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iv CONTENTSReferences 123Index 131Samenvatting (Dutch Summary) 131Curriculum Vitae 133 Introduction and summaryCategorical type theory is understood here as the �eld concerned both with categorytheory and type theory and especially with their interplay. As such it grew out ofcategorical logic. Roughly, we view a logic as a type theory in which propositionscan have at most one proof-object. Indeed, one �nds that the propositional part ofthe structures used in categorical logic are preordered categories (where one has atmost one arrow between two objects). Thus type theory exhibits more categoricalstructure than logic. A logician might want to point out that there are no smallcomplete categories other than preorders. Quite reassuringly, one does have smallcomplete �bred categories which are not preordered, see 4.2.4 and further. Thesegive interesting examples in categorical type theory.Having mentioned these di�erences between categorical logic and type theory, westress the historic continuity: the basic notions used in categorical type theory havebeen developed before in categorical logic. In this thesis one �nds forms of indexing,quanti�cation by adjoints, comprehension and algebraic theories, which are all basedon previous work in logic (especially by F. Lawvere, see e.g. Lawvere [1963], [1969],[1970] or Kock & Reyes [1977]). We want to emphasize that these notions requiresome re�nements and adjustments to make them suitable for type theoretical expo-sitions. For example, we describe quanti�cation by adjoints to weakening functorsand not to substitution functors; therefore, a general form of weakening functor willbe introduced, see 4.1.1 and 4.1.2.Typed lambda calculus started with Curry & Feys [1958] and Howard [1970], whoconsidered propositional aspects. Type dependency was brought in by de Bruijn(with the AUTOMATH project, see e.g. de Bruijn [1970]) followed by Martin-L�of(with his intuitionistic type theory, see e.g. Martin-L�of [1984]). In the 1980's the �eldgrew rapidly, mainly by the interest shown from the computer science community.Categorically, propositional calculi are straightforward; except maybe, for higherorder quanti�cation, but that is not what we want to focus on now. Contexts aresimply cartesian products of the constituent types, since there is no type dependencyinvolved. In case such dependencies may occur, things become categorically moreinteresting: contexts are no longer cartesian products, but a form of disjoint sumis needed to model such depending chains of types. The �rst studies are Cartmell[1978] and Seely [1984].It thus turned out that the main operation which had to be explained cate-gorically was \context extension" (or \context comprehension" as we sometimesv



vi INTRODUCTION AND SUMMARYlike to call it): given a context � and a type � ` � : Type, what is the mean-ing of the context �; x:� (i.e. � extended with an extra variable declaration). Forthis purpose, various notions have been introduced: contextual categories (Cartmell[1978], Streicher [1989]), categories with attributes (Cartmell [1978], Moggi [1991]),display-map categories (Taylor [1987], Hyland & Pitts [1989], Lamarche [1988]),D-categories (Ehrhard [1988a], [1988b]), IC of IC's (Obtu lowicz [1989]), categorieswith �brations (Pitts [1989]), comprehensive �brations (Pavlovi�c [1990]) and com-prehension categories (Jacobs [1990]). In fact, there are so many notions aroundthat almost everyone working in the �eld can cherish a private one.In this thesis we work exclusively with comprehension categories to describetype dependency. Among the above alternatives, comprehension categories are inour opinion at the right level of generality and abstraction: once the notion is fullyunderstood, closure properties (like under change-of-base) or generalizations (likeover a �bration) suggest themselves in an obvious way. Much of this work can beread as a systematic exposition of categorical type theory in terms of comprehensioncategories.We brie
y outline the contents of the �ve chapters. The �rst one is aboutindexing of categories; it contains the basic de�nitions and results, mainly about �-brations, but also about indexed and internal categories. These are well-established,either in the literature or in the \folklore".Type theory is the subject of the next chapter. The main innovation here is thedescription of type systems in terms of \settings plus features". A setting describesthe dependencies which may occur, like whether or not a proposition may dependon a type (i.e. contain a variable of a certain type). Features | like products, sums,exponents, axioms or constants | are added on top of a speci�c setting. In such away, one obtains individual systems.The subsequent three chapters show how type theoretical settings can be trans-lated into categorical settings and how type theoretical features can be tranlatedinto categorical features on top of the translated settings. A categorical setting canbe understood as a generalization of Lawvere's notion of algebraic theory. For thesettings without type dependency, the translation can be done in a relatively easyway; it may be found directly in chapter 3. There, one �nds the standard descrip-tions for the \left plane" of the cube of typed lambda calculi from Barendregt [1991].Translations in general are postponed until section 5.1.Inbetween, the categorical description of type dependency is the subject of chap-ter 4. It consists of a thorough investigation of comprehension categories and quan-ti�cation. It is the basis for the translation of settings and features in the beginningof chapter 5 and for the categorical description of some individual systems laterin that chapter. Finally, we close with a revision of the semantics of the untypedlambda calculus. Appropriate comprehension categories yield a new notion of \cate-gorical �-algebra". These are related to set theoretical �-algebras via an adjunction| which forms an improvement with respect to the categorical structures used byScott and Koymans.

INTRODUCTION AND SUMMARY viiAs already mentioned, this work can be seen as a survey of categorical typetheory. It seems therefore appropriate to point out what we consider to be our owncontributions.� The notion of a comprehension category and the related results, see sections4.1 { 4.4. More speci�cally the double role these categories play: one timeas a model and one time as a domain of quanti�cation. Also the notion ofa closed comprehension category; it can be seen as a syntax-free descriptionof a structure with dependent products and sums, which has good closureproperties.� The notion of a setting (see 2.1.1), which formalizes the type theoretical rela-tion of dependency. The exposition that \being �bred over" is the categoricalcounterpart of this relation.� The translation from type theoretical settings and features to categorical set-tings and features, using (constant) �brations and (constant) comprehensioncategories. Constant �brations or comprehension categories are used if therelevant dependency does not occur, see section 5.1.� A number of free constructions linking the most important notions, see 3.3.5,4.3.10, 4.4.13 and 4.4.16.� A categorical description of type theoretical exponents without assuming carte-sian product types, see 4.2.6.� The description of a topos as a \split" model of the calculus of constructions,i.e. as a model in which all the relevant structure exists up-to-equality, see4.3.5 and 5.2.6 (i).� The revision of the semantics of the untyped lambda calculus.� A systematic exposition of categorical type theory in terms of �brations andcomprehension categories.We state that there is no claim to completeness in our survey. Here are twotopics which are not covered. First there is nothing about coherence of the vari-ous mediating isomorphisms which occur when dealing with \non-split" structures.Although coherence problems have an established categorical interest, we don't thinkthey are really important from a type theoretical point of view (at least not withrespect to the type theories considered here): every concrete example of a modelwe know of can be presented in a \split" way. Indeed, we are particularly keen onpresenting them in such a way. In order to obtain this we use \family"-models inwhich one has \substitution by composition" instead of \substitution by pullbacks".



viii INTRODUCTION AND SUMMARYSecondly, there is nothing about the interpretation of the various typed �-calculiin their corresponding categories. A bit more categorical, we don't describe thevarious term models as free constructions. This omission seems more serious; itis motivated by the following two reasons. (1) Writing out interpretations is verylaborious; it certainly requires technical skills but it does not seem to bring muchconceptually. (2) With the growth of experience in this �eld, the necessity of havinginterpretations diminishes: from a certain point on, one doesn't really see much dif-ference anymore between the type theoretical or categorical description of a speci�csystem.This brings us to the relation between type theoretical and categorical descrip-tions. We like to see the latter as description at the \assembly" level: categoricalformulations require far more attention for details, like substitution or coherence.Programming in type theory is much smoother and proceeds at a level where manyof these aspects are trivialized. Thus one can view typed lambda calculi as higherlevel languages for certain categorical structures.

Chapter 1Basic Fibred Category TheoryIn typed and untyped lambda calculus, contexts play an important structural role.They can be seen as indices for the terms and types derivable in that context. Itis for this reason that the categorical study of �-calculi which we are about to un-dertake starts with the investigation of \indexing". Fibrations form the appropriatecategorical concept; they provide a framework for describing categories parametrizedby some base category.In order to understand how the indexing of categories takes place, it is instructiveto take a look at indexing of sets �rst. Indexed sets are described basically in twoways. (1) As a family fXigi2I , which roughly means, as a map X : I ! Sets, theuniverse of sets. (2) As a map f :Y ! I , where I is still the index-set; the indexedsets are then given by the �bres f�1(fig). There are obvious translations betweenthese two approaches and the indexing works well in either case, see 1.1.6 for amore mathematical formulation of this statement. For technical reasons however,indexing of categories can best be done in the second way, i.e. with a functor p :E!B satisfying certain properties, which make it a �bration. Every object A 2 Bdetermines a �bre category p�1(A) | written usually as EA | consisting of objectsE 2 E with pE = A and morphism f in E with pf = idA. In more type-theoreticalformulation, one can think of objects A 2 B as contexts and of objects and arrows inEA as types and terms in contextA. Arrows between contexts in the base category Bcan then be seen as substitutions, like in the abstract syntax used by Curien [1989],[1990]. The categorical counterpart of (1) is given by so-called indexed categories,which will be investigated in section 3 below.This introductory chapter contains only \folklore" material, developed mostlyby A. Grothendieck and J. B�enabou. Hence there is no claim to originality.Although the de�nition of a �bration is not so di�cult, it appears that one doesnot obtain a practical \working knowledge" of �brations so easily. Readers unfamil-iar with this �eld are urged to take ample time for this �rst chapter.1



2 CHAPTER 1. BASIC FIBRED CATEGORY THEORY1.1 Fibrations1.1.1. Basics. Suppose we have a functor p :E ! B. An object E 2 E (resp.a morphism f in E) is said to be above A 2 B (resp. u in B) if pE = A (resp.pf = u). A morphism above an identity is called vertical . Every object A 2 Bthus determines a so-called \�bre" category EA consisting of objects above A andvertical morphisms. It is useful to write Eu (E;D) = ff :E ! D j pf = ug, whereit is assumed that u : pE ! pD in B. One often calls B the base category and Ethe total category.A morphism f :D ! E in E is called cartesian over a morphism u in B if fis above u and every f 0 :D0 ! E with pf 0 = u � v in B, uniquely determines a� :D0 ! D above v with f � � = f 0. The functor p :E ! B is called a �bration iffor every E 2 E and u :A! pE in B, there is a cartesian morphism with codomainE above u. Alternative names are �bred category or category over B. Dually,f :D ! E is cocartesian over u if every f 0 :D ! E 0 with pf 0 = v � u, uniquelydetermines a � :E ! E 0 above v with � � f = f 0. And: p is a co�bration if everymorphism pE ! A in B has a \cocartesian lifting" with domain E; it is called abi�bration if it is at the same time a �bration and a co�bration.These notions are due to A. Grothendieck.1.1.2. Examples. Let B be an arbitrary category and let B! be the functor cat-egory from the partial order � ! � to B. Alternatively, one can think of B! as thecomma category (B # B). This \arrow category" B! has morphism of B as objectsand commuting squares as morphisms. Similarly, there is a category B!!.The functor dom :B! ! B forms an example of a �bration. Also, for everyA 2 B one has a �bration domA :B=A! B, where B=A is the slice category havingarrows with codomain A as objects and commuting triangles as morphisms.In case the category B has pullbacks, the functor cod :B! ! B forms an exampleof a �bration; cartesian morphisms in B! are given by pullback squares. The �bresare (isomorphic to) the slice categories B=A. This functor cod is in fact a bi�bration.The (obvious) functor cod! :B!! ! B! is a �bration as well. Even more, thecomposition B!! �! B! �! B yields an example of a �bration. The latter factcan be checked by hand, but it actually follows from lemma 1.1.5 below, which saysthat �brations are closed under composition.Every category C gives rise to a \family �bration" Fam(C) ! Sets. The totalcategory Fam(C) has families fXigi2I of C-objects as objects; these may be de-scribed by a pair (I;X) with X : I ! C. Morphisms (u; ffigi2I) : (I;X) ! (J; Y )in Fam(C) are given by a function u : I ! J such that for every i 2 I one hasfi :Xi ! Yu(i) in C. The �rst projection Fam(C) ! Sets then forms a �bration;one has that (u; ffigi2I) is cartesian i� every fi is an isomorphism.Let Top be the category of topological spaces with continuous maps. The for-getful functor U : Top ! Sets is a �bration since a function f : I ! U(X) canbe lifted to a continuous map f : f �(X) ! X , where f �(X) is the set I provided
1.1. FIBRATIONS 3with the topology induced by f , i.e. with opens ff�1(U) j U � X openg. It is theweakest topology on I which makes f continuous.Some trivial examples of �brations are given by the identity functor C! C andthe unique functor C! 1 to the terminal category. These are both instances of the\constant" �bration Fst :B �C! B.Finally, here are two constructions to form a new �bration from a given one. Letp :E! B be a �bration. The category Cart(E) is described by objects E 2 E andcartesian morphisms between them | using that cartesian morphisms are closedunder composition. We write jpj :Cart(E)! B for the obvious functor obtained byrestriction. All �bre categories of jpj are groupoids, since a morphism which is atthe same time vertical and cartesian is an isomorphism.For the second construction, we write V (E) to denote the full subcategory of E!with vertical arrows as objects. More explicitly, objects of V (E) are vertical arrows� :E 0 ! E and morphisms (f; g) : (� :E 0 ! E) ! (� :D0 ! D) are f :E ! D andg :E 0 ! D0 in E satisfying f � � = � � g. One obtains an \arrow �bration"p! : V (E) �! E �! B by �rst applying the \codomain" functor and then p.One has that (f; g) is p!-cartesian i� both f and g are p-cartesian. Notice that the�bre V (E)A is (EA)!.1.1.3. Further investigation. If p :E ! B is a �bration and f :D ! E andf 0 :D0 ! E are both cartesian morphisms over u, then f �= f 0 in E=E by a verticalisomorphism. Hence given u :A! B in B and E above B, it makes sense to choosea cartesian lifting of u with codomain E; we often write u(E) :u�(E)! E for sucha choice. A collection of choices | for every appropriate u and E | is called acleavage. It induces for every u :A ! B a functor u� :EB ! EA, called inverseimage, reindexing, relabelling or substitution functor. Di�erent cleavages give riseto di�erent, but naturally isomorphic, reindexing functors. In general, one obtainsvertical natural isomorphisms (u � v)� �= v� � u� and id� �= Id, as for pullbacks incase of cod :B! ! B. If one happens to have identities here (for a certain cleavage),one says that the �bration can be split. Notice that one can always choose id� = Id.A split �bration is understood here as a �bration which is given together with such a\splitting". The �bration Fam(C)! Sets mentioned in the examples above, has asplitting: for u : I ! J and fXjgj2J one can take as cartesian lifting (u; fidXu(i)gi2I).Similarly, one says that a �bration is cloven if it is given together with a cleavage.For every �bration, one can use a suitable form of the axiom of choice to obtain acleavage.It is important to notice that such reindexing functors u� are implicitly deter-mined in the de�nition of a �bration. As is often stressed by J. B�enabou, onlyintrinsic properties of �brations are of interest, i.e. properties which do not dependin any way on choices of inverse images. A subtle example is the following. Let's saythat a �bration p :E! B satis�es property (�) if every reindexing functor u� has aleft adjoint �u. Then (�) is an intrinsic property: it does not depend on the choiceof the functors u� for a given u in B, since these are determined up-to-isomorphism



4 CHAPTER 1. BASIC FIBRED CATEGORY THEORYand so are adjoints. Side-remark: it is a standard result that p satis�es (�) i� p is abi�bration, see e.g. Jacobs [1990].A morphism between �brations p and q is given by a commuting square as below,in which the functor H preserves cartesian morphisms, i.e. f is p-cartesian impliesthat Hf is q-cartesian. E H - Dp ? ?qB K - AGiven a �bration q :D! A and an arbitrary functor K :B! A one can form thepullback B �K;q D K 0 - DK�(q) ? ?qB K - Aand verify that K�(q) is a �bration again. Notice that(B �K;q D) ( (B;D); (B0; D0) ) = _[u2B(B;B0): DKu(D; D0);where _S denotes disjoint union. One easily veri�es that (u; f) is K�(q)-cartesiani� f is q-cartesian. As a result, a splitting or cleavage of q can be transferred toK�(q). Moreover, the above pullback diagram forms a morphism of �brations. Thisconstruction is called change-of-base (for �brations). As a result, the \functor"sending a �bration to its base, can be understood as a �bration itself. Usually,one writes Fib(B) for the \�bre" category of �brations with base B; morphismsin Fib(B) are called cartesian functors or functors over B. We use Fib(B) as a\category" only in a suggestive way, since we don't consider aspects of size. The\category" Fibsplit(B) contains split �brations and morphisms which preserve thesplitting on-the-nose (i.e. up-to-equality and not up-to-isomorphism).The proofs of the next two elementary results are left to the reader.1.1.4. Lemma. Let p :E! B be a functor. One can form the pullbackE �p;codB! - B!p�(cod) ? ?codE p - B

1.1. FIBRATIONS 5and de�ne a functor I : E! �! E �p;codB! by [f :E 0 ! E] 7! (E; pf). Thenp is a cloven �bration , I has a full and faithful right adjoint. 21.1.5. Lemma. Let p :E! B and r :B! A be �brations.(i) The functor rp :E! A is a �bration, withf is rp-cartesian , f is p-cartesian and pf is r-cartesian.(ii) The functor p is cartesian from rp to r.(iii) If q :D! B is another �bration, thenF : p! q in Fib(B) ) F : rp! rq in Fib(A): 21.1.6. Fibred 2-cells. Assume (K;H) and (L;G) are morphisms of �brations (1-cells) as below. E H+ �G -- Dp ? ?qB K+ �L -- AA 2-cell from (K;H) to (L;G) is a pair of natural transformations (� : K _�! L; � :H _�! G) such that � is above �. More precisely, every component �E is above �pE.In the same way, one obtains 2-structure for split �brations.As an application of these notions, one may verify that there is an equivalence| which is a 2-categorical notion | over Sets,Fam(Sets) � - Sets!@@@@@@R 	��� cod���Sets;see 1.1.2 for de�nitions of the �brations involved. This equivalence forms the propermathematical expression of the statement that the two ways of indexing sets, asmentioned in the introduction of this chapter, are essentially the same. Rememberthat the �bration Fam(Sets) ! Sets is split, whereas Sets! ! Sets is not. Ingeneral, split �brations are more pleasant to work with.Change-of-base as described above also has 2-categorical aspects, as will be shownin the next two lemmas. The �rst lemma deals with the 2-structure in the �bresand the second one with 2-structure on the base level. The latter one is essentiallyproposition 3 in Ehrhard [1988a].



6 CHAPTER 1. BASIC FIBRED CATEGORY THEORY1.1.7. Lemma. Every functor K :B ! A induces a \change-of-base" 2-functorK� : Fib(A)! Fib(B). This 2-functor restricts to Fibsplit(A)! Fibsplit(B).Proof. Straightforward. 21.1.8. Lemma. Let q :D! A be a �bration and K;L :B! A (arbitrary) functorswith a natural transformation � :K _�! L between them. Then there is an (up-to-isomorphism) unique cartesian functor h�i :L�(q) ! K�(q) provided with a naturaltransformation �0 : K 0 � h�i _�! L0,B �L;q D L0 - DAAAAAAAL�(q) AAAAAAAU
HHHHHHh�i HHHHHHj * �0 ������ K 0������*B �K;qD ?q	��� K�(q)���B L* �K -- Asuch that the pair (�; �0) is a 2-cell (K;K 0 � h�i) =) (L;L0) from L�(q) to q and �0has cartesian components.Proof. Because h�i goes from L�(q) to K�(q) one must have that h�i(B;D) is of theform (B;D). Since �0(B;D) :D ! D is cartesian over �B, one has that D �= ��B(D).This determines the object-part of h�i up-to-isomorphism. Similarly, the arrow-partis determined: for (u; f) : (B;D) ! (B0; D0) in B �L;q D one has h�i(u; f) = (u; f),where f :D ! D0 is above Ku and makes by naturality of �0 the following diagramcommute D �0(B;D) - Df = K 0 � h�i(u; f) ? ?f = L0(u; f)D0 �0(B0;D0) - D0:Since �0(B0;D0) is cartesian, there can be only one such arrow. This description givesat the same time a recipe for the construction of h�i and �0. 21.1.9. Lemma (Fibred Yoneda). Let p :E! B be a �bration and A 2 B.

1.1. FIBRATIONS 7(i) There is an equivalence of categoriesEA ' Fib(B) (domA; p):A suitable formulation of the naturality involved may be found in the proof of propo-sition 1.3.6 below.(ii) In case p is a split �bration, one obtains an isomorphismEA �= Fibsplit(B) (domA; p):The �bration domA :B=A ! B is mentioned in 1.1.2 and Fib(B) (�; �) denotesthe \Hom"-category described in 1.1.6.Proof. (i) One �rst uses a suitable version of the axiom of choice to obtain a cleavagefor p. An object E 2 EA then determines a cartesian functor Yon(E) :B=A ! Eby u 7! u�(E) and [� :u ! v] 7! [the unique � :u�(E) ! v�(E) above � satisfyingv(E) � � = u(E)]. A morphism f :E ! E 0 in EA determines a vertical naturaltransformation Yon(f) :Yon(E) _�! Yon(E 0) with components Yon(f)u = u�(f).One obtains a functor 	 :Fib(B) (domA; p) ! EA by F 7! F (idA) and� 7! �idA . This yields the required equivalence.(ii) The construction from (i) now yields an isomorphism, since(	 � Yon)(E) = id�A(E) = E(Yon(E) � 	)(F )(u) = u�(F (idA))= F (u�(idA)) since F preserves the splitting= F (idA � u)= F (u): 21.1.10. De�nition. A �bration p :E! B is called representable if it is equivalentto a �bration of the form domA :B=A! B for some A 2 B.1.1.11. Opposite �bration (B�enabou [1975]). Let p :E ! B be a �bration. A�bration pop : E(op) ! B will be described which is \�brewise" the opposite of p.A little care is needed to do this intrinsically. Let CV = f (f1; f2) j f1 is cartesian,f2 is vertical and dom(f1) = dom(f2) g. An equivalence relation is de�ned on thecollection CV by (f1; f2) � (g1; g2) , there is a vertical map h with g1 � h = f1and g2 � h = f2. The equivalence class of (f1; f2) will be written as [f1; f2].The total category E(op) of pop has E 2 E as objects. Morphisms [f1; f2] :E ! Dare given by E6f2� f1 - D



8 CHAPTER 1. BASIC FIBRED CATEGORY THEORYComposition is described by�6� - �^ 6� > � - �The functor pop :E(op) ! B is then de�ned by E 7! pE and [f1; f2] 7! pf1. It is leftto the reader to verify that(i) pop is a �bration, with [f1; f2] cartesian i� f2 is an isomorphism;(ii) pop is the �brewise opposite, i.e. (E(op))A �= (EA)op;(iii) (pop)op �= p.Let B be a category with pullbacks. The total category (B!)(op) of the oppositeof the �bration cod :B! ! B is sometimes called the \inverse arrow category" anddenoted by Inv(B).Taking the opposite of a split �bration can be done without taking equivalenceclasses as above.1.2 Category theory over a base categoryIn the introduction of this chapter we stated that categories varying over a basecategory form the subject of study in �bred category theory. In the present sectionwe describe how such variable categories can be provided with certain structure, liketerminals or cartesian products.The concept one needs to obtain such structure in �bre categories is that of a�bred adjunction; it is an adjunction in the 2-category of �brations (with the samebase category). Let's describe adjunctions explicitly; equivalences are then alsowell-understood.1.2.1. De�nition. Let p :E! B and q :D! B be �brations. A �bred adjunctionfrom p to q consists of a pair of cartesian functors F :E! D and G :D! E forming
1.2. CATEGORY THEORY OVER A BASE CATEGORY 9an adjunction F a G with vertical unit and counit.E F?� G - D@@@p @@@R 	��� q���BUsing the triangular identities of an adjunction, one easily veri�es that the unitis vertical i� the counit is vertical. It is also worth noticing that change-of-basepreserves �bred adjunctions, see 1.1.7.Cartesian functors F and G as above determine for every object A 2 B \�bre-wise" functors F � A :EA ! DA and G � A :DA ! EA by restriction. Since unitand counit are vertical, one obtains an adjunction F � A a G � A. These \�brewise"adjunctions are preserved under reindexing. The precise meaning of the latter state-ment can be found in Jacobs [1990]. There, one also �nds some more informationabout the following quite useful result.1.2.2. Lemma. Let p :E ! B and q :D ! B be �brations and H :E ! D acartesian functor. The functor H has a �bred left (resp. right) adjoint if and onlyif both� For every A 2 B, the functor H � A has a left (resp. right) adjoint K(A).� For every u :A ! B in B and for every pair of reindexing functor u� :EB !EA and u# :DB ! DA, the canonical natural transformationK(A)u# _�! u�K(B) (resp. u�K(B) _�! K(A)u# )is an isomorphism. 2The canonical map K(A)u# _�! u�K(B) is the transpose of u# u#(�)�! u#H �BK(B) �= H � Au�K(B). Similarly, one obtains the other one.Of the two equivalent formulations in the above lemma, the second \�brewise"one is often closer to one's intuition, because it describes the structure induced bya �bred adjunction as structure in the �bres which is preserved under reindexing.Moreover it has practical advantages and therefore it will be used most of the time.The �rst formulation however, is more important from a theoretical point of view.1.2.3. De�nition. Let 3 2 fterminal (initial) object, binary (co-) product, (co-)equalizer, exponentg. We say that a �bration p has �bred 3's if every �bre categoryhas 3's and all reindexing functors preserve the 3's.



10 CHAPTER 1. BASIC FIBRED CATEGORY THEORYIt is then clear what a \�bred CCC" or a \�bred LEX category" is. Sometimesthis predicate \�bred" will be omitted. In Jacobs [1990] one may �nd de�nitions ofthese notions in terms of �bred adjunctions.1.2.4. Examples. (i) Let 3 be as in the above de�nition. One hasC has 3's , Fam(C)! Sets has �bred 3's.Bi-implications like these will occur also for other notions 3 which are transferredto the �bred context, see 4.2.5 (i), 4.4.8 (iii) and 4.5.3 (i).(ii) The \�bration" sending a �bration to its basis (mentioned at the end of 1.1.3)has �bred �nite products: the �bration Id :B ! B is terminal in Fib(B) and asproduct of p :E ! B and q :D ! B one can take p � p�(q) :E �p;qD ! B (using1.1.3 and 1.1.5).(iii) Let B be a category with �nite limits; it is easy to see that the �brationcod :B! ! B has �bred �nite limits. There is something more, every pullbackfunctor u� has a left adjoint �u given by composition. By a standard result (see e.g.Jacobs [1990]) one obtains that cod is a bi�bration.This B is called a locally cartesian closed category (LCCC) if every �bre (orslice) category B=A is a CCC. Since the category B is isomorphic to the �bre abovethe terminal object, it is then cartesian closed itself. In case B is an LCCC one hasthat cod :B! ! B is a �bred CCC, since exponents are automatically preserved:for u :A! B in B, one hasB=A ( h; u�(f ) g) ) �= B=B (�u(h); f ) g )�= B=B ( f � �u(h); g )�= B=B (�u(u�(f)� h); g ) by composition of pullbacks�= B=A ( u�(f)� h; u�(g) )�= B=A ( h; u�(f)) u�(g) ):Hence an LCCC can also be de�ned as a category B having a terminal object andsatisfying the property that the functor cod :B! ! B is a �bred CCC. Later weshall come across other characterizations, see 4.2.5 (iii) and 4.5.3 (ii). The categorySets is an example of an LCCC; in fact, every topos is an LCCC.1.2.5. Remarks. When working with �bred �nite products, it is often quite con-venient to have also a global description at hand. Let p :E ! B therefore be a�bration with �bred �nite products. The two constructions below make use of anarbitrary cleavage, but they don't depend on it.(i) Having a �bred terminal object, implies that for every object A 2 B, thereis a terminal object, say 1A, in the �bre category EA. Suppose E 2 E above A andu :A ! B in B are given. Since u�(1B) �= 1A one has that Eu (E; 1B) containsexactly one arrow. Hence we obtain a functor 1 :B ! E such that p � 1 = Id.Moreover, one can show that 1 : IdB ! p is a �bred right adjoint to p in Fib(B). We
1.2. CATEGORY THEORY OVER A BASE CATEGORY 11often assume that �bred terminal objects are described by such a functor 1 from thebase to the total category.(ii) Preservation of �bred cartesian products by reindexing functors means thatfor every u :A! B in B and E;E 0 2 EB one has that the canonical maphu�(�); u�(�0)i : u�(E �E 0) �! u�(E)� u�(E 0)is an isomorphism. Hence for any pair of maps f :D! E and g :D0 ! E 0 in E withpf = pg = u, say, there is a unique h :D �D0 ! E �E 0 above u with � � h = f � �and �0 � h = g � �0. This property leads us to denote h by prod(f; g). We obtaina cartesian functor prod : p� p ! p which is a �bred right adjoint to an obviousdiagonal functor.1.2.6. De�nition. Let 3 be as in de�nition 1.2.3. Suppose that (K : B! B0; L :E ! E0) is a morphism between �brations p :E ! B and p0 :E0 ! B0 (cf. 1.1.3).We say that (K;L) preserves �bred 3's if L is �brewise a 3-preserving functor.1.2.7. A fundamental construction. Suppose a �bration p : E ! B is givenwhich has �bred �nite products. A new �bration p :E ! E is constructed inthe following way. The category E has pairs E;E 0 2 E with pE = pE 0 as ob-jects; morphisms (f; g) : (E;E 0) ! (D;D0) in E are given by arrows f :E ! Dand g :E � E 0 ! D0 in E with pf = pg. Composition in E is given by (f; g) �(h; k) = (f � h; g � hh � �; ki) | using the global product from remark 1.2.5 (ii)| and identity by (id; �0). The �rst projection p :E ! E is then a �bration with(f; g) : (E;E 0)! (D;D0) is p-cartesian i� there is a vertical isomorphism,E � � E � u�(D0) �0- u�(D0) - D0YHHHHHH� HHHHHH ko ������ g������*E �E 0where u = pf = pg. One easily veri�es that p has �bred �nite products again.Moreover that there is a change-of-base situation,E H - Ep ? ?pB 1 - Ein which both 1 (for terminals) and H are full and faithful functors. Further, (1; H)preserves the �bred �nite products. In case p is a �bred CCC, also p is �bred CCCand the above map preserves the CCC-structure.



12 CHAPTER 1. BASIC FIBRED CATEGORY THEORYThe �bration p :E! E has a clear logical signi�cance: for E 2 E above A, onehas that the �bre category EE is the polynomial category EA[x : 1A! E] obtainedfrom the �bre category EA by adjoining a variable x of type E, see Lambek andScott [1986], part I, 5 and 7. It is readily established that EE is the Kleisli categoryof the comonad E �� mentioned there.In case we additionally assume that p has �bred equalizers (i.e. that it is a �bredLEX category), then the codomain functor V (E) ! E mentioned at the end of1.1.2 yields a similar situation. First of all, we notice that cod :V (E) ! E is nowa �bration with (f; g) :� ! � in V (E) cartesian i� it is a pullback square in E.This new �bration has �bred �nite limits again; further, there is a change-of-basesituation, E L - V (E)p ? ?codB 1 - E;in which 1 and L are full and faithful functors; this map (1; L) : p ! cod preserves�bred �nite limits. Notice that for E 2 E above A, the �bre category V (E)E is theslice category EA=E, which is | in the presence of equalizers | the polynomialcategory EA[x : 1A ! E]. The latter insight is attributed to A. Joyal in Lambek[1989], see also Lambek and Scott [1986], part II, 16 exercise 2.1.2.8. Lemma. Let p :E ! B be a �bration and 3 2 fterminal object, cartesianproduct, equalizerg. Suppose the category B has 3's; thenp has �bred 3's , E has 3's and p preserves them.Proof. We shall do the case of cartesian products.()) Suppose E 2 E above A and D 2 E above B are given. Then E & D =� �A;B(E) � �0 �A;B(D) | where � denotes the product in the �bre EA�B | forms aproduct in the category E.(() For E;E 0 2 E above A, take E �E 0 = ��(E & E 0), where � :A! A�A is thediagonal. 21.2.9. De�nition. (i) A �bration p :E! B is said to have a generic object if thereis an object T 2 E such that for every E 2 E there is a cartesian arrow E ! T .In view of the �bred Yoneda lemma 1.1.9, this means that the induced functorB=pT ! E is essentially surjective on objects.(ii) A morphism (K :B ! B0; L :E ! E0) between �brations p :E ! B andp0 :E0 ! B0 with generic objects T 2 E and T 0 2 E0 preserves these generic objectsif there is an isomorphism LT �= T 0.

