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1 Introduction

When most people think of a programming language they think of a general pur-
pose language: one capable of programming any application with relatively the
same degree of expressiveness and efficiency. For many applications, however,
there are more natural ways to express the solution to a problem than those
afforded by general purpose programming languages. As a result, researchers
and practitioners in recent years have developed many different domain specific
languages, or DSL’s, which are tailored to particular application domains. With
an appropriate DSL, one can develop complete application programs for a do-
main more quickly and more effectively than with a general purpose language.
Ideally, a well-designed DSL captures precisely the semantics of an application
domain, no more and no less.

Table 1 is a partial list of domains for which DSL’s have been created. As
you can see, the list covers quite a lot of ground. For a list of some popular
DSL’s that you may have heard of, look at Table 2. The first example is a
set of tools known as Lex and Yacc which are used to build lexers and parsers,
respectively. Thus, ironically, they are good tools for building DSL’s (more
on this later). Note that there are several document preparation languages
listed; for example, IWTEX was used to create the original draft of this article.
Also on the list are examples of “scripting languages,” such as PERL, Tcl, and
Tk, whose general domain is that of scripting text and file manipulation, GUI
widgets, and other software components. When used for scripting, Visual Basic
can also be viewed as a DSL, even though it is usually thought of as general-
purpose. I have included one other general-purpose language, Prolog, because it

*Appeared as Chapter 3 in Handbook of Programming Languages, Vol. III: Little Lan-
guages and Tools, Peter H. Salas, ed., MacMillan, Indianapolis, pp. 39-60, 1998.
1Both of these tables are incomplete; feel free to add your favorite examples to them.



Scheduling Modeling

Simulation Graphical user interfaces
Lexing and parsing Symbolic computing
Attribute grammars CAD/CAM

Robotics Hardware description
Silicon layout Text /pattern-matching
Graphics and animation | Computer music
Databases Distributed/Parallel comp.
Logic Security

Table 1: Application Domains

is excellent for applications specified using predicate calculus.? The tongue-in-
cheek comment in Table 2 regarding the application domain for the Excel Macro
language points out just how powerful—and general purpose—a DSL can be,
despite original intentions.

For another perspective of DSLs, it is often said that abstraction is the most
important factor in writing good software, a point which I firmly believe in.
Software designers are trained to use a variety of abstraction mechanisms: ab-
stract data-types, (higher-order) functions and procedures, modules, classes,
objects, monads, continuations, etc. An important point about these mecha-
nisms is that they are fairly general—for example, most algorithmic strategies
and computational structures can be implemented using either functional or
object-oriented abstraction techniques. Although generality is good, we might
ask what the ideal abstraction for a particular application is. In my opinion it
is a DSL: the “ultimate abstraction” of a problem domain.

Advantages Programs written in a DSL have the following advantages over
those written in more conventional languages:

e they are more concise

e they can be written more quickly

e they are easier to maintain

e they are easier to reason about

These advantages are the same as those claimed for progams written in conven-
tional high-level languages, so perhaps DSL’s are just very high-level languages?

20ther examples of this sort include the general-purpose functional languages Haskell and
ML, which are excellent for functional specifications; we will use Haskell later as a vehicle for
designing new DSL’s.



DSL

Application

Lex and Yacc

PERL

VHDL

TEX, BTEX, troff
HTML, SGML

SQL, LDL, QUEL
pic, postscript

Open GL

Tel, Tk
Mathematica, Maple
AutoLisp/AutoCAD
Csh

IDL

Emacs Lisp

Prolog

Visual Basic

Excel Macro Language

program lexing and parsing
text/file manipulation/scripting
hardware description

document layout

document markup

databases

2D graphics

high-level 3D graphics

GUI scripting

symbolic computation
computer aided design

OS scripting (Unix)

component technology (COM/CORBA)
text editing

logic

scripting and more
spreadsheets and many things
never intended

Table 2: Popular DSL’s




A
Total SW Cost Convenfional .7
methodology . -~
It — >
_,_,:—i—’ ———————————— 15 SL-based
c2 | methodology
Start-up e
Costs Lo
cl
|-
»

Software Life-Cycle

Figure 1: The Payoff of DSL Technology

In some sense this is true. But programs written in a DSL also have one other
important characteristic:

e they can often be written by non-programmers

More precisely, they can be written by non-programmers who are nevertheless
experts in the domain for which the DSL was designed. This helps bridge the
gap (often a chasm) between developer and user, a potentially major hidden cost
in software development. It also raises an important point about DSL design:
a user immersed in a domain already knows the domain semantics. All the DSL
designer needs to do is provide a notation to express that semantics.

