Eval simpl in (fun (A:Set)(v:vector A 0) ⇒ (Vid _ _ v)).

= fun (A : Set) (_ : vector A 0)⇒ Vnil
: ∀ A : Set, vector A 0→ vector A 0

Notice that the plain identity on vectors doesn’t convertv into Vnil.

Eval simpl in (fun (A:Set)(v:vector A 0) ⇒ v).

= fun (A : Set) (v : vector A 0)⇒ v
: ∀ A : Set, vector A 0→ vector A 0

Then we prove easily that any vector of length 0 isVnil:

Theorem zero_nil : ∀ A (v:vector A 0), v = Vnil.

Proof.

intros.

change (Vnil (A:=A)) with (Vid _ 0 v).

1 subgoal

A : Set
v : vector A 0
============================
v = Vid A 0 v

apply Vid_eq.

Defined.

A similar result can be proven about vectors of strictly positive lenght8.

Theorem decomp :

∀ (A : Set) (n : nat) (v : vector A (S n)),

v = Vcons (Vhead v) (Vtail v).

8As for Vid,Vid_eq, this definition is from Jean Duprat.
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Proof.

intros.

change (Vcons (Vhead v) (Vtail v)) with (Vid _ (S n) v).

1 subgoal

A : Set
n : nat
v : vector A (S n)
============================
v = Vid A (S n) v

apply Vid_eq.

Defined.

Both lemmas:zero_nil and decomp, can be used to derive easily a
double recursion principle on vectors of same length:

Definition vector_double_rect :

∀ (A:Set) (P: ∀ (n:nat),(vector A n)→(vector A n) → Type),

P 0 Vnil Vnil →
(∀ n (v1 v2 : vector A n) a b, P n v1 v2 →

P (S n) (Vcons a v1) (Vcons b v2)) →
∀ n (v1 v2 : vector A n), P n v1 v2.

induction n.

intros; rewrite (zero_nil _ v1); rewrite (zero_nil _ v2).

auto.

intros v1 v2; rewrite (decomp _ _ v1);rewrite (decomp _ _ v2).

apply X0; auto.

Defined.

Notice that, due to the conversion rule ofCoq’s type system, this function
can be used directly withProp or Set instead of type (thus it is useless to
build from scratchvector_double_ind andvector_double_rec).

We finish this example with showing how to define the bitwiseor on
boolean vectors of the same length, and proving a little property about this
operation.

Definition bitwise_or n v1 v2 : vector bool n :=

vector_double_rect bool

(fun n v1 v2 ⇒ vector bool n)

Vnil

(fun n v1 v2 a b r ⇒ Vcons (orb a b) r) n v1 v2.

Let us define recursively then-th element of a vector. Notice that it must
be a partial function, in casen is greater or equal than the length of the vector.
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SinceCoq only considers total functions, the function returns a value in an
optiontype.

Fixpoint vector_nth (A:Set)(n:nat)(p:nat)(v:vector A p){struct v}

: option A :=

match n,v with

_ , Vnil ⇒ None

| 0 , Vcons b _ _ ⇒ Some b

| S n', Vcons _ p' v' ⇒ vector_nth A n' p' v'

end.

Implicit Arguments vector_nth [A p].

We can now prove — using the double induction combinator — a simple
property relyingvector_nth andbitwise_or:

Lemma nth_bitwise : ∀ (n:nat) (v1 v2: vector bool n) i a b,

vector_nth i v1 = Some a →
vector_nth i v2 = Some b →
vector_nth i (bitwise_or _ v1 v2) = Some (orb a b).

Proof.

intros n v1 v2; pattern n,v1,v2.

apply vector_double_rect.

simpl.

destruct i; discriminate 1.

destruct i; simpl;auto.

injection 1; injection 2;intros; subst a; subst b; auto.

Qed.