1.2. CATEGORY THEORY OVER A BASE CATEGORY 131.2.10. Examples. (i) Let C be a category with a small collection of objects,denoted by 
 = Obj(C). The �bration Fam(C) ! Sets then has generic objectT = (
; id
) = fcgc2
 2 Fam(C) above 
. For every object fXigi2I 2 Fam(C), onehas X : I ! 
 in Sets satisfying X�(T ) = X�(
; id
) = (I; id
 � X) = (I;X).(ii) Let B be a category with pullbacks. We write Sub(B) for the full subcate-gory of B! with monic arrows as objects. Since monics are preserved by pullbackfunctors, the functor cod : Sub(B) ! B is a �bration. In case B is a topos, this�bration has a generic object, viz. the subobject classi�er.(iii) Suppose p :E ! B is a �bration with �nite products and a generic object.We claim that the �bration p :E ! E from 1.2.7 then also has a generic objectand that the above map p ! p is a morphism of generic objects. To prove this,we assume that T 2 E above 
 forms a generic object for p. Then (1
; T ) 2 Eabove 1
 is generic for p, since for an object (E;E 0) 2 E, we can �nd an arrowu : pE ! 
 in B satisfying u�(T ) �= E 0. By remark 1.2.5 (i), one obtains a (unique)arrow f :E ! 1
 above u in E. Then f�(1
; T ) = (E; u�(T )) �= (E;E 0).The above notion of generic object is clearly intrinsic (i.e. it does not dependon a choice of inverse images). Since we want this property, we are forced to usesuch a weak notion. For split �brations one can do better. First we mention that asplit �bration p :E ! B determines an obvious �bration jpj : Split(E) ! B, whereSplit(E) has all objects from E, but only the cartesian morphisms given by thesplitting between them. The �bres of jpj are then discrete categories. For non-split�brations, a similar construction yields the groupoid �bration jpj : Cart(E)! B asdescribed in 1.1.2.1.2.11. De�nition. (i) We say that a split �bration p :E! B has a split genericobject if the (discrete) �bration jpj : Split(E)! B is representable. More explicitly, ifthere is an object 
 2 B and a collection of isomorphisms �B :B(B;
)! Obj(EB)natural in B: for u :B ! B0 one has �B(v � u) = u�(�B0(v)). In that case,T = �
(id
) yields a generic object as in the previous de�nition.(ii) A pair (K :B! B0; L :E! E0) of functors forming a morphism of split �bra-tions from p :E! B to p0 :E0 ! B0 is a map of split generic objects �B :B(B;
)!Obj(EB) and �0A :B0(A;
0) ! Obj(E0A), if there is an isomorphism � : K
 ��! 
0such that �0KB(� � u) = L�B(u).In the �rst example above, one has a split generic object.1.2.12. Extended example (Realizability Models).The category !-Set has objects A = (jAj;`A), where jAj is a set and `A� N � jAjis a relation satisfying 8a 2 jAj: 9n 2 N: n `A a. Morphisms f :A ! B in !-Setare given by functions f : jAj ! jBj for which there is a realizer n 2 N such that8a 2 jAj: 8m 2 N: m `A a ) n � m `B f(a), where n � m denotes the resultof n-th partial recursive function applied to m. It is left to the reader to verifythat !-Set is an LCCC. There is a full and faithful functor � : Sets ,! !-Set



14 CHAPTER 1. BASIC FIBRED CATEGORY THEORYgiven by X 7! (X; N � X). It induces a morphism of �bred CCC's between therelevant codomain �brations. This functor � is right adjoint to the global sections(or forgetful) functor � :!-Set! Sets.The full subcategory M of so-called \modest !-sets" has objects A = (jAj;`A)satisfying 8a; a0 2 jAj: 8n 2 N: n `A a & n `A a0 ) a = a0. As shown inEhrhard [1989], the inclusion functor M ,! !-Set has a left adjoint � | whichconstitutes a re
ection. For A = (jAj;`A) 2 !-Set, one �rst de�nes a relation^ on jAj by a ^ a0 , 9n 2 N: n `A a & n `A a0. Then one takes � tobe the transitive closure of ^. Finally, one can put �A = (jAj=�; `�A), withn `�A [a] , 9a0 2 [a]: n `A a0. As a consequence of this re
ection, the category Mhas �nite limits, which are preserved by the inclusion. It is easy to verify that Mis also an LCCC and that the inclusion M ,! !-Set induces a morphism of �bredCCC's (between the codomain �brations).Let PER = fR � N � N j R is a symmetric and transitive relationg be the setof \partial equivalence relations". For R 2 PER, one writes Q(R) = f[n]R j n 2dom(R)g, where [n]R = fm 2 N j mRng and dom(R) = fn 2 N j nRng. Noticethat SQ(R) � dom(R). One obtains a category PER with objects R 2 PER andmorphism f :R ! S given by functions f :Q(R) ! Q(S) which have a realizern 2 N such that for every m 2 dom(R), one has f([m]R) = [n �m]S . Interestingly,there is an equivalence of categories,M �� 	 - PER;given as follows. For A = (jAj;`A) 2 M, take �(A) = f(n;m) j 9a 2 jAj: n `Aa & m `A ag. For R 2 PER, put 	(R) = (Q(R);2).Let C be !-Set or M. The category Fame�(C) has pairs (A;X) with A 2 !-Setand X : jAj ! C as objects. A morphism (f; �) : (A;X)! (B; Y ) consists of a mapf :A ! B in !-Set and an e�ective family � = f�aga2jAj of functions �a : jXaj !jYf(a)j; e�ectivity here means that the family itself has a realizer, i.e. 9n 2 N: 8a 2jAj: 8m 2 N: m `A a ) n �m realizes �a. The �rst projection Fame�(C)! !-Setis then a split �bration. There are three things worth noticing.(i) The object T = f	(R)gR2PER above 
 = �(PER) 2 !-Set provides the�bration Fame�(M) ! !-Set with a generic object: for (A;X) 2 Fame�(M), onehas a map jAj X�! Obj(M) ��! PER, which yields a morphism � � X :A ! 
 in!-Set satisfying (� � X)�(T ) = (� � X)�(
;	) = (A;� � 	 � X) �= (A;X).(ii) Similarly to the example in 1.1.6, there is a �bred equivalence,Fame�(!-Set) Q� - !-Set!@@@@@@R 	��� cod���!-Set:

1.3. INDEXED CATEGORIES AND SPLIT FIBRATIONS 15We �rst de�ne a functor Q0 :Fame�(!-Set)! !-Set by (A;X) 7! ( _Sa2jAj:jXaj; `),with n ` (a; x) , fst(n) `A a & snd(n) `Xa x. On morphisms Q0 is describedby (f; �) 7! �(a; x):(f(a); �a(x)); the latter has a realizer because � is an e�ectivefamily. Finally, Q(A;X) becomes the projection Q0(A;X) ! A in !-Set! andQ(f; �) becomes (f;Q0(f; �)). Notice that Q0 = dom � Q.(iii) The re
ection M  ,! !-Set lifts to a �bred re
ectionFame�(M) �� I > Fame�(!-Set)@@@@@@R 	������!-Set;by a pointwise construction. Later, in 5.2.7 (i) we shall see that these data imply thatFame�(M)! !-Set is a �bred CCC. Of course, this can also be veri�ed directly.1.3 Indexed categories and split �brationsAs we have seen so far, �brations describe variable categories. We shall considertwo other descriptions of categories varying over a base category: indexed categoriesin this section and internal categories in the next one. Below, we understand anindexed category as a functor 	 : Bop ! Cat and not as a pseudo-functor . Thelatter would mean that one allows isomorphisms 	(id) �= id and 	(u � v) �= 	(v) �	(u), in a coherent way, see Par�e and Schumacher [1978]. Such pseudo-functorialityis better captured in �bred category theory, where it is left implicit. This saves alot of trouble.Here again, we loosely speak about very large \categories" like Cat, ICat orFibsplit. In this way we avoid rather cumbersome formulations.1.3.1. De�nition. (i) An indexed category is a functor of the form 	 : Bop ! Cat.(ii) A morphism of indexed categories from 	 : Bop ! Cat to � : Aop ! Catis a pair (K;�) where K :B ! A is a functor and � : 	 _�! �Kop is a naturaltransformation. Notice that the components of � are functors 	B ! �(KB). Thisdetermines a \category" ICat.(iii) A 2-cell (K;�) ) (L; �) between morphisms (K;�) and (L; �) from 	 :Bop ! Cat to � : Aop ! Cat is a pair (�; �) where � :K _�! L is a naturaltransformation and � : � ) (�� � �) is a modi�cation. The latter means that �is a family f�(B)gB2B of natural transformations �(B) : �B _�! (�(�B) � �B) :	B �! �(KB) subject to the condition that for u :B ! B0 in B one has that



16 CHAPTER 1. BASIC FIBRED CATEGORY THEORY�(B)	(u) = �(Ku)�(B0) as in the diagram below.	(B0) 	(u) - 	(B)�0B ?�(B0)=) ?�(�B0) � �B0 �B ?�(B)=) ?�(�B) � �B�(KB0) �(Ku) - �(KB)1.3.2. Proposition. The functor ICat! Cat, sending an indexed category to itsbase, is a split �bration. The �bre above a category B is denoted by ICat(B).Proof. For an indexed category 	 : Bop !Cat and an arbitrary functorK :A! B,put K�(	) = 	 � Kop : Aop ! Cat and K(	) = (K; fid	(KA)gA2A) in ICat: 2An indexed category 	 : Bop ! Cat can be turned into a split �bration withbasis B in a standard way, called the \Grothendieck construction". To obtain thetotal category RB	, one takes pairs (A;X) with X 2 	A as objects. Morphisms(A;X)! (B; Y ) in RB	 are pairs (u; f) with u :A! B in B and f :X ! 	(u)(Y )in 	A. The �rst projection G(	) : RB	 ! B is then a �bration which admits anobvious splitting.This construction forms the basis for the following result.1.3.3. Theorem (Grothendieck). Indexed categories are essentially the same assplit �brations, in the sense that there is a �bred equivalenceICat G� I - Fibsplit@@@@@@R 	������Cat:This gives a categorical version of the equivalence mentioned in 1.1.6.Proof. The functor G on objects is described above. For a morphism (K;�) : (	 :Bop ! Cat) �! (� : Aop ! Cat) in ICat, one de�nes G(K;�) = (K; R �),where R � : RB	 ! RA � is layed down by (A;X) 7! (KA;�A(X)) and (u; f) 7!(Ku;�A(f)).The functor I :Fibsplit ! ICat maps a split �bration p :E ! B to the functorI(p) : Bop ! Cat described by A 7! EA and u 7! u�. Clearly, for a morphism(K :B ! A; H :E ! D) from p :E ! B to q :D ! A in Fibsplit, one takesI(K;H) = (K; fH � AgA2A), where H � A :EA ! DKA is the obvious restrictionto the �bres. Naturality in A is obtained because H preserves the splitting on thenose. The required �bred equivalence follows readily. 2

1.3. INDEXED CATEGORIES AND SPLIT FIBRATIONS 17The above passages between ICat and Fibsplit form in fact 2-categorical functors;we take a look at the �bres only.1.3.4. Proposition. The Grothendieck construction yields for every category B a2-functor ICat(B) �! Fibsplit(B)which is full and faithful, both on 1-cells and on 2-cells.Proof. This functor is full and faithful on 1-cells due to the previous result. The2-categorical matters are left to the interested reader. 2In view of the previous theorem, indexed categories are not really needed, becauseone can work with split �brations instead. An advantage of indexed categorieshowever, is that they are often easier to describe. For example, the (split) �brationFam(C) ! Sets from 1.1.2 is obtained by applying the Grothendieck constructionto the functor Setsop ! Cat given by I 7! CI . Similarly, one obtains Fam(C) !Cat (cf. Jacobs [1990]) from A 7! CA. But also Fame�(C) ! !-Set in 1.2.12 isconstructed in such a way. In the sequel, we often describe split �brations by simplyexhibiting the corresponding indexed category.At this point one can also see that the �bred Yoneda lemma 1.1.9 is a gen-eralization of the ordinary one. For a locally small category B and a functorH :Bop ! Sets, the Grothendieck construction yields a discrete �bration G(H)with basis B. Notice that G(B(�; A)) = domA : B=A ! B. Using 1.1.9 (ii), oneobtains,HA = G(H)A �= Fibsplit(B) ( domA; G(H) )= Fibsplit(B) (G(B(�; A)); G(H) )�= ICat(B) (B(�; A); H ) by the previous proposition= SetsBop (B(�; A); H ):Notice also that G(H) is representable in the �bred sense i� H is representable inthe ordinary sense.The next lemma states that the �bred structure appropriate for split �brationscan be described as structure in the �bres which is preserved on-the-nose by rein-dexing functors.1.3.5. Lemma. Let p :E ! B and q :D! B be split �brations and H :E ! D asplitting-preserving functor. One has a split �bred adjunction F a H (resp. H a G),i.e. an adjunction in the 2-category Fibsplit(B), if and only if both� For every A 2 B, the functor H � A has a left (resp. right) adjoint K(A).



18 CHAPTER 1. BASIC FIBRED CATEGORY THEORY� For every u :A! B, the canonical natural transformationK(A)u# _�! u�K(B) (resp. u�K(B) _�! K(A)u# )is an identity. Here u� :EB ! EA and u# :DB ! DA are the reindexingfunctors induced by the splittings of p and q: 2One should be aware of the fact that in the above formulation the canonicaltransformation K(A)u# _�!u�K(B) should be the identity and not justK(A)u# =u�K(B). The formulation we use expresses that the pair (u#; u�) is a map ofadjunctions from K(B) a H � B to K(A) a H � A | see Mac Lane [1971], IV 7 |resp. (u�; u#) from H � B a K(B) to H � A a K(A).Thus it is clear what a split �bred CCC is. For example, if C is a CCC, thenFam(C)! Sets is such a split �bred CCC.1.3.6. Proposition (B�enabou). Every �bration is equivalent to a split one.Proof. Let p :E ! B be an arbitrary �bration. Applying the Grothendieck con-struction to the functor Bop ! Cat given by A 7! Fibsplit(B) ( domA; p ) yields asplit �bration equivalent to p; this gives the naturality we spoke about in the Yonedalemma 1.1.9 (ii). 21.4 Internal categoriesAs a second alternative way of describing variable categories, we now consider inter-nal categories. Such categories are described by a number of commuting diagramsin a base category, which correspond to the de�ning equations of a category. Thebase category provides the universe in which one is working; it is often called theambient category.1.4.1. Basics. Let B be a category; for the time being, we assume that B has�nite limits, see remark 1.4.3 below. An internal category C in B is given by thefollowing data. First, there are objects C0 and C1, which should be understoodas the object of objects and the object of morphisms of C. Secondly, there is acommuting diagram, C0	���id ��� i ?@@@ id@@@RC0 � @0 C1 @1 - C0;

1.4. INTERNAL CATEGORIES 19where @0 and @1 are domain and codomain maps and i provides the internal categoryC with identity maps. From this one constructs pullback diagrams,C2 �1 - C1 C3 - C1�0 ? ?@0 ? ?@0C1 @1 - C0 C2 @1 � �1- C0;where C2 and C3 are the objects of composable pairs and triples of morphisms inC. Thirdly, there is a \composition" morphism m :C2 ! C1 satisfying@0 � m = @0 � �0 : C2 ! C0@1 � m = @1 � �1 : C2 ! C0m � i� id = �1 : C0 �id;@0 C1 ! C1m � id� i = �0 : C1 �@1;id C0 ! C1m � m� id = m � id�m : C3 ! C1.Summing up, an internal category C in B is given by a 6-tuple hC0; C1; @0; @1; i;misatisfying the above requirements.An internal functor F between two internal categories C = hC0; C1; @0; @1; i;miand C0 = hC 00; C 01; @ 00; @ 01; i0;m0i consists of a pair of maps F0 :C0 ! C 00 and F1 :C1 !C 01 satisfying F0 � @0 = @ 00 � F1F0 � @1 = @ 01 � F1F1 � i = i0 � F0F1 � m = m0 � F1 � F1:In this way, a category Cat(B) is obtained. One easily veri�es that Cat(B) has �niteproducts. The category Cat(B) is in fact a 2-category: a 2-cell in Cat(B) is givenas follows. One has � : F _�! G : C! C0 i� � is a morphism C0 ! C 01 making thefollowing two diagrams commute.C0 C1 h� � @0; G1i - C 02	���F0 ���� ?@@@ G0@@@R hF1; � � @1i ? ?m0C 00 � @ 00 C 01 @ 01 - C 00 C 02 m0 - C 01



20 CHAPTER 1. BASIC FIBRED CATEGORY THEORYThe 2-categorical structure determines what internal adjunctions are. Thus we cande�ne internal structure in the usual way. But �rst we need an auxiliary notion:an internal category is called discrete if its identity map is an isomorphism. Everyobject A 2 B yields a discrete jAj 2 Cat(B) with A both as object of objects andas object of morphisms. Next one can say that C 2 Cat(B) has an internal ter-minal object if the unique internal functor C ! jtj has an internal right adjoint.Here t 2 B is terminal and hence jtj 2 Cat(B) as well. Similarly, C has internalcartesian products if the obvious diagonal C! C�C has an internal right adjoint,say prod :C�C ! C. A bit less trivially, C has internal exponents if the functorgprod : jC0j �C ! jC0j �C has an internal right adjoint. This functor gprod is con-structed from prod and an obvious inclusion jC0j ! C. Thus one obtains the notionof an internal CCC.1.4.2. Examples. (i) Let C be a small category, i.e. a category with small collec-tions both of objects and of morphisms. Then C is internal in Sets and it forms aninternal CCC i� it is an ordinary CCC.(ii) The category PER from the realizability example 1.2.12 is internal in !-Set.One takes PER0 = �PER and PER1 = ( _SR;S2PER: Q(R ! S);`), where R ! Sis the exponent object in the category PER described by n(R ! S)m , 8k; l 2N: kRl ) m � kSn � l. The realizability relation ` of PER1 is described bym ` (R;S; [n]R!S) , m(R ! S)n. This category PER forms an internal CCCin !-Set.1.4.3. Remark. The above description of categories internal in an ambient (orbase) category B started from the assumption that B has �nite limits. Carefulinspection shows that one actually needs only two pullbacks, viz. C2 and C3. Fromnow on, we allow ourselves the liberty to say the C is internal in an arbitrary categoryB if there is just enough structure around to formulate the above requirements. Thismatter will be of relevance for example in theorem 3.3.3.1.4.4. De�nition (Externalization). There is a 2-functor[�] : Cat(B) �! Fibsplit(B):(i) For C 2 Cat(B), let P(C) be the total category with objects (A;X) suchthat X :A ! C0 in B. Morphisms (A;X) ! (B; Y ) in P(C) are pairs (u; f) withu :A ! B in B and f :A ! C1 satisfying @0 � f = X and @1 � f = Y � u.Composition in P(C) is de�ned using composition both in B and in C. The �rstprojection [C] :P(C)! B is then a split �bration.(ii) For F :C ! D in Cat(B) one de�nes [F ] :P(C) ! P(D) by (A;X) 7!(A;F0 � X) and (u; f) 7! (u; F1 � f).(iii) For � :F _�! G :C ! D in Cat(B), one obtains [�] : [F ] _�! [G] with com-ponents [�](A;X) = (idA; � � X).

1.4. INTERNAL CATEGORIES 21Notice that for C 2 Cat(B), C0 2 B yields a split generic object for the �bration[C] :P(C)! B, see de�nition 1.2.11.1.4.5. Proposition. The externalization functor [�] :Cat(B)! Fibsplit(B) is(i) �nite product preserving;(ii) full and faithful, both on 1-cells and on 2-cells.Proof. (i) Straightforward.(ii) We shall do fulness on 2-cells, which is the most complicated case. Assumetherefore that � : [F ] _�! [G] :C! D in Cat(B) is given. We take � = snd(�(C0;idC0 ))and must show that [�](A;X) = �(A;X). Notice that (X; i � X) : (A;X)! (C0; idC0)is cartesian in P(C). It is not hard to prove that [G](X; i � X) � �(A;X) = [G](X; i �X) � [�](A;X). But then the result follows from the fact that [G] is a cartesianfunctor. 21.4.6. Corollary.C is an internal CCC , [C] is a split �bred CCC.Proof. By the previous proposition, since the CCC-structure is de�ned 2-categori-cally using �nite products. 21.4.7. De�nition (B�enabou [1975]). A �bration is called small if it is equivalentto a �bration of the form [C] for some C internal in the base category.The �bration Fame�(M)! !-Set from 1.2.12 forms an example of a small �bra-tion: as one might have expected, there is an equivalence of categories P(PER) 'Fame�(M) over !-Set, see 1.4.2 (ii). Further on in 4.5.8, one can see that small �-brations can also be described without reference to internal categories, viz. in termsof \locally small" �brations and generic objects.1.4.8. Proposition (Internalization). Let p :E ! B be a split �bration, where Bis locally small and all �bres are small. Then there is an internal category ^p inbB = SetsBop and a change-of-base situation,E H -X(^p)p ? ?[^p]B Y - bB;where Y :B! bB is the Yoneda embedding. The functors Y and H in this diagramare both full and faithful. Moreover, one hasp is a split �bred CCC , ^p is an internal CCC



22 CHAPTER 1. BASIC FIBRED CATEGORY THEORYand this structure is preserved by the map (Y;H).(The above size restrictions could be avoided by working in a suitably larger universethan Sets.)Proof. De�ne ^p0 :Bop ! Sets by A 7! Obj(EA) and ^p1 :Bop ! Sets by A 7!Mor(EA). It is then obvious that one obtains an internal category. The func-tor H :E ! P(^p) is described by E 7! (YpE; ~E), where ~E :YpE _�! ^p0 is de-�ned by ~EA(u) = u�(E). Similarly, for f :E ! D one de�nes Hf = (Ypf ; ~f),where ~f :YpE _�! ^p1 is described by ~fA(u) = u�(f 0) in which the vertical mapf 0 :E ! (pf)�(D) is such that pf(D) � f 0 = f . The rest is straightforward. 21.5 Quanti�cation along cartesian projectionsThis last section contains basically only two de�nitions. Examples will be given inthe third chapter. Throughout, base categories are supposed to have �nite products.1.5.1. De�nition. Let p :E! B be a �bration.(i) Let A be an object of B. We say that p admits ConsA-products (resp. sums)if both� for everyB 2 B, every reindexing functor � �B;A :EB ! EB�A has a right adjoint�B (resp. a left adjoint �B).� for every morphism u :B ! B0 in B, the canonical natural transformationu��B0 _�! �B (u� id)� (resp. �B (u� id)� _�! u��B0 )is an isomorphism.(ii) We say that p admits ConsB-products/sums if it admits ConsA-products/sums for every A 2 B.In the fourth chapter we shall see that ConsB and Cons
 form so-called \compre-hension categories". Using these, a general notion of quanti�cation for �brations willbe given. At this point however, the above elementary description is more suitable.Next we introduce morphisms of �brations with the above forms of quanti�cation.1.5.2. De�nition. Assume (K :B ! B0; L :E ! E0) is a morphism of �brationsfrom p :E ! B and p0 :E0 ! B0 such that K preserves �nite products. We write
B;B0 for the inverse of the canonical map K(B �B0)! KB �KB0.(i) Suppose p has ConsB-products via � �B;B0 a �(B;B0) and p0 has ConsB'-productsvia � �A;A0 a �0(A;A0). Then (K;L) preserves ConsB-products if the canonical naturaltransformation L � �(B;B0) _�! �0(KB;KB0) � 
 �B;B0 � L

1.5. QUANTIFICATION ALONG CARTESIAN PROJECTIONS 23is an isomorphism. Similarly, preservation of ConsB-sums means that�0(KB;KB0) � 
 �B;B0 � L _�! L � �(B;B0)is an isomorphism, where this time �(B;B0) a � �B;B0 in E and �0(A;A0) a � �A;A0 in E0.(ii) Assume p has Cons
-products via � �B;
 a �B and p0 has Cons
0-products via� �A;
0 a �0A. Additionally, we assume that there is an isomorphism � : 
0 ��! K
and use it to form 
 0B = 
B;
 � id�� : KB�
0 ! K(B�
). Then (K;L) preservesCons
-products if the canonicalL � �B _�! �0KB � 
 0 �B � Lis an isomorphism. Similarly, (K;L) preserves Cons
-sums if�0KB � 
 0 �B � L _�! L � �Bis an isomorphism.1.5.3. De�nition. A split �bration admits Cons���-products/sums if it admits thisstructure in such a way that the above intermediary natural transformations areidentities. Analogously for corresponding morphisms.1.5.4. Quanti�cation for internal categories. Let B be a cartesian closed cat-egory. For every C 2 Cat(B) and A 2 B, one can form an internal categoryCA = hCA0 ; CA1 ; : : : i and an obvious internal diagonal functor �A :C ! CA. Wesay that C admits internal ConsA-products (resp. sums) if this functor �A has aninternal right (resp. left) adjoint. Internal ConsB-products/sums are of course givenby internal ConsA-products/sums for every A 2 B. It is left to the reader to verifythat C admits internal ConsA-products/sums, [C] admits split ConsA-products/sums;analogously to 1.4.6.1.5.5. Lemma. Suppose p :E ! B is a split �bration as in 1.4.8. If p admits asplit generic object | i.e. ^p0 �= Y
 see de�nition 1.2.11 | then one has for everyA 2 B, p :E! B admits split ConsA-products/sums, ^p admits internal ConsYA-products/sums.Moreover, externalization yields a morphism p! [~p] which preserves this structure.Proof. By the fact that ^p0(B) = Obj(EB)(YA ) ^p0)(B) = bB (YB � YA; ^p0)�= bB (YB�A; Y
)�= B (B �A; 
)�= Obj(EB�A): 2



24 CHAPTER 1. BASIC FIBRED CATEGORY THEORY
Chapter 2Type SystemsGeneralized Type Systems (abbr. GTS's) have been introduced in Barendregt [1991]and [199?]. They provide an abstract way of describing typed �-calculi by specifyingcollections of sorts, axioms and rules . Although this description is a major stepforward in the classi�cation of various systems, there are certain drawbacks.� Not all systems can be described; Martin-L�of's type theory, for example, isnot covered by the GTS-formalism.� Handling of constants is quite problematic, certainly if they may contain vari-ables as parameters.� Occurrence of certain dependencies is an outcome of the axioms and rules.This is both conceptually and technically problematic.Below we shall de�ne Type Systems (abbr. TS's) in such a way that the abovedrawbacks disappear. Our approach is more structural and closer to a categoricalway of thinking. We �rst introduce a so-called \TS-setting" which determines thedependencies that may arise in a system based on that setting. On top of such asetting one can put \features", like axioms, constants or products. Hence the newpicture gives us TS's = settings + features,where the features depend on the setting. Later, we shall show that TS-settingscorrespond to certain \categorical settings". The features can be described cate-gorically as certain extras which can be added on top of such structures (often byadding certain adjunctions). The main ideas underlying Type Systems will be de-scribed in the �rst section below. There, we mention the features only to give theintuition of what is going on. A more detailed treatment of (some of) these may befound in the second section. Finally, in the third section some known systems areredescribed in the new TS-framework. 25



26 CHAPTER 2. TYPE SYSTEMS2.1 Informal descriptionLike in the GTS-description, we start with a set of sorts having as typical elements�, 2, 4 etc. Some authors write prop, type, kind, set etc. for sorts, but in theGTS-tradition there is no intended meaning. Meta-variables for sorts are denotedby s; s0; s1; s2; : : : The basic aspect of sorts is described by the rule� ` A : s�; � : A ` � : AHence if something is in a sort, it may be put in the context and serve as a rangefor a variable.2.1.1. De�nition. A TS-setting , or simply a setting is a pair (Sort;�), where Sortis a non-empty set and � � Sort � Sort is a transitive relation. It is called therelation of dependency : in case s1 � s2 (or equivalently s2 � s1), we say that s2depends on s1; the intuition is that if a derivation has produced statements� ` A : s1 �; � : A ` B : s2;then � may occur as a free variable in B. More informally, s1 � s2 means that\grandchildren" of s1 may occur in \children" of s2 | where P is called a child ofQ if P : Q. This explains the transitivity requirement.2.1.2. Examples. In the setting with one sort � and no dependencies (i.e. � = ;)one can only have constant types ; ` A : �. This setting underlies \simply typed�-calculus", or �1 as it is called in section 2.3. In case one has � � �, then one canhave statements of the form x : A ` B(x) : � for A : �. Such dependency underliesMartin-L�of's type theory.In the system �! one has two sorts � and 2 and an axiom � : 2, see section 2.3or Barendregt [1991]. In �! one has statements like� : � ` �! � : �:These require a dependency 2 � �.2.1.3. Remarks. (i) If s2 depends on s1, the notation s2 � s1 is preferred to s1 �s2. Roughly, the categorical intuition is that s2 is �bred over s1. The transitivityrequirement corresponds to the fact that �brations are closed under composition,see lemma 1.1.5. A more detailed exposition of the categorical understanding ofthese dependencies may be found in section 5.1.(ii) An expression A in � ` A : s will be called an s-type, or simply a type, whenthe sort s is not of much relevance. Similarly, an expression M in � `M : A, whereA is an s-type, will be called an (s-)term of type A. Notice that types and termsare \relative" notions: in presence of an axiom s1 : s2, one has that s1-types ares2-terms.

2.1. INFORMAL DESCRIPTION 27(iii) In the literature one can �nd \type dependency" to name the possibility ofs-term variables occurring in s-types, like in Martin-L�of's Type Theory. In ourTS-framework, this is possible in case there is a dependency of the form s � s.Henceforth, this will be called s-type dependency .(iv) Specifying a setting means specifying one's type theoretical \universe of dis-course".2.1.4. TS-features. We now proceed to describe informally what kind of featurescan be added to a given setting (Sort;�). In this thesis we consider(i) axioms(ii) constants(iii) s-closure(iv) (s1; s2)-quanti�cation(v) (s1; s2)-identity(vi) (s1; s2)-inclusionbut one could consider additional features.Ad (i) An axiom is an ordered pair of sorts, usually written as s1 : s2. Such anaxiom may be added to the given setting only if s1 depends on s2 | i.e. s1 � s2 |since it enables statements like ` s1 : s2� : s1 ` � : s1in which a grandchild of s2 (viz. � on the LHS) occurs in a child of s1 (viz. � on theRHS).Ad (ii) A setting determines which kind of dependencies may occur in a typesystem. Hence it also determines what kind of parameters a constant may have. Ingeneral, one would like to be able to use both constant types and terms of a givensort, possibly provided with conversions. Let's �rst look at some examples.` N : s` Zero : Nn: N ` Succ(n) : Nn: N ` List(n) : sn: N;m: N ` Matrix(n;m) : sn: N;m: N; A:Matrix(n;m) ` row(n;m;A) : List(n)In these examples, List(n) is the type of lists of length n and Matrix(n;m) is thetype of n � m matrices. The intended meaning of the term row(n;m;A) is thenclear. Notice that the constant type List(n) forms a child of s in which a grandchild



28 CHAPTER 2. TYPE SYSTEMSof s occurs. Such things may be used only if we have s � s. Hence we come to thefollowing stipulations. A constant type C may be introduced by�1:A1; : : : ; �n:An ` C(~�) : s;where Ai : si, only if s � si. In that case one can introduce constant terms of typeC by �1:A1; : : : ; �n:An; �1:B1; : : : ; �m:Bm ` M(~�; ~�) : C(~�);possibly with conversions�1:A1; : : : ; �n:An; �1:B1; : : : ; �m:Bm ` M(~�; ~�) = N(~�; ~�) : C(~�):Implicitly, we understand what substitution (just �lling-up an open space) and weak-ening are for such constants. The idea is to have generalized algebraic theories (inthe sense of Cartmell [1986]) on an arbitrary setting.Ad (iii) With the feature \s-closure" we express that s-types are closed undercartesian products, exponents, units etc. These may always be added to a setting,because a rule of the form � ` A : s � ` B : s� ` A! B : sdoes not create new situations with respect to occurrences of variables.Ad (iv) The feature \(s1; s2)-quanti�cation" is used to describe dependent prod-ucts and sums of the following form.� ` A : s1 �; x:A ` B : s2� ` �x:A:B : s2This rule may be used if the relevant dependency really occurs, i.e. if s2 � s1.Ad (v) The \(s1; s2)-identity" feature describes the rule� ` A : s1 � `M : A � ` N : A� ` IA(M;N) : s2which may be used if s2 � s1.Ad (vi) The feature \(s1; s2)-inclusion" gives the possibility to embed s1-typesand terms in s2-types and terms, in the following way.� ` A : s1� ` In(A) : s2 � `M : A� ` In(M) : In(A) � ` N : In(A)� ` Out(N) : A
2.2. RULES 29Tacitly, we assume that s1 6= s2. In some versions of the Calculus of Constructionsone can �nd (prop; type)-inclusion. Also in Pavlovi�c [1990], a similar operationoccurs, under the name \extent". Let us consider the implications of these rules forthe dependencies. Suppose one has a sort s with s1 � s; then� ` B : s �; y : B ` A(y) : s1�; y : B ` In(A(y)) : s2which creates a s2 � s dependency. Similarly, if one has s � s1, say occurring in� ` A : s1 �; x:A ` B(x) : s:Then one can derive �; x0: In(A) ` B[x := Out(x0)] : s, which creates a s � s2dependency. Hence, use of (s1; s2)-inclusion requires that 8s 2 Sort: (s1 � s )s2 � s) & (s � s1 ) s � s2).2.2 RulesIn this section we describe rules for the TS-features s-closure, (s1; s2)-quanti�cation,(s1; s2)-identity and (s1; s2)-inclusion. We proceed mostly by �rst giving the forma-tion, introduction and elimination rules for a certain type operation. Then theconversion rules and the behaviour under substitution will be described. The rele-vant setting will be left implicit, but is supposed to be such that the feature underconsideration may be used. In the substitution rules, the variable involved may bea grandchild of any available sort.2.2.1. Rules for contexts. Contexts are ordered lists of variable declarations.First of all, the empty list is a context; next, there is what we like to call thecontext comprehension rule: if � is a context and A is a type in context � | i.e.� ` A : s for some s 2 Sort | then one can add a declaration of a (fresh) variable oftype A to context �. The result is denoted by �; x : A. It comes with the followingrules. � ` A : s (projection)�; x : A ` x : A�; x : A; y : B;� ` : : : if x 62 FV(B) (exchange)�; y : B; x : A;� ` : : :� ` A : s � ` : : : (weakening)�; x : A ` : : :� `M : A �; x : A;� ` : : : (substitution)�;�[x := M ] ` (: : :)[x := M ]



30 CHAPTER 2. TYPE SYSTEMSIn the end, this last substitution rule may turn out to be derivable. We like tomention it explicitly, since substitution will play an important categorical role.2.2.2. Start rules. In order to get o� the ground, certain basic types have to beavailable; the above context projection rule then gives the possibility to form terms.To obtain such types, one can use either axioms or constant types (if describedpreviously). These set the whole machinery in motion.2.2.3. Rules for s-closure. For a given sort s, we consider consecutively units ,cartesian products and exponents . A unit-type can be understood as a singleton.Unit. ` 1s : s ` hi : 1swith conversion � `M : 1s� `M = hi : 1sand substitutions (1s)[z := R] � 1shi[z := R] � hi:Cartesian product. � ` A : s � ` B : s� ` A� B : s� `M : A � ` N : B� ` hM;N i : A�B � ` L : A�B� ` �L : A � ` �0L : Bwith conversions� `M : A � ` N : B� ` �hM;N i = M : A � ` �0hM;N i = N : B � ` L : A�B� ` h�L; �0Li = L : A� Band substitutions (A�B)[z := R] � (A[z := R])� (B[z := R])hM; N i[z := R] � hM [z := R]; N [z := R]i(�L)[z := R] � �(L[z := R])(�0L)[z := R] � �0(L[z := R]):Exponent. � ` A : s � ` B : s� ` A! B : s

2.2. RULES 31�; x : A ` L : B� ` �x:A:L : A! B � `M : A! B � ` N : A� `MN : Bwith conversions�; x : A ` L : B � ` N : A� ` (�x:A:L)N = L[x := N ] : B � `M : A! B� ` �x:A:Mx = M : A! Band (A! B)[z := R] � (A[z := R])! (B[z := R])(�x:A:L)[z := R] � �x: (A[z := R]):(L[z := R])(MN)[z := R] � (M [z := R])(N [z := R])where substitution under the variable-binding � is done with the usual care.2.2.4. Rules for (s1; s2)-quanti�cation.Dependent product. � ` A : s1 �; x : A ` B : s2� ` �x:A:B : s2�; x : A ` L : B� ` �x:A:L : �x:A:B � `M : �x:A:B � ` N : A� `MN : B[x := N ]with conversions�; x : A ` L : B � ` N : A� ` (�x:A:L)N = L[x := N ] : B[x := N ] � `M : �x:A:B� ` �x:A:Mx = M : �x:A:Band substitutions(�x:A:B)[z := R] � �x: (A[z := R]):(B[z := R])(�x:A:L)[z := R] � �x: (A[z := R]):(L[z := R])(MN)[z := R] � (M [z := R])(N [z := R]):Dependent sums.� ` A : s1 �; x : A ` B : s2� ` �x:A:B : s2 � `M : A � ` N : B[x := M ]� ` hM;N i : �x:A:B



32 CHAPTER 2. TYPE SYSTEMSThere are two sum elimination rules; the �rst one is usually called \weak", to dis-tinguish it from a \strong" version to be mentioned afterwards.� ` P : �x:A:B � ` C : s2 �; x : A; y : B ` Q : C (weak �)� ` Q where hx; yi := P : Cwith conversions� `M : A � ` N : B[x := M ] �; x : A; y : B ` Q : C� ` Q where hx; yi := hM;N i = Q[x := M ][y := N ] : C� ` P : �x:A:B � ` C : s2 �; w : �x:A:B ` Q : C� ` Q[w := hx; yi] where hx; yi := P = Q[w := P ] : Cand substitutions(�x:A:B)[z := R] � �x: (A[z := R]):(B[z := R])hM; N i[z := R] � hM [z := R]; N [z := R]i(Q where hx; yi := P )[z := R] � Q[z := R] where hx; yi := P [z := R]:Notice that the variables x and y become bound in Q where hx; yi := P . Thereseems to be no standard notation for the term obtained in the sum eliminationrules. We adopt the Miranda-like block expression Q where hx; yi := P , becauseit is quite intuitive and puts Q, as the most important part, in front position.Alternative notation is let hx; yi := P in Q or Ex;y(P;Q).For these (s1; s2)-sums, one requires the dependency s2 � s1. In case one alsohas s2 � s2, then one can formulate a strong sum elimination rule. The di�erenceconcerns the fact that the s2-type C as used before may now contain a variable ofthe s2-type �x:A:B.� ` P : �x:A:B �; w : �x:A:B ` C : s2 �; x : A; y : B ` Q : C[w := hx; yi]� ` Q where hx; yi := P : C[w := P ] (strong �)The strong conversion rules are slightly di�erent form the weak ones.� `M : A � ` N : B[x := M ] �; x : A; y : B ` Q : C[w := hx; yi]� ` Q where hx; yi := hM;N i = Q[x := M ][y := N ] : C[w := hM;N i]� ` P : �x:A:B �; w : �x:A:B ` Q : C� ` Q[w := hx; yi] where hx; yi := P = Q[w := P ] : C[w := P ]The substitutions are the same.