The Payoff DSL’s certainly seem to have the potential to improve our pro-
ductivity as programmers, but is there some way to quantify this argument? I
believe there is, as illustrated in Figure 1. Here we see that the initial cost of
DSL development may be high compared to the equivalent cost of “tooling up”
for an application under a more traditional software development scenario. But
the slope of the curve for aggregate software development cost should be con-
siderably lower using a DSL, and thus at some point the DSL approach should
yield significant savings. And of course, if you are using an existing DSL, the
initial tooling-up cost will be very low. In any case, if you are contemplating
designing your own DSL, this is the chart to show to your boss.

A Few Examples Before going further, let’s look at a few instances of DSL’s
to get a feel for their power and simplicity. For starters, Figure 2 shows a
simplified version of the HTML code used to generate my home page on the
WWW. Although some might not think of HTML as a programming language,
it is nevertheless a notation for specifying a certain kind of computation: namely,
document layout parameters.



In HTML, regions of text that are to be treated in a special way begin with a
tag enclosed in angle brackets, and end with the same tag, but preceeded with a
slash character. For example, in Figure 2, the text “Professor Paul Hudak’s
Home Page” is enclosed in a pair of “title” tags, which gives a title to the doc-
ument, which is then used by browsers to, for example, label bookmark entries.
The next line marks the beginning of the body of the page, and specifies what
background color to use. Then the first line of actual text appears, rendered
in the style “h1,” which is a document heading. Following this text are two
images (img), one a picture of me, one a group logo, both referenced as .gif
files. The single commands <p> and <hr> generate new paragraphs and draw
horizontal lines, respectively. The section that begins with <ul> is an unnum-
bered list, with each entry beginning with the tag <1i>. The first entry in this
list references another WWW page using what is called an anchor, whose tag
includes the URL. The effect of this tag is that the text “A Gentle Introduction
to Haskell” will be highlighted, and will take the user to the page referenced by
the URL if it is clicked. The other list items are omitted, and the page closes
with my address anchored in a different way: if you click on my email address,
your mailer will open an out-going message with my address already loaded in
the To: field.

There is quite a lot going on here! But I think that with my explanation you
should now understand it, and that in a day’s time I could teach you enough
HTML that you could handle 90% of all WWW applications.

As another example, suppose we are implementing a programming language
whose BNF syntax includes the following specification [ASUS87]:

expr = expr+ term | term
term = termx factor | factor
factor = (expr) | digit

which is the standard way to define simple arithmetic expressions. Using Yacc
[Joh75], this specification can be used almost directly:

expr : expr ’+’ term

| term ;
term : term ’*’ factor

| factor ;
factor : ’(’ expr ’)’

| DIGIT ;

Yacc will take this code and generate a parser for the little language that it
represents; i.e. Yacc is a program that generates other programs. It also has
several other features which allow one to specify actions to be taken for each
line in the code. I also believe that, if you are familiar with BNF syntax and
basic C programming, I could teach you how to use Yacc expertly within one
day’s time.



<title> Professor Paul Hudak’s Home Page </title>
<body background="backgrounds/gray_weave.gif" >

<h1> Professor Paul Hudak </hi1>

<hr>

<img src="hudak.gif">

<img align=top src="yale-haskell-logo.gif">

<p>

<b> Computer Science Department, Yale University </b>

<p> <hr> <p>

<h2> Functional Programming </h2>

Here I briefly describe some of my work in functional programming:
<ul>

<1i> The best introduction to Haskell is the tutorial

<a href="http://www.haskell.org/tutorial"> A Gentle Introduction to
Haskell </a>.