7 Co-inductive Types and Non-ending Construc-
tions

The objects of an inductive type are well-founded with respect to the con-
structors of the type. In other words, such objects are built by applyinga
finite number of timesthe constructors of the type. Co-inductive types are
obtained by relaxing this condition, and may contain non-well-founded ob-
jects [9, 8]. An example of a co-inductive type is the type of infinite se-
quences formed with elements of typeA, also called streams. This type can
be introduced through the following definition:

CoInductive Stream (A: Set) :Set :=

| Cons : A→Stream A→Stream A.

If we are interested in finite or infinite sequences, we consider the type of
lazy lists:
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CoInductive LList (A: Set) : Set :=

| LNil : LList A

| LCons : A → LList A → LList A.

It is also possible to define co-inductive types for the trees with infinite
branches (see Chapter 13 of [3]).

Structural induction is the way of expressing that inductive types only
contain well-founded objects. Hence, this elimination principle is not valid
for co-inductive types, and the only elimination rule for streams is case anal-
ysis. This principle can be used, for example, to define the destructorshead
andtail.

Definition head (A:Set)(s : Stream A) :=

match s with Cons a s' ⇒ a end.

Definition tail (A : Set)(s : Stream A) :=

match s with Cons a s' ⇒ s' end.

Infinite objects are defined by means of (non-ending) methods of con-
struction, like in lazy functional programming languages. Such methods can
be defined using theCoFixpoint command . For example, the following
definition introduces the infinite list[a, a, a, . . .]:

CoFixpoint repeat (A:Set)(a:A) : Stream A :=

Cons a (repeat a).

However, not any co-recursive definition is an admissible method of con-
struction. Similarly to the case of structural induction, the definition must
verify aguardedness condition to be accepted. This condition states that any
recursive call in the definition must be protected –i.e, be an argument of–
some constructor, and only an argument of constructors [7]. The following
definitions are examples of valid methods of construction:

CoFixpoint iterate (A: Set)(f: A → A)(a : A) : Stream A:=

Cons a (iterate f (f a)).

CoFixpoint map

(A B:Set)(f: A → B)(s : Stream A) : Stream B:=

match s with Cons a tl ⇒ Cons (f a) (map f tl) end.

Exercise 7.1 Define two different methods for constructing the stream which
infinitely alternates the valuestrue andfalse.

Exercise 7.2 Using the destructorshead andtail, define a function which
takes the n-th element of an infinite stream.
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A non-ending method of construction is computed lazily. This means that
its definition is unfolded only when the object that it introduces is eliminated,
that is, when it appears as the argument of a case expression. We can check
this using the commandEval.

Eval simpl in (fun (A:Set)(a:A) ⇒ repeat a).

= fun (A : Set) (a : A)⇒ repeat a
: ∀ A : Set, A→ Stream A

Eval simpl in (fun (A:Set)(a:A) ⇒ head (repeat a)).

= fun (A : Set) (a : A)⇒ a
: ∀ A : Set, A→ A

7.1 Extensional Properties

Case analysis is also a valid proof principle for infinite objects. However, this
principle is not sufficient to proveextensional properties, that is, properties
concerning the whole infinite object [8]. A typical example of an extensional
property is the predicate expressing that two streams have the same elements.
In many cases, the minimal reflexive relationa = b that is used as equality for
inductive types is too small to capture equality between streams. Consider
for example the streamsiterate f (f x) and (map f (iterate f x)).
Even though these two streams have the same elements, no finite expansion
of their definitions lead to equal terms. In other words, in order to deal with
extensional properties, it is necessary to construct infinite proofs. The type
of infinite proofs of equality can be introduced as a co-inductive predicate,
as follows:

CoInductive EqSt (A: Set) : Stream A → Stream A → Prop :=

eqst : ∀ s1 s2: Stream A,

head s1 = head s2 →
EqSt (tail s1) (tail s2) →
EqSt s1 s2.