2.2. RULES 332.2.5. Rules for (s1; s2)-identity.� ` A : s1 � `M : A � ` N : A� ` IA(M;N) : s2� `M = N : A� ` rM;N : IA(M;N) � ` L : IA(M;N)� `M = N : Awith conversion � ` L : IA(M;N)� ` L = rM;N : IA(M;N)and substitutionsIA(M;N)[z := R] � IA[z:=R](M [z := R]; N [z := R])(rM;N )[z := R] � rM [z:=R];N [z:=R]where the latter can in fact be deduced from the former.The above formulation of identity rules follows Martin-L�of [1984] (where one hass1 = s2). Identity types will only play a marginal role in this thesis.2.2.6. Rules for (s1; s2)-inclusion.� ` A : s1� ` In(A) : s2� `M : A� ` In(M) : In(A) � ` N : In(A)� ` Out(N) : Awith conversions� `M : A� ` Out(In(M)) = M : A � ` N : In(A)� ` In(Out(N)) = N : In(A)and substitutions In(A)[z := R] � In(A[z := R])In(M)[z := R] � In(M [z := R])Out(N)[z := R] � Out(N [z := R])2.2.7. Rules for conversion. Above, we only mentioned the main points of theintended conversion relation and omitted the rather obvious rules to produce aso-called \compatible equivalence relation". Notice that the conversion relation isinitially only de�ned on terms, but since terms may occur in types and hence incontexts, one may also have conversion on types and contexts. The conversion



34 CHAPTER 2. TYPE SYSTEMSrelation on contexts is given by componentwise conversion. The following rule is ofrelevance. � `M : A � ` A = A0 : s � = �0 (Eq)�0 `M : A0Later, in constructing term models of type systems, we have to consider terms, typesand contexts modulo conversion. Equivalence classes of these will be denoted by [�],[A], [M ] etc. In doing so, variables present some di�culties; these can be handledby either being very precise | and using de Bruijn's nameless notation | or bybeing very sloppy. We choose the latter approach.In the rest of this section some relations between the above features are estab-lished. The �rst two results are standard.2.2.8. Lemma. (i) Weak (s; s)-sums gives s-cartesian products.(ii) (s; s)-products gives s-exponents.Proof. (i) For � ` A;B : s, put A�B � �x:A:B with x fresh. For � ` L : A�B,take �L � x where hx; yi := L and �0L � y where hx; yi := L; the latter may bede�ned because x 62 FV(B). Then obviously �hM;N i = M and �0hM;N i = N , butalso h�L; �0Li = h�hx; yi; �0hx; yii where hx; yi := L= hx; yi where hx; yi := L= L:(ii) Obvious, using weakening as in (i). 22.2.9. Lemma. For strong (s; s)-sums, the elimination and conversion rules men-tioned above are equivalent to the following rules with explicit projections.� ` P : �x:A:B� ` �P : A � ` �0P : B[x := �P ]� `M : A � ` N : B[x := N ]� ` �hM;N i = M : A � ` �0hM;N i = N : B[x := M ]� ` P : �x:A:B� ` h�P; �0P i = P : �x:A:BProof. In one direction, one takes for a term � ` P : �x:A:B as projections �P �x where hx; yi := P and �0P � y where hx; yi := P ; The latter is obtained byusing C(w) � B[x := �w] in the above strong �-rule. Surjectivity of pairing isobtained as in the previous proof. The other way, one de�nes Q where hx; yi := Pas Q[x := �P ][y := �0P ]: 2

2.2. RULES 35In the rest of this work, strong (s; s)-sums will be used in this form with explicitprojections.2.2.10. Lemma (Jacobs, Moggi & Streicher [1991]).weak (s1; s2)-sums + strong (s2; s2)-sums ) strong (s1; s2)-sums.Proof. Let's use \9" for the (s1; s2)-sums and \�" for the (strong) (s2; s2)-sums.Assume that types � ` A : s1 and �; x : A ` B : s2 are given together with terms� ` P : 9x:A:B and �; x : A; y : B ` Q : C[w := hx; yi], where �; w : 9x:A:B `C : s2. Write C 0 � �w: (9x:A:B): C and Q0 � hhx; yi; Qi. Then � ` C 0 : s2 and�; x : A; y : B ` Q0 : C 0. Using the weak (s1; s2)-elimination rule, one obtains� ` Q0 where hx; yi := P : C 0 � �w: (9x:A:B): C. Hence one can take as newterm Q with hx; yi := P � �0fQ0 where hx; yi := Pg, which is of type C[w := P ],since�fQ0 where hx; yi := Pg = �fQ0 where hx; yi := hx0; y0ig where hx0; y0i := P= �fhhx0; y0i; Q[x := x0][y := y0]ig where hx0; y0i := P= hx0; y0i where hx0; y0i := P= P: 22.2.11. Lemma. The following holds in a type system with (s1; s2)-inclusion.(i) s1-unit ) s2-unit.(ii) (s2; s)-products ) (s1; s)-products;(strong) (s2; s)-sums ) (strong) (s1; s)-sums.(iii) Suppose one additionally has strong (s2; s2)-sums and weak (s2; s1)-sums. Thefollowing statements are then equivalent.(1) The (s2; s1)-sums are strong.(2) The induced (s1; s1)-sums e� are strong.(3) The (s1; s2)-inclusion In preserves strong sums, i.e. for � ` A : s1and �; x : A ` B : s1, the operation� `M : �x0: In(A): In(B[x := Out(x0)])� ` In(hOut(�M); Out(�0M)i : In(e�x:A:B)is invertible.Proof. (i) The type 1s2 � In(1s1) with term In(hi) works as s2-unit: if � ` M :1s2 , then � ` Out(M) : 1s1 which gives � ` Out(M) = hi. Hence � ` M =In(Out(M)) = In(hi) : 1s2 .(ii) We do the sum-case. For types � ` A : s1 and �; x : A ` B : s, take9x:A:B � �x0: In(A): B[x := Out(x0)]. For terms � ` M : A and � ` N :B[x := M ] � B[x := Out(x0)][x0 := In(M)], one has a 9-pairing hhM;N ii �hIn(M); N i. The corresponding elimination is given by Q with hhx; yii := P �Q[x := Out(x0)] where hx0; yi := P .



36 CHAPTER 2. TYPE SYSTEMS(iii) The implication (a) ) (b) results from (ii); the reverse follows from theprevious lemma. The equivalence (b) , (c) is easy. 2The last three results of this section are based on category theoretical ideas.2.2.12. Re
ection Lemma. In a type system with (s1; s2)-inclusion, weak (s2;s1)-sums and an s1-unit one has that s2-types and terms can be \re
ected" back intos1 in the following way.� ` B : s2� ` In(B) � 9y:B:1s1 : s1 � `M : B� ` In(M) � hM; hii : In(B)However, one cannot de�ne something like Out on s1-terms N : In(B). A bit weaker,one has an Out-operation in the following way.� ` A : s1 � ` N : In(In(A))� ` Out(N) � Out(y) where hy; zi := N : AThen Out is inverse of In � In in the sense that for � ` A : s1 one has� `M : A� ` Out(In(In(M))) = M : A � ` N : In(In(A))� ` In(In(Out(N))) = N : In(In(A)):In this way one obtains that(i) s2-cartesian products/exponents ) s1-cartesian products/exponents;(ii) (s1; s2)-products ) (s1; s1)-products.Proof. We �rst establish that Out is inverse of In � In.Out(In(In(M))) � Out(y) where hy; zi := hIn(M); hii= Out(In(M)) = M:In(In(Out(N))) � In InfOut(y) where hy; zi := Ng= In InfOut(y) where hy; zi := hy0; z0ig where hy0; z0i := N= In(In(Out(y0))) where hy0; z0i := N= hy0; hii where hy0; z0i := N= hy0; z0i where hy0; z0i := N; since z0: 1s1= N:(i) For types � ` A1; A2 : s1, one takes � ` A1 & A2 � In(In(A1 � In(A2)) : s1with pairing given by hhM;N ii � In(hIn(M); In(N)i) and �rst projection by fstL �Out(�y) where hy; zi := L. The rest is left to the reader.(ii) For types � ` A : s1 and �; x : A ` B : s1, put 8x:A:B � In(�x:A:In(B)).For �; x : A ` L : B, an abstraction term �x:A:L � In(�x:A:In(L)) is obtained;application is given by App(M;N) � Out(yN) where hy; zi := M: 2

2.3. EXAMPLES OF TYPE SYSTEMS 37The next lemma gives a type theoretical version of a result about LCCC's fromFreyd [1972].2.2.13. Proposition. A type system with strong (s; s)-sums and (s; s)-identitieshas s-exponents if and only if it has (s; s)-products.Proof. (if) Obvious from 2.2.8 (ii).(only if) Assume that types � ` A : s and �; x : A ` B : s are given; onehas to construct � ` �x:A:B : s. The argument follows the dependent prod-uct construction in set-theory. One takes A0 � A ! (�x:A:B) and �x:A:B ��f :A0: IA!A (�x:A:x; �x:A: �(fx)). Then for a term �; x : A ` L : B one hasL0 � �x:A:hx; Li of type A0 and so one obtains an abstraction term �x:A:L � hL0; riof type �x:A:B, where r has an obvious identity type. For terms � `M : �x:A:Band � ` N : A one has � ` �M : A ! (�x:A:B) and thus one can takeApp(M;N) � �0((�M)N): 2In Freyd's categorical proof of this result, equalizers play an important role.To extract these from the above type theoretical proof, we must anticipate thecategorical description of Type Systems. Remember from the introduction to the�rst chapter that contexts can be seen as indices for the �bre categories of typesand terms (of a �xed sort) derivable in that context. More explicitly, for every sorts and every context �, one obtains a category with types � ` A : s as objects. Amorphism � ` A : s �! � ` B : s is a term �; x : A ` M : B. Composition is doneby substitution and context projection yields identity morphisms; we don't writethis here, but everything should be considered up-to-conversion.2.2.14. Lemma. In a type system with strong (s; s)-sums and (s; s)-identities, onehas \�bred equalizers".Proof. For types � ` A;B : s and morphisms �; x : A ` M;N : B one takesEq(M;N) � �x:A: IB(M;N). Then we have a map � ` Eq(M;N) : s �! � `A : s, given by the �rst projection, such that composition with M and N yieldsconvertible terms: �; z : Eq(M;N) ` M [x := �z] = N [x := �z] : B. Moreover,for an object � ` C : s and a morphism �; y : C ` L : A which also equalizesM and N , i.e. �; y : C ` M [x := L] = N [x := L] : B, there is a unique term�; y : C ` L0 : Eq(M;N) such that �; y : C ` �L0 = L : A: 22.3 Examples of type systemsBefore we come to the actual description of various systems, some conventions aboutour use of the TS-features have to be mentioned.First, constants are considered as rather ad hoc and are omitted from the system-descriptions below.



38 CHAPTER 2. TYPE SYSTEMSSecondly, by requiring the presence of the feature s-closure, we require an s-unit,s-cartesian products and s-exponents. Of course, there is no necessity to do so |one can equally well require only s-exponents, even with �-conversion only | butthis choice we make provides us with a syntax which contains usual categoricalconstructions.Thirdly, the feature (s1; s2)-quanti�cation requires some stipulations.� In case the setting allows us to use strong sums, we want to do so, unless ex-plicitly stated otherwise. Hence the feature (s1; s2)-quanti�cation in a settingwith s2 � s2 besides s2 � s1 includes products and strong sums. In case wewant products and weak sums, we require weak (s1; s2)-quanti�cation. Hence,requiring (s1; s2)-quanti�cation in s TS-setting with s2 6� s2 amounts to thesame as requiring weak (s1; s2)-quanti�cation.� Besides products and (strong) sums, the requirement of (weak) (s1; s2)-quanti-�cation also includes an s2-unit. This stipulation has practical advantages,since it gives that (weak) (s; s)-quanti�cation implies s-closure (see lemma2.2.8).Summarizing the dependencies necessary for the features, we obtainaxiom s1 : s2 only if s1 � s2s-closure only if (no restriction)(s1; s2)-quanti�cation only if s2 � s1(s1; s2)-identity only if s2 � s1(s1; s2)-inclusion only if 8s 2 Sort: s � s2 ) s � s1 & s1 � s ) s2 � swith the remark that (s1; s2)-quanti�cation in a TS-setting with s2 � s1 and addi-tionally s2 � s2 includes strong sums.In the tables below we put features which come for free as a consequence ofothers between square brackets. The �rst three settings receive explicit names. Itmay help understanding these systems to read � as propositions and 2 as types.\Minimal" setting: Sort = f�g � = ;System axiom closure quanti�cation identity inclusion�1 �\Propositions as Types" setting: Sort = f�g � � �System axiom closure quanti�cation identity inclusion�P1 [ � ] (�; �)�Pi [ � ] (�; �) (�; �)�� � : � [ � ] (�; �)

2.3. EXAMPLES OF TYPE SYSTEMS 39�Pi denotes Martin-L�of's Type Theory.\Propositional" setting: Sort = f�;2g � � 2System axiom closure quanti�cation identity inclusion�! � : 2 ��2 � : 2 � (2; �)�! � : 2 � 2�! � : 2 � 2 (2; �)The systems �2 and �! are Girard's second and higher order �-calculus F and F!.These four systems consitute the \left plane" of Barendregt's cube.The next setting combines the previous two.Setting: Sort = f�;2g � � 2; � � �; 2 � 2System axiom closure quanti�cation identity inclusionHML � : 2 (2; �)[ � 2 ] (�; �) (2;2)weak HML � : 2 [ 2 ] (2;2)[ � ] weak (�; �)weak (2; �)In Moggi [1991] a slightly di�erent system called Higher Order ML (HML) is de�ned;it is set up as a system with great expressive power in which one has a \compile-time" 2-part which does not depend on a \run-time" �-part. Here we add an axiom� : 2. A comparable system called \Theory of Predicates" is studied in Pavlovi�c[1990].In the next setting the previously missing dependency 2 � � is added.Setting: Sort = f�;2g � � 2; � � �; 2 � 2; 2 � �System axiom closure quanti�cation identity inclusion�P � : 2 [ � ] (�; �) (�;2)�P2 � : 2 [ � ] (�; �) (�;2)(2; �)�P! � : 2 [ � ] (�; �) (�;2)[ 2 ] (2;2)�C � : 2 [ � ] (�; �) (2; �)[ 2 ] (2;2) (2; �)CC � : 2 [ � ] [ (�; �) (�;2) ] (�;2)[ 2 ] (2;2) (2; �)weak CC � : 2 [ 2 ] (2;2) [ (�;2) ] (�;2)[ � ] [ weak (�; �) ]weak (2; �)



40 CHAPTER 2. TYPE SYSTEMSThe �rst four of these systems consitute the \right plane" of Barendregt's cube.The last three systems are di�erent versions of the Calculus of Constructions, dueto Th. Coquand and G. Huet. The next two settings have three sorts; the �rst oneis due to H. Geuvers.Setting: Sort = f�;2;4g � � 2; 2 � 4; � � 4System axiom closure quanti�cation identity inclusion�HOL � : 2 2 : 4 � 2 (2; �)In Barendregt [1991], various rather complicated systems for predicate logic areconsidered (based on work of S. Berardi). Use of (parametrized) constants makes asimpli�cation possible. The basic form which we present below gives rise to manyrami�cations. They provide various ways to do predicate logic with deductions asproof-objects. Below, the sort 4 should be understood as sets.Setting: Sort = f�;4;2g � � 4; � � 2System axiom closure quanti�cation identity inclusion�PRED � : 2 � 4 (4; �)In this chapter one may have noticed that in classifying type systems, the em-phasis concerns not so much the individual systems but their underlying settings.This remains important in later chapters.

Chapter 3The Propositional SettingIn the previous chapter, we brie
y mentioned that our categorical description oftype systems follows the pattern of \setting + features". Settings involving typedependency are the most di�cult ones and the description of these will �nd itsplace in the last two chapters 4 and 5. Here we focus our attention on the systems�!; �2; �! and �! which form the \left plane" of Barendregt's cube. The expositionbelow serves at the same time as an introduction to our approach and as an overviewof examples and results, most of which are known (except the last two results ofsection 3.3).3.1 Type theoretical and category theoretical set-tingsOn close inspection one may �nd that a TS-setting concerns the organization of con-texts. The role of \categorical settings" will be the same. Basically, we follow Law-vere's [1963] use of algebraic theories (see also Kock and Reyes [1977]). For example,the minimal TS-setting Sort = f�g with � = ; gives rise to a cartesian category ofcontexts (i.e. a category with �nite products): take contexts � � x1:�1; : : : ; xn:�nas objects. Morphisms �! �, where � � y1: �1; : : : ; ym: �m, are m-tuples of equiv-alence classes of terms ([M1]; : : : ; [Mm]) such that � ` Mi : �i. Composition isdone by substitution and identities are given by (equivalence classes of) variables.The empty context is then terminal and concatenation of contexts yields cartesianproducts. This structure is independent from (admissible) TS-features. In fact, itis presupposed by such features.The other way round, one may consider a cartesian category as providing con-stants for the abovementioned setting. Objects form types (without free variables),which combine to contexts using products. Morphisms form terms, which may con-tain free variables. Notice that the structural rules concerning contexts (includingsubstitution and weakening) can be performed in this categorical setting. One ofthe aims in this thesis is to describe for a TS-setting a corresponding categorical41



42 CHAPTER 3. THE PROPOSITIONAL SETTINGsetting in which one has the same \expressive power". Because we don't work outinterpretations, this statement remains a bit intuitive | but it should become quiteclear in the course of this work | especially in the �rst section of chapter 5. Twodi�erences between the type theoretical and the categorical approach are important.� In type theory substitution is an (inductively) de�ned operation. In fact alsoweakening is such an operation, but one needs an explicit syntax using ashift ("), like in Curien [1990] to express this fact. In categorical settingshowever, substitution and weakening are primitive operations, handled bothby reindexing (with composition as a special case).� Substitution (and weakening) in type theory preserves all available operations;this is required by de�nition. In categorical settings, reindexing generallypreserves operations only up-to-isomorphism, unless explicit \split"-conditionsare satis�ed. Coherence of all these isomorphisms is a topic outside the scopeof this work. The interested reader may consult Curien [1990].Now we turn our attention to one speci�c setting.In the propositional setting one has Sort = f�;2g with � � 2. Hence �-typesmay contain 2-terms, but not the other way round. The exchange rule (see 2.2.1)enables us to separate contexts into a sequence of 2-termvariable declarations, fol-lowed by a sequence of �-termvariable declarations. Notationally, we exploit thisfact in the use of the following statements.� ` B : 2 and � + � ` � : �� ` � : B and � + � `M : �where � � h�1:A1; : : : ; �n:Ani is a \2-context" and � � hx1:�1; : : : ; xm:�mi with� ` �i : � is a \�-context"; + denotes concatenation of sequences.A categorical setting corresponding to this propositional setting consists of a\CC �bred over a CC", i.e. of a �bration with �bred �nite products over a basecategory which also has �nite products. As an illustration, we describe again howthe contexts of this propositional setting form such a �bred CC over a CC, denotedby p :E! B.B obj. 2-contexts �.mor. � ! �0 � h�1:B1; : : : ; �n:Bni are n-tuples (�1; : : : ; �n) of 2-types with� ` �i : Bi.E obj. � + �, where � � hx1:�1; : : : ; xm:�mi, is a �-context with � ` �i : �.mor. �+�! �0+�0, with �0 � h�1:B1; : : : ; �n:Bni and �0 � hy1: �1; : : : ; ym: �miare pairs consisting of an n-tuple of 2-types ~� = (�1; : : : ; �n) : �! �0 inB and an m-tuple of equivalence classes of �-terms ([M1]; : : : ; [Mm]) suchthat � + � `Mi : �i[~� := ~�].

3.2. DEFINITIONS AND EXAMPLES 43Notice that both substitution and weakening (concerning 2) are handled by re-indexing.The other way round, the reader may want to convince him/herself that a (split)�bred CC over a CC can be seen as the propositional setting, dealing with all thecontext structure.3.2 De�nitions and examplesIn this section, categorical versions of the type systems �!; �2; �! and �! willbe described. To construct such categories for these four systems, we simply addapproriate categorical features to a propositional setting consisting of a �bred CCover a base CC.3.2.1. Warning. The description below is based on a rather harmless simpli�-cation, which is used throughout the literature. A more subtle account requirestechniques which will be developed in the next chapter. The simpli�cation is basedone the presence of cartesian product types in our stipulation about closure in thebeginning of section 2.3. This makes it possible to deal with 2- and �-contexts atthe \type" level and so we can dispense categorically with two extra levels, see 5.1.1and 5.3.4 for a full account.Let p :E ! B be a �bration with �bred �nite products where B is a categorywith �nite products. We think of the objects of B and E as 2-types and �-typesrespectively. The feature 2-closure corresponds to B being a CCC. The feature�-closure corresponds to p being a �bred CCC. The axiom � : 2 corresponds top having a generic object. Finally, the (2; �)-quanti�cation corresponds either toCons
-products and sums or to ConsB-products and (plus a terminal object for p),depending on how many 2-types one has. Hence we come to the notions describedbelow. Essentially, they are all contained in Seely [1987]; see also Pitts [1987] andCoquand & Ehrhard [1987].3.2.2. De�nition. (i) A �!-category is a �bred CCC with a generic object overa base CC.(ii) A�!-category is a �bred CCC with a generic object over a base CCC.(iii) A �2-category is a �bred CCC with a generic object T over a base CC;additionally, the �bration admits Cons
-products and sums, where 
 = pT .(iv) A �!-category is a �bred CCC with a generic object over a base CCC B;additionally, the �bration admits ConsB-products and sums.In the literature, a �!-category is mostly called a PL-category, after PolymorphicLambda calculus, see Seely [1987].3.2.3. De�nition. Let 3 be !; 2; ! or !.



44 CHAPTER 3. THE PROPOSITIONAL SETTING(i) A morphism of �3-categories is a morphism of �brations which preserves therelevant structure (see chapter 1).(ii) A split �3-category is a �3-category in which the �bration and all the rel-evant structure is split. A morphism of split �3-categories preserves the structureon-the-nose.(iii) A �3-category will be called small if the �bration involved is small.Finally, internal versions of the above notions will be mentioned. They have aslightly more simple de�nition, but the actual description of internal examples ismore involved, see e.g. Asperti and Martini [199?].3.2.4. De�nition. Let B be a category with �nite products and C an internalcategory in B.(i) C is an internal �!-category if it is an internal CCC.(ii) C is an internal �!-category if B is a CCC and C is an internal CCC.(iii) C is an internal �2-category if C is an internal CCC with internal ConsC0-products and sums.(iv) C is an internal �!-category if B is a CCC and C is an internal CCC whichadmits internal ConsB-products and sums.Implicitly in (iii), we assume that B is a CCC, or at least that the exponentobject CC00 exists, see the de�nition of internal ConsC0-quanti�cation in 1.5.4.Before describing examples of the above notions, a useful technical result will bementioned.3.2.5. Lemma (Frobenius). Let p :E ! B be a �bred CCC over a CC admittingConsA-sums. The transpose of id� � : � �B;A(E)�E 0 ! � �B;A(E)� � �B;A(�B:E 0) �=� �B;A(E � �B:E 0) yields a vertical isomorphism �B:(� �B;A(E) �E 0) �= E � �B:E 0.Proof. By Yoneda:EB (�B:(� �B;A(E)� E 0); E 00 ) �= EB�A (� �B;A(E)�E 0; � �B;A(E 00) )�= EB�A (E 0; � �B;A(E)) � �B;A(E 00) )�= EB�A (E 0; � �B;A(E ) E 00) )�= EB (�B:E 0; E ) E 00 )�= EB (E � �B:E 0; E 00 ): 23.2.6. Examples. (i) If C is a small CCC, then it is an internal �!-categoryin Sets. If C only has a small collection of objects, then the family �brationFam(C)! Sets is a split �!-category.

3.2. DEFINITIONS AND EXAMPLES 45(ii) The �bration Fame�(M)! !-Set from 1.2.12 is a split �!-category. In factit is a small one. For A;B 2 !-Set, one has a right adjoint �(B;A) : Fame�(M)B�A !Fame�(M)B to � �B;A by [X :B � A!M] 7! �b 2 jBj: (�a2jAj: jX(b;a)j;`), where ` isdescribed by m ` f , 8a 2 jAj: 8k 2 N: k `A a ) m �k `X(b;a) f(k). Indeed, thisyields a collection of modest sets again. Sums are described by �(B;A)(X) = �b 2jBj:�( _Sa2jAj: jX(b;a)j;`), where � is left adjoint to the inclusion M ,! !-Set and `is given by m ` (a; x) , fst(m) `A a & snd(m) `X(b;a) x. Actually, all reindexingfunctors of Fame�(M) ! !-Set | and not just the cartesian projections | haveboth a left and a right adjoint.After de�nition 1.4.7 the equivalence Fame�(M) ' P(PER) over !-Setwas mentioned. It yields that the externalization P(PER) ! !-Set is also a�!-category. As mentioned in Hyland [1989], change-of-base along the functor� :Sets ! !-Set (see 1.2.12) yields another �!-category, which will be denotedby Famcom(PER) ! Sets. Objects of Famcom(PER) are functions X from I tothe PER. Vertical morphisms � :X ! Y over I are collections � = f�igi2I ofmaps �i :Xi ! Yi in PER which have a common realizer, i.e. 9n 2 N: 8i 2I: n realizes �i. This �!-category was �rst described in Girard [1972].(iii) The two basic examples from tripos theory (see Hyland, Johnstone & Pitts[1980] and Pitts [1981]) are as follows. It is easily veri�ed that a category C hasin�nite products (resp. coproducts) i� every reindexing functor of Fam(C)! Setshas a right (resp. left) adjoint and the Beck-Chevalley condition holds (see also 4.2.5(i)). Hence if C is a complete Heyting algebra (considered as a preorder categorywhich is complete and cocomplete and cartesian closed), then the family �brationFam(C)! Sets is a split �!-category.Let B be a topos. In 1.2.10 (ii) it was already mentioned that the �brationcod : Sub(B)! B has a generic object. It forms in fact a �!-category. (This resultfollows from applying theorem 5.2.8 to example 5.2.6 (i).)In both these examples one has a preorder �bration, i.e. a �bration with pre-order categories as �bres. These provide so-called proof-irrelevance or truth-valuesemantics of type theories. As explained in \Introduction and summary", we seethem as \logical" models.In Jacobs [1991] one can �nd rami�cations of the notion of a split �2-categorydealing with non-extensionality. Further examples can be found there, including asimple PER model which forms a split �2-category as de�ned above.3.2.7. Extended example (Domain models).The following exposition is based mainly on Coquand, Gunter & Winskel [1989].A partial order hI;� i is called directed if the set I is non-empty and satis�es8i; j 2 I: 9k 2 I: i � k & j � k. A directed system over a category B is a functorfrom a directed set to B. In detail it is given by a family fBigi2I of objects of



46 CHAPTER 3. THE PROPOSITIONAL SETTINGB, indexed by a directed set, together with a collection of maps fuij :Bi ! Bjgi�jsatisfying uii = id and i � j � k ) ujk � uij = uik. The category B is calleddirected complete if every directed system has a colimit. In the above case thismeans that there is a collection fvi :Bi ! Bgi2I satisfying vj � uij = vi; moreover,for every other collection fwi :Bi ! Cgi2I with wj � uij = wi, there is a unique� :B ! C in B with wi = � � vi. We write DcCat for the \category" of (notnecessarily small) directed complete categories and continuous (i.e. directed colimitpreserving) functors. It is not hard to verify that DcCat has �nite products.A domain is a bounded complete algebraic cpo. Together with continuous func-tions, domains form a category DOM. It is a subcategory of DcCat. We writeDEP for the category of domains with \embedding projections" as morphisms: amap X ! Y in DEP consists of a pair (f e; f p) where f e :X ! Y and f p :Y ! Xare continuous functions satisfying f p � f e = id and f e � fp � id. DEP is a CCC,via continuous functors �; ! :DEP�DEP! DEP, and it is directed complete,see Smith & Plotkin [1982] and Coquand, Gunter & Winskel [1989] for the details.We form an indexed category 	 : DcCatop ! Cat with (continuous) func-tors X :A ! DEP in DcCat as objects of 	A. Morphisms X ! Y in 	A arecontinuous families f�A 2 DOM(XA; Y A)gA2A where continuity of the family isexpressed by the following two conditions.� for every u :A! B in A one hasY (u)e � �A � X(u)p � �B� for every directed colimit fvi :Ai ! Agi2I one has�A = Gi2I Y (vi)e � �Ai � X(vi)psee also Coquand & Ehrhard [1987]. The Grothendieck construction applied to	 yields a split �bration Famcont(DEP) �! DcCat. Actually, it is a split �!-category.Interestingly, there is a full and faithful functorFamcont(DEP) P - DcCat!@@@@@@R 	��� cod���DcCatwhich maps cartesian arrows to pullbacks. In the next chapter we introduce the namefull comprehension category for such a functor P . This structure passed withoutexplicit attention in previous work on these categories (but it was used implicitly).As in example 1.2.12, we �rst de�ne a functor P0 :Famcont(DEP) ! DcCat. For
3.2. DEFINITIONS AND EXAMPLES 47X :A! DEP, one obtains a category P0(A; X) with objects (A; x) where x 2 XA.A morphism (A; x) u! (B; y) in P0(A; X) is a map u :A ! B in A satisfyingX(u)e(x) � y. It is readily established that P0(A; X) is directed complete: givenfuij : (Ai; xi) ! Aj ; xj)g, let fvi :Ai ! Ag be the colimit of the uij 's in A and x =Fi2I : X(vi)e(xi) in XA. Then fvi : (Ai; xi) ! (A; x)g is a colimit in P0(A; X). Fora morphism (F; �) : (A; X)! (B; Y ) in Famcont(DEP), i.e. for a continuous functorF :A! B and a continuous family � :X ! Y F , one de�nes P0(F; �) :P0(A; X)!P0(B; Y ) by (A; x) 7! (FA; �A(x)) and u 7! Fu. The fact that the family �is continuous guarantees that P0(F; �) is well-de�ned and continuous again. Theabovementioned functor P :Famcont(DEP)! DcCat! is layed down by (A; X) 7![the (continuous) projection P0(A; X)! A] and (F; �) 7! (F;P0(F; �)). Actually,this projection is a co�bration.Finally, we establish that P is \�brewise" full and faithful (which is enough).That it is faithful, is easy; hence we only show that it is full. Suppose thereforethat for X;Y :A! DEP in Famcont(DEP), a continuous functor H :P0(A; X)!P0(A; Y ) is given with P(A; Y ) � H = P(A; X); then one can write H(A; x) =(A;�A(x)). For every A 2 A, one obtains a continuous function �A :XA ! Y A;these functions yield a continuous family f�Ag: for u :A ! B and x 2 XB, putz = X(u)p(x). Then X(u)e(z) � x, so u : (A; z) ! (B; x) in P0(A; X). HenceHu = u : (A;�A(z)) ! (B;�B(x)) in P0(A; Y ). But then �B(x) � Y (u)e(�A(z)) =fY (u)e � �A � X(u)pg(x). This settles the �rst requirement about continuity; thesecond one is left to the reader.Next we mention some results about this functor P (see Coquand, Gunter &Winskel [1989] propositions 7 and 8), which will be useful later in 4.1.6 (vi) and4.3.2 (iv). Let X :A ! DEP be an object of Famcont(DEP). Then in case A is adomain (as a preorder category) one has(i) P0(A; X) is a domain;(ii) the collection j(A; X)j of continuous \sections" H :A! P0(A; X) in DcCatwith P(A; X) � H = id is a domain; the ordering is pointwise (in the secondcomponent).As a consequence of (i) above one obtains by restriction another \comprehensioncategory" Famcont(DEP) ! DOM! which will be used in 4.3.2 (v). Here theobjects of Famcont(DEP) are arrows A ! DEP where A is a domain. We don'tbother to give di�erent names to the total categories in Famcont(DEP) ! DcCatand Famcont(DEP)! DOM. As long as we consider them together with the basecategory, there is no confusion.The main result of Coquand, Gunter & Winskel [1989] is that Famcont(DEP)over the full subcategory of DcCat generated by the objects DEPn; n 2 N forms asplit �!-category with (2; �)-products.