<li> ...

<li> ...

</ul>

<address>

Paul Hudak,

<a href="mailto:paul.hudak@yale.edu"> paul.hudak@yale.edu </a>
</address>

</body>

Figure 2: Example of HTML Code



As a final example, let’s look at some SQL code. SQL is a language for creating
and querying relational databases. We will ignore how SQL is used to set up a
database, and concentrate on what queries look like. Here is the first example:

SELECT firstName, lastName, address
FROM employee
WHERE  firstName = ’Cathy’ AND birthDate = ’07/04/1950°

This query is almost self-explanatory: it is SELECTing the first name, last
name, and address FROM the employee relation WHERE the first name of the
employee is Cathy AND she was born on July 4, 1950. SQL queries can be quite
complex; for example they can be nested, as in the following:

SELECT firstName, lastName, address
FROM  employee
WHERE salary > ALL (SELECT salary
FROM employee
WHERE firstName = ’Paul’)

This query selects all employees whose salary is greater than that of any em-
ployee whose first name is Paul.

SQL is a powerful language for programming databases (there are other lan-
guages that are claimed to be more powerful, such as QUEL). If you are familiar
with databases, my feeling is that you could learn quite a bit about SQL within
a day’s time, although it might take years to become an expert at using this
particular DSL in the context of real-world database systems.

In the remainder of this article I will discuss the motivation of DSL’s, their
basic characteristics, how to design and implement them, how to embed them
in existing languages, and avenues for further development. I am particulary
keen on conveying the idea that you can “roll your own” DSL: you don’t have
to rely on existing DSL’s to take advantage of this useful technology.?

2 The DSL Software Development Method

The basic “DSL Software Development Method” can be summarized as follows:

31In this regard my message is the same as that given by Jon Bentley in his excellent article
on “Little Languages” [Ben86], although DSL’s are not necessarily little.



1. Define your domain.
Design a DSL that accurately captures the domain semantics.

Build sofware tools to support the DSL.

- W

Develop applications (domain instances) using the new DSL infrastruc-
ture.

Of course, this is not necessarily a linear process: revision, refinement, enhance-
ment, etc. are often necessary.

The first two steps are difficult, but are the key to successful application of the
methodology. If the domain itself is properly identified, the DSL design should
go smoothly, especially if you have experience in basic programming language
principles to begin with.

There are several ways in which one could implement a DSL. If treated as a
conventional language, conventional techniques could be used: build a conven-
tional lexer and parser based on the BNF syntax; perform various high-level
analyses, transformations, and optimizations on the abstract syntax generated
by the parser; and then generate executable code for some host machine. In the
case of a DSL, this standard approach may be modifed in a number of ways:

1. Use Lex and Yacc (themselves DSL’s), or similar tools, to facilitate the
construction of the lexer and parser.

2. Use a structured editor or other programming environment generator
(such as the Synthesizer Generator [Rep84]) to create the infrastructure
for a more sophisticated programming environment.

3. Generate code for an abstract machine (e.g. a byte-code interpreter)
rather a real machine, or generate code in another language, such as C.

4. Write an interpreter rather than a compiler.

Another way to implement DSL’s is discussed in the next section.

3 Domain Specific Embedded Languages

Despite all of the promise, there are potential problems with the DSL methodol-
ogy. To start, it may be that performance is poor: very high-level languages are
notoriously less efficient than lower-level languages. If performance using con-
ventional languages is already a problem, designing a DSL may not be the best
approach. On the other hand, there are certain domains where high-level opti-
mizations are possible on DSL programs, whose results are sufficienty complex



that programming them directly in a conventional language is difficult, tedious,
and error-prone. Query optimizations in the domain of databases is an example
of this, and in such cases a DSL may be justified as a way to improve perfor-
mance. In any case, there are many application domains where performance is
not the bottleneck, so this argument is not a show-stopper.