It is possible to introduce proof principles for reasoning about infinite
objects as combinators defined throughCoFixpoint. However, oppositely
to the case of inductive types, proof principles associated to co-inductive
types are not elimination butintroduction combinators. An example of such
a combinator is Park’s principle for proving the equality of two streams, usu-
ally called theprinciple of co-induction. It states that two streams are equal
if they satisfy abisimulation. A bisimulation is a binary relationR such that
any pair of streamss1 ad s2 satisfyingR have equal heads, and tails also
satisfyingR. This principle is in fact a method for constructing an infinite
proof:

Section Parks_Principle.

Variable A : Set.
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Variable R : Stream A → Stream A → Prop.

Hypothesis bisim1 : ∀ s1 s2:Stream A, R s1 s2 →
head s1 = head s2.

Hypothesis bisim2 : ∀ s1 s2:Stream A, R s1 s2 →
R (tail s1) (tail s2).

CoFixpoint park_ppl :

∀ s1 s2:Stream A, R s1 s2 → EqSt s1 s2 :=

fun s1 s2 (p : R s1 s2) ⇒
eqst s1 s2 (bisim1 s1 s2 p)

(park_ppl (tail s1) (tail s2) (bisim2 s1 s2 p)).

End Parks_Principle.

Let us use the principle of co-induction to prove the extensional equality
mentioned above.

Theorem map_iterate : ∀ (a:Set)(f:A→A)(x:A),

EqSt (iterate f (f x)) (map f (iterate f x)).

Proof.

intros A f x.

apply park_ppl with

(R:= fun s1 s2 ⇒
∃ x: A, s1 = iterate f (f x) ∧

s2 = map f (iterate f x)).

intros s1 s2 (x0,(eqs1,eqs2));rewrite eqs1;rewrite eqs2;reflexivity.

intros s1 s2 (x0,(eqs1,eqs2)).

exists (f x0);split;[rewrite eqs1|rewrite eqs2]; reflexivity.

exists x;split; reflexivity.

Qed.

The use of Park’s principle is sometimes annoying, because it requires
to find an invariant relation and prove that it is indeed a bisimulation. In
many cases, a shorter proof can be obtained trying to construct an ad-hoc
infinite proof, defined by a guarded declaration. The tactic “ “Cofix f ” can
be used to do that. Similarly to the tacticfix indicated in Section 5.3, this
tactic introduces an extra hypothesisf into the context, whose type is the
same as the current goal. Note that the applications off in the proofmust be
guarded. In order to prevent us from doing unguarded calls, we can define a
tactic that always apply a constructor before usingf :

Ltac infiniteproof f :=

cofix f; constructor; [clear f| simpl; try (apply f; clear f)].

In the example above, this tactic produces a much simpler proof that the
former one:
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Theorem map_iterate' : ∀ ((A:Set)f:A→A)(x:A),

EqSt (iterate f (f x)) (map f (iterate f x)).

Proof.

infiniteproof map_iterate'.

reflexivity.

Qed.

Exercise 7.3 Define a co-inductive typeNat containing non-standard natu-
ral numbers –this is, verifying

∃m ∈ Nat,∀n ∈ Nat, n < m

.

Exercise 7.4 Prove that the extensional equality of streams is an equivalence
relation using Park’s co-induction principle.

Exercise 7.5 Provide a suitable definition of “being an ordered list” for in-
finite lists and define a principle for proving that an infinite list is ordered.
Apply this method to the list[0, 1, . . .]. Compare the result with exercise 5.2.

7.2 About injection, discriminate, and inversion

Since co-inductive types are closed w.r.t. their constructors, the techniques
shown in Section 4 work also with these types.

Let us consider the type of lazy lists, introduced on page 53. The follow-
ing lemmas are straightforward applications ofdiscriminate andinjection:

Lemma Lnil_not_Lcons : ∀ (A:Set)(a:A)(l:LList A),

LNil 6= (LCons a l).

Proof.

intros;discriminate.

Qed.