48 CHAPTER 3. THE PROPOSITIONAL SETTING3.3 Some constructionsObservations from chapter 1 (especially 1.4.6 and 1.5.4) easily bring us to the fol-lowing result about externalization.3.3.1. Proposition. Let 3 be !; 2; ! or !. Suppose C 2 Cat(B); thenC is an internal �3-category , [C] is a split �3-category: 2Under certain size-conditions, internalization is also possible, see 1.4.8 and 1.5.5.The next proposition is the main result of Asperti and Martini [199?].3.3.2. Proposition. Let p :E! B be a split �bration where B is locally small andall �bres are small. Then(i) p is a split �bred CCC ) ^p in bB = SetsBop is an internal �!-category.(ii) p is a split �2-category ) ^p in bB is an internal �2-category.Further, the change-of-base situation p ! [^p] from 1.4.8 is a morphism of thesecategories.Proof. (i) Obvious, see 1.4.8.(ii) By lemma 1.5.5. 2The next result is essentially due to Pitts [1987], although the formulation usedthere is di�erent. It also yields a form of internalization. The �bration p is intro-duced in 1.2.7.3.3.3. Theorem. Let 3 be ! or 2.p :E! B is a �3-category ) p :E! E is a small �3-category:Further, the change-of-base situation p ! p from 1.2.7 is a morphism of thesecategories.Proof. Let p :E ! B be a �bred CCC with generic object T 2 E above 
. Wealready know from 1.2.7 and 1.2.10 (iii) that p :E! E is again a �bred CCC withgeneric object (1
; T ) 2 E. The fact that p is a small �bration follows from ageneral theorem to be treated in 4.5.8 (using 4.5.5 and 4.4.4 (i)). The details canalso be checked in this special case: one can form an appropriate internal categoryin E with 
0 = 1
 as object of objects and 
1 = (
0 & 
0)� (� �
;
(T )) �0 �
;
(T ))as object of morphisms (where & denotes the \global" product in E, see 1.2.8). The�rst projection in the �bre then yields a pair h@0; @1i : 
1 ! 
0 & 
0 in E. It is nothard to verify that pullbacks for 
2 and 
3 exist, see 1.4.1. Hence p :E! E is small�!-category.Next, let's assume that p is a �2-category via adjunctions �B a � �B;
 a �B.One de�nes product and sum functors EE & 
0 ! EE for p by (E & 
0; E 0) 7!(E;�pE :E 0) and (E;�pE:E 0). The Frobenius isomorphism from lemma 3.2.5 isneeded to establish the required adjunctions for these new sums. 2

3.3. SOME CONSTRUCTIONS 49Pitts [1987] goes on to embed p :E ! E in the topos of presheaves SetsEop |under certain size conditions | which yields a \topos model" of �2. Further detailsmay be found there.The next construction requires some preliminary work. We consider categorieswith an explicitly given cartesian closed structure. Morphisms of these are requiredto preserve this structure on-the-nose. Every split �!-category yields such a CCCby looking only at the �bre above the terminal object in the basis and forgettingthe rest. Obviously, a morphism of �!-categories yields a morphism between thecorresponding cartesian closed �bre categories. Our intention in the rest of thissection is to show that this forgetful functor has a left adjoint, i.e. that every CCCgenerates a free �!-category. In order to make the presentation more accessible, we�rst construct a simple (non-free) �!-category from a given CCC. Later, the freeone is derived from it. Our construction is clearly inspired by the work in Bainbridgeet al. [1990], but dinaturality doesn't play a role here.Let C be a CCC. We form the category NP(C) | where `N' stands for negativeand `P' for positive | as follows. Objects are natural numbers n 2 N. Morphisms(F1; : : : ; Fm) :n ! m are functors Fi : (Cop)n �Cn ! C. Especially, we have forevery object X 2 C a constant functor KnX :n! 1; furthermore, we use projectionsproji :n ! 1 described by ( ~X; ~Y ) 7! Yi and (~f; ~g) 7! gi. Given F :n ! 1, i.e.F : (Cop)n �Cn ! C, we write F tw : (Cop)n �Cn ! Cop for the \twisted" versionof F obtained as the composite of(Cop)n �Cn �= Cn � (Cop)n �= (Cop op)n � (Cop)n �= ((Cop)n �Cn)op F op�! Cop;see Bainbridge et al. [1990] appendix A6. Notice that F tw( ~X; ~Y ) = F (~Y ; ~X) andF tw(~f; ~g) = F (~g; ~f): positive occurrences are changed to negative ones and vice-versa. Now one can de�ne composition in NP (C) by (G1; : : : ; Gk) � (F1; : : : ; Fm) =(H1; : : : ; Hk), where Hi = Gi � (F tw1 ; : : : ; F twm ; F1; : : : ; Fm). Notice that idn =(proj1; : : : ; projn). In this way one obtains a category NP(C). It has �nite products:0 is terminal and n + m is the products of n and m. Hence NP(C) is an algebraictheory in the sense of Lawvere [1963]. For arrows F;G :n! 1, we putF �G = prod � (F;G) : (Cop)n �Cn �! C�C �! C;F ) G = exp � (F tw; G) : (Cop)n �Cn �! Cop �C �! C:Next we de�ne an indexed category 	 : NP(C)op ! Cat by giving the �brecategories 	(n) morphisms F :n ! 1 in NP(C) as objects. Morphisms F ! G in	(n) are families � = f� ~Xg ~X2Cn of arrows � ~X :F ( ~X; ~X)! G( ~X; ~X) in C. There isno dinaturality requirement for such families. Especially, we have constant familiesKng = fgg ~X2Cn :KnX ! KnY for every g :X ! Y in C. For (H1; : : : ; Hn) :m !n in NP(C), we de�ne ~H� = 	( ~H) : 	(n) ! 	(m) by F 7! F � ~H and � 7!f�H1(~Y ;~Y );:::;Hn(~Y ;~Y )g~Y 2Cm .



50 CHAPTER 3. THE PROPOSITIONAL SETTINGThis construction of 	 : NP(C)op ! Cat is a categorical version of a constructionused a few times in Jacobs [1991] section 6, starting from a set (of ideals or per's)| instead of from a category | to obtain similar examples. There, the negativeand positive occurrences don't play a role. Comparable structures are de�ned inexamples 5.5.6 (i), (ii).3.3.4. Proposition. Applying the Grothendieck construction to 	 : NP(C)op !Cat yields a (split) �!-category.Proof. Basically one has to show that the �bre categories 	(n) are cartesian closedand that this structure is preserved on-the-nose by the reindexing functors. This allholds by the pointwise character of the construction. 2The above construction does not produce the free �!-category generated by Cbecause the categories NP(C) and 	(n) are too big. With a term model constructionin mind, we now de�ne appropriate subcategories NPf(C) and 	f (n), where `f 'stands for free.NPf(C) still has objects n 2 N and morphisms (F1; : : : ; Fm) :n ! m are stillbuilt from Fi's from n to 1, but these arrows n ! 1 are in NPf(C) given as thesmallest collection of functors (Cop)n �Cn ! C satisfying(i) KnX :n! 1;(ii) proji :n! 1;(iii) F;G :n! 1 ) F �G; F ) G :n! 1;(iv) F :n! 1; H1; : : : ; Hn :m! 1 ) F � (H1; : : : ; Hn) :m! 1.In the latter case we use composition as de�ned above. One easily veri�es thatNPf (C) ,! NP(C) is a category with �nite products.The �bre categories 	f(n) have arrows F :n ! 1 in NPf(C) as objects. Themorphisms in these categories are in the smallest collection satisfying(i) Kng :KnX ! KnY ;(ii) idF :F ! F ;(iii) � :F ! G; � :G! K ) � � � :F ! K;(iv) � :F ! G in 	f(n); ~H :m ! n in NPf(C) ) ~H�(�) : ~H�(F ) ! ~H�(G) in	f (m);(v) !F :F ! Knt for F 2 	f (n);(vi) � :F �G! F; �0 :F �G! G;(vii) � :K ! F; � :K ! G ) h�; � i :K ! F �G;(viii) ev : (F ) G)� F ! G;(ix) � :K � F ! G ) �(�) :K ! F ) G.One easily veri�es again that 	f (n) ,! 	(n) is a category which is cartesian closed.3.3.5. Theorem. The Grothendieck construction applied to 	f : NPf(C)op ! Catyields the free �!-category generated by C.

3.3. SOME CONSTRUCTIONS 51Proof. There is a unit functor �C :C ! 	f(0) given by X 7! K0X and g 7! K0g . Itpreserves the CCC structure. Let p :E ! B be a split �!-category with a splitgeneric object via �B : B(B;
) ��! Obj(EB) and let L :C! Et preserve the CCC-structure on-the-nose. We have to construct a (unique) morphism (L1; L2) :G(	f )!p of split �!-categories, such that �C followed by the restriction 	f(0) ! Et is Lagain. There is no choice at all for L1 and L2, since their behaviour on the constantfamilies of objects and arrows is described by L and on the rest by the fact that thestructure should be preserved. For example L1 :NPf(C) ! B is given by n 7! 
n(since 1 7! 
) and KnX = K0X � !n 7! ��1t (LX) � !
n . Similarly one �nds L2: 2As already remarked, the free �!-category G(	f ) is constructed essentially asa term model, starting from objects and arrows of C as constant types and terms.Describing it as such enables a deeper type theoretical analysis. In this way it isshown in Girard, Scedrov & Scott [1991] that all morphisms in the �bre categories	f (n) are actually dinatural transformations. The proof makes a detour throughGentzen's sequent calculus.Using these techniques, one might be able to settle whether the unit functor�C :C! 	f(0) in the above proof of 3.3.5 is a full embedding.



52 CHAPTER 3. THE PROPOSITIONAL SETTING
Chapter 4More Fibred Category TheoryThe categorical study of type dependency is our next subject. The main notion hereis what we call a \comprehension category". Such a category will be used in twodi�erent but, closely related ways: �rst as a categorical setting and secondly as adomain of quanti�cation (for a �bration). These matters can be found in the �rstand second section. The third one deals with closed comprehension categories whichcan be understood as categories with dependent sums and products. We show thatthese categories have good closure properties.The fourth section investigates a technique (due to J. B�enabou) of doing cate-gory theory \on top of a given �bration". It gives the possibility to construct morecomplicated settings having di�erent levels in the next chapter. Finally, we men-tion some (standard) results about locally small �brations and (a �bred version of)Freyd's adjoint functor theorem.4.1 Comprehension categories4.1.1. De�nition (Jacobs [1990]). A comprehension category is a functor of theform P : E! B! satisfying(i) cod � P :E! B is a �bration;(ii) f is cartesian in E ) Pf is a pullback in B.This P is called a full comprehension category in case P is a full and faithful functor.It is called cloven or split whenever the �bration involved is cloven or split.Notice that we don't require that the base category B has all pullbacks. In caseit does, P is a cartesian functor. It is easy to verify that P is a full comprehensioncategory if and only if P is �brewise a full and faithful functor.4.1.2. Notation. For a comprehension category P :E! B! we standardly writep = cod � P and P0 = dom � P . The object part of P then forms a naturaltransformation P :P0 _�! p. Similarly, for e.g. Q :D! A!, we write q = cod � Qand Q0 = dom � Q. The functors (�)0 do the work of context extension (orcomprehension) as can be seen clearly in the term model example below.53



54 CHAPTER 4. MORE FIBRED CATEGORY THEORYThe components PE are often called projections (and sometimes display maps);reindexing functors of the form PE� are called weakening functors. For an objectE 2 E we write jEj = fu : pE ! P0E j PE � u = idg; elements of jEj may be calledterms of type E. Motivation for this terminology may be found in the term modeldescribed next.It is our claim that a full comprehension category with a terminal object inthe basis constitutes a categorical version of the \Propositions as Types"-settingSort = f�g with � � �. To support this claim, we shall organize the contextsof this setting as such a comprehension category P :E ! B!. The objects of Bare equivalence classes [�] of contexts. A morphism [�] ! [�], where � � y1 :�1; : : : ; yn : �n consists of an n-tuple of equivalence classes of terms h[M1]; : : : ; [Mn]isatisfying � ` Mi : �i[y1 := M1; : : : ; yi�1 := Mi�1]. Objects of the category E areof the form [� ` � : �] and arrows [� ` � : �] ! [� ` � : �] are pairs ( ~[M ]; [N ])with ~[M ] : [�] ! [�] in B and �; x : � ` N : � [~y := ~M ]. The functor P is thendescribed by [� ` � : �] 7! (the projection [�; x : �] ! [�]). If � is of the formx1 : �1; : : : ; xm : �m, this projection is simply h[x1]; : : : ; [xm]i.Notice that the functor P0 performs \context comprehension" [� ` � : �] 7![�; x : �]. Similarly, other type theoretical operations can be understood categori-cally using this speci�c comprehension category.Next we introduce a simple, but important construction to obtain so-called \con-stant" comprehension categories.4.1.3. Example. Let B be a category with �nite products and T a non-emptycollection of objects from B; T is called non-trivial if for some X 2 T , the collectionB(t;X) is non-empty | where t 2 B is terminal. We form a split full comprehensioncategory ConsT :B==T ! B! as follows. The total category B==T has pairs (A;X)with A 2 B and X 2 T as objects. Morphisms (u; f) : (A;X) ! (B; Y ) in B==Tare given by two maps u :A ! B and f :A�X ! Y in B. The functor ConsT isthen de�ned by (A;X) 7! � :A�X ! A and (u; f) 7! (u; hu � �; f i). Notice thatthe �bre above the terminal object is the full subcategory of B determined by T .Comprehension categories of this form will be called constant because there is nodependency involved. We condider two extremes.(i) If the collection T consists of a single element, say T = f
g, then we writeB==
 and Cons
 instead of B==f
g and Consf
g.(ii) If T contains all objects from B, we write B for B==Obj(B) and ConsB forConsObj(B). This notation coincides with the one introduced in 1.2.7 when the con-struction described there is applied to the �bration B! 1 (the terminal category).The expressions \Cons
"- and \ConsB"-quanti�cation used in section 1.5 arebased on these two comprehension categories; this will become clear in the nextsection when we deal with products and sums.

4.1. COMPREHENSION CATEGORIES 554.1.4. De�nition. A morphism of comprehension categories is given by a triple(K;L; 
), where (K;L) is a morphism of �brations p! q as in the diagram belowE L - DP0 ?P=) ?p Q0 ?Q=) ?qB K - Aand 
 : Q0L _�! KP0 is a natural isomorphism satisfying KP � 
 = QL.This notion of morphism is slightly more general than the one used in Jacobs[1990], where one has 
 = id.Another way of understanding a map (K;L; 
) is as a vertical isomorphism inE L - DP ? 
=) ?QB! K! - A!The context comprehension functors (�)0 of a comprehension category \re
ect"the total category back into the basis. In case one has a �bration with a terminalobject, an obvious way of doing this is by requiring that the �brewise global-sectionsfunctors are representable. A bit more explicitly, let p :E ! B be a �brationwith terminal via 1 :B ! E; one requires that for E 2 E above A 2 B the map(B=A)op ! Ens given by B u! A 7! EB ( 1B; u�(E) )is representable (where Ens is a suitably large universe). Let PE be representingarrow in B; then E(1B; E) �= _[u :B!A: EB (1B; u�(E))�= _[u :B!A: B=A (u; PE)�= B(B; dom(PE)):Hence one obtains a right adjoint to 1 :B! E. The following de�nition captures thissituation. This notion is introduced in Ehrhard [1988a] under the name D-category .4.1.5. De�nition. (i) A comprehension category with unit is given by a �brationp :E ! B provided with a terminal object functor 1 :B ! E, which has a rightadjoint P0 :E! B. The ensuing functor P :E! B! given by E 7! p("E) | where" : 1P0 _�! Id is counit | then forms a comprehension category (see Jacobs [1990]for the proof).



56 CHAPTER 4. MORE FIBRED CATEGORY THEORY(ii) A morphism of comprehension categories with unit is a morphism (K;L) of�brations preserving the terminal inE L - D6 6p ?a 1 a ?P0 q ?a > a ?Q0B K - Asuch that the canonical map KP0 _! Q0L is an isomorphism. The latter is obtainedby transposing >KP0 �= L1P0 L"�! L.Next, we mention some examples of comprehension categories with units andmorphisms of these. Some more examples may be found in Jacobs [1990].4.1.6. Examples. (i) Let's go back to the constant comprehension categories from4.1.3. Consider two categories B;A with �nite products and a functor K :B ! Apreserving these; we write 
B;B0 for the inverse of the canonical map K(B �B0)!KB�KB0. Assume non-empty collections T � Obj(B) and S � Obj(A) such thatK[T ] � S. Then there is a morphism of comprehension categories (K;K 0) :ConsT !ConsS , where K 0 :B==T ! A==S is de�ned by (B;X) 7! (KB;KX) and [(u; f) :(B;X)! (B0; X 0)] 7! (Ku;Kf � 
B;X). The functor K 0 preserves the splitting.We also observe that for non-trivial T , the comprehension category ConsTadmits a unit if and only if the collection T contains a terminal object.(ii) Suppose C is a category with a terminal object t such that all collectionsC(t;X) are small. There is then a comprehension category with unit Fam(C) !Sets! given by fXigi2I 7! [the projection _Si2I :C(t;Xi) �! I ]. The �brationinvolved is the family �bration from 1.1.2. This comprehension category is full ifand only if the functor C(t;�) :C! Sets is full and faithful, see Jacobs [1990].A functor H :C! D induces a functor Fam(H) : Fam(C)! Fam(D) whichpreserves the splitting. In case H is full and faithful and preserves the terminalobject, it gives rise to a map of comprehension categories with unit.(iii) Let B be a category with pullbacks. The identity functor on B! is then afull comprehension category with unit. This example involves the adjoint situationB!6cod ?a id(�) a ?domB

4.1. COMPREHENSION CATEGORIES 57(iv) Going back to the term model described before 4.1.3, one �nds that if thereis a unit (as described in 2.2.3) for �, then one can de�ne a functor 1 :B ! E by[�] 7! [� ` 1� : �]. It is easily established that it is a terminal object functor and aleft adjoint to the context comprehension functor P0.(v) In 1.2.12 we already described two examples of split full comprehension cate-gories with unit, viz. the equivalence Fame�(!-Set) Q�! !-Set! and the compositionFame�(M) I,! Fame�(!-Set) Q�! !-Set!.(vi) The functors Famcont(DEP) ! DcCat! and Famcont(DEP) ! DOM!from 3.2.7 are both examples of full split comprehension categories with unit.Next we consider some technicalities.4.1.7. Lemma. Let P :E ! B! be a comprehension category. For every E 2 Eand u :A! pE in B one can allways choose a pullback of the following form.P0u�(E) P0u(E)- P0EPu�(E) ? ?PEA u - pEHence one can choose a pullback functor PE# :B=pE ! B=P0E by u 7! P0u(E).Proof. By requirement (ii) in de�nition 4.1.1. 24.1.8. Proposition. Let p :E! B be a (cloven) �bration provided with a functorP0 :E! B and a natural transformation P :P0 _�! p. ThenP forms a comprehension category, for every u :A! B in B and E 2 EB, the operationju�(E)j �! B=B (u; PE) given byv 7�! P0u(E) � vis invertible.Proof. ()) By the previous lemma, using thatju�(E)j = fv :A! P0u�(E) j Pu�(E) � v = idg; see 4.1.2�= fw :A! P0E j PE � w = ug= B=B (u; PE):(() Let's write �u;E for the inverse of the above operation. We have to show thatthe diagram (u;P0u(E)) :Pu�(E) ! PE is a pullback in B. Assume therefore



58 CHAPTER 4. MORE FIBRED CATEGORY THEORYthat v1 :C ! A and v2 :C ! P0E with PE � v2 = u � v1 are given. One hasv2 2 B=B (u � v; PE) and thus w = �u�v1;E(v2) 2 j(u � v1)�(E)j. Then w0 =P0v1(u�(E) � ' � w : C ! P0u�(E) is the required mediating arrow | where ' isan obvious iso in B: 24.1.9. Remarks. (i) The isomorphism B=pE (u; PE) �= ju�(E)j that we just es-tablished, can equivalently be expressed byB(A; P0E) �= _[u:A!pE: ju�(E)jusing that B(A; P0E) �= _Su:A!pE:B(u; PE). The result above shows that this\disjoint sum" which is encoded in the de�nition of a comprehension category isthe heart of the matter. It is closely related to the context rules in type theory |especially to what we have called \context comprehension" in 2.2.1.(ii) The previous proposition may serve as a basis for an equational presentationof split comprehension categories.4.1.10. Lemma. Let P :E ! B! be a comprehension category with unit, say via1 :B! E. Then(i) for E 2 E above A one has jEj �= EA (1A; E);(ii) for E 2 E and u :B ! pE one has B=pE (u; PE) �= EB (1B; u�(E));(iii) P1 :P01 _�! Id is an isomorphism; hence P preserves the �bred terminal.Proof. (i) By the adjunction 1 a P0.(ii) By the previous proposition and (i).(iii) The unit � : Id _�! 1P0 is an iso since 1 is full and faithful. But P1 � � =p"1 � p1� = p("1 � 1�) = id: 2Using (ii) in the previous lemma, one can prove that if P :E ! B! is compre-hension category with unit, then P preserves (�bred) limits. One can also use thisfact to prove (iii).In the rest of this section we describe a number of ways to obtain new comprehen-sion categories from given ones. The �rst described below is based on a constructionfrom Ehrhard [1988b]; the third and �fth are based on constructions from Moggi[1991].4.1.11. Constructions on comprehension categories.(i) Full completion. Given a comprehension category P :E! B!, one formsa full comprehension category P~ :E~ ! B!, called by Ehrhard the heart of P ,as follows. The category E~ has objects E 2 E and morphisms (u; v) :E ! E 0 inE~ are given by maps u : pE ! pE 0 and v :P0E ! P0E 0 in B such that u � PE =v � PE 0. The functor P~ :E~ ! B is then given by E 7! PE and (u; v) 7! (u; v).There is a unit morphism P ! P~ by a functor �P :E ! E~ with E 7! Eand f 7! hpf;P0f i. This arrow is universal: for a map (K :B ! A; L :E ! D; 
)
4.1. COMPREHENSION CATEGORIES 59from P to a full Q :D ! A! one �nds a unique map (K;L0; 
) : P~ ! Q whereL0 :E~ ! D is de�ned by E 7! LE and [E (u;v)! E 0] 7! Q�1(Ku; 
�1E0 � Kv � 
E).(ii) Change-of-base along �brations. Starting from a comprehension cate-gory P :E ! B! and a �bration r :C ! B, a new comprehension category r�(P)with base category C can be chosen as follows. First form the �bration r�(p) bychange-of-base C�r;p E - Er�(p) ? ?pC r - Band then choose r�(P) : C �r;p E �! C! by (C;E) 7! PE(C) :PE�(C) ! C. Onarrows (f; g) : (C;E) ! (C 0; E 0) where rf = pg one de�nes r�(P)(f; g) = (f; h), inwhich h :PE�(C) ! PE 0�(C 0) is the unique arrow above P0g satisfying PE 0(C 0) �h = f � PE(C).An alternative description of this construction involves lemma 1.1.4. Applyingthe pullback functor r� to P : p ! cod yields the comprehension category r�(P) bycomposition in: � > � Cleav. > C!@@@r�(p) @@@R ?r�(cod)	��� cod���CThe resulting r�(P) is then determined (by choice) up to an isomorphism of com-prehension categories.The morphism of �brations r�(p) ! p in the above diagram is in fact amorphism of comprehension categories r�(P)! P .It is left to the reader to verify that r�(P) is full or has a unit in case P isfull or has a unit. Moreover, that the map r�(P)! P preserves the unit.This change-of-base is can be extended to maps in the following way: for amorphism of comprehension categories P ! P 0 like in de�nition 4.1.4 and a mor-phism of �brations r ! r0, one obtains a morphism r�(P)! r0�(P 0).(iii) Juxtaposition. Given two comprehension categories E P�! B! Q � D oneconstructs another comprehension category Q � P with base category B, by �rst



60 CHAPTER 4. MORE FIBRED CATEGORY THEORYperforming change-of-baseD �Q0;p E - EQ�0(p) ? ?pD Q0 - Band then de�ning Q � P : D �Q0;p E �! B! by (D;E) 7! QD � PE and (f; g) 7!(qf;P0g). One has cod � Q � P = q � Q�0(p).(iv) Localization. Let P :E ! B! be a comprehension category. For eachobject A 2 B one can form a comprehension category P [A] : E[A] ! B[A]! inwhich A is used as initial context. The comprehension category P [A] contains thatpart of P that can be seen from A.A chain of types is a sequence E0; : : : ; En of objects Ei 2 E with pEi+1 =P0Ei. A chain may be empty. Let B[A] be the category with chains E0; : : : ; Ensatisfying pE0 = A, as objects. A morphism u from E0; : : : ; En to D0; : : : ; Dm inB[A] is a morphism u :P0En ! P0Dm in B commuting with the chain of projections,i.e. satsifying PD0 � : : : � PDm � u = PE0 � : : : � PEn:(A little care is needed here: if one of the chains is empty, one should read A forP0En or P0Dm.)The category E[A] has non-empty chains E0; : : : ; En with pE0 = A as objects.A morphism f from E0; : : : ; En to D0; : : : ; Dn in E[A] is a morphism f :En ! Dmin E such that pf : E0; : : : ; En�1 �! D0; : : : ; Dm�1 in B[A].The functor P [A] : E[A]! B[A]! is de�ned byE0; : : : ; En 7! PEn : E0; : : : ; En �! E0; : : : ; En�1f 7! hpf; P0f i:Without proof we mention that(1) P [A] is a comprehension category;(2) P [A] is full (resp. has a unit) in case P is full (resp. has a unit);(3) there is a morphism of comprehension categories P [A]! P ;(4) Every arrow B ! A in B gives rise to a morphism of comprehension cate-gories P [A]! P [B]. This last point requires a cleavage.(v) Multiplication. Suppose two (cloven) comprehension categories E P�!B! Q � D are given. One forms a new comprehension category P 
Q with under-lying �bration p� q = p � p�(q) : E�p;qD! B as follows. Put P 
Q(E;D) = PE �Q(PE�(D)) and for (f; g) : (E;D) ! (E 0; D0) take P 
 Q(f; g) = (pf; w), where
4.2. QUANTIFICATION ALONG ARBITRARY PROJECTIONS 61w is the mediating arrow. This makes 
 an (up-to-isomorphism) associative andsymmetric operation. A unit for 
 is formed by the identity natural transformationon IdB. Hence cloven comprehension categories on a given base category have thestructure of a symmetric monoidal category.(vi) Composition. Given two comprehension categoriesE P0+ Pp -- B R0+ Rr -- AOne obtains a functor RP :E ! B! by E 7! R(pE) � R0(PE) (= r(PE) �R(P0E) ). It forms a comprehension category if R has a unit: R0 then preservespullbacks (see also lemma 1.1.5).4.2 Quanti�cation along arbitrary projectionsA comprehension category P :E ! B! determines a class of \projection" mor-phisms fPE j E 2 Eg. Quanti�cation along such projections is described in thenext de�nition by adjoints to the corresponding \weakening" functors | which arethe reindexing functors of these projections.4.2.1. De�nition. Let q :D! B be a �bration and P :E! B! be a comprehen-sion category; we say that q admits P-products (resp. P-sums) i� both� for every E 2 E any weakening functor PE� :DpE ! DP0E has a right adjoint�E (resp. a left adjoint �E).� the \Beck-Chevalley" condition holds, i.e. for every cartesian morphism f :E ! E 0 in E one has that the canonical natural transformation(pf)��E0 :�! �E(P0f)� (resp. �E(P0f)� :�! (pf)��E0 )is an isomorphism.The �rst map is the transpose of PE� (pf)��E0 �= (P0f)� PE 0��E0 (P0f)�(")�! (P0f)�;similarly one obtains the second one.4.2.2. Remark. Let q and P be as above. We recall from 1.1.2 that the �brationp :E! B determines a groupoid �bration jpj :Cart(E)! B. Similarly the compre-hension category P :E! B! determines two functors jpj; jP0j :Cart(E)! B and anatural transformation between them. By change-of-base of q along P : jP0j _�! jpjone obtains two �brations jpj�(q) and jP0j�(q) and a functor hP i : jpj�(q)! jP0j�(q),see lemma 1.1.7. Using lemma 1.2.2, one can prove that q admits P-products (resp.P-sums) if this functor hP i has a �bred right (resp. left) adjoint. This approachgeneralizes de�nition 7 in Ehrhard [1988a]. For practical reasons we chose to workwith the �brewise formulation in used in the de�nition above.