Another concern is the generation of a “Tower of Babel” through the creation
of a new language for every domain. This is certainly a valid concern. On the
other hand, if the languages are simple enough, the problem might not be nearly
as bad as one might think, and in a later section we will discuss ways to make
new DSL’s similar enough in look-and-feel to reduce the overhead of learning
many new languages.

A final concern is the potential for unacceptable start-up costs: design time,
implementation, documentation, etc. It can be fairly difficult to design and
implement a programming language from scratch: a 2-5 year effort is not un-
common. Moreover, there’s a good chance that we won’t get it right the first
time. The DSL will evolve, and we will experience all of the difficulties associ-
ated with that evolution. To state this concern in concrete terms, what if the
start-up costs shown in Figure 1 are so high that we never break even? Or what
if we get it all wrong, and incur the start-up cost several more times during a
software system’s life-cycle?

There are dangers lurking in every software design methodology, and there are
no silver bullets, of course. We must understand the benefits as well as the
limitations of whatever methodology we are using, and proceed with caution.

In the case of the DSL methodology, I would like to use the rest of this article
to discuss several techniques that can greatly alleviate most of the problems
addressed above. These techniques rest on two key thoughts:

e We begin with the assumption that we really don’t want to build a new
programming language from scratch. Better, let’s inherit the infrastruc-
ture of some other language—tailoring it in special ways to the domain of
interest—thus yielding a domain-specific embedded language (DSEL).

e Building on this base, we can then concentrate on semantical issues. Sound
abstraction principles can be used at this level to build language tools that
are themselves easy to understand, highly modular, and straightforward
to evolve.

In the following sections I will elaborate on these ideas.



3.1 Syntax vs. Semantics

Tools such as Lex [Les75] and Yacc [Joh75], as well as more sophisticated pro-
gramming environment generators (e.g. [Rep84]), have been shown to be quite
useful in designing new programming languages; they are certainly better than
building lexers and parsers from scratch. On the other hand, they are still rather
tedious to use, and in any case syntactic minutiae should arguably be the least
of a language designer’s worries. This is another twist on the slogan “semantics
is more important than syntax” often bellowed in programming language cir-
cles. This is not to say that syntax doesn’t matter—I believe that it does—but
rather places syntax in proper perspective.

However, when one focuses on semantical issues, many of the details still don’t
matter much. Even a deep issue such as the evaluation order of arguments is
often something that people can adjust to, as long as they know exactly what
it is for the language they are using. The precise behavior of variable-binding
constructs, pattern-matching rules, endless details in type systems, major dif-
ferences in module functionality, etc. are examples of debates that rage in the
programming language design community. Other examples of semantical minu-
tiae include names of pre-defined functions, the lexical order of their arguments,
exactly how they behave under all circumstances, and an endless list of similar
issues concerning the functionality of the software libraries that are essential to
making a programming language practical.

The bottom line is that, once a programming language is chosen, people get the
job done, and they usually well appreciate the high-level language that they are
using.

3.2 DSELs Inherit Language Features

The point is, instead of designing a programming language from scratch, why
not borrow most of the design decisions made for some other language? And
while we’re at it, let’s borrow as many as we can of the tools designed for this
other language as well. Aside from the obvious advantage of being able to reuse
many ideas and artifacts, DSELs have certain advantage over DSLs:

First off, although I pointed out earlier that a DSL “should capture precisely
the semantics of an application domain, no more and no less,” a DSL in fact
is not usually used in total isolation. Users of even (or perhaps especially) the
most elegant DSLs may find themselves frustrated at not having access to more
general programming language features.

Secondly, if we design several DSELs for different domains, all derived from the
same base language, then programmers in the different domains can share a
common core language. Indeed, for a large application it is quite conceivable
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to have more than one DSEL. For them all to have a similar look-and-feel is a
clear advantage.

In summary, the DSEL approach creates a rich infrastructure that:

1. Allows for rapid DSL design; if nothing else, it can be viewed as a way to
prototype a DSL.

2. Facilitates change, whether for experimentation, fault correction, or design
evolution.

3. Provides a familiar look and feel, especially for several different DSL’s
embedded in the same language. In other words, it reduces the size of the
Tower of Babel.