Lemma injection_demo : ∀ (A:Set)(a b : A)(l l': LList A),

LCons a (LCons b l) = LCons b (LCons a l') →
a = b ∧ l = l'.

Proof.

intros A a b l l' e; injection e; auto.

Qed.

In order to showinversion at work, let us define two predicates on lazy
lists:
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Inductive Finite (A:Set) : LList A → Prop :=

| Lnil_fin : Finite (LNil (A:=A))

| Lcons_fin : ∀ a l, Finite l → Finite (LCons a l).

CoInductive Infinite (A:Set) : LList A → Prop :=

| LCons_inf : ∀ a l, Infinite l → Infinite (LCons a l).

First, two easy theorems:

Lemma LNil_not_Infinite : ∀ (A:Set), ~ Infinite (LNil (A:=A)).

Proof.

intros A H;inversion H.

Qed.

Lemma Finite_not_Infinite : ∀ (A:Set)(l:LList A),

Finite l → ~ Infinite l.

Proof.

intros A l H; elim H.

apply LNil_not_Infinite.

intros a l0 F0 I0' I1.

case I0'; inversion_clear I1.

trivial.

Qed.

On the other hand, the next proof uses thecofix tactic. Notice the de-
structuration ofl, which allows us to apply the constructorLCons_inf, thus
satisfying the guard condition:

Lemma Not_Finite_Infinite : ∀ (A:Set)(l:LList A),

~ Finite l → Infinite l.

Proof.

cofix H.

destruct l.

intro; absurd (Finite (LNil (A:=A)));[auto|constructor].

1 subgoal

H : forall (A : Set) (l : LList A), ~ Finite l -> Infinite l
A : Set
a : A
l : LList A
H0 : ~ Finite (LCons a l)
============================
Infinite l

At this point, one must not applyH! . It would be possible to solve the
current goal by an inversion of “Finite (LCons a l) ”, but, since the
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guard condition would be violated, the user would get an error message after
typeingQed. In order to satisfy the guard condition, we apply the constructor
of Infinite, thenapplyH.

constructor.

apply H.

red; intro H1;case H0.

constructor.

trivial.

Qed.

The reader is invited to replay this proof and understand each of its steps.

References

[1] B. Barras. A formalisation of Burali-Forti’s paradox in coq. Dis-
tributed within the bunch of contribution to the Coq system, March
1998.http://pauillac.inria.fr/coq.

[2] Y. Bertot and P. Castéran. Coq’Art: examples and exercises.http:

//www.labri.fr/Perso/~casteran/CoqArt.

[3] Y. Bertot and P. Castéran.Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions. Texts
in Theoretical Computer Science. An EATCS series. Springer Verlag,
2004.

[4] T. Coquand. An Analysis of Girard’s Paradox. InSymposium on Logic
in Computer Science, Cambridge, MA, 1986. IEEE Computer Society
Press.

[5] T. Coquand. Metamathematical investigations on a calculus of con-
structions. In P. Odifreddi, editor,Logic and Computer Science. Aca-
demic Press, 1990.

[6] Development team. TheCoqproof assistant. Documentation, system
download. Contact:http://coq.inria.fr/.

[7] E. Giménez. Codifying guarded definitions with recursive schemes. In
Workshop on Types for Proofs and Programs, number 996 in LNCS,
pages 39–59. Springer-Verlag, 1994.

[8] E. Giménez. An application of co-inductive types in coq: verification of
the alternating bit protocol. InWorkshop on Types for Proofs and Pro-
grams, number 1158 in LNCS, pages 135–152. Springer-Verlag, 1995.

[9] E. Giménez.A Calculus of Infinite Constructions and its application to
the verification of communicating systems. PhD thesis, Ecole Normale
Supérieure de Lyon, 1996.

[10] C. McBride. Elimination with a motive. InTypes for Proofs and Pro-
grams’2000, volume 2277, pages 197–217, 2002.

59



[11] C. D. Team. The Coq reference manual. LogiCal Project,
http://coq.inria.fr/.

60