62 CHAPTER 4. MORE FIBRED CATEGORY THEORYIn some special cases we don't mention the comprehension categories involved.4.2.3. De�nition. (i) Let p :E! B be a �bration on a basis with pullbacks; onesays that p has (�bred) products (resp. sums) i� p has products (resp. sums) withrespect to the identity comprehension category on B!, see 4.1.6 (iii). This is theusual de�nition in �bred category theory.(ii) Let P :E ! B! be a comprehension category; we say that P has products(resp. sums) i� p = cod � P has P-products (resp. P-sums).4.2.4. De�nition. (i) (B�enabou) A �bration is called complete if it has �bredproducts and �brewise �nite limits.(ii) A �bration will be called small complete if it is both small and complete.In ordinary category theory a category is sometimes called small-complete if itis complete, i.e. if every small diagram has a limit. Here a small complete cate-gory/�bration is one which is both small and complete.A result of P. Freyd (see e.g. Mac Lane [1971], V.2, proposition 3) states thatthere are no small complete categories except preorders. Remarkably, there are smallcomplete �bred categories (which are not �brewise preordered), see Hyland [1989],Hyland, Robinson & Rosolini [1990] or (ii) below.4.2.5. Examples. (i) It is easily veri�ed that a category C has in�nite products(resp. coproducts) i� the �bration Fam(C) ! Sets admits products (resp. sums).This bi-implication extends to completeness.(ii) After de�nition 1.4.7 it was already mentioned that the �bration Fame�(M)! !-Set is small. It has �nite limits because M has them. Products are obtainedin the following way | which generalizes the constructions from 3.2.6 (ii). Forf :A ! B in !-Set one has �f : Fame�(M)B ! Fame�(M)A by [X :B ! M] 7![�a 2 jAj: (�b2f�1(a): jXbj;`)]. The realizability relation ` is described by n ` ' ,8a;m 8b; k: m `A a & k `B b ) n �m � k `Xb '(a)(b).(iii) In 1.2.4 (iii) an LCCC has been de�ned as a category B with �nite limitssuch that every slice category B=A is cartesian closed. Equivalently | as shown inFreyd [1972], see also lemma 2.2.13 | one can require �nite limits for B plus �bredproducts for the �bration cod :B! ! B. This �bration is then complete. Note alsothat it trivially has sums.4.2.6. Extended example.Let B be a category with �nite products and let T � Obj(B), see 4.1.6. It is nothard to prove that the \constant" comprehension category ConsT admits productsif exponents exist in B of all objects in T ; also that ConsT admits sums if T is closedunder cartesian products. Hence for a constant comprehension category, productsare given by exponents and sums by cartesian products. This corresponds in typetheory to the fact that � is ! and � is � in case there is no type dependency.
4.2. QUANTIFICATION ALONG ARBITRARY PROJECTIONS 63In a sense, this is a remarkable result: it gives the possibility to describe typetheoretical exponents without (type theoretical) cartesian products. Let B be thecategory of contexts of the minimal setting (see the beginning of 3.1) and let T bethe collection of types. One has T � Obj(B) by identifying a type with a singletoncontext. This gives a term model in which right adjoints to weakening functorscorrespond to exponent types and (independently) left adjoints to cartesian producttypes.Of course, at a di�erent level (viz. the level of contexts) cartesian products doplay a role in the description of these type theoretical exponents. It is a merit ofcomprehension categories to separate these levels.It is worth mentioning a mathematical example here. Let D be a cpo. A subsetI � D is called an ideal in D i� (i) ? 2 I ; (ii) x � y 2 I ) x 2 I ; (iii) directedX � I ) FX 2 I . Ideals are the non-empty closed subsets with respect to theScott topology. With the ordering inherited from D, they form cpos themselves.One forms a base category B with ideals I � Dn (for some n 2 N) as objects.A morphism from I � Dn to J � Dm is a continuous function f :Dn ! Dm withf [I ] � J . The product of ideals I � Dn and J � Dm is I � J � Dn+m.Now let's assume that D is isomorphic to its own space of continuous functions[D! D], via maps F : D ! [D ! D] and G : [D ! D]! D satisfying F � G = idand G � F = id. As usal, we write x � y for F (x)(y) and �x:� for G(�x:�). Anexample of such a cpo is D. Scott's D1, see e.g. Barendregt [1984].In a standard way one forms an exponent of ideals I; J � D by I ) J = fx 2D j 8y 2 I: x � y 2 Jg. In general however, a cartesian product for ideals I; J � Ddoes not seem to exist in D. Hence we don't have a CCC-structure.But taking T � Obj(B) as the collection of ideals in D1 = D, yields a compre-hension category ConsT with products described by exponents. For (I; J) 2 B==Tone can de�ne �(I;J):(I � J;K) = (I; J ) K). In this way we are able to capturethese exponent ideals categorically.4.2.7. De�nition. Suppose we have a diagramE L - E0?P=) ? ?P 0=) ?B K - B06 6q q0D H - D0in which (K;L) together with 
 : P00L ��! KP0 is a morphism of comprehensioncategories and (K;H) is a morphism of �brations.



64 CHAPTER 4. MORE FIBRED CATEGORY THEORY(i) Suppose that q has P-products via �brewise adjunctions P(�)� a �(�) andthat q0 has P 0-products via P 0(�)� a �0(�). Then the (K;L;H) diagram forms amorphism of products if for each E 2 E, the canonical natural transformationH � �E _�! �0LE � 
�E � His an isomorphism.(ii) Similarly the diagram forms a morphism of sums | described by �(�) aP(�)� and �0(�) a P 0(�)� | if for each E 2 E one has canonically,�0LE � 
�E � H �= H � �E:4.2.8. Remarks. (i) An exposition similar to the one above can be given aboutan appropriate form of quanti�cation for split �brations. Every reindexing functorshould then preserve all the structure \on-the-nose".(ii) The reader may want to verify that the explicit de�nition of Cons
- andConsB-quanti�cation (and corresponding maps) given in section 1.5 coincides withthe one presented above, using the comprehension categories Cons
 and ConsB from4.1.3.In chapter 2 we described \weak" and \strong" sums in type theory. The abovede�nition covers the weak case. For the strong one the �bration q must be (part of)a comprehension category. This corresponds to the extra dependency required forstrong sums in section 2.2. But �rst, we need the technical result (i) below. Thesecond point generalizes the Frobenius isomorphism from lemma 3.2.5. Veri�cationsare easy and left to the reader.4.2.9. Lemma. Suppose q admits P-sums as described above.(i) For every E 2 E and D 2 D with qD = P0E, one has that the morphisminE;D = PE(�E:D) � �D : D! PE�(�E:D)! �E :D is cocartesian.(ii) The transpose of id � �E0 : QD�(E) � E 0 �! QD�(E) � QD�(�D:E 0) �=QD�(E � �D:E 0) yields an isomorphism �D:(QD�(E)�E 0) ��! E � �D:E 0: 24.2.10. De�nition. Given comprehension categories E P�! B! Q � D, we saythat Q has strong P-sums in case Q has P-sums in such a way that every morphismQ0(inE;D) in B (cf. the previous lemma) is orthogonal to the class fQD0 j D0 2 Dg.The latter means that for every D0 2 D and u; v forming a commuting square,� Q0(inE;D)- �u ? 	��� w��� ?v� QD0 - �there is a unique w satisfying QD0 � w = v and w � Q0(inE;D) = u.

4.2. QUANTIFICATION ALONG ARBITRARY PROJECTIONS 65One easily veri�es that a comprehension category Q has strong sums (i.e. strongQ-sums, see de�nition 4.2.3) i� the above morphism Q0(inE;D) is an isomorphism.The latter formulation is used in Jacobs [1990] to de�ne strong sums for compre-hension categories. There one also �nds the relation between strong sums andindecomposability of terminal objects.Next we mention some useful results about quanti�cation. More results like thesemay be found in Jacobs, Moggi & Streicher [1991].4.2.11. Lemma. q admits P-products , qop admits P-sums.Proof. By the fact that the opposite is taken �brewise, see 1.1.11. 24.2.12. Lemma. Let P :E ! B! be a comprehension category and let q : D !B; r :C! B be �brations; the �bration r�(P) obtained by change-of-base is describedin 4.1.11 (ii).(i) q admits P-products/sums ) r�(q) admits r�(P)-products/sums; further,the pair of morphisms r�(P) ! P together with r�(q) ! q forms a morphism ofproducts/sums.(ii) Suppose q has P-products; similarly, q0 has P 0-products. Let's assume furthera product-preserving pair of morphisms P ! P 0 and q ! q0 like in de�nition 4.2.7.A morphism of �brations r ! r0 then induces a product preserving pair of mapsr�(P)! r0�(P 0) and r�(q)! r0�(q0).Similarly for sums.(iii) A comprehension category Q admits strong P-sums ) r�(Q) admits strongr�(P)-sums.Proof. (i) Assume PE� a �E in D; we seek (q�(P)(C;E))� a 8(C;E). This is doneby de�ning 8(C;E) : (C�r;qD)PE�(C) ! (C�r;qD)C as (PE�(C); D) 7! (C;�E :D). Sumsare handled similarly.(ii) Straightforward using the map r�(P)! r0�(P 0) from 4.1.11 (ii).(iii) Notice that in = in(C;E); (PE�(C);D) = (PE(C); inE;D) : (PE�(C); D) !9(C;E): (PE�(C); D) and that q�(P)0(in) is by de�nition above R0(inE;D). Orthog-onality can then be lifted. 2The next lemma resembles 2.2.12.4.2.13. Lemma. Let q :D! B be a �bration and P :E! B! be a comprehensioncategory.(i) If there is a �bred re
ection r ! q (i.e. a �bration r :C! B and a full andfaithful cartesian functor C! D which has a �bred left adjoint), then(1) q has �bred �nite limits ) r has �bred �nite limits.(2) q has P-products/sums ) r has P-products/sums.Further, the functor C! D is continuous, i.e. preserves the �nite limits and prod-ucts.



66 CHAPTER 4. MORE FIBRED CATEGORY THEORY(ii) In case P is a full comprehension category with unit and sums and q hasa �bred terminal object, which is preserved by a full and faithful cartesian functorG :D! E, then G has a �bred left adjoint , q has P-sums.Proof. (i) By a standard argument.(ii) ()) By (i).(() De�ne F :E! D by E 7! �E(>P0E), where > :B! D describes the terminalobject for q. By 4.2.9 (i), F extends to a functor, which is cartesian by Beck-Chevalley. Then for E 2 E above A and D 2 D above B, one hasD(FE; D) �= _[u:A!B: DA (�E:(>P0E); u�(D) )�= _[u:A!B: DP0E (>P0E; PE�u�(D) )�= _[u:A!B: EP0E (G>P0E; G(PE�u�(D)) )�= _[u:A!B: EP0E ( 1P0E; PE�u�(GD) )�= _[u:A!B: B=A (PE; P(u�(GD)) ) by 4.1.10 (ii)�= _[u:A!B: EA (E; u�(GD) ) because P is full�= E (E; GD ): 24.3 Closed comprehension categoriesThe notion of a closed comprehension category to be introduced next is of greatimportance: like a CCC, an LCCC or a topos, it forms a module with pleasantproperties. It is a category with a unit and dependent products and strong sums.Comparable \closed" versions have been de�ned for other categorical notions fortype dependency as mentioned in \Introduction and summary", see Blanco [1991].Most of this section will be devoted to examples and properties. At the end wewill be able to give categorical versions of the systems �P1, �Pi and �� which arebased on the \Propositions as Types" setting.4.3.1. De�nition. (i) A closed comprehension category (abbr. CCompC) is a fullcomprehension category with unit, products and strong sums; moreover, the basecategory is required to have a terminal object. The products and sums are withrespect to the comprehension category itself, see 4.2.3 (ii).A closed comprehension category is split if all the structure involved is split.(ii) A morphism of CCompC's is a morphism of comprehension categories withunit, which preserves the products and sums; additionally, preservation of the ter-minal object in the basis is required.

4.3. CLOSED COMPREHENSION CATEGORIES 674.3.2. Examples. (i) Let B be a category with �nite limits. The identity functoron B! is then a full comprehension category with unit and strong sums. Moreover,idB! is a CCompC , B is an LCCC.(ii) Let B be a category with �nite products. The full comprehension categoryConsB from 4.1.3 has a unit and strong sums. Moreover,ConsB is a (split) CCompC , B is a CCC.These two examples show that �nite products and exponents are related like �nitelimits and local exponentials.(iii) The comprehension categories Fam(Sets) ! Sets! and Fame�(!-Set) !!-Set! are both closed. This is not surprising because Sets and !-Set are LCCC's.But the interesting point is that all the structure is split.Similarly, one has by composition a CCompC Fame�(M) ,! Fame�(!-Set)!!-Set!, see 1.2.12 and 4.1.6 (v).(iv) The comprehension category Fam(Sets)! Cat! mentioned in Jacobs [1990]is closed; this example goes back to Lawvere [1970]. The �bration involved is ob-tained by applying the Grothendieck construction to C 7! SetsC.(v) The comprehension category Famcont(DEP) ! DOM! introduced at theend of 3.2.7 and 4.1.6 (vi) is also an example. Remember that for a domain A anda continuous functor X :A ! DEP the domain P0X has elements (a; x) wherea 2 A and x 2 Xa; the ordering is given by (a; x) � (b; y) , a � b & Xeab(x) �y. For a continuous functor Y :P0X ! DEP one can de�ne sum and product�X :Y; �X :Y : A ! DEP by (�X :Y )a = P0(Xa; Y(a;�)) where Y(a;�) is consideredas a functor Xa ! DEP. In a similar way one takes (�X :Y )a = j(Xa; Y(a;�))j, thedomain of sections mentioned at the end of 3.2.7. An extensive treatment of theseconstructions may be found in Palmgren & Stoltenberg-Hansen [1990].(vi) The term model of the calculus �P1 (see section 2.3) is an example of a splitCCompC: the comprehension category with unit was already described in example4.1.6 (iv). The type theoretical product and strong sum provide the appropriatecategorical structure.4.3.3. Extended example (Closure model).The following exposition is based on Scott [1976] and Barendregt & Rezus [1983];Taylor [1985] is also of relevance. We consider the complete lattice P!. The setof Scott-continuous functions [P! ! P!] comes equipped with continuous mapsF : P! ! [P! ! P!] and G : [P! ! P!] ! P! satisfying F � G = id andG � F � id. As usual we write x � y for F (x)(y) and �x : : : for G(� : : :). Further,



68 CHAPTER 4. MORE FIBRED CATEGORY THEORYwe use that there is a continuous surjective pairing [�;�] :P! � P! ! P! withprojections �; �0.A closure is an element a 2 P! satisfying a � a = a � I , where a � a =�x: a � (a � x) and I = �x:x. Closures form a category CL by the stipulation that amorphism u : a! b between closures is an element u 2 P! satisfying b � u � a = u(or equivalently, b � u = b and u � a = u). One easily veri�es that CL is a CCC witht = �x: !; a � b = �x: [a � �x; b � �0x] and ba = �x: b � x � a. For a 2 CL we writeim(a) = fa � x j x 2 P!g; then im(a) = fx 2 P! j a � x = xg and im(ba) = CL(a; b).A crucial result is the existence of a closure 
 with im(
) = Obj(CL), i.e.a 2 CL , 
 � a = a. It gives us the possibility to de�ne a split �brationp :Fam(CL) ! CL of \closure-indexed closures". Objects of Fam(CL) are arrowsX : a! 
 in CL. An arrow (X : a! 
)! (Y : b! 
) is a pair (u; �) with u : a! bin CL and � 2 P! an \a-indexed family of morphisms". The latter means that � �a = � and � � z :X � z ! Y � (u � z) in CL (for all z 2 P!). Here we use that X �z 2im(
) = Obj(CL). The �rst projection p :Fam(CL)! CL is then a split �bration;it has a terminal object via 1 :CL ! Fam(CL) by a 7! (�xy:! : a ! 
). A rightadjoint P0 :Fam(CL)! CL to 1 is described by (X : a! 
) 7! �z:[a��z;X ��z��0z].In this way one obtains a (full) comprehension category with unit Fam(CL)! CL!.For X : a! 
 and Y :P0X ! 
 one de�nes �X :Y; �X :Y : a! 
 by�X :Y = �zv: [X � z � �v; Y � [a � z;X � z � �v] � �0v]�X :Y = �zvw: Y � [a � z;X � z � w] � (v � (X � z � w)):This yields a (split) CCompC.Finally it is worth noticing that the �bration p :Fam(CL) ! CL has a (split)generic object. Hence this example supports a \type of all types".4.3.4. Extended example (Separated families in a topos).Let B be a topos with a topology j : 
 ! 
. For every object A 2 B, the slicecategory B=A is a topos again; further there is a functor A� :B ! B=A given byB 7! [� :A�B ! A]. In B=A, one has that A�(
) forms a subobject classi�er andthat A�(j) :A�(
) ! A�(
) is a topology. It is not hard to verify that for a monicm in B=A one has0B@ X 0#A 1CA m�! 0B@ X#A 1CA is A�(j)-closed/dense. , X 0 m�! X is j-closed/dense.The full subcategory SF j(B) ,! B! of \separated families" is de�ned by0B@ X#A 1CA 2 SF j(B) , 0B@ X#A 1CA is A�(j)-separated in B=AWe claim that the inclusion SF j(B) ,! B! is a CCompC. This follows from thefollowing four results.

4.3. CLOSED COMPREHENSION CATEGORIES 69(i) The composite SF j(B) ,! B! cod! B is a �bration.(ii) The inclusion SF j(B) ,! B! is a full comprehension category with unit.(iii) The comprehension category SF j(B) ,! B! has strong sums.(iv) The �bration SF j(B)! B is complete.Ad (i). For a family 0B@ X#fA 1CA and a map u :B ! A, let's denote the pullback cone byB u�(f) � u�(X) u0�! X . We show that if 0B@ X#fA 1CA is separated, then also u�0B@ X#fA 1CA.Therefore, assume one has a dense monic m and a pair ';  with ' � m =  � m in0B@ Y 0#g0B 1CA > m > 0B@ Y#gB 1CA' ? ? 0B@ u�(X)#B 1CAIn order to obtain ' =  , it su�ces to show that u�(f) � ' = u�(f) �  andu0 � ' = u0 �  (using the pullback in B). The �rst equation obviously holds; thesecond one follows by moving to the �bre B=A. There one has0B@ Y 0#u�g0A 1CA > m > 0B@ Y#u�gA 1CAu0 � ' ? ?u0 �  0B@ X#fA 1CAAd (ii). Obvious, since the identity families are separated.Ad (iii). For separated families 0B@ X#fA 1CA and 0B@ A#uB 1CA the composite 0B@ X#u�fB 1CA is alsoseparated: given a dense monic m into 0B@ Y#gB 1CA and two arrows ';  : 0B@ Y#gB 1CA !0B@ X#u�fA 1CA, one obtains f � ' = f �  = h, say, by using that the family u is



70 CHAPTER 4. MORE FIBRED CATEGORY THEORYseparated in B=B. Hence we can consider ';  as maps from the family h to f inB=A. This yields ' =  .Ad (iv). For a separated family 0B@ X#fA 1CA and an arbitrary map u :A ! B, the family0B@ �u(X)#�u(f)B 1CA is separated again. This result follows by an easy argument whichmakes use of the adjunction u� a �u. Fibred �nite products are obtained in theobvious way.The full subcategory Orth(A) ,! B! of families orthogonal to an object A givesrise to a similar situation, see Hyland, Robinson & Rosolini [1991]. One shouldverify that the comprehension category Orth(A) ,! B! has strong sums, i.e. thatorthogonal families are closed under composition.4.3.5. Extended example (Split topos models).Let B be a topos. In a straightforward way, it gives rise to two CCompC's, namelyId :B! ! B! (see 4.3.2 (i)) and the inclusion of Sub(B) ,! B! of monic arrows.The point of this example is to show that there are two split CCompC's which areequivalent (over B) to those mentioned above. In split structures there is no needto deal with nasty mediating isomorphisms; this make the e�ort worthwile. Theessential point in the construction below is to replace substitution via pullbacks bysubstitution via composition.In the topos B we begin by choosing for every map ' with codomain 
 a \kernel"f'g such that the following diagram is a pullback,� > f'g > A! ? ?'t > - 
where > : t! 
 is the subobject classi�er.(i) Let F(B) be the category of \families of B". Objects are maps X :A� A0 !
. In informal notation, X can be understood as an A-indexed collection fXaga2A,where Xa = fa0 2 A0 j X(a; a0) = >g. A morphism from X :A� A0 ! 
 to
4.3. CLOSED COMPREHENSION CATEGORIES 71Y :B �B0 ! 
 in F(B) is a pair (u; f) forming a commuting square as follows.� f - �_ _fXg _ _fY gA� A0 B �B0� ? ?�A u - BA functor q :F(B)! B is de�ned by [A� A0 X�! 
] 7! A and (u; f) 7! u. It is asplit �bration: for u :A! B and Y :B � B0 ! 
 one can take u�(Y ) = Y � u� id :A�B0 ! 
. As indicated by the above diagram, one obtains a full comprehensioncategory Q :F(B) ! B! by [X :A�A0 ! 
] 7! [� � fXg]. The idea of using aninclusion followed by a projection as \display maps" occurs also in Cartmell [1985],but there only for the category of sets. The notational convention for comprehensioncategories (cf. 4.1.2) leads us to denote the domain of fXg by Q0(X). Informally,Q0(X) = _Sa2A: Xa and for (u; f) :X ! Y one has f = ffa :Xa ! Yu(a)ga2A.The functor Q :F(B) ! B! yields an equivalence F(B) ' B! over B:for f :C ! A let f 0 :A� C ! 
 be the character of the the monic hf; idi. ThenQ(f 0) �= f in B=A.This equivalence induces a CCompC-structure for Q :F(B)! B!. But sincewe want Q to be a split CCompC, the unit, product and sum have to be constructedexplicitly. Unit and sum are straightforward, but products are rather involved.The unit is simply obtained by A 7! [> � �0 :A� t! 
].As to sums, for objects X :A� A1 ! 
 and Y :Q0(X)�A2 ! 
 one obtains�X :Y : A� (A1 �A2)! 
 as the character below.Q0(Y ) >fY g> Q0(X)�A2 >fXg � id> (A�A1)�A2 �= A� (A1 � A2)? ?�X :Yt > - 
In order to de�ne products, we recall that the topos B has for every objectA 2 B a partial map classi�er �A : A�! ~A with the property that for every monicB0�!B and map f :B0 ! A there is a unique ~f :B ! eA forming a pullback as



72 CHAPTER 4. MORE FIBRED CATEGORY THEORYfollows. B0 > > Bf ? _ ~fA > �A > eAThis construction is used to form the following arrows (where X;Y are as above).Q0(X) >fXg> A� A1 Q0(Y ) >� > gQ0(Y )id ? ?gidQ0(X) QY ? ?gQYQ0(X) >� > gQ0(X) Q0(X) >� > gQ0(X)Q0(X) > � > gQ0(X) Q0(Y ) >fXg � id � fY g> (A�A1)� fA2�0 � fXg? ?X id ? ?YA1 > � > fA1 Q0(Y ) > � > gQ0(Y )Finally, we put� = h� � id; ev � �0 � idi : (A� (A1 ) fA2))�A1 �! (A�A1)� fA2f1 = �(X � gidQ0(X)) � � : A� (A1 ) fA2) �! (A1 ) fA1)f2 = �(X � gQY � Y � �) : A� (A1 ) fA2) �! (A1 ) fA1):One can form the equalizer ��!A � (A1 ) fA2) of f1; f2 and �X :Y : A � (A1 )fA2) ! 
 as its characteristic. Informally one has f1(a; �) = �a1 2 A1: a1 2 Xaand f2(a; �) = �a1 2 A1: �(a1) 2 Y(a;a1). The construction is so involved because inorder to get \Beck-Chevalley" on-the-nose, the dependence on X;Y may only occurin the maps f1; f2.(ii) A second CCompC P :L(B)! B! can be described more easily. The cate-gory L(B) | containing the logic of B | has maps ' :A ! 
 as objects. A mapfrom ' :A! 
 to  :B ! 
 in L(B) is a pair (u; f) making� f - �_ _f'g _ _f gA u - B

4.3. CLOSED COMPREHENSION CATEGORIES 73commute. This yields a split full comprehension category P :L(B) ! B! by ' 7!f'g. Notice that the splitting u�( ) =  � u is again obtained by composition.Using 4.1.2, we now write P0(') for the domain of f'g. The �bre categories arepartial orders: one has a vertical map '!  i� f'g � f g i� ')  = >.Obviously, a unit for P is given by A 7! [>A = > � ! :A! 
].For ' :A! 
 and  :P0(')! 
 one obtains 9': : A! 
 inP0( ) >f g> P0(') >f'g > A? ?9': t > - 
For the product 8': :A! 
 we need the following standard maps 8C ; �C .t >�(> � !)> 
C C >hid; idi> C � C? ?8C ? ?�Ct > - 
 t > - 
We then put 8': = 8P0(') � �( ^ ) where ^ :A�P0(') ! 
 is described by ^ =(�A � h�; f'g � �0i)) ( � �0). This completes the example.We proceed by investigating properties of closed comprehension categories. The�rst two results are about change-of-base and localization described in 4.1.11 (ii)and (iv).4.3.6. Proposition. (i) P is a CCompC ) r�(P) is a CCompC.(ii) Given a morphism P ! P 0 of CCompC's; a morphism of �brations r ! r0determines a morphism of CCompC's r�(P)! r0�(P 0).Proof. (i) Let P be a full comprehension category with unit, products and strongsums. r�(P) is again full and has a unit as remarked in 4.1.11 (ii); it admits productsand strong sums by 4.2.12 (i).(ii) By 4.2.12 (ii). 24.3.7. Proposition. Let P be a CCompC.(i) For every object A in the basis, P [A] is a CCompC.(ii) For every morphism B ! A in the basis, there is a morphism P [A]! P [B]of CCompC's.



74 CHAPTER 4. MORE FIBRED CATEGORY THEORYProof. Straightforward but laborious. 24.3.8. Lemma. Let P :E ! B! be a CCompC. Then considered as a functor, Ppreserves units, sums and products.Proof. Units are preserved by lemma 4.1.10 (iii) and sums are preserved becausethey are strong: P(�E:E 0) �= PE � PE 0 = �PE:PE 0 in B=pE. As to products weobtain for u :A! pE in B,B=pE (u; P(�E:E 0) ) �= EA ( 1A; u�(�E :E 0) )�= EA ( 1A; �u�(E):(PE#(u))�(E 0) ); by Beck-Chevalley�= EP0u�(E) ( (Pu�(E))�(1A); (PE#(u))�(E 0) )�= EP0u�(E) ( 1Pu�(E); (PE#(u))�(E 0) )�= B=P0E (PE#(u); PE 0 )in which the pullback functor PE# comes from 4.1.7. The �rst and last step holdby 4.1.10 (ii). 2The above lemma shows how the CCompC-structure de�ned \on the top level"in terms of (�bred) adjunctions shows up in the basis for display maps. In this wayone can avoid rather cumbersome formulations of unit, product and sum for displaymaps.4.3.9. Lemma. (i) Let P be a CCompC; the �bration involved p = cod � P is a�bred CCC.(ii) A morphism of CCompC's induces a morphism between the corresponding�bred CCC's.Proof. (i) Cartesian products are given by E � E 0 = �E:PE�(E 0) and exponentsby E ) E 0 = �E :PE�(E 0). In fact, strongness of the sums is not needed to obtainthis, see lemma 2.2.8.(ii) Straightforward. 2By looking at the �bre above the terminal object, one obtains from the previousresult, a forgetful functor from closed comprehension categories to CCC's. Thisobservation is the basis for the next result.4.3.10. Theorem. Let B be a CCC; ConsB :B ! B! is then the free CCompCgenerated by B. The unit here is an isomorphism.Proof. The unit �B :B! Bt is given by B 7! (t; B) and u 7! (id; u � �0). SupposeQ :D! A! is a CCompC with terminal t0 2 A and H :B! Dt0 is a functor which
4.3. CLOSED COMPREHENSION CATEGORIES 75preserves the CCC-structure. We constructB L - D?ConsB=) ? ?Q=) ? 
 : Q0L ��! K(ConsB)0B K - Aforming an (up-to-isomorphism) unique morphism of CCompC's with L � t ��B �= H . In fact, we can only take KB = Q0(HB) | since KB �= K(t � B) =K(ConsB)0(t; B) �= Q0 L�B(B) �= Q0(HB). Similarly, we have to take L(B;B0) =! �KB(HB0), because L(B;B0) = L(! �B(t; B0)) �= ! �KB L�B(B0) �= ! �KB(HB0). Thenindeed L � t � �B �= H . One easily veri�es that Q0 :Dt0 ! A preserves �nite prod-ucts; hence we obtain K(B � B0) �= KB � KB0 �=� Q0(! �KB(HB0)) = Q0L(B;B0);the isomorphism �=� is there because the product KB �KB0 can be obtained as apullback. We �nish by showing that L preserves products.L(�(B;B0):(B �B0; B00)) = L(B;B0 ) B00)= ! �KB (H(B0 ) B00))�= ! �KB (HB0)) ! �KB (HB00)�= �L(B;B0):Q(L(B;B0))� ! �KB(HB00)�= �L(B;B0): ! �Q0L(B;B0) (HB00)�= �L(B;B0): 
 �(B;B0) ! �K(B�B0) (HB00)�= �L(B;B0): 
 �(B;B0) L(B �B0; B00): 2At the end of the next section we shall be able to establish two similar freeconstructions. We close this section with the description of categorical versions ofthe type systems based on the \Propositions as Types" setting.4.3.11. De�nition. (i) A �P1-category is a CCompC.(ii) A �Pi-category is a CCompC with �bred equalizers. A morphism of �Pi-categories is a morphism of CCompC's which preserves the �bred equalizers.(iii) A ��-category is a CCompC P :E ! B! provided with an object 
 2 Esuch that p
 2 B is terminal and p = cod � P has a generic object above P0
 2 B.Examples of �Pi-categories are 4.3.2 (i), (iv) and 4.3.4. Also the term model ofthe calculus �Pi yields an example, analogously to 4.3.2 (vi) using lemma 2.2.14.These �Pi-categories are categorical versions of Martin-L�of's type theory.The closure model in 4.3.3 is a ��-category. Such categories are logically in-consistent in the sense that every proposition is inhabited. This result is known asGirard's paradox , see Girard [1972]. In Barendregt [199?] one can �nd a proof usingonly �'s and in Troelstra & van Dalen [1990] or Jacobs [1989] a proof which makesuse of strong �'s. Pitts & Taylor [1989] contains a similar inconsistency result whichis obtained with identity types. It applies to �Pi-categories with a generic object.



76 CHAPTER 4. MORE FIBRED CATEGORY THEORY4.4 Category theory over a �brationIn the �rst chapter it was explained how a �bration forms a category �bred overa base category. Now we go one step up and consider �brations as bases. This isnot as bad as it may seem, since it turns out that one can reduce matters to theprevious level. Lemma 1.1.5 lies at the basis of all this.The �rst part of this section (up to 4.4.13) is a slightly extended version of the�fth section in Jacobs, Moggi & Streicher [1991].4.4.1. A �bration as a basis. Suppose a cartesian functor p between �brationsq; r is given as in the following diagram.E p - B@@@q @@@R 	��� r���AEvery object A 2 A determines a \�brewise" functor p � A :EA ! BA by restric-tion. One calls p a �bration over r if all these �brewise functors are �brations andreindexing functors preserve the relevant cartesian structure (similarly to e.g. �bredcartesian products). More explicilty, p is a �bration over r if both� for every A 2 A, p � A is a �bration;� for every u :A ! A0 in A and every reindexing functor u� :BA0 ! BA, thereis a reindexing functor u# :EA0 ! EA forming a morphism of �brations:EA0 u# - EAp � A0 ? ?p � ABA0 u� - BAThis rather complicated notion is equivalent to a more simple one; namelyp is a �bration over r , p is a �bration itself.To verify the implication ((), notice that p � A can be obtained from p by change-of-base. This yields that f in EA is p � A-cartesian i� f is p-cartesian. The rest isnot di�cult. As to the implication ()), observe that if p is a �bration over r, thenf in E is p-cartesian i� f can be written as g � � where g is q-cartesian and � isp � A-cartesian | with A = q(domf).

4.4. CATEGORY THEORY OVER A FIBRATION 77Next, consider a diagram, E F - E0@@@ p@@@RAAAAAAAq AAAAAAAU 	���p0 ����������� q0��
�����B?rAin which r; q; q0; p and p0 are �brations with q = rp, q0 = rp0 and F is a cartesianfunctor from q to q0. One calls F a cartesian functor from p to p0 over r if both� for every A 2 A, F � A is cartesian form p � A to p � A0;� p0 � F = p.As before, one can show thatF is cartesian p! p0 over r , F is cartesian p! p0 in Fib(B):In this way, one obtains a category Fib(r) of �brations and cartesian functors overr. As shown, one has Fib(r) = Fib(B). It is left to the reader to formulate whatnatural transformations over r are and that the previous identi�cation also concernsthe 2-structure. Hence adjunctions over r :B ! A are adjunctions over B (i.e. inthe 2-category Fib(B)). In order to get an even better picture, the reader may wantto verify that for F : p ! p0 in Fib(B) as above and G : p0 ! p one has that F a Gis an adjunction over r i� both� for every A 2 A, there is �bred adjunction F � A a G � A in Fib(BA);� for every morphism A! A0 in A there is a \pseudo map" of adjunctions fromF � A0 a G � A0 to F � A a G � A (see Jacobs [1990] for the de�nition).As a consequence we have for example that p :E ! B is a \CCC over r" i� p isa �bred CCC i� every p � A is a �bred CCC and reindexing functors form mapsbetween these.The above exposition is based on work of J. B�enabou; see also Pavlovi�c [1990].Next, we proceed to describe (closed) comprehension categories over a �bration.The intention is to obtain this structure �brewise, preserved by reindexing functors.