4. Facilitates reuse of syntax, semantics, implementation code, software tools,
documentation, and other related artifacts.

Of course, there is danger lurking in this approach as well: we may find that
our DSL becomes limited by the power and prejudices of the underlying “host”
language. It is important to design the DSL abstractly first, and then search
for a suitable host.

Implementing a DSEL can be achieved by writing a pre-processor for the host
language (and possibly a post-processor of program output), or by directly mod-
ifying the host language implementation. The former is more desirable since it
removes dependency on other evolving systems. In many cases the embedding
can be achieved without any pre-processor at all: for this to work, the host lan-
guage needs to be suitably rich in syntax and semantics (we will see examples
of this shortly).

In the remainder of this article I will describe the results of using the functional
language Haskell [HPJWe92| to build DSELs. Haskell has several features that
make it particularly suitable for this—in particular, higher-order functions, lazy
evaluation, and type classes—but other languages could conceivably be used
instead. On the other hand, there are features that don’t exist in any language
(to my knowledge) that would make things even easier; there is much more work
to be done.

3.3 An Example

It is surprisingly straightforward to design a DSEL for many specific applica-
tions. We and others in the Haskell community have done so using Haskell in
many domains, including lexer and parser generation, graphics, animation, sim-
ulation, concurrency, computer music, GUI construction, scripting, hardware
description, VLSI layout, pretty printing, and geometric region analysis. The
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latter domain—geometric region analysis—came about through an experiment
conducted jointly by Darpa, ONR, and the Naval Surface Warfare Center. This
well-documented experiment (see [Car93, CHJ93]) demonstrates not only the
viability of the DSEL approach, but also its evolvability. Three different ver-
sions of the system were developed, each capturing more advanced notions of
the target system, with no a priori knowledge of the changes that would be
required. The modularity afforded by the DSEL made these non-trivial changes
quite easy to incorporate.

The resulting notation is not only easy to design, it’s also easy to use and
reason about. Figure 3 shows some of the code to give the reader a feel for
its simplicity and clarity. Because the domain semantics is captured concisely,
it is possible even for non-programmers to understand much of the code. In
the NSWC experiment, those completely unfamiliar with Haskell were able to
grasp the concepts immediately; some even expressed disbelief that the code
was actually executable.

(A few notes on Haskell syntax: a type such as Point -> Bool is the type of
functions that map values of type Point to values of type Bool. In Figure 3, the
name Region is given to this type. A statement such as circle :: Radius
-> Region declares that the value circle is a function from type Radius to
type Region. Function application in Haskell is written £ x y; this is the same
as £ (x,y) in many other languages. Also in Haskell, any function can be used
in infix position by enclosing it in back-quotes. Thus p ‘inRegion‘ r is the
same as inRegion p r.)

Note that operators such as (/\), (\/) and outside take regions as arguments.
But regions are themselves represented as functions, so it it not surprising that
higher-order functions are the key underlying abstraction needed to creat this
simple DSL. For example, the definition of (/\) is given by:

(r1 /N r2) p=rl1p&& r2p

which can be read: “the intersection of r1 and r2 is a region which, when
applied to a point p, returns the conjunction of r1 applied to p and r2 applied
to p.” Or more abstractly: “a point p lies in the intersection of r1 and r2 if it
lies in both r1 and r2.”

Another important advantage of the DSEL approach is that it is highly amenable
to formal methods, especially when using a language such as Haskell with a clean
underlying semantics. The key point is that one can reason directly within the
domain semantics, rather than within the semantics of the programming lan-
guage. In the NSWC experiment, several properties of the DSEL were straight-
forwardly proved that would have been much more difficult to prove in most of
the competing designs. For example, to prove associativity of region intersec-
tion:

12



-- Geometric regions are represented as functions:
type Region = Point -> Bool

-- So to test a point’s membership in a region, we do:
inRegion :: Point -> Region -> Bool

p ‘inRegion‘ r = r p

-- Given suitable definitions of "circle", "outside", and /\:

circle :: Radius -> Region
-- creates a circular region with the given radius
outside :: Region -> Region
-- the logical negation of a region
/\) :: Region -> Region -> Region
-- the intersection of two regions
A/ :: Region -> Region -> Region

-- the union of two regions

-- We can then define a function to generate an annulus:
annulus :: Radius -> Radius -> Region
annulus rl r2 = outside (circle r1) /\ circle r2

Figure 3: Example of a DSEL for a Naval Application

(r1 /N r2) /A r3 =r1 /\ (2 /\ r3)
we can use the definition of (/\) given above to reason equationally:

((rt /AN r2) /N 13) p

= (r1 /\ r2) p && r3 p (unfolding of /\)

= (rl p & r2 p) && r3 p (unfolding of /\)
=rl p & (r2 p && r3 p) (associativity of &&)
=rl p&& (r2 /\ r3) p (folding of /\)

= (r1 /\ (x2 /\ 3)) p (folding of /\)

The unfolding of a function definition means replacing an instance of the left-
hand side with the right-hand side, whereas the folding of a function definition
means replacing an instance of the right with the left.

This simple use of formal methods results in a rich algebra that captures the
domain semantics quite nicely. This will be elaborated on in the next section.
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—-- Atomic objects:

circle -- a unit circle
square -- a unit square
import "p.gif" —-- an imported bit-map

—-- Composite objects:

scale vV p -- scale picture p by vector v
color cp -- color picture p with color c
trans vV p -- translate picture p by vector v
pl ‘over‘ p2 -- overlay pl on p2

pl ‘above‘ p2 -- place pl above p2

pl ‘beside® p2 -- place pl beside p2

Figure 4: A Simple Graphics DSEL

4 Modular Semantics

In a later section I will describe how an implementation of a DSL can be con-
structed in a modular way, thus facilitating reuse of software components across
possibly many DSL design efforts. The root of that process, however, is a good
understanding of the domain semantics itself; one that recognizes layers of ab-
straction rather than one monolithic structure.

4.1 Simple Graphics

To demonstrate this, let’s look at a simplified version of Fran [EH97], a DSEL for
building “functional reactive animations.” We begin with some simple operators
for manipulating graphical objects, or “pictures,” as shown in Figure 4.4

With these operators a rich algebra of pictures can be established. For example,
scale, color, and trans all distribute over over, above, and beside, and the
latter three are all associative. With these axioms many useful properties of
graphical objects can then be proven.

4.2 Simple Animations

Next, we note that the relationship between pictures and animations is quite
simple: an animation is simply a time-varying picture! In Haskell we could
express this type for animations by writing:

4These are not unlike those for geometric regions given previously, but are even more like
Henderson’s functional graphics [Hen82].
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type Animation = Time -> Picture

But in fact many sorts of things could be time varying. Thus we will adopt a
more generic viewpoint by defining the notion of a (polymorphic) behavior, and
then defining animations in terms of it:

type Behavior a = Time -> a
type Animation = Behavior Picture

Now for the key step, we can “lift” all of our operators on pictures to work on
behaviors as well. For example:

bl t ‘overf b2 t
bl t ‘above‘ b2 t
bl t ‘beside‘ b2 t

(b1 ‘overB¢ b2) t
(b1 ‘aboveB‘ b2) t
(b1 ‘besideB‘ b2) t

We can also lift the other operators, but we note that the vector and color
arguments might also be time-varying, and so we write:

(scaleB v b) t = scale (v t) (b t)
(colorB c b) t color (c t) (b t)
(transB v b) t trans (v t) (b t)

Finally, we define a new function to return the current time:
time t = t

With this simple transformation we can now express continuous-time anima-
tions. For example, let’s first define a couple of simple utility behaviors. The
first varies smoothly and cyclically between -1 and +1:

wiggle = sin (pi * time)

Using wiggle we can then define a function that smoothly varies between its
two argument values.

wiggleRange lo hi = lo + (hi-lo) * (wiggle+1)/2
Now let’s create a very simple animation: a red, pulsating ball.

ball = colorB red (scaleB (wiggleRange 0.5 1) circle)
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We can also develop a rich algebra of animations. In fact, the entire algebra
of pictures generalizes directly to animations. And with time as a first-class
value, there are even more opportunities for expressiveness if we add time-
specific operators. For example, in Fran we have an operator for expressing
time transformations, and thus:

anim ‘aboveB‘ (timeTransform (-1) anim)

displays animation anim with a copy of itself just above itself and delayed by 1
second.