78 CHAPTER 4. MORE FIBRED CATEGORY THEORY4.4.2. De�nition. Let r :B ! A be a �bration. A functor P :E ! B! is acomprehension category over r if P is a comprehension category which restricts toa cartesian functor in E P - V (B)@@@rp @@@R 	��� r!���Awhere r! is the \arrow �bration" described at the end of 1.1.2.4.4.3. Lemma. Let E p! B r! A be �brations and P :P0 _�! p : rp! r a 2-cell inFib(A). Then P is a comprehension category over r i� both� for every A 2 A, P � A :EA ! (BA)! is a comprehension category;� for every u :A ! A0 and u� :BA0 ! BA, there is a u# :EA0 ! EA forming amorphism of comprehension categories P � A0 ! P � A.Moreover, P is a full comprehension category i� all P � A's are full.Proof. By the observations about cartesian arrows in 1.1.5 and 4.4.1 and the factthat P is a cartesian functor. 24.4.4. Examples. (i) Constant comprehension categories as in 4.1.3 can also bedescribed over a �bration p :E ! B with �bred �nite products. Let T � Obj(E)be such that for every cartesian f :E 0 ! E one has E 2 T ) E 0 2 T . The fullsubcategory of E determined by T then yields a full \sub�bration" of p. Let's writeE==T for the category with objects (E;X) whereE 2 E andX 2 T satisfy pE = pX .Morphisms (f; g) : (E;X)! (E 0; X 0) in E==T are maps f :E ! E 0 and g :E �X !X 0 in E with pf = pg. A (full) comprehension category ConsT :E==T ! E! over pis obtained by (E;X) 7! � :E �X ! E.In the special case that T = Obj(E), we have written E for E==T in 1.2.7. The�bration was denoted there by p :E! E. Let's write in this special case P :E! E!for the comprehension category de�ned above (i.e. P(E;E 0) = � :E �E 0 ! E).If B is a category with �nite products, the construction above applied to the�bration B! 1 (the terminal category) conincides with the one given in 4.1.3.(ii) Let B be a category with pullbacks. The (obvious) functor cod! :B!! !B! forms a �bration over cod :B! ! B. One obtains a full comprehension categoryB!! �! B!! over cod by [ v! u!] 7! [(id; v) :u � v ! u] in B!.(iii) Let p :E ! B be a LEX �bration (i.e. a �bration with �bred �nite limits).As already mentioned at the end of 1.2.7, the functor cod :V (E)! E is a �bration
4.4. CATEGORY THEORY OVER A FIBRATION 79with (f; g) :� ! � cartesian in V (E) i� (f; g) is a pullback in E. Hence we obtaina full comprehension category over p:V (E) dom+ Idcod -- E@@@p! = p � cod @@@R 	��� p���BNotice that V (B!) �= B!!. This example generalizes the previous one.4.4.5. De�nition. Let p :E ! B and r :B ! A be �brations; p forms a compre-hension category with unit over r if there is� a terminal object functor 1 :B! E for p in Fib(B);� a �bred right adjoint P0 of 1 : r ! rp in Fib(A).4.4.6. De�nition. A closed comprehension category over a �bration r is a fullcomprehension category with unit P over r which admits P-products and strongP-sums; moreover, r is required to have a �bred terminal object.The next notion covers a special case.4.4.7. De�nition. Let p :E ! B be a LEX �bration; p will be called a �bredLCCC if the comprehension category V (E) ,! E! over p is closed.In that case every �bre category EA is an LCCC and reindexing functors preservethe LCCC-structure, see lemma 4.4.3.4.4.8. Examples. (i) The �rst example from 4.4.4 is of interest again; it givesrise to a generalization of the bi-implication obtained in 4.3.2 (ii). For a �brationp :E! B with �nite products one hasP :E! E! is a CCompC over p , p is a �bred CCC.The implication ()) goes as follows. P is a CCompC over p ) P is a CCompC) p = cod � P is a �bred CCC ) p is a �bred CCC, using the change-of-base situation p ! p from 1.2.7. As to the reverse implication, one de�nes�(E;E0):(E �E 0; E 00) = (E;E 0 �E 00) and �(E;E0):(E �E 0; E 00) = (E;E 0 ) E 00).(ii) One easily veri�es that a category B is an LCCC if and only if cod :B! ! Bis a �bred LCCC. This follows from the fact that B is an LCCC i� all its slicecategories B=A are LCCC's.



80 CHAPTER 4. MORE FIBRED CATEGORY THEORY(iii) The family �bration satis�esFam(C)! Sets is a �bred LCCC , C is an LCCC.The implication (() follows from a pointwise construction. The reverse implicationfollows from the fact that C is isomorphic to the �bre above the terminal object.(iv) Streicher [1990] investigates an LCCC B and a collection of \display maps"D satisfying the conditions (Term), (Pb) and (Sub-lcc), see loc. cit. This preciselymeans that the �bration cod :B!(D) ! B is a �bred LCCC, where B!(D) is thefull subcategory of B! with maps f 2 D as objects.(v) The �bration Fame�(M)! !-Set from 1.2.12 is a �bred LCCC. Since M isan LCCC itself, this result follows from a pointwise construction.A �bration is an LCCC if and only if the all �bres are LCCC's and reindexingpreserves the LCCC structure. Equivalently, if all slices of the �bres are CCC'sand reindexing preserves �bred �nite limits and local exponentials. The next resultcontains another characterization; it is based on a suggestion by I. Moerdijk.4.4.9. Proposition. Let p :E ! B be a �bration. For every object E 2 E aboveB 2 B one obtains a \slice �bration" p=E :E=E ! B=B. Thenp is a �bred LCCC , every p=E is a �bred CCC.Proof. Because for E 2 E and u :A ! pE in B one has an isomorphism (naturalin u) between the �bre of the slice (E=E)u and the slice of the �bre (EA)=u�(E).Considering CCC-structure preserved by reindexing yields the desired result. 2In the next construction, a generalization of p from 1.2.7 is obtained by usingstrong sums instead of cartesian products.4.4.10. Proposition. Let P :E ! B! be a closed comprehension category. Bychange-of-base, we form the �bration ~p : eE! E.eE = E �P0;p E - E~p ? ?pE P0 - BThen(i) ~p : eE! E forms part of a CCompC eP over p;

4.4. CATEGORY THEORY OVER A FIBRATION 81(ii) there is a \pseudo" change-of-base situation (in which 1 is terminal objectfunctor), E - eEp ? ?~pB 1 - EBy \pseudo" we mean that the �bration obtained by performing change-of-base on ~palong 1 yields a �bration which is equivalent instead of isomorphic to p.Proof. (i) One de�nes eP : eE ! E! by (E;E 0) 7! [the projection �E:E 0 ! E]; itis the unique vertical map f with P0f = PE 0 � P0(inE;E0)�1, using the morphismdescribed in lemma 4.2.9 (i) and the fact that P is full. One uses that these in-morphisms are cocartesian in order to de�ne eP on morphisms. The rest is laboriousbut straightforward.(ii) Easy. 2The constructions p and ~p provide two ways to obtain closed comprehensioncategories over p. Later on in this section we shall see that both can be understoodas free constructions. First we show that quanti�cation for the base �bration p canbe lifted to p and ~p. One gets strongness of the lifted sums for free.4.4.11. Lemma. Let p :E! B be a �bred CCC and Q :D! B! a comprehensioncategory. Thenp admits Q-products/sums ) P admits p�(Q)-products/strong sums.Proof. Assume adjunctions �D a QD� a �D in E; we seek 9(E;D) a p�(Q)(E;D)� a8(E;D) in E. The product functor 8(E;D) :EQD�(E) ! EE de�ned by (QD�(E); E 0) 7!(E;�D:E 0) yields the desired result. The analogous de�nition 9(E;D)(QD�(E); E 0) =(E;�D:E 0) does not work immediately; one has to use the Frobenius isomorphism� : �D:(QD�(E)�E 0) ��! E � �D:E 0 from lemma 4.2.9 (ii).Strongness follows from appropriate use of this Frobenius isomorphism. Firstone veri�es that P0(in(E;D);(QD�(E);E0)) = QD(E) � inD;E0 ; then one can assume acommuting diagram of the formQ�(E)�E 0 QD(E) � inD;E0- E � �D:E 0f ? ?gE1 � E2 � - E1:



82 CHAPTER 4. MORE FIBRED CATEGORY THEORYLet f 0 : QD�(E) � E 0 �! QD� (pg)� (E1 � E2) be the vertical part of f . It givesrise to a transpose bf 0 : �D:(QD�(E)�E 0) �! (pg)�(E1�E2) and thus one obtainsh = pg(E1 � E2) � bf 0 � ��1 : E � �D:E 0 �! E1 � E2 with the required properties.24.4.12. Lemma. Let P :E! B! be a closed comprehension category and Q :D!B! an arbitrary comprehension category. Thenp admits Q-products/sums ) eP admits p�(Q)-products/strong sums.Proof. Let's assume adjunctions �E a PE� a �E and 9D a QD� a 8D in E; weintend to construct e9(E;D) a p�(Q)(E;D)� a e8(E;D) in eE. This is established bye8(E;D):(QD�(E); E 0) = (E;8PE�(D):��(E 0)), where � is a mediating isomorphism inB. A Similar de�nition works for sums. Strongness is obtained as in the previ-ous proof, this time using a \generalized Frobenius" isomorphism 9D:�QD�(E):E 0 �=�E:9PE�(D):��(E 0): 2Remember from lemma 4.3.9 that there is a forgetful functor from CCompC's to�bred CCC's. It is used in the next result.4.4.13. Theorem. Let p :E ! B be a �bred CCC; the construction P :E ! Eyields the free CCompC generated by p.(P is described in 4.4.4 (i) and 4.4.8 (i).)Proof. A unit p! p = cod � P is given by the change-of-base situation in 1.2.7. LetQ :D ! A! be a CCompC and (K :B ! A; L :E ! D) be a morphism of �bredCCC's from p to q = cod � Q. We have to construct an (up-to-isomorphism) uniquemorphism of CCompC's:E H - D?P=) ? ?Q=) ? 
 : Q0H ��! GP0E G - AAs in the proof of 4.3.10 one is forced to take GE = Q0(LE) and H(E;E 0) =Q(LE)�(LE 0). The main ingredient of the remaining veri�cations is that Q :D !A! preserves (�bred) cartesian products, which follows from lemma 4.1.10 (ii). 24.4.14. Proposition. Let P :E ! B! be a �Pi-category, i.e. a CCompC with�bred equalizers.

4.4. CATEGORY THEORY OVER A FIBRATION 83(i) The functor eP : eE! E! described in 4.4.10 is a cartesian functor ineE eP - V (E)@@@~p @@@R 	��� cod���Eand forms a morphisms of comprehension categories from eP to the inclusion V (E) ,!E!.(ii) eP is an equivalence in the above diagram.Proof. (i) Obvious, since all projections eP(E;E 0) are vertical.(ii) Since eP is a CCompC one has that eP is a full and faithful functor. Henceit su�ces to de�ne for a vertical � :E 0 ! E in E an object (E;E 00) 2 eE witheP(E;E 00) �= � vertically. This is done by a standard construction, see e.g. Seely[1984]. In informal type theoretical notation, we construct the type ��1(x) =�y:E 0: IE(x; �(y)) depending on x : E. In category theoretical formulation, weform the following pullback in the �bre above P0E.��1(E)	������ @@@@@@R1P0E PE�(E 0) - E 0@@@varE @@@R 	��� PE�(�)��� ?�PE�(E) - Ewhere varE is the unique vertical map with PE(E) � varE = "E : 1P0E ! E.One can then show that P(��1(E)) �= P0(�) in B=P0E. It follows readily thateP(E;��1(E)) �= � in EA=E: 24.4.15. Corollary. Let P be a �Pi-category; cod � P is then a �bred LCCC. 2The functor Fam(Sets) ! Cat! from 4.3.2 (iv) is a �Pi-category. Indeed the�bre categories SetsC are LCCC's (even more, they are toposes). The term modelof the calculus �Pi (i.e. Martin-L�of's type theory) also forms a �Pi-category. As all�bres, the one above the terminal object (i.e. the empty context) is an LCCC. Seely[1984], section 3, constructs only this �bre category as a term model.From the corollary above one obtains a forgetful functor from �Pi-categories toLCCC's by looking at the �bre above the terminal object. This forms the back-ground for the next result.



84 CHAPTER 4. MORE FIBRED CATEGORY THEORY4.4.16. Theorem. Let B be an LCCC; the identity functor on B! is then the free�Pi-category generated by B. The unit here is an isomorphism.Proof. The unit �B :B ! B=t is described by B 7! !B and u 7! u. A �Pi-categoryQ :D ! A! together with a morphism H :B ! Dt0 of LCCC's gives rise to an(up-to-isomorphism) unique morphism of �Pi-categories:B! L - D?Id=) ? ?Q=) ? 
 : Q0H ��! K domB K - AWe put KB = Q0(HB), since KB = K dom(!B) �= Q0 L (!B) = Q0 L�B (B) �=Q0(HB). Furthermore, we take L(f :B0 ! B) = (Hf)�1(HB), where (�)�1 isdetermined in the proof of proposition 4.4.14 (ii). We are forced to proceed like thissince f �= (�B(f))�1(�B(B)): 24.5 Locally small �brationsIn this last section of chapter 4 so-called \locally small" �brations will be investi-gated. These are of interest in our research because of� connections with comprehension categories, see 4.5.4 and 4.5.5;� connections with small �brations, see 4.5.8;� their role in a �bred version of an adjoint functor theorem, see 4.5.11.The results are used only in section 5.2. We stress that the material presentedbelow is standard (except perhaps 4.5.4 and 4.5.10).The notion to be introduced next comes from B�enabou [1975], see also B�enabou[1985]. A few di�erent formulations are available. We start with the one belowbecause it is clearly intrinsic.4.5.1. De�nition. A �bration p :E ! B is locally small if for each A 2 B andE;E 0 2 EA one can �nd two morphisms � :E0 ! E; �0 :E0 ! E 0 in E with �cartesian over p(�0) such that for every pair f :D! E; f 0 :D! E 0 with f cartesianover p(f 0), there is a unique � :D ! E0 with � � � = f and �0 � � = f 0. In a
4.5. LOCALLY SMALL FIBRATIONS 85diagram, D � > E0JJJJJf 0 JJJJJ^

@@@ f@@@R 	���� ����




 �0




EE 0This � is then necessarily cartesian. A suggestive notation for the arrow p(�) = p(�0)in B is �0 : HomA(E;E 0)! A.We immediately mention an equivalent formulation; it involves representabilityof the hom-sets in the �bres and thus explains the name \locally small". The proofis easy and left to the reader.4.5.2. Lemma. Let p :E ! B be a cloven �bration; p is locally small if and onlyif for each A 2 B and E;E 0 2 EA, the functor (B=A)op ! Ens given byB u! A 7! EB (u�(E); u�(E 0) )is representable | where Ens is a suitably large universe.More explicitly, a morphism �0 : HomA(E;E 0)! A in B together with a vertical�1 : ��0(E) ! ��0(E 0) in E should exist such that for every u :B ! A in B andvertical f :u�(E) ! u�(E 0), there is a unique v :B ! HomA(E;E 0) making thefollowing two diagrams commute.B v - HomA(E;E 0) u�(E) > ��0(E)@@@u @@@R 	��� �0��� f ? ?�1A u�(E 0) > ��0(E 0)where the dashed arrows are the unique ones over v: 24.5.3. Examples. (i) The �bration Fam(C)! Sets is locally small i� C is locallysmall (i.e. has small hom-sets). As to the if-part, for I-indexed collections fXig andfX 0ig one �nds appropriate maps �0 : _Si2I :C(Xi; X 0i)! I in Sets and �1 : fXig(i;f) !fX 0ig(i;f) in Fam(C) over _Si2I :C(Xi; X 0i), the latter described by �(i; f): f .The only-if-part is obtained by looking at the �bre above the terminal objectt = f;g in Sets. For X;X 0 2 C one obtains a set A as domain of the �0 belongingto fXg; fX 0g considered as objects of Fam(C)t. It satis�esA �= Sets=t (idt; �0) �= Fam(C)t(fXg; fX 0g) �= C(X;X 0):



86 CHAPTER 4. MORE FIBRED CATEGORY THEORY(ii) Let B be a category with �nite limits. Thencod :B! ! B is locally small , B is an LCCC.For u :B ! A and f; f 0 2 B=A one hasB=B (u�(f); u�(f 0)) �= B=A (�u:u�(f); f 0) �= B=A (u� f; f 0):Hence the LHS has a representing object i� the RHS has one, i.e. cod is locally smalli� all slices B=A are CCC's.(iii) Every small �bration is locally small. For a �bration of the form P(C)! Bwhere C is internal in B, one takes for A 2 B and objects X;X 0 :A! C0 above A,the following pullback. HomA(X;X 0) �1 - C1�0 ? ?h@0; @1iA hX;X 0i- C0 � C0We presuppose that all such pullbacks exist in the base category. It is left to thereader to check that being locally small is an essentially categorical property, i.e.one which is preserved under equivalence.Part of the relevance of locally small �brations lies in their relation to compre-hension categories. The next result is as one would expect, given the idea behindcomprehension categories.4.5.4. Proposition. Let p :E ! B be a locally small �bration. There is then a\Hom"-comprehension category of the following form.� P - B!@@@pop � p @@@R 	��� cod���BSee 1.1.11 for the opposite of a �bration.Proof. The domain of pop � p is the category with pairs E;E 0 where pE = pE 0 asobjects. One takes P(E;E 0) = �0 : HompE(E;E 0)! pE. Arrows (E;E 0)! (D;D0)
4.5. LOCALLY SMALL FIBRATIONS 87are pairs [f1; f2] :E ! D in E(op) and g :E 0 ! D0 in E with pf1 = pg = u, say. Weconstruct ��0u�(D) - u�(D) f1 - D��0(f2) ? f2 ? ������ [f1; f2]������*��0(E) - E�1 ?��0(E 0) - E 0��0(g0) ? g0 ? HHHHHH gHHHHHHj��0u�(D0) - u�(D0) - D0Hence one obtains a vertical arrow (u � �0)�(D) ! (u � �0)�(D0). It determines aunique map v : HompE(E;E 0) ! HompD(D;D0) with P(D;D0) � v = u � P(E;E 0).Hence we put P([f1; f2]; g) = (u; v): 2We recall from section 4.1 that a comprehension category has a unit if the �bre-wise global sections functors are representable. In the presence of �brewise expo-nents, one easily sees that this is equivalent to representability of �bred hom-sets.This is the content of the next result, see also Pavlovi�c [1990].4.5.5. Proposition. Let p :E! B be a �bred CCC. Thenp is locally small , there is a comprehension category with unitP :E! B! such that p = cod � PProof. Let 1 :B! E describe the �bred terminal object.()) For E 2 E above A 2 B, put PE = �0 : HomA(1A;E)! A in B. ThenE(1B;E) �= _[u :B!A:EB (1B; u�(E) )�= _[u :B!A:EB (u�(1A); u�(E) )�= _[u :B!A:B=A (u; PE)�= B(B; P0E) where P0E = dom(PE):(() For E;E 0 2 E above A 2 B one has for u :B ! A in B,EB (u�(E); u�(E 0) ) �= EB (1B; u�(E)) u�(E 0) )�= EB (1B; u�(E ) E 0) )�= B=A (u; P(E ) E 0) ) see 4.1.10 (ii).



88 CHAPTER 4. MORE FIBRED CATEGORY THEORYHence P(E ) E 0) is an appropriate representing arrow. 2In case one has pullbacks in the base category, another description of a locallysmall �bration can be given; it may be found e.g. in Johnstone [1977], A2.4.5.6. Lemma. Let p :E ! B be a cloven �bration on a basis B with pullbacks.Then p is locally small if and only if for all A;A0 2 B and E 2 EA; E 0 2 EA0, thefunctor (B=A �A0)op ! Ens given byB u! A�A0 7! EB ( (� � u)�(E); (�0 � u)�(E 0) )is representable (where �; �0 are cartesian projections). 2The next result is due to Penon [1974], see also Johnstone [1977], A6.4.5.7. Theorem. Let p :E ! B be a locally small �bration on a basis B withpullbacks. Then(i) Every object E 2 E determines an internal category Full(E) in B togetherwith a full and faithful cartesian functor bE from the externalization P(Full(E)) toE. (ii) Let C be an internal category in B. Every cartesian functor F :P(C) ! Ehas an up-to-isomorphism unique factorizationX(C) [G] -X(Full(E)) bE - EQQQQQQQQQQs ?+����� p�����Bwhere G :C! Full(E) is an internal functor which is the identity on objects.Proof. (i) Write 
0 = pE and h@0; @1i : 
1 ! 
0 � 
0 for the representing arrowobtained by the previous lemma from the pair E;E. The identity on E yields amap i : hid; idi! h@0; @1i in B=
0 �
0. Similarly, one obtains internal composition.The object-part of bE :P(Full(E))! E is de�ned by [X :A! 
0] 7! X�(E).ThenX(Full(E)) (A X! 
0; B Y! 
0) �= _[u :A!B :X(Full(E))A (A X! 
0; A Y �u! 
0)= _[u :A!B : B=
0 � 
0 ( hX;Y � ui; h@0; @1i )�= _[u :A!B : EA (X�(E); u�Y �(E) )�= E ( bE(X); bE(Y ) ):Hence bE can be extended to a full and faithful functor.

4.5. LOCALLY SMALL FIBRATIONS 89(ii) Take E = F (idC0) 2 EC0 and G0 = idC0 : C0 ! pE = 
0. The mapG1 :C1 ! 
1 is obtained from F (idC1) :F (@0)! F (@1) using thatEC0 (F (@0); F (@1) ) = EC0 (F (@�0(idC0)); F (@�1(idC0)) )�= EC0 ( @�0(E); @�1(E) ) since F is cartesian�= B=
0 � 
0 ( h@0; @1i; h@E0 ; @E1 i ) by de�nition of h@E0 ; @E1 i.Then indeed,f bE � [G]g(A X! C0) = X�(E) = X�(F (idC0)) �= F (X�(idC0)) = F (X):If also D 2 EC0 yields a diagram as above, thenD �= id�C0(D) = cD(idC0) = (cD � [G])(idC0) �= F (idC0) = E: 24.5.8. Corollary. On a basis with pullbacks, one hasa �bration is small i� it is locally small and has a generic object.Proof. The only-if-part follows from 4.5.3 (iii) and the remark following de�nition1.4.4. Hence we only consider the if-part. Let p :E! B be a locally small �brationwith a generic object T 2 E. One obtains an internal category Full(T ) in B providedwith a full and faithful functor P(Full(T )) ! E by u 7! u�(T ). The latter isessentially surjective on objects because T is a generic object, see de�nition 1.2.9.Hence it is a (weak) equivalence. 2The above result comes from B�enabou [1975]. In somewhat di�erent formulation,it also occurs in Par�e and Schumacher [1978], II, theorem 3.11.1.4.5.9. Remarks. (i) Close inspection of the constructions above reveals that onedoes not need the existence of all pullbacks in the base category or of all representingarrows. Hence the results can be obtained if enough of these are around. This isused in the proof of theorem 3.3.3.(ii) As a special case of the construction in theorem 4.5.7 (i), one can start from anLCCCB (see 4.5.3 (ii)) and an arrow � in B, say with codomain 
, see e.g. Johnstone[1977], 2.38 or Pitts [1987], 3.2. An internal category Full(�) in B is obtained, whereh@0; @1i is the representing arrow corresponding to the pair ��(�); �0�(�) 2 B=
�
obtained by pullbacks. Viewed a bit di�erently, h@0; @1i is the \local exponential"��(�)) �0�(�), see 4.5.3 (ii). This Full(�) is called a full internal subcategory of B,because it comes equipped with a full and faithful functor P(Full(�)) ! B!. Thelatter is of course a full comprehension category.A bit more subtle, one can speak in the spirit of the �rst remark about a fullinternal subcategory of an arbitrary ambient category B, provided there is enoughstructure around to perform the relevant constructions. In terms of comprehensioncategories, there is an alternative description.



90 CHAPTER 4. MORE FIBRED CATEGORY THEORY4.5.10. De�nition. (i) Assume C 2 Cat(B); C will be called a full internal sub-category of B if there is a full comprehension category P of the following form,X(C) P - B!@@@[C] @@@R 	��� cod���Bwhich preserves �bred terminal objects (if any).(ii) A full small �bration is a �bration which is equivalent to the externalization[C] of a full internal subcategory C.Indeed, given such a full internal subcategory, the relevant pullbacks and localexponential (as in 4.5.9 (ii)) exist: put � = P(idC0) 2 B=C0. Then h@0; @1i is thelocal exponential ��(�)) �0�(�), since for u :A! C0 � C0 one hasB=C0 � C0 ( u; h@0; @1i ) = X(C)A (� � u; �0 � u )= X(C)A (u���(idC0); u��0�(idC0 )�= B=A (P(u���(idC0)); P(u��0�(idC0)) )�= B=A ( u���(P(idC0)); u��0�(P(idC0)) )�= B=C0 � C0 (�u:u���(�); �0�(�) )�= B=C0 � C0 ( u� ��(�); �0�(�) )Now suppose C has an internal terminal object. There is then a terminal objectfunctor 1 :B ! P(C) which satis�es by assumption P1 �= id(�). Then P is acomprehension category with unit, sinceX(C) (1A; X) �= B! (P1A; PX)�= B! (idA; PX)�= B (A; P0X) using id(�) a dom:As remarked after lemma 4.1.10, P is then a continuous functor. It is in fact theinternal global sections functor, analogously to 4.1.6 (ii). Hyland [1989], 0.1 usesthis description to de�ne full internal subcategories.Using the above terminology, one can say that if p :E ! B is a �!-category,then the total category E contains a full internal subcategory, see 3.3.3. The com-prehension category involved there is P :E! E!, see 4.4.4 (ii).Finally, we mention without proof an adjoint functor theorem. It is basically atranslation of theorem 1.9 in Par�e and Schumacher [1978], IV.

4.5. LOCALLY SMALL FIBRATIONS 914.5.11. Theorem. Suppose G is a cartesian functor inE G - D@@@p @@@R 	��� q���Bwhere p and q are locally small �brations. Further, suppose that p is complete andthat G is continuous (i.e. preserves the �bred �nite limits and products). ThenG has a �bred left adjoint i�the following solution set condition is satis�ed:for every A 2 B and D 2 DA there are objects B 2 B and E 2 EB suchthat for every E 0 2 EA and vertical f :D ! GE 0, one can �nd� u :A! B in B� � :D ! G(u�(E)) in DA� g :u�(E)! E 0 in EAsuch that G(g) � � = f: 2



92 CHAPTER 4. MORE FIBRED CATEGORY THEORY
Chapter 5ApplicationsIn this �nal chapter the type theoretical and categorical lines come together. In the�rst section the main ideas of how to translate type theoretical settings and featuresinto categorical ones are described. The subsequent three sections work out thedetails for the calculi CC, HML and �HOL together with �PRED. The part aboutHML is borrowed from Jacobs, Moggi & Streicher [1991].The last section is about the untyped �-calculus. It can be considered as spin-o�:using that \untyped" can be understood as \typed with only one type" we are leadto use monoid constant comprehension categories for the semantics of the untyped�-calculus. As main new result we obtain an adjunction between categorical and settheoretical �-algebras (see theorem 5.5.10).5.1 From type theory to category theoryThe theory developed in the previous chapters allows us to construct for a given typetheoretical setting a categorical one; it will consist of �brations and comprehensioncategories suitably linked together. Next we can show how type theoretical features(on top of a certain setting) correspond to categorical ones (on top of the translatedsetting).This section will consist of two parts: the �rst one about the translation ofsettings and the second one about the translation of features. The second part willbe a bit shorter; more extensive expositions of a number of examples can be foundin the other sections of this chapter.Settings and features in type theory can be found in chapter 2.5.1.1. Translation of settings. As stressed in chapters 2 and 3, a (type theoret-ical) setting determines the organization of contexts. In the translation below, wetherefore loosely speak about objects of a certain category as \contexts". More pre-cisely, we speak about s1; : : : ; sn-contexts when these contexts contain si-types (forall i). This makes sense, since one cannot always separate contexts into more simple93



94 CHAPTER 5. APPLICATIONSones consisting of types of a single sort. For example, in a setting with s1 � s2 ands2 � s1 contexts will consist of alternating sequences of s1- and s2-types.The translation of settings follows the next four guidelines.(1.1) Every sort s requires a separate full comprehension category P(s) with a ter-minal object in the basis. Objects of the base category are to be understoodas contexts containing s0-types for s � s0. Morphisms between such contextsare \substitutions", i.e. sequences of terms. Objects in the total category ares-types. Morphisms in the �bres are then single terms between such s-types.(1.2) If there is no s-type dependency, i.e. s 6� s, then P(s) is required to be constant ,i.e. to be of the form ConsT (s) :B==T (s) ! B!, where T (s) � Obj(B) is thecollection of s-types, see 4.1.3. The base category B is required to have �niteproducts.Implicitly, we require that both these points yield comprehension categories overappropriate �brations. These �brations are determined by the rest of the structure.(2.1) If s0; s are two di�erent sorts with s not depending on s0, i.e. s 6� s0, then werequire a �bration from a category of s; s0-contexts to a category of s-contexts.Such a �bration should have a terminal object functor, which describes emptys0-contexts.(2.2) If s 6� s0 as above, but also s0 6� s, then the �bration described before shouldbe constant , i.e. of the form Fst :A�B! A (or Snd :A�B! B, dependingon how one starts).In these latter two principles one may read for s also a sequence of sorts.These points guide the constructions below: the examples should make clearhow to apply them. For example, what to take as a base for the whole categoricalsetting can be discovered by inspection of the dependencies: one should start withthe sort(s) which do not depend on any other. The pictures of the categories ofcontexts roughly follow the ordering �: if s1 � s2 then s1-contexts will be �bredover s2-contexts; �-cycles shrink to a single category. We hope that such detailswill become clear as we proceed.The minimal setting Sort = f�g with � = ;.Using (1.1) and (1.2) we obtain a constant comprehension categoryB==T (�) + ConsT (�) -- Bwhere B is a category with �nite products. Here one does not really need that thiscomprehension category is over a �bration (in a degenerate sense though, it can beunderstood as a comprehension category over the �bration from B to the terminalcategory).

5.1. FROM TYPE THEORY TO CATEGORY THEORY 95In the beginning of chapter 3 (before comprehension categories were introduced)we said that such cartesian categories B formed the appropriate setting. The abovepicture is slightly more precise. A term model example of this setting may be foundin the beginning of section 3.1. There a base category B of contexts is formed. ForT (�) � Obj(B) one takes the collection of �-types (where a type � is identi�ed withthe singleton context x:�).The propositions as types setting Sort = f�g with � � �.An appropriate setting consists of a structure of the formE + P-- Bwhere P is a full comprehension category with a terminal object in the base categoryB, see (1.1). A term model example of this setting is described after 4.1.2.The propositional setting Sort = f�;2g with � � 2.The starting point is a base category B for the 2-contexts. It forms by (1.2) thebasis for a constant comprehension category ConsT (2). On top of B one has by (2.1)a �bration p :E ! B from 2; �-contexts to 2-contexts. Finally, E forms the basisfor a constant comprehension category ConsT (�) : E==T (�) ! E! over p, see 4.4.4(i). In a diagram, E==T (�) + ConsT (�) -- E6p ? 1B==T (2) + ConsT (2) -- BHere, B is a category with �nite products and p :E ! B is a �bration with �niteproducts. Only this part was presented as constituting the propositional setting inchapter 3. However there was a warning that it formed a simpli�ed version, see3.2.1. The above picture forms the appropriate re�nement.A term model example p :E! B for this setting has been described at the endof section 3.1. For T (2) � Obj(B) and T (�) � Obj(E) one takes the collection of2- resp. �-types.The setting Sort = f�;2g with � � 2; � � �; 2 � 2.Basically the same analysis as before applies, except that the relevant comprehensioncategories are not constant. Hence one obtains



96 CHAPTER 5. APPLICATIONSE + P(�) -- B6r ? 1D + P(2) -- Awhere P(�) is a comprehension category over r. A term model for this setting maybe found in Jacobs, Moggi & Streicher [1991].The setting Sort = f�;2g with � � 2; � � �; 2 � 2; 2 � �.Obviously an appropriate categorical setting will consist of two comprehension cat-egories: one for � and one for 2. Since these sorts are mutually depending on eachother, their contexts cannot be separated. Hence the picture looks like this.E + P(�) -- B � P(2) +� Dwhere P(�) and P(2) are full comprehension categories and B is a category witha terminal object. In terms of display categories, one has a base category with twocollections fP(�)(E) j E 2 Eg and fP(2)(D) j D 2 Dg of display maps.The setting Sort = f�;2;4g with � � 2; 2 � 4; � � 4.One starts with a base category A of 4-contexts. On top, there should be two�brations: one from 4;2-contexts to 4-contexts and one from 4;2; �-contextsto 4;2-contexts, using (2.1) twice. By composition one obtains a new �brationfrom 4;2; �-contexts to 4-contexts. The latter corresponds to the transitivityrequirement imposed on the dependency relation in de�nition 2.1.1. Because thereare no dependencies of the form s � s, the three comprehension categories involvedare constant. E==T (�) + ConsT (�) -- E6p ? >B==T (2) + ConsT (2) -- B6r ? 1A==T (4) + ConsT (4) -- A

5.1. FROM TYPE THEORY TO CATEGORY THEORY 97In this diagram ConsT (2) is a comprehension category over r and ConsT (�) is acomprehension category over p.The setting Sort = f�;4;2g � � 4; � � 2.Since the two sorts 4;2 are mutually independent, they determine by (2.2) twoconstant �brations A Fst � A � B Snd�! B, where A contains 2-contexts andB the 4-contexts. On top of A � B one has a �bration from 2;4; �-contexts to2;4-contexts. Finally one has three constant comprehension categories:E==T (�) + ConsT (�) -- E6p ? 1A�B	���Fst ���������� JJJJJSnd JJJJJ^
]JJJJJJJJJJA==T (2) + ConsT (2)-- A B==T (4) + ConsT (4)-- BHere, ConsT (�) is a comprehension category over p.5.1.2. Translation of features. Type theoretical features require a certain set-ting as background. Similarly for categorical features. This makes it di�cult todescribe them uniformily. We mention the three main guidelines. Afterwards a fewexemplaric cases are described.(3.1) The feature (s1; s2)-quanti�cation corresponds to the requirement that the com-prehension category P(s2) has both� P(s1)-products and (strong) P(s1)-sums, in case P(s1) and P(s2) havethe same base category. Else, one �rst has to perform change-of-baseon P(s1) along a suitable �bration r connecting the two base categories;the requirement then is that P(s2) has r�(P(s1))-products and (strong)r�(P(s1))-sums. Hence in this case one �rst has to move P(s1) \upwards"One requires strong sums if s2 � s2, see the �rst stipulation aboutquanti�cation in the beginning of section 2.3.� P(s2) has a unit; this requirement is a result of the second stipulationabout quanti�cation in section 2.3.