Perhaps more importantly, Fran has an operator for expressing integration over
time. To express the behavior of a falling ball, for example, we can write:

let y = yO + integral v
v = vO + integral g
in translate (x0,y) ball

where (x0,y0) is the initial position of the ball, v0 it its initial velocity, and
g is gravity. These equations can be read literally as the standard equations
learned in introductory physics to describe the same phenomenon. Indeed,
partial differential equations in general can be written and directly executed in
Fran.

As you might guess, we can also develop a useful algebra of time, which includes

such basic axioms as:

timeTransform f (timeTransform g b)
= timeTransform (f . g) b

integral k = k * time
integral time = 0.5xtimex*x*2
integral (sin time) = cos time
where (f . g) in Haskell denotes the composition of the functions £ and g.

4.3 Reactive Animations

For the third and last layer of our semantic structure, we will add reactivity.
This layer is reminiscent of CSP or similar process algebra, and is based on a
notion of an event. Primitive events include things like mouse clicks and key
presses, but additionally include predicate events such as time > 5. There are
also ways to combine events and filter them. The basic reactive expression then
has the form:

16



bl ‘until‘ e => b2

which can be read: “behave as b1 until event e occurs, then behave as b2.” For
example, here is a circle that changes color everytime the left mouse-button is
pressed:

colorB (cycle red green blue) circle
where cycle cl c2 c3 =
cl ‘until‘ leftButtonPress => cycle c2 c3 cl

Again we find that the previous algebraic semantics still holds in the reactive
framework—nothing “gets broken”—and additionally there is an algebra of re-
activity that is reminiscent of that for other process calculii.

5 Advanced Support For DSEL’s

In this section I will describe some recent research and development efforts
that promise to make the DSL/DSEL methodology even more attractive for
industrial-strength software development.

5.1 Modular Interpreters

A DSEL in Haskell can be thought of as a higher-order algebraic structure, a
first-class value that has the “look and feel” of syntax. In some sense it is just
a notation; its semantics is captured by an interpreter. This permits another
opportunity for modular design, in turn facilitating evolution of the system since
changes in the domain semantics are in many cases inevitable.

The design of truly modular interpreters has been an elusive goal in the pro-
gramming language community for many years. In particular, one would like
to design the interpreter so that different language features can be isolated and
given individualized interpretations in a “building block” manner. These build-
ing blocks can then be assembled to yield languages that have only a few, a
majority, or even all of the individual language features. Progress by several
researchers [Mog89, Ste94, Esp95, LHJ95, LH96, Lia96] has led to some key
principles on which one can base such modular interpreters and compilers. The
use of monads [PTW93, Wad90] to structure the design was critical.

This approach means that language features can be added long after the initial
design, even if they involve fundamental changes in the interpreter functionality.
For example, one can build a series of languages and interpreters that begin with
a small calculator language (just numbers), then a simple first-order language
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Figure 5: Modular monadic interpreter structure

with variables, then a higher-order language with several calling conventions,
then a language with errors and exceptions, and so on, as suggested in Figure
5. At each level the new language features can be added, along with their
semantics, without altering any previous code.

It is also possible with this approach to capture not only domain-specific seman-
tics, but also domain-specific optimizations. These optimizations can be done
incrementally and independently from each other and from the core seman-
tics. This idea has been used to implement traditional compiler optimizations
[LH96, Lia96], but the same techniques could be used for domain-specific opti-
mizations.

A conventional interpreter maps, say, a term, environment, and store, to an
answer. In contrast, a modular monadic interpreter maps terms to computa-
tions, where the details of the environment, store, etc. are “hidden” in the
computation. Specifically:

interp :: Term -> InterpM Value

where InterpM Value is the interpreter monad of final answers.

What makes the interpreter modular is that all three components above—the
term type, the value type, and the monad—are configurable. To illustrate, if
we initially wish to have an interpreter for a small number-expression language,
we can fill in the definitions as follows:

type Value = OR Int Bottom
type Term = TermA
type InterpM = ErrorT Id

The first line declares the answer domain to be the union of integers and “bot-
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tom” (the undefined value). The second line defines terms as TermA, the abstract
syntax for arithmetic operations. The final line defines the interpreter monad
as a transformation of the identify monad Id. The monad transformer ErrorT
accounts for the possibility of errors; in this case, arithmetic exceptions. At this
point the interpreter behaves like a calculator:

Run> ((1+4)%*8)
40
Run> (3/0)
ERROR: divide by O

Now if we wish to add function calls, we can extend the value domain with
function types, add the abstract syntax for function calls to the term type, and
apply the monad transformer EnvT Env to introduce an environment Env.

OR Int (OR Function Bottom)
OR TermF TermA
EnvT Env (ErrorT Id)

type Value
type Term
type InterpM

Here is a test run:

Run> ((\x.(x+4)) 7)
11
Run> (x+4)
ERROR: unbound variable: x

We can further add other features such as conditionals, lazy evaluation, letrec
declarations, nondeterminism, continuations, tracing, profiling, and even refer-
ences and assignment, to our interpreter. Whenever a new value domain (such
as Boolean) is needed, we extend the Value type; and to add a new semantic
feature (such as a store or continuation), we apply the corresponding monad
transformer.

5.2 Language Tools and Instrumentation

Despite the importance in software development of language tools such as de-
buggers, profilers, tracers, and performance monitors, traditionally they have
been treated in rather ad hoc ways. 1 believe that a more disciplined approach
to designing such tools will benefit the software development process. Indeed, it
is possible to develop a methodology for tool generation that shares much with
previously identified goals: it is highly-modular, domain-specific, and evolvable.
Under this scheme, tools can be layered onto the system without affecting each
other; changes and additions are thus easily accomplished. A tool specified in
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this framework can be automatically combined with the corresponding stan-
dard semantics to yield a composite semantics that incorporates the behaviors
of both. Figure 6 is a flow diagram for the overall methodology, and Figure 7
shows its compositional nature.

5.3 Partial Evaluation.

In order to use DSELs and their corresponding modular interpreters in a practi-
cal sense, we can use program transformation and partial evaluation technology
to improve performance. For example, we can use partial evaluation to optimize
the composed interpreters described previously in two ways: (1) specializing the
tool generator with respect to a tool specification automatically yields a concrete
tool; i.e. an interpreter instrumented with tool actions, and (2) specializing the
tool itself (from the previous step) with respect to a source program produces an
instrumented program; i.e. a program with embedded code to perform the tool
actions. Figure 8 provides a useful viewpoint of these two levels of optimization.
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The current state-of-the-art in partial evaluation technology is unfortunately not
robust enough to perform these transformations directly on Haskell programs.
The dramatic improvement in performance that can be achieved, however, is
providing the impetus to create partial evaluation tools that will satisfy this
need.

6 Conclusion

I have described a methodology for designing and implementing domain-specific
languages. Some of the techniques to do this are well-known, being similar to
techniques for implementing conventional programming languages. Others are
much newer, yet many of these have been used well enough to give us confidence
of their success. The notion of an embedded DSL is especially attractive, due to
its simplicity and power.

I urge the reader to search for opportunities to use DSL’s and to create new
ones—however small—when the need arises. A well-designed DSL should cap-
ture the essence of one’s application domain, and in that sense there is no better
way to structure one’s software system. There are no hard-fast rules for design-
ing a DSL, but the following guidelines may be useful:

—_

. Use the KISS (keep it simple, stupid) principle.
“Little languages” are a Good Thing; read Jon Bentley’s article.

Concentrate on the domain semantics; do not get hung up on syntax.

= W N

Don’t let performance dominate the design; and don’t let the design dom-
inate performance.

ot

Prototype your design; refine and iterate.

6. Keep the end user in mind; remember that Success = A Happy Customer.
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