98 CHAPTER 5. APPLICATIONS(3.2) The axiom feature s1 : s2 is described by a generic object: there should bean object 
 in the total category of P(s2) above the terminal such that |in case the base categories are the same | the �bration cod � P(s1) has ageneric object above P(s1)0(
). In case the base categories don't match, one�rst has to perform change-of-base on the �bration cod � P(s1) along a suitableterminal object functor connecting the base categories. Hence in this case one�rst has to move cod � P(s1) \upwards".(3.3) The feature s-closure corresponds to the requirement that� ConsT (s) is a CCompC, if s 6� s.� cod � P(s) is a �bred CCC, if s � s.The second point is of minor relevance: it seems a bit strange to require onlys-closure in a setting with s � s.In (3.1) one can see the advantage of the double role that comprehension categoriesplay: at one time as a \model" and at another time as domain of quanti�cation. Itenables this high level description of the quanti�cation rules.Probably a good example to start with is the structureE P(�)- B! �P(2) D@@@p(�) @@@R ?cod	��� p(2)���Bwhere P(�) and P(2) are full comprehension categories and B is a category with aterminal. As argued above, it forms a categorical version of the setting Sort = f�;2gwith � � 2; � � �; 2 � 2; 2 � �. Let's consider some relevant features, see section2.3.The (s1; s2)-quanti�cation rule simply corresponds to the comprehension cat-egory P(s2) having a unit and P(s1)-products and strong P(s1)-sums | wheres1; s2 2 f�;2g.Axioms are described by generic objects. In this case, � : 2 corresponds tohaving an object 
 2 D such that� p(2)(
) 2 B is terminal;� there is a generic object for p(�) above P(2)0(
) 2 B.The inclusion (s1; s2) corresponds to the presence of a full and faithful functorI :E ! D forming a morphism of comprehension categories. Such structures withinclusion will be considered more closely in the next section.

5.2. CC-CATEGORIES 99A categorical version of the propositions as types setting Sort = f�g with� � � consists as we have seen several times now of a full comprehension categoryP(�) :E! B! with a terminal object in the basis B. By (3.1), (�; �)-quanti�cationcorresponds to P(�) being a closed comprehension category. The axiom � : � corre-sponds to having an object 
 2 E above the terminal together with a generic objectabove P(�)0(
). The feature (�; �)-identity types correspond to �bred equalizers (inthe presence of strong sums, see lemma 2.2.14). In this way we �nd the notions ofa �P1, �� and �Pi-category as de�ned at the end of section 4.3.In the minimal setting Sort = f�g with � = ; one can only have the feature�-closure. This amounts to the requirement that the corresponding constant com-prehension category of the form ConsT (�) :B==T (�) ! B! is closed. Essentiallythis means that the collection of �-types T (�) contains a unit and is closed undercartesian products and exponents, see 4.2.5 (iv).The remaining systems will be considered in the next three sections. In 5.3 and5.4 one may �nd examples where the change-of-base described in (3.1) and (3.2) isnecessary.5.2 CC-categoriesIn the previous section we already looked in some detail at the setting Sort = f�;2gwith � � 2; � � �; 2 � 2; 2 � �. It was argued that a corresponding categoricalsetting consists of two comprehension categories with the same basis. Categoricalstudies in the literature of such structures all assume the feature (�;2)-inclusion,motivated both by concrete examples and by the presence of this feature in earlyformulations of the calculus of constructions. Both on the type theoretical side andon the categorical side one has that the (�;2)-inclusion \transports" features: itenables more economical formulations since certain features result from others. Theunderlying categorical structure will now be depicted asE I - D Q - B!QQQQQQQQQQs ?+����� cod�����Bwhere I :E! D is the | full and faithful | (�;2)-inclusion functor and Q is a fullcomprehension category. As a result, QI :E! B! is a full comprehension categoryagain. Such a diagram underlies the work in Hyland and Pitts [1989].The �rst de�nition below concerns weak CC-categories which have weak (�; �)and (2; �)-sums, see section 2.3. Subsequent de�nitions will deal with rami�cations.



100 CHAPTER 5. APPLICATIONSAfter some examples and constructions we take a brief look at the role of smallcomplete �brations (cf. 4.2.4 and 4.2.5 (ii)). These have received much attention,especially in Hyland [1989]. Our own contribution in this section concerns thesplit topos model in example 5.2.6 (i) and a systematic presentation in terms ofcomprehension categories.5.2.1. De�nition. A weak CC-category is a structure E I�! D Q�! B! asabove where� Q is a CCompC, i.e. a closed comprehension category;� p = cod � QI : E ! B is a �bration and I is a full and faithful cartesianfunctor (from p to q = cod � Q) which has a �bred left adjoint;� there is an object 
 2 D such that q
 2 B is terminal and p has a genericobject above Q0
 2 BThis de�nition is quite compact and needs some unravelling; therefore we uselemma 4.2.13. By the re
ection E  ! D, the �bration p has a terminal objectwhich is preserved by I. Then P = QI : E! B! is a full comprehension categorywith unit. Again by the re
ection, P has Q-products and weak sums. Especially,P has (P-) products and weak sums. Thus, the re
ection yields all the structureof the calculus \weak CC", see section 2.3. The notion of a (weak) CC-category isessentially due to Hyland and Pitts [1989].The �rst rami�cation we mention concerns strengthening the weak (�; �) and(2; �)-sums. This cannot be done separately, see section 2.2, especially 2.2.10 and2.2.11 (ii). In view of our stipulation to treat strong sums as the \normal" situation,we speak simply of a \CC-category" instead of a \strong CC-category". Again weuse a compact formulation: only strong (�; �)-sums are required. By lemma 2.2.10one obtains strongness of the (2; �)-sums as a result.5.2.2. De�nition. A CC-category is a weak CC-category E I�! D Q�! B! inwhich P = QI is a CCompC.5.2.3. De�nition. A (weak) CC-category will be called split if the �brations in-volved are split and all units, products and sums as well as the generic object aresplit.In case one is willing to view a logic as a type theory in which propositions haveat most one proof-object, the name introduced below makes sense.5.2.4. De�nition. Consider a (weak) CC-category E I�! D Q�! B! as de�nedabove. It will be called logical if the \�bration of propositions" p = cod � QI : E!B is a preorder (i.e. has preorder categories as �bres).

5.2. CC-CATEGORIES 101Notice that if in a weak CC-category E I�! D Q�! B! the functor I is anequivalence, Q becomes a ��-category, i.e. a CCompC with a suitable generic objectyielding a type of all types. The next notion covers the case when the other functorQ is an equivalence. It goes back to Ehrhard [1989].5.2.5. De�nition. A dictos is a weak CC-category E I�! D Q�! B! in whichQ is an equivalence. The base category B is then an LCCC. In the sequel, we shallloosely speak about \a dictos E! B!".Later in this section the notion of a dictos will be investigated further.5.2.6. Examples. (i) An easy example is obtained from a topos B. As in 1.2.10(ii) we write Sub(B) for the full subcategory of B! consisting of monic arrows. Oneobtains a logical CC-category Sub(B) ,! B! Id�! B!. The re
ection comes fromthe fact that every morphism in a topos has a unique epi-mono factorization, seee.g. Johnstone [1977], 1.52.Using the split CCompC's Q :F(B) ! B! and P :L(B) ! B! describedin 4.3.5, one can improve the above topos example a bit by describing it as a splitCC-category. The only thing left to verify is that the �bration p :L(B) ! B hassplit Q-products and strong sums. This will be done below; the notation is as in4.3.5. For X :A�A0 ! 
 in F(B) and ' :Q0(X) ! 
 one de�nes two maps'1; '2 : A�Q0(X)! 
 by'1 = (�A � h�; � � fXg � �0i)) (' � �0)'2 = (�A � h�; � � fXg � �0i) & (' � �0)Then one takes 8X :' = 8Q0(X) � �('1) and 9X :' = 9Q0(X) � �('2) | where forC 2 B, 9C : 
C ! 
 is the standard map obtained as character of the monic partof � � �C : ��!
C � C ! 
C.(ii) A second (split) CC-category is obtained as follows.Fame�(M) I - Fame�(!-Set) Q� - !-Set!QQQQQQQQQQs ? +����� cod�����!-SetThe equivalence Q, the re
ection I and the generic object are described in 1.2.12.QI is a CCompC as mentioned in 4.3.2 (iii).



102 CHAPTER 5. APPLICATIONS(iii) The above two examples are dictoses. Here is another one. Let C be a com-plete Heyting (pre-) algebra, considered as a (small complete) category. Since C hasin�nite coproducts, the �bration Fam(C) ! Sets from 4.1.6 (ii) has sums, see ex-ample 4.2.5 (i). It yields by lemma 4.2.13 a �bred left adjoint to Fam(C)! Sets!.Thus one obtains a logical dictos .(iv) Term models of the calculi CC and weak CC as described in section 2.3 alsoyield appropriate examples. The construction is by now familiar so we only give asketch. A (weak) CC-cateogryE I�! D Q�! B! is obtained as follows. Objects ofB are (equivalence classes of) contexts [�] with sequences of terms (\substitutions")between them. Objects of E are [� ` � : �] and objects of D are [� ` A : 2]. Thefunctor I is then given by [� ` � : �] 7! [� ` In(�) : 2]. Finally, Q([� ` A : 2]) isthe usual projection [�; � : A] �! [�].The next two results go further in unravelling the structure of a weak CC-category.5.2.7. Proposition. Let E I�! D Q�! B! be a weak CC-category. We writeP = QI and p = cod � P :E! B for the \�bration of propositions". Then(i) p is a �bred CCC;(ii) p is a full small �bration. (cf. de�nition 4.5.10 (ii))Proof. (i) Analogously to lemma 4.3.9 (i), using that P is a full comprehensioncategory with unit, products and weak sums. As remarked in the proof there, theresult does not require that the sums are strong.(ii) By proposition 4.5.5 (() and (i) above, one obtains that p is locally small.Since p has a generic object, corollary 4.5.8 tells us that p is small, provided therelevant constructions can be performed, see remark 4.5.9 (i). We check these details.Let T 2 E above Q0
 2 B be generic for p, where 
 2 D is above theterminal t 2 B. Let's write C0 = Q0
. The following pullback in B yields theproduct C0 � C0. C0 � C0 �0 - C0� ? ?Q
C0 Q
 - tNotice that � is obtained as Q(Q
�(
)). The pair h@0; @1i = P(��(T )) �0�(T )) inB=C0�C0 is obtained as in the proofs of 4.5.7 (i) and 4.5.5 ((). We have to checkthat the pullbacks of composable tuples and triples C2 and C3 (described in 1.4.1)can be formed. But these are both obtained by pulling back @0 = � � h@0; @1i. Since
5.2. CC-CATEGORIES 103the latter is a composition of P- and Q-projections, this can always be done, seelemma 4.1.7.We conclude that p is a small �bration. Since P is a full comprehensioncategory with unit, p is a full small �bration. 25.2.8. Theorem (From weak CC to �!). Let E I�! D Q�! B! be a weak CC-category. Let t 2 B be the terminal and p = cod � QI : E! B. By change-of-basewe form E00 - E0 - Ep00 ? p0 ? ?pDt � > D Q0 - BThen p00 is a �!-category. (see de�nition 3.2.2)Proof. The base category Dt of p00 is a CCC since cod � Q :D! B is a �bred CCC,see lemma 4.3.9 (i). p0 is a �bred CCC since it is obtained by change-of-base froma �bred CCC p, see (i) in the previous proposition. p00 has a generic object becausep has a generic object T 2 E above Q0
 2 B with 
 2 Dt. Finally we have to�nd products and sums for p00 along cartesian projections. For D;D0 2 Dt, we haveD � D0 = �D:QD�(D0). The �rst projection � :D �D0 ! D is eQ(D;QD�(D0)),where eQ : fD! D! is the CCompC de�ned in 4.4.10. Analogously to lemma 4.2.12(i) one can verify that p0 in the above diagram has eQ-products and sums. Hence p00has products and sums along cartesian projections. 2In Jacobs, Moggi & Streicher [1991] one may �nd how | in the other direction| every �!-category can be turned into a CC-category.The content of the next result goes back to Hyland [1989], 3.1, proposition 2 andto Ehrhard [1989], corollary 1. We made some changes in the formulation.5.2.9. Theorem. Let p :E! B be a �bration where B is an LCCC. Thenp is full small complete , there is a dictos P :E! B! with p = cod � PFor the relevant notions, see 4.5.10 (ii), 4.2.4 (ii) and 5.2.5.Proof. (() By 5.2.7 (ii) one has that p is a full small �bration. By the re
ectionE  ! B! it follows that p inherits completeness from cod :B! ! B.()) By de�nition 4.5.10 there is a full comprehension category (with unit) P :E!B! such that p = cod � P . A left adjoint to P is obtained from the adjoint functortheorem 4.5.11. Indeed p and cod are locally small and complete �brations and Pis a continuous functor (see the argumentation after de�nition 4.5.10). It can beshown that for every u :A0 ! A in B=A there is an object E 2 EA such that for



104 CHAPTER 5. APPLICATIONSevery E 0 2 EA and f 2 B=A(u; PE 0) one can �nd � 2 B=A(u; PE) and g :E ! E 0in EA with P0g � � = f . This yields the solution set condition mentioned intheorem 4.5.11. One takes E = �u:1A0, where �u denotes the \sum" obtained bya higher order de�nition in terms of products (which are available). In informaltype theoretical formulation: �u:D = �x:�:(�u:(D ! x)) ! x. For the solutionmentioned above, one takes for y : u the term �(y) = �x : �: �z : �u:(1A0 ! x): zyhiand for w : �u:1A0 the term g(w) = f(wu(�y : u: �z : 1A0: y)). Then indeedg(�(y)) = f(y): 2As an application of this theorem it can be shown that there are no non-logicalmodels of the calculus of constructions with families of sets as types and set-indexedcollections as propositions.5.2.10. Proposition. The \family model" from 4.1.6 (ii) satis�esFam(C)! Sets! is a dictos , C is a complete Heyting pre-algebra.Proof. The implication (() is example 5.2.6 (ii). As to ()) one hasFam(C)! Sets! is a dictos ) Fam(C)! Sets is small complete) C is equivalent to a small complete category) C is a complete Heyting pre-algebra.The latter implication is based on a result of P. Freyd, see e.g. Mac Lane [1971],V.2, proposition 3. 25.3 HML-categoriesAs shown in 5.1.1 a categorical version of the setting Sort = f�;2g with � � 2; � ��; 2 � 2 looks like this E + P -- B6r ? 1D + Q -- Awhere P is a full comprehension category over r. By dressing this setting up withappropriate features one obtains the notion of a HML-category. We don't give anyconcrete examples but show instead how �!-categories and CC-categories can betransformed into HML-categories | which indirectly yields examples. At the end ofthis section, we reconsider features for the propositional setting | which is a specialcase of the one above with P and Q constant comprehension categories.
5.3. HML-CATEGORIES 105The next de�nition and the subsequent two theorems are borrowed from Jacobs,Moggi & Streicher [1991]. Remember from section 2.3 that the features for HML are(2;2); (�; �) and (2; �)-quanti�cation and an � : 2-axiom. The following categoricaldescription follows the guidelines (3.1) and (3.2) in 5.1.2. Notice that the change-of-base as described there is used twice.5.3.1. De�nition. An HML-category is given by a setting as above in which� Q is a CCompC;� P is a CCompC over r;� P admits r�(Q)-products and strong sums;� there is an object 
 2 D such that q
 2 A is terminal; further, the �brationp0 obtained by change-of-base as below has a generic object above Q0
 2 A.E0 - Ep0 ? ?pA 1 - B5.3.2. Theorem. (i) Every �!-category can be transformed into an HML-category.(ii) Every HML-category can be transformed into a �!-category.(iii) The output of �rst applying (i) and then (ii) is isomorphic to the input.Proof. (i) Let p :E ! B be a �!-category, i.e. a �bred CCC on a CCC B, with ageneric object and ConsB-products and sums. One formsE + P -- E6p ? 1B + ConsB -- BThis structure forms an HML-category since� ConsB is a CCompC, see example 4.3.2 (ii).� P :E ! E! is a CCompC over p, see example 4.4.8 (i); moreover, it hasp�(ConsB)-products and strong sums by lemma 4.4.11.� The generic object for p also works here, by the change-of-base situation p! pdescribed in 1.2.7.



106 CHAPTER 5. APPLICATIONS(ii) Suppose an HML-category as describe above is given. We form the �brationp00 by change-of-base E00 - E0 - Ep00 ? p0 ? p ?Dt � > D Q0 - A 1 - Bwhere t 2 A is terminal object. Then� Dt is CCC, since q = cod � Q is a �bred CCC, see 4.3.9 (i).� p00 is a �bred CCC, since �bred CCC's are preserved by change-of-base.� The generic object T for p0 above Q0
 2 A where 
 2 Dt yields a generic objectfor p00: for every E 2 E and D 2 Dt with pE = 1Q0D, there is a morphismu :Q0D ! Q0
 in A with u�(T ) �= E in E0. Since Q is a full comprehensioncategory there is a (unique) f :D ! 
 in Dt with Q0f = u. But then we aredone.� p00 has products and sums along cartesian projections, by an argument similarto the one in the proof of theorem 5.2.8.(iii) By the change-of-base situation p! p from 1.2.7 and the fact that Bt �= B: 25.3.3. Theorem. (i) Every CC-category can be transformed into an HML-category.(ii) Doing CC �! HML �! �! and CC �! �! yields equivalent results.(The transformation CC �! �! is described in theorem 5.2.8.)Proof. (i) Asume we have a CC-category as in de�nition 5.2.2. One formseE + eP -- E6p ? 1D + Q -- Bwhere P = QI is a CCompC. Hence eP is a CCompC over p by 4.4.10, admittingp�(Q)-products and strong sums by lemma 4.4.12. The generic object of the CC-category also works here, because of the \pseudo" change-of-base situation ep ! pfrom 4.4.10.(ii) Again by the \pseudo" change-of-base situation ep! p: 2

5.3. HML-CATEGORIES 107Finally we take a brief look at the features for the re�ned propositional settingE==T (�) + ConsT (�) -- E6p ? 1B==T (2) + ConsT (2) -- B:as described in section 5.1. Following (3.1) { (3.3) in 5.1.2 we obtain the followingfeatures.5.3.4. Rede�nition. The above setting will be called(i) a �!-category if ConsT (�) is a CCompC over p; further, if there is an object(t;
) 2 B==T (2) above the terminal such that above 
 2 B there is a generic objectfor the �bration q obtained by change-of-base:� - E==T (�)q ? ?cod � ConsT (�)B 1 - E(ii) a �!-category if it is a �!-category in which ConsT (2) is a CCompC.(iii) a �2-category if it is a �!-category in which ConsT (�) has p�(ConsT (2))-products and sums.(iv) a �!-category if it is both a �!-category and a �2-category.The notions introduced earlier in de�nition 3.2.2 are special cases in the aboverede�nition: one can take T (�) = Obj(E) | we then write P for ConsT (�), see 4.4.8(i). Furthermore, for a �!-category and a �2-category one takes T (2) = f
g andT (2) = Obj(B) for a �!-category and a �!-category.One might ask about the motivation for these re�ned descriptions of the minimaland propositional settings and their features. We mention two points.� This re�ned description comes out as a result of a general method of translation.As such, it has more value than the somewhat ad hoc notions introduced inde�nition 3.2.2.� In case one is interested in modelling calculi having exponent-types but no(cartesian) product-types (as used e.g. in Barendregt [1991], [199?]), only there�ned framework can be used, see the discussion in example 4.2.6.



108 CHAPTER 5. APPLICATIONS5.4 �HOL-categories and �PRED-categoriesThis section follows the same pattern as the previous one: �HOL- and �PRED-categories are de�ned by dressing up the correspond settings from section 5.1 withappropriate features following 5.1.2. No concrete examples are given, but it is shownhow to obtain these from �!-categories (as de�ned in 3.2.2).Remember the features for �HOL are �- and 2-closure, (2; �)-quanti�cation and� : 2;2 : 4 axioms.5.4.1. De�nition. We consider the categorical setting described in 5.1.1 for thesetting Sort = f�;2;4g with � � 2; 2 � 4; � � 4. It is called a �HOL-categoryif � ConsT (�) is a CCompC over p;� ConsT (2) is a CCompC over r;� ConsT (�) has p�(ConsT (2))-products and sums;� there is an object (t;
�) 2 B==T (2) such that the following �bration obtainedby change-of-base has a generic object above 
�;� - E==T (�)? ?cod � ConsT (�)B > - E� there is an object (t;
2) 2 A==T (4) such that the following �bration obtainedby change-of-base has a generic object above 
2.� - B==T (�)? ?cod � ConsT (2)A 1 - B5.4.2. Theorem. Every �!-category on a small base category can be transformedinto a �HOL-category.Proof. Let p :E ! B be a �bred CCC on a small CCC with a generic object andConsB-products and sums. We lift it to a �HOL-category by the family constructiondescribed in 1.1.2. The functor Fam(p) :Fam(E) ! Fam(B) given by fEigi2I 7!
5.4. �HOL-CATEGORIES AND �PRED-CATEGORIES 109fpEigi2I is a �bration over Fam(B) ! Sets; let's write r for the latter �bration.One easily veri�es that Fam(p) is a �bred CCC again. Hence we considerFam(E) + -- Fam(E)6Fam(p) ? Fam(1)Fam(B) + R -- Fam(B)6r ? ftg�Sets==T (4) + -- SetsFor T (4) we take fObj(B)g using that B is small. It yields a generic object for r.Since B is a CCC, r :Fam(B)! Sets is a �bred CCC. Hence one obtains a constantCCompC R over r, see 4.4.8 (i). One has R(fAigI ; fBigI) = f�Ai;Bi : Ai � Bi !AigI .Similarly, using that Fam(p) is a �bred CCC over r, one obtains a constantCCompCFam(E)! Fam(E)! over r. The axiom � : 2 and the (2; �)-quanti�cationfollow from a pointwise construction. 2We turn to �PRED-categories. Remember that the features are �;4-closure,(4; �)-quanti�cation and an � : 2 axiom.5.4.3. De�nition. The categorical setting described in 5.1.1 for Sort = f�;4;2gwith � � 4; � � 2 will be called a �PRED-category if� ConsT (�) is a CCompC over p;� ConsT (4) is a CCompC;� ConsT (�) has p�Snd�(ConsT (4))-products and sums;� there is an object (t;
) 2 A==T (2) such that the following �bration obtainedby change-of-base has a generic object above 
.� - E==T (4)? ?cod � ConsT (�)A �� t- A�B 1 - Ewhere �� t is the terminal object functor for the �bration Fst :A�B! A.5.4.4. Theorem. Every �!-category can be transformed into a �PRED-category.



110 CHAPTER 5. APPLICATIONSProof. Let p :E ! B be a �!-category. We are going to use the base categoryB to model both 2- and 4-contexts. Therefore, we �rst form the �bration p0 bychange-of-base in E0 - Ep0 ? ?pB�B Prod - BThe rest is then straightforward: p0 is a �bred CCC and thus one obtains a constantCCompC over p0. Let T 2 E be generic for p and put 
 = pT 2 B. Then Cons
 isused to model 2. The constant CCompC ConsB is used to model 4: 25.5 The untyped lambda calculus revisitedD. Scott often stressed that the untyped �-calculus should be considered as a specialform of typed �-calculus, viz. as a calculus with one type (satisfying e.g. 
 = 
!
). Following this view we obtain a new notion of model for the untyped �-calculusby considering \monoid" constant comprehension categories which have a singletype. We include non-extensional abstraction in our investigation via S. Hayashi's\semi-adjunctions". At the end of this section we compare our new notion to the oneconsisting of a \CCC with a re
exive object" as introduced by Scott and furtherdeveloped by Koymans, see Scott [1980], Koymans [1982], [1984] and Barendregt[1984].The categorical concepts used in this section will all be described \on-the-nose",i.e. without mediating isomorphisms. We �rst recall the notion of a semi-adjunctionfrom Hayashi [1985]. The subsequent lemma comes from Jacobs [1991].A semi-functor F :C! D is a `functor' except that it needs not preserve iden-tities. Another semi-functor G :D ! C is a right semi-adjoint of F | notationF as G | if there are collections f�X;Y ; �X;Y gX2C;Y 2D such that the big foursquares in the following diagram commute (for all f; g).Y D(FX; Y ) �X;Y� �X;Y - C(X; GY ) X6f ? f � � � Fg ? ?Gf � � � g gY 0 D(FX 0; Y 0) �X0;Y 0� �X0;Y 0 - C(X 0; GY 0) X 05.5.1. Lemma. Suppose F as G as described above, but with F an ordinary func-tor; then | omitting indices | one has

5.5. THE UNTYPED LAMBDA CALCULUS REVISITED 111(i) � � � = id, i.e. D(FX; Y ) is a retract of C(X; GY ).(ii) �(u � Fv) = �(u) � v Gu � �(v) = �(u � v).(iii) �(u) � Fv = �(u � v) �(Gu � v) = u � �(v):Proof. (i) (� � �)(u) = id � �(�(u)) � F (id) = �(G(id) � �(u) � id) = id � u �F (id) = u:(ii) & (iii) Similarly. 2Further, two more notions are needed. A morphism of semi-adjunctions fromhF;G; f�; �gi : C ! D to hF 0; G0; f�0; � 0gi : C0 ! D0 consists of a pair of functorshK :C! C0; L :D! D0i such thatLF = F 0K and G0L = KGK�X;Y = �0KX;LYL and L�X;Y = � 0KX;LYK:Finally, a semi-CCC is a category provided with semi-adjunctions for semi-terminal,product and exponent. In equantional presentation, it is a `CCC' except that onedoes not have !t = idt; h�; �0i = id and �(ev) = id, see Hayashi [1985] for moredetails.Next we describe semi-products and sums for split comprehension categories. Itis a straightforward generalization of ordinary products and sums as described insection 5.2 (except that we now require everything \up-to-equality").5.5.2. De�nition. Let P :E! B! be a split comprehension category.(i) P has semi-products (resp. semi-sums) if both� for each E 2 E, the weakening functor PE� has a right semi-adjoint �E (resp.a left semi-adjoint �E);� for each cartesian f :E 0 ! E in E the pair h(pf)�; (P0f)�i is a morphism ofsemi-adjunctions PE� as �E �! PE 0� as �E0(resp. h(P0f)�; (pf)�i is a morphism �E as PE� �! �E0 as PE 0�).(ii) A morphism (P :E! B!) �! (P 0 :E0 ! B0!) of comprehension categorieswith semi-products consists of a pair of functors K :B ! B0 and L :E ! E0 suchthat� hK;Li is a morphism of split �brations p! p0;� hK;L; idi is a morphism of comprehension cateogries (see 4.1.4);� for each E 2 E, the pair hL � pE; L � P0Ei is a morphism of semi-adjunctionsPE� as �E �! P 0(LE)� as �0LE.Similarly for semi-sums.5.5.3. De�nition. Let B be a category with terminal object t and let 
 2 B. Onesays that(i) 
 is non-empty if B(t; 
) is non-empty;



112 CHAPTER 5. APPLICATIONS(ii) 
 has enough points if for all f; g : 
! A in B,8x : t! 
: f � x = g � x ) f = g:Constant comprehension categories are described in 4.1.3. For details aboutthe semantics of the untyped �-calculus, we refer to Barendregt [1984], especiallychapter 5.5.5.4. De�nition. (i) A categorical �-algebra is given by a base category B with�nite products containing a non-empty object 
 such that the constant comprehen-sion category Cons
 :B==
! B! has semi-products.(ii) A morphism of categorical �-algebras (B;
)! (B0;
0) is a functor K :B!B0 such that� K
 = 
0 and Kt = t0, the terminal object in B0; moreover, K(!A) =!KA;� for every A 2 B one has K(A � 
) = (KA) � 
0 with K(�A;
) = �KA;
0 andK(�0A;
) = �0KA;
0 ;� the pair (K;K 0) is a morphism Cons
 ! Cons
0 of comprehension categorieswith semi-products.(The functor K 0 :B==
! B0==
0 is de�ned in 4.1.6 (i).)This yields a category Cat-�-Alg.One might wonder why we don't simply require that K preserves all cartesianproducts (on-the-nose) in the second point in (ii) above. But that would be toostrong: the counit functor " in the proof of 5.5.10 below satis�es "(n+m) = 
n+m �=
n � 
m = "(n) � "(m). In the domain of ", + is �, 1 is 
 and "(n) = 
n. As itstands, the second requirement above says precisely that (K;K 0; id) is a morphismof comprehension categories, see the second point in 5.5.2 (ii).5.5.5. De�nition. Let (B;
) be a categorical �-algebra. It will be called(i) a categorical �-model if 
 has enough points;(ii) a categorical ��-algebra if Cons
 has ordinary products;(iii) a categorical ��-model if it is both a categorical �-model and a ��-algebra.Let (B;
) be a categorical �-algebra as described above. Recall from 4.1.3 thatthe �bre categories (B==
)A are monoids, i.e. categories with only one object, viz.(A;
). Morphisms in (B==
)A are arrows f :A� 
 ! 
 in B. Composition in(B==
)A is given by g � f = g � h�; f i; the projection �0 :A� 
 ! 
 serves asidentity. Reindexing along u :B ! A is done by u�(f) = f � u� id.The product semi-adjunctions are described by mapsB( (A� 
)� 
; 
 ) �(A)� �(A) - B(A� 
; 
 )

5.5. THE UNTYPED LAMBDA CALCULUS REVISITED 113A map �(A)(f) :A� 
! 
 should be understood as the result of abstraction in theunderlined 
 in f : (A� 
)� 
! 
. This follows from the fact that �(A)(f)�h =�(f � Cons
(A;
)�(h)), see lemma 5.5.1 (ii). More explicitly, it gives the followingnaturality condition�(A)(f) � h�; hi = �(A)(f � h�; h � � � idi)Because one abstracts in the underlined 
 a form of \twisting" is often necessary.A deeper analysis of categorical �-algebras may be found after the followingexamples.5.5.6. Examples. (i) Let D be a re
exive cpo via maps F : D ! [D ! D] andG : [D ! D] ! D with F � G = id, see Barendregt [1984], 5.4. As usual we writea � b = F (a)(b) and �x:� = G(�x:�).A base category D is formed with n 2 N as objects; n can be consideredas the context containing the �rst n variables from an enumeration fxn j n 2 Ng.Morphism n! m are sequences (f1; : : : ; fm) where each fi is a continuous functionDn ! D, i.e. fi 2 [Dn ! D]. Composition in D is done in the obvious way andidentities are sequences of projections. The object 0 2 D is terminal and n + m isa product. Thus D is an algebraic theory. As distinguished object (\
") we take1 2 D. Notice that 1 is a non-empty object i� the cpo D is non-empty.The product semi-functors �n : (D==1)n+1 ! (D==1)n are given by (n+1; 1) 7!(n; 1) and f 7! �~x; z 2 Dn+1: �y: f(~x; y; z � y). The �'s and �'s as described aboveare given by �(n)(f) = �~x; z 2 Dn+1: �y: f(~x; y; z)�(n)(g) = �~x; y; z 2 Dn+2: g(~x; z) � y:One easily veri�es that (D; 1) is a categorical �-model. In case G � F = id| i.e. D �= [D! D] | it becomes a categorical ��-model.(ii) Let M = hD; �; K; Si be a �-algebra, see Barendregt [1984], 5.2. One writes1n = �x0 : : : xn: x0 : : : xn; inductively, one can de�ne 10 = I = SKK and 1n+1 =S(K1n), see loc. cit. 5.6. Let's put (Dn ! D) = fa 2 D j 1n � a = ag. Then(D0 ! D) = D; we write 1 for 11 and (D! D) for (D1 ! D).Let D be a base category, once again with n 2 N as objects, but with mtuples (a1; : : : ; am) with ai 2 (Dn ! D) as morphisms n ! m. Then (b1; : : : ; bk) �(a1; : : : ; am) = (c1; : : : ; ck) where ci = �x1 : : : xn: bi(a1x1 : : : xn) : : : (amx1 : : : xn). Theidentity on n is (�x1 : : : xn: x0; : : : ; �x1 : : : xn: xn). The category D has terminal 0and products n+m as before. Hence it is an algebraic theory again. We take 1 2 Das distinguished object.The comprehension category Cons1 :D==1! D! has semi-products: for mor-phisms a 2 (Dn+2 ! D) in (D==1)n+1 and b 2 (Dn+1 ! D) in (D==1)n one takes�(n)(a) = �x1 : : : xnzy: ax1 : : : xnyz�(n)(b) = �x1 : : : xnyz: bx1 : : : xnzy:



114 CHAPTER 5. APPLICATIONSThen �(n)(�(n)(a)) = 1n+2 � a = a.In case M is a �-model, i.e. 8x 2 D: a �x = b �x ) 1 �a = 1 � b, one obtains acategorical �-model: suppose morphisms (a1; : : : ; am); (b1; : : : ; bm) : 1! m in D aregiven with 8x : 0 ! 1: (a1; : : : ; am) � x = (b1; : : : ; bm) � x. Then ai; bi 2 (D ! D)satisfy 8x 2 D: ai � x = bi � x. Hence ai = 1 � ai = 1 � bi = bi. Thus the object 1 2 Dhas enough points.The next result describes the structure given by the �bred semi-products of acategorical �-algebra in a down-to-earth way.5.5.7. Lemma. Let B be a category with �nite products and 
 2 B be a non-emptyobject. Then(i) (B;
) is a categorical �-algebra if and only if there is a mapapp : 
� 
 ! 
together with an operation�(�) : B(A� 
; 
) ! B(A; 
)such that app � �(f)� id = f�(f � g � id) = �(f) � g:(ii) (B;
) is a categorical ��-algebra if and only if there are app and � as in (i)which additionally satisfy �(app) = id:Proof. For the (if)-part of (i) and (ii), one de�nes�(A)(f) = �(f � h� � id; �0 � �i)�(A)(g) = app � hg � � � id; �0 � �i:In order to prove the (only if)-part, we �rst unravel the structure given by thesemi-products. Let �(A); �(A) be as described before the examples. The naturalityconditions following from lemma 5.5.1 (ii),(iii) are�(A)(f) � h�; hi = �(A)(f � h�; h � � � idi)�(A)(g) � h�; h � � � idi = �(A)(g � h�; hi):The \Beck-Chevalley" condition | the second point in 5.5.2 (i) | implies that foru :B ! A in B one has�(A)(f) � u� id = �(B)(f � (u� id)� id)�(A)(g) � (u� id)� id = �(B)(g � u� id):

5.5. THE UNTYPED LAMBDA CALCULUS REVISITED 115Applying �(t) to �0 : t� 
 ! 
 yields a map �(t)(�0) : (t� 
)� 
 ! 
. Byarranging the input appropriately, one obtainsapp = �(t)(�0) � hh!; �0i; �i : 
� 
 ! 
:For an arrow f :A� 
 ! 
 in B one has f � � : (A � 
) � 
 ! 
 byintroducing an extra \dummy" variable. It enables us to apply �(A) which yieldsan arrow A � 
 ! 
. Finally, we remove the �rst \dummy" 
 by substituting anarbitrary element c0 : t! 
 | which exists because 
 is non-empty. Hence we have�(f) = �(A)(f � �) � hid; c0 � !i : A ! 
:An easy argument shows that the de�nition of �(f) does not depend on a choice forc0: if we would have taken c1 : t ! 
 then ' = c1 � !
 : 
 ! 
 satis�es ' � c0 = c1and thus�(A)(f � �) � hid; c1 � !i = �(A)(f � �) � h�; ' � �0i � hid; c0 � !i= �(A)(f � �) � hid; c0 � !i;the latter by naturality of �(A). We computeapp � �(f)� id = �(t)(�0) � hh!
�
; �0i; �i � h�(f) � �; �0i= �(t)(�0) � hh!A�
; �0i; �(f) � �i= �(t)(�0) � (!A � id)� id � hid; �(f) � �i= �(A)(�0 � !A � id) � h�; �(A)(f � �) � � � idi � hid; c0 � !iby Beck-Chevalley for �= �(A)(�0 � h�; �(A)(f � �)i) � hid; c0 � !iby naturality of �(A)= f � � � hid; c0 � !iby lemma 5.5.1 (i)= f:Assuming g :B ! A one obtains�(f � g � id) = �(B)(f � g � id � �) � hid; c0 � !B i= �(B)(f � � � (g � id)� id)) � hid; c0 � !Bi= �(A)(f � �) � g � id � hid; c0 � !B iby Beck-Chevalley for �= �(A)(f � �) � hid; c0 � !Ai � g= �(f) � g:



116 CHAPTER 5. APPLICATIONSIn case (B;
) is a ��-algebra, one has �(A) � �(A) = id. In order to prove�(app) = id, we �rst notice that app � � = �(
)(�) : (
� 
)� 
! 
. Indeed,app � � = �(t)(�0) � hh!
�
; �0i; �i � �= �(t)(�0) � (!
 � id)� id � h�; � � �i= �(
)(�0) � h�; � � � � idiby Beck-Chevalley, as before= �(
)(�0 � h�; �i)by naturality= �(
)(�):Hence one obtains�(app) = �(
)(app � �) � hid; c0 � !i= �(
)(�(
)(�)) � hid; c0 � !i= � � hid; c0 � !i= id: 25.5.8. Examples. (i) Suppose B is a CCC which has a re
exive object 
. Thelatter means that there are maps F : 
 ! 

 and G : 

 ! 
 with F � G = id.Such structures are used by Scott and Koymans for the semantics of the untyped�-calculus. Using the above lemma one easily obtains a �-category (B;
); onede�nes app = ev � F � id�(f) = G � �(f):This yields the required equations.app � �(f)� id = ev � F � id � (G � �(f))� id= ev � �(f)� id= f:�(f � g � id) = G � �(f � g � id)= G � �(f) � g= �(f) � g:Moreover, in case (B;
) is extensional in the sense of Scott and Koymans | whichmeans that G � F = id and thus 

 �= 
 | then�(app) = G � �(ev � F � id)= G � F= id:

5.5. THE UNTYPED LAMBDA CALCULUS REVISITED 117Notice that a categorical �-algebra as it is used here is \more economical" than thestructure used by Scott and Koymans: in our case the base category B need nothave exponents (see the discussion at the end of this section).(ii) We investigate what app and � are in the examples in 5.5.6. In the �rstcase one has app : 1 + 1 ! 1 as a continuous function D � D ! D described by(x; y) 7! x � y. For f :n+ 1! 1 in D one has �(f) = �~x:�y: f(~x; y). This is as onewould expect.In the second case one starts from a (set-theoretical) �-algebra. One has app =�xy: xy 2 (D2 ! D). If a 2 (Dn+1 ! D) then �(a) = �x1 : : : xn: �y: ax1 � � � xny =1n � a, which, indeed is in (Dn ! D).The formulation obtained in lemma 5.5.7 in terms of app and � is quite practical.It will be extended to morphisms.5.5.9. Lemma. Let (B;
) and (B0;
0) be categorical �-algebras. A functor K :B!B0 is a morphism of categorical �-algebras if and only if� K
 = 
0 and K(!A) =!KA;� K(�A;
) = �KA;
0 and K(�0A;
) = �0KA;
0;� K(app) = app0 and K(�(f)) = �0(Kf).Proof. We have to show that the third requirement above is equivalent to the thirdrequirement in de�nition 5.5.4 (ii); the latter boils down to K�(A) = �0(KA)K andK�(A) = � 0(KA)K. Thus, using the de�nitions of �(A) and �(A) from the proofof 5.5.7, the (if)-part is easily established.In the reverse direction, one obtains K(app) = app0 and K(�(f)) = �0(Kf) forthe description of app and � in the same proof. One has to use that �(f) does notdepend on the constant c0 occurring in the de�nition of �(f): 2Let (B;
) be a categorical �-algebra. For a; b 2 B(A;
) put a � b = app � ha; bi.We write k
k for the (non-empty) collection B(t;
) and claim that hk
k; �i is a�-algebra as described in Barendregt [1984]. Abstraction is done as follows. For aterm a(x) : t� 
! 
 containing a free variable x one takes�x: a(x) = �(a(x)) : t ! 
:Then (�x: a(x)) � b = app � h�(a(x)); bi= app � �(a(x)) � id � hid; bi= a(x) � hid; bi= a(b):Let's write �ni : t� 
� � � � � 
| {z }ntimes ! 




118 CHAPTER 5. APPLICATIONSfor the i-the projection. One hasK = �(�(�21))S = �(�(�( (�31 � �33) � (�32 � �33) )))I = �(�11)1 = �(�(�21 � �22 ))which yields essentially de Bruijn's nameless notation.Notice that for a 2 k
k one has 1 � a = �y: a � y = �(app � a � id). Hence if(B;
) is a categorical �-model, one obtains the (�)-rule.8x 2 k
k: a � x = b � x) 8x : t! 
: app � a� id � hid; xi = app � b� id � hid; xi) app � a� id = app � b� id; since t� 
 �= 
 has enough points) 1 � a = 1 � b:And if (B;
) is a categorical ��-algebra, then (�) holds.�y: a � y = �(app � a � id)= �(app) � a= a:Let's write �-Alg for the category with (set theoretical) �-algebras hD; �; K; Sias objects; we allow D to be a collection of arbitrary size. Morphisms are mapsbetween the underlying collections preserving application and K;S, see Barendregt[1984], 5.2.2 (ii).The assignment (B;
) 7! hk
k; � i forms the object-part of a \forgetful" functorU : Cat-�-Alg �! �-Alg: for a morphism K : (B;
) ! (B0;
0) of categorical�-algebras, one has UK : k
k ! k
0k de�ned by a 7! Ka. By lemma 5.5.9, Kpreserves app and � on-the-nose; hence UK is a morphism of �-algebras.5.5.10. Theorem. The forgetful functor U : Cat-�-Alg �! �-Alg has a leftadjoint; the unit of the adjunction is an identity.Proof. The object-part of a functor F : �-Alg �! Cat-�-Alg is described inexample 5.5.6 (ii). For a morphism of �-algebras h : hD; � i �! hD0; �0 i one de�nesFh : (D; 1) ! (D0; 1) by n 7! n and (a1; : : : ; am) 7! (h(a1); : : : ; h(am)). By lemma5.5.9 and proposition 5.1.14 (i) from Barendregt [1984], h preserves the relevantstructure. Notice that the underlying collection of UF (hD; � i) is k1k = D(0; 1) =(D0 ! D) = D. One obtains UF = id.A counit " :FU(B;
)! (B;
) is de�ned on objects by n 7! 
n. To de�ne it onmorphisms, we need some notation. For an element a 2 k
k we de�ne a(n) : 
n ! 
by a(n) = (a � !
n) � �n1 � : : : � �nn where �ni : 
n ! 
 is the i-th projection.
5.5. THE UNTYPED LAMBDA CALCULUS REVISITED 119On a morphism (a1; : : : ; am) :n! m in FU(B;
) | where ai 2 (k
kn ! k
k)| we put "(a1; : : : ; am) = ha(n)1 ; : : : ; a(n)m i : 
n ! 
m. One has "(�x1 : : : xn: xi) =((�x1 : : : xn: xi) � !)��n1 �: : :��nn = �ni . Hence " preserves identities and the projectionsn n+ 1! 1. Composition is preserved since"(�x1 : : : xn: bi(a1x1 : : : xn) : : : (amx1 : : : xn)) = b(m)i � ha(n)1 ; : : : ; a(n)m iIn order to show that " is a morphism of categorical �-algebras it su�ces by lemma5.5.9 to check "(app) = (�xy: xy)(2) see 5.5.6 (ii)= �21 � �22= app � h�; �0i= app:and for a 2 (k
kn+1 ! k
k),"(�(a)) = "(1n � a) see 5.5.6 (ii)= (a � !) � �n1 � : : : � �nn= �x: (a � !) � �n1 � : : : � �nn � x since 1n+1 � a = a= �(app � ((a � !) � �n1 � : : : � �nn)� id)= �((a � !) � �n+11 � : : : � �n+1n+1)= �("(a)):Finally, the triangular identities boil down to"F = id and U" = id:These are easily veri�ed. 2The pattern obtained here is the same as established in Jacobs [1991], 7.4.3 forthe second order �-calculus �2: the functor from categorical to set theoretical modelshas a left-adjoint-right-inverse.The next two theorems deal with some categorical properties of categorical�-algebras.5.5.11. Theorem. Let (B;
) be a categorical �-algebra. By de�nition Cons
 hassemi-products; it also has semi-sums.Proof. The standard (non-surjective) pairing from �-calculus yields \combinators"fst; snd : 
! 
 and pair : 
� 
! 
 satifying fst � pair = � and snd � pair = �0.In �-calculus notation, fst(z) = zK; snd(z) = zK 0 | where K 0 = �xy: y | andpair(x; y) = �z: zxy. A bit more categorically, fst = id
 � (K � !
); snd = id
 � (K 0 �!
) and pair = �(�0 � (� � �) � (�0 � �)).



120 CHAPTER 5. APPLICATIONSFor the semi-adjunctions �(A;
) as Cons
(A;
)�, mapsB(A� 
; 
 ) �(A)� �(A) - B( (A� 
)� 
; 
 )are required. One takes�(A)(f) = f � h� � �; pair � h�0 � �; �0ii�(A)(g) = g � hh�; fst � �0i; snd � �0i:Then �(A) � �(A) = id: 25.5.12. Theorem. Let (B;
) be a categorical �-algebra. We write Fst = cod �Cons
 : B==
! B for the �bration involved. Then(i) Fst is a �bred monoid, i.e. all �bre categories are monoids;(ii) Fst is a �bred semi-CCC, i.e. all �bre categories are semi-CCC's and re-indexing preserves this structure.Proof. (i) Obvious, since one starts from a single type 
.(ii) Remember (from 4.1.3) that composition in the �bre categories (B==
)A isdescribed by g � f = g � h�; f i. We de�ne the semi-CCC structure, see Hayashi[1985].(1) !0 = c0 � !A�
 :A� 
 ! 
, where c0 : t ! 
 is an arbitrary constant; then!0 � f = c0 � !A�
 � h�; f i = c0 � !A�
 = !0.(2) �0 = fst � �0; �1 = snd � �0 :A� 
 ! 
. Further, for f; g :A� 
 ! 
 onetakes hhf; gii = pair � hf; gi, see the proof of the previous result for the combinatorsfst, snd and pair. One has �0 � hhf; gii = f; �1 � hhf; gii = g and hhf; gii � h =hhf � h; g � hii.(3) ev = app � hfst; sndi � �0 :A� 
 ! 
. For f :A� 
 ! 
 one takes �(f) =�(f � h� � �; pair � � � idi). Then ev � hh�(f) � g; hii = �(f) � hhg; hii; �(f � hhg ��0; �1ii) = �(f) � g and ev � hh�0; �1ii = ev: 2The previous theorem indicates how to obtain a \CCC with re
exive object"from a categorical �-algebra. The next two facts should be used.� Taking the Karoubi envelope of a semi-CCCC yields a CCCK(C), see Hayashi[1985].� If 
 �= 

 in a semi-CCC C, then id
 is a re
exive object in K(C). The latteris easily veri�ed.Obviously, the object, say 
, of a monoid semi-CCC satis�es 
 �= 

. Hence takingthe Karoubi envelope of one of the �bre categories of a categorical �-algebra yieldsa CCC with a re
exive object.

5.5. THE UNTYPED LAMBDA CALCULUS REVISITED 121Finally we are in a position to compare our new notion of \monoid constantcomprehension category with semi-products" with the \CCC with re
exive object"as used by Scott and Koymans. We mention the advantages of our approach.� It captures \untyped" as the monoid-case in a \typed world". Explicitly: con-stant comprehension categories describe simply typed �-calculi, i.e. calculi onthe minimal setting. Monoid constant comprehension categories describe theuntyped �-calculus. This follows a general categorical understanding of \un-typed".� It describes the �- (plus naturality-) rules by semi-adjunctions and the addi-tional �-rule by ordinary adjunctions. This also �ts into a general categoricalpattern, see e.g. Hayashi [1985], Jacobs [1991].� It gives rise to the adjointness in theorem 5.5.10 between categorical and settheoretical models. In the Scott-Koymans approach, turning a CCC with re-
exive object �rst into a �-algebra and then again into a category yields incom-parable results. This is due to the fact that the Karoubi envelope introducesunnecessary junk, see Koymans [1984], Barendregt [1984].� It enables a direct and uniform presentation of concrete examples, see 5.5.6(i),(ii). In order to present (ii) as CCC with a re
exive object, one �rst has totake the Karoubi envelope.However, we have to concede that the notion of a CCC with a re
exive object ismore elementary.



122 CHAPTER 5. APPLICATIONS
ReferencesAsperti, A. and Martini, S.[199?] Categorical Models of Polymorphism, Inform. & Comp. to appear.Bainbridge, E.S, Freyd, P.J., Scedrov, A. and Scott, P.J.[1989] Functorial Polymorphism, Theor. Comp. Sci. 70 35 { 64.Barendregt, H.P.[1984] The Lambda Calculus. Its Syntax and Semantics, 2nd rev. ed. (North Holland,Amsterdam).[1991] Introduction to generalized type systems, J. Funct. Progr. 1 125 { 154.[199?] Typed Lambda Calculi, in: Abramski, S. et al. (eds.), Handbook of Logic inComputer Science (Oxford Univ. Press) to appear.Barendregt, H.P. and Rezus, A.[1983] Semantics for Classical AUTOMATH and related Systems, Inf. & Contr. 59127 { 147.Barr, M. and Wells, Ch.[1985] Toposes, Triples and Theories (Springer, Berlin).[1990] Category Theory for Computing Science (Prentice Hall, New York and Lon-don).Bell, J.L.[1988] Toposes and Local Set Theories. An Introduction (Oxford univ. Press).B�enabou, J.[1975] Fibrations petites et localement petites, C. R. Acad. Sc. Paris 281 A897 {A900.[1985] Fibred Categories and the Foundations of naive Category Theory, J. Symb.Log. 50 10 { 37.Blanco, J.[1991] Relating Categorical Approaches to Type Dependency, master thesis, Univ.Nijmegen.de Bruijn, N.G.[1970] A survey of the project AUTOMATH, in: Hindley and Seldin [1970] 579 { 606.Cartmell, J.[1978] Generalized Algebraic Theories and Contextual Categories, Ph.D. thesis, Univ.Oxford.[1985] Formalizing the Network and Hierarchical Data Models | an Application ofCategorical Logic, in: Pitt et al. [1985] 466 { 492.123



124 REFERENCES[1986] Generalized Algebraic Theories and Contextual Categories, Ann. Pure & Appl.Log. 32 209 { 243.Coquand, Th. and Ehrhard, Th.[1987] An Equational Presentation of Higher Order Logic, in: Pitt et al. [1987] 40 {56.Coquand, Th., Gunter, C. and Winskel, G.[1989] Domain Theoretic Models of Polymorphism, Inform. & Comp. 81 123 { 167.Curien, P.-L.[1989] Alpha conversion, Conditions on variables and Categorical Logic, Studia LogicaXLVIII 3 319 { 360.[1990] Substitution up to Isomorphism, techn. rep. 90-9, Lab. Inf. �Ecole Norm. Sup.,Paris.Curry, H.B. and Feys, R.[1958] Combinatory Logic, vol. 1 (North Holland, Amsterdam).Ehrhard, Th.[1988a] A Categorical Semantics of Constructions, in: Logic in Computer Science(Computer Society Press, Washington) 264 { 273.[1988b] Une S�emantique Cat�egorique des Types D�ependants. Application au Calcul desConstructions, Ph.D. thesis, univ. Paris VII.[1989] Dictoses, in: Pitt et al. [1989] 213 { 223.Freyd, P.J.[1972] Aspects of Topoi, Bull. Austral. Math. Soc. 7 1 { 76 and 467 { 480.Girard, J.-Y.[1972] Interpr�etation Fonctionelle et �Elimination des Coupures de l'Arithm�etique d'or-dre sup�erieur , Th�ese d'�Etat, Univ. Paris VII.Girard, J.-Y., Scedrov, A. and Scott, P.J.[1991] Normal Forms and Cut-Free Proofs as Natural Transformations, in: Moscho-vakis, Y. (ed.), Logic from Computer Science, Proc. Math. Sci. Research Inst.Conf., Berkeley CA (Springer, Berlin) to appear.Hayashi, S.[1985] Adjunction of Semi-functors: Categorical Structures in non-extensional lamb-da-calculus, Th. Comp. Sc. 41 95 { 104.Hindley, J.R. and Seldin, J.P. (eds.)[1970] To H.B. Curry: Essays on Combinatory Logic, Lambda-Calculus and Formal-ism (Academic Press, New York and London).Howard, W.[1970] The Formulae-as-Types notion of Construction, in: Hindley and Seldin [1970]479 { 490.Hyland, J.M.E.[1989] A small complete Category, Ann. Pure & Appl. Log. 40 135 { 165.Hyland, J.M.E., Johnstone, P.T. and Pitts, A.M.[1980] Tripos theory, Math. Proc. Camb. Phil. Soc. 88 205 { 232.Hyland, J.M.E. and Pitts, A.M.

REFERENCES 125[1989] The Theory of Constructions: categorical semantics and topos-theoretic Mod-els, in: Gray, J. and Scedrov, A. (eds.), Categories in Computer Scienceand Logic (Contemp. Math. 92, AMS, Providence, 1989) 137 { 199.Hyland, J.M.E., Robinson, E.P. and Rosolini, G.[1990] The discrete objects in the e�ective topos, Proc. London Math. Soc. 60 1 {36.Jacobs, B.P.F.[1989] The Inconsistency of higher order Extensions of Martin-L�of's Type Theory, J.Phil. Log. 18 399 { 422.[1990] Comprehension Categories and the Semantics of Type Dependency. A revisedversion is to appear in Theor. Comp. Sci.[1991] Semantics of the second order Lambda Calculus, Math. Struct. in Comp. Sci.to appear.Jacobs, B.P.F., Moggi, E. and Streicher, Th.[1991] Relating Models of Impredicative Type Theories, Category Theory and Com-puter Science (Springer LNCS, Berlin) to appear.Johnstone, P.T.[1977] Topos Theory (Academic Press, London).Kelly, G.M. and Street, R.[1974] Review of the elements of 2-categories, in: Kelley, G.M. (ed.), Proc. SydneyCategory Theory Seminar 1972/1973 (Springer LNM 420, Berlin) 75 { 103.Kock, A. and Reyes, G.E.[1977] Doctrines in Categorical Logic, in: Barwise, J. (ed.), Handbook of mathemat-ical Logic (North Holland, Amsterdam).Koymans, K.[1982] Models of the Lambda Calculus, Inf. & Contr. 52 306 { 332.[1984] Models of the Lambda Calculus Ph.D. thesis, Univ. Utrecht. Reprinted as CWITract 9 (CWI, Amsterdam, 1984).Lamarche, F.[1988] Modelling Polymorphism with Categories, Ph.D. thesis, McGill Univ. Montr�eal.Lambek, J.[1989] On some Connections between Logic and Category Theory, Studia LogicaXLVIII 3 269 { 278.Lambek, J. and Scott, P.J.[1986] Introduction to higher order Categorical Logic (Camb. Univ. Press).Lawvere, F.W.[1963] Functorial Semantics of algebraic Theories, Proc. Nat. Acad. Sci. U.S.A. 50869 { 872.[1969] Adjointness in Foundations, Dialectica 23 281 { 296.[1970] Equality in Hyperdoctrines and Comprehension Scheme as an adjoint Functor,in: Heller, A. (ed.), Applications of Categorical Algebra (AMS Providence)1 { 14.Mac Lane, S.



126 REFERENCES[1971] Categories for the Working Mathematician (Springer, Berlin).Martin-L�of, P.[1984] Intuitionistic Type Theory (Bibliopolis, Napels).Moggi, E.[1991] A Category Theoretic Account of Program Modules, Math. Struct. in Comp.Sci. 1 103 { 139.Obtu lowicz, A.[1989] Categorical and Algebraic Aspects of Martin-L�of Type Theory, Studia LogicaXLVIII 3 299 { 317.Palmgren, E. and Stoltenberg-Hansen, V.[1990] Domain interpretations of Martin-L�of's partial type theory, Ann. Pure & Appl.Log. 48 135 { 196.Par�e, R. and Schumacher, D.[1978] Abstract Families and the Adjoint Functor Theorems, in: Johnstone, P.T.and Par�e, R. (eds.), Indexed Categories and their Applications (Springer LNM661, Berlin) 1 { 125.Pavlovi�c, D.[1990] Predicates and Fibrations, Ph.D. thesis, Univ. Utrecht.Penon, J.[1974] Alg�ebre des Cat�egories | Cat�egories localement internes, C. R. Acad. Sc.Paris 278 A1577 { A1580.Pitt, D.H., Abramski, S., Poign�e and Rydeheard, D.E. (eds.)[1985] Category Theory and Computer Programming (Springer LNCS 240, Berlin).Pitt, D.H., Poign�e, A., and Rydeheard, D.E. (eds.)[1987] Category Theory and Computer Science (Springer LNCS 283, Berlin).Pitt, D.H., Rydeheard, D.E., Dybjer, P., Pitts, A.M. and Poign�e A. (eds.)[1989] Category Theory and Computer Science (Springer LNCS 389, Berlin).Pitts, A.M.[1981] The theory of triposes, Ph.D. thesis, Univ. Cambridge.[1987] Polymorphism is Set theoretic, Constructively, in: Pitt et al. [1987] 12 { 39.[1989] Categorical Semantics of Dependent Types, Notes of a talk given at SRI MenloPark and at the Logic Colloquium in Berlin.Pitts, A.M. and Taylor, P.[1989] A note on Russell's Paradox in locally cartesian closed categories, Studia LogicaXLVIII 3 377 { 387.Scott, D.S.[1976] Data Types as Lattices, SIAM J. Comput. 5 522 { 587.[1980] Relating Theories of the Lambda Calculus, in: Hindley and Seldin [1970], 403{ 450.Seely, R.A.G.[1984] Locally cartesian closed Categories and Type Theory, Math. Proc. Camb. Phil.Soc. 95 33 { 48.

REFERENCES 127[1987] Categorical Semantics for higher order Polymorphic Lambda Calculus, J. Symb.Log. 52 969 { 989.Smyth, M., and Plotkin, G.D.[1982] The category-theoretic solution of recursive domain equations, SIAM J. Com-put. 11 761 { 783.Streicher, Th.[1989] Correctness and Completeness of a Categorical Semantics of the Calculus ofConstructions, Ph.D. thesis, Univ. Passau.[1990] Dependence and Independence Results for (Impredicative) Calculi of Depen-dent Types, techn. rep. MIP - 9015, Univ. Passau. To appear in: Math. Struct.in Comp. Sci.Taylor, P.[1985] Internal Completeness of Categories of Domains, in: Pitt et al. [1985], 449 {465.[1987] Recursive Domains, indexed Categories and Polymorphism Ph.D. thesis, Univ.Cambridge.Troelstra, A.S. and van Dalen, D.[1990] Constructivism in Mathematics 2 vol.'s (North Holland, Amsterdam).



IndexAdjoint functor theorem, 91Adjunction�bred, 8, 9split, 17internal, 20semi-, 110, 120Arrowcategory, 2�bration, 3Axiom, 27, 98Bi�bration, 2, 10Cartesian product, 30Categoryambient, 18, 20arrow, 2base, 2CC-, 100, 106weak, 100�bre, 2�bred, 2HML-, 105indexed, 15internal, 18, 86, 88discrete, 20full, 89, 90�!-, 43, 50internal, 44�HOL-, 108�!-, 43, 103, 105, 108internal, 44�PRED-, 109�P1-, 75�Pi-, 75, 82, 83��-, 75, 101
�2-, 43internal, 44�!-, 43internal, 44monoidal, 61of contexts, 93polynomial, 12preorder, v, 62slice, 2small complete, v, 62, 102total, 2CCC�bred, 10, 21internal, 20, 21semi-, 111, 120�bred, 119Change-of-basefor a CCompC, 73for a comprehension category, 59,65, 97for a �bration, 4, 5, 98Cleavage, 3Closure, 28, 30, 98Closure model, 67Co�bration, 2Coherence, vii, 42Comprehension category, vi, 53closed (CCompC), 66, 73, 74over a �bration, 79, 80constant, 54, 56, 62, 94over a �bration, 78, 79constant ConsB, 22, 54, 67constant Cons
, 22, 54, 111constructions on, 58change-of-base r�(P), 59composition RP , 61128

INDEX 129full completion P~, 58juxtaposition Q � P , 59localization P [�], 60multiplication P 
Q, 60full, 53, 78, 94Hom, 86over a �bration, 78with unit, 55, 58, 87, 90over a �bration, 79Constant, 27Context rules, 29D-category, vi, 55Dependency, 38relation of, 26type, 27Dictos, 101, 103, 104Dinatural transformation, 49, 51Display map, vi, 54, 96Domain model, 45, 57, 67Enough points, 111Exponent, 30, 107Externalization, 20, 21, 23, 48, 88Family model, 2, 10, 44, 45, 56, 62, 80,85, 102, 104Feature, 25, 27, 38translation of, 97Fibration, 2, 94arrow, 3, 78, 79cloven, 3, 5complete, 62constant, 3, 94full small, 90, 102locally small, 84, 85, 89, 91opposite, 7, 65, 86over a �bration, 76preorder, 45, 62, 100representable, 7small, 21, 86, 89small complete, v, 62split, 3, 18Free

CCompC from CCC, 74CCompC from �bred CCC, 82�!-category from CCC, 50�Pi-category from LCCC, 84Frobenius, 44, 64Functorcartesian, 4over a �bration, 77continuous, 90, 91global sections, 55, 90internal, 19inverse image, 3pullback, 57reindexing, 3relabelling, 3semi-, 110substitution, 3terminal object, 10weakening, 54, 61Generic object, 12, 89, 98split, 13Girard's paradox, 75Grothendieck construction, 16, 17Groupoid, 3Identity, 28, 33, 37Inclusion, 28, 33, 35, 99Indexed sets, 1, 5Internalization, 21, 48Intrinsic, 3Karoubi envelope, 120Lambda algebra, 113, 118categorical, 111, 118Lambda model, 113categorical, 112LCCC, 10, 13, 14, 62, 79, 80, 86, 89�bred, 79, 80, 83Logic, vcategorical, vLogical model, 45, 100, 101, 104Martin-L�of type theory, 75



130 INDEXMonoid, 120�bred, 119Morphismcartesian, 2cocartesian, 2, 64vertical, 2Non-empty object, 111!-Set, 13modest, 14Partial equivalence relation, 14Products and sums, 31, 38for a comprehension category, 62for a �bration, 62along arbitrary projections, 61along cartesian projections, 22for an internal category, 23semi-, 111, 119Projection, 54, 61cartesian, 22Quanti�cation, 28, 61, 81, 82, 97and change-of-base, 65and re
ection, 65Realizability model, 13, 20, 21, 45, 57,62, 67, 80, 101Re
ection, 36, 65, 100Re
exivecpo, 63, 67, 112object, 110, 116, 120Separated family, 68Setting, 25, 26categorical, 41minimal, 38, 94, 99propositional, 39, 95, 106propositions as types, 38, 54, 95,99translation of, 93Sort, 26Start rules, 30Strong sum, 32, 34, 35, 97, 100
for a comprehension category, 64,65Substitution, 42functor, 3Term, 26, 54Term model, 54, 57, 67, 102Topology, 2, 68Topos, 13, 45, 68, 101model, 70, 101split model, 70, 101Tripos, 45Type, 26, 54dependency, vof all types, 68Type system, 25generalized, 25Unit, 30, 58, 97Untyped, 120lambda calculus, 110Weakening, 42, 61functor, 54Yoneda lemma, 6, 17

SamenvattingHet onderhavige proefschrift is opgebouwd uit vijf hoofdstukken. Het eerste gaatover indicering van categorie�en. De typentheoretische motivatie ligt in het feit dateen context een index vormt voor de categorie van typen en termen die a
eid-baar zijn in die context. Het centrale begrip is `vezeling' (�bration, in het Engels)zoals ge��ntroduceerd door Grothendieck. Een aantal elementaire de�nities en resul-taten wordt besproken. Zijdelings worden twee alternatieve vormen van indiceringbeschreven: `ge��ndiceerde categorie�en' en `interne categorie�en'.In het tweede hoofdstuk komt typentheorie aan de orde. Gebaseerd op eencategorische intu��tie wordt het typentheoretische begrip `achtergrond' (in het Engels,setting) ingevoerd. Een achtergrond bestaat uit een verzameling soorten voorzienvan een transitieve relatie die beschrijft wat afhankelijk mag zijn van wat. Eenachtergrond kan bijvoorbeeld bepalen dat een propositie af mag hangen van eentype, dat wil zeggen, dat een propositie een variabele van een type mag bevatten.Een achtergrond bepaalt tevens welke `aspecten' (features, in het Engels) toelaatbaarzijn. Voorbeelden van aspecten zijn exponenten, producten, sommen en identiteiten.Om bijvoorbeeld afhankelijke producten te kunnen vormen moet de achtergrondwaartegen men werkt betre�ende afhankelijkheid bevatten. Aldus wordt een typen-systeem begrepen als een achtergrond plus een aantal daardoor toegestane aspecten.Verschillende bekende systemen worden zo opnieuw beschreven. Dit vergemakkelijktde overgang naar een categorische beschrijvingswijze.Een achtergrond kent typenafhankelijkheid indien er een soort is die van zichzelfafhangt. Achtergronden zonder deze eigenschap zijn categorisch eenvoudig: con-texten kunnen simpelweg als cartesische producten beschreven worden. De systemen�!; �2; �! en �! die het linkervlak van Barendregt's cubus vormen hebben een-zelfde achtergrond zonder typenafhankelijkheid. Beschrijving van de bijbehorendecategorie�en vindt men in hoofdstuk drie.Achtergronden met typenafhankelijkheid zijn iets minder eenvoudig te beschrij-ven. In hoofdstuk vier wordt de benodigde theorie ontwikkeld. Het centrale be-grip hier is `comprehensie categorie'. Zo'n structuur bescrijft de organisatie vancontexten, die nu niet meer als cartesische producten begrepen kunnen worden:vanwege de afhankelijkheid is een vorm van disjuncte vereniging vereist. Een com-prehensie categorie geeft een passende categorische beschrijving van zulke disjuncteverenigingen en de bijbehorende projecties. Verder wordt een algemeen begrip vanquanti�catie voor vezelingen beschreven in termen van comprehensie categorie�en.131



132 SAMENVATTINGDeze twee ingredi�enten worden aan een gedetailleerd onderzoek onderworpen. Deresulterende inzichten worden vervolgens in het vijfde hoofdstuk aangewend: eerstom een algemene schets te geven van de omzetting van typentheoretische achter-gronden en aspecten in overeenkomstige categorische; daarna om enkele individueletypensystemen categorisch te beschrijven; tenslotte om de categorische semantiekvan de ongetypeerde lambda calculus te herzien. Zogenaamde `constante' com-prehensie categorie�en met �e�en type geven een adequate beschrijving. Curriculum VitaeDe auteur van dit proefschrift is geboren op 2 augustus 1963 te Nuenen (N. Br.). Indezelfde plaats doorliep hij de lagere school. In Eindhoven volgde hij van 1975 tot1981 de gymnasium-� opleiding aan het Augustinianum.Als vervolgstudies werd gekozen voor wiskunde in combinatie met wijsbegeerteaan de Katholieke Universiteit Nijmegen. Het candidaats- en vervolgens het docto-raal-examen wiskunde zijn behaald op 1 september 1983 en 27 augustus 1987; hetlaatste cum laude. Bepalende docenten waren de Iongh, Veldman en Barendregt.In de wijsbegeerte is het candidaatsexamen afgelegd op 30 november 1984 en hetdoctoraalexamen op 10 juni 1988. Vermeldenswaard zijn hier de docenten Sundholmen Boukema.Inmiddels was de schrijver per 1 september 1987 als toegevoegd onderzoeker indienst getreden bij de afdeling Grondslagen van de Informatica van de KUN | ineerste instantie zonder volledige aanstelling. Onderbroken door detachering aan deuniversiteiten van Pisa en Cambridge is tot aan de zomer van 1991 in Nijmegen depromotie voorbereid.
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