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1 Introduction

Clearly different units are “natural” for different problems. Car mechan-
ics like to measure power in horsepower, electrical engineers prefer watts
and particle physicists prefer MeV2. A good choice of units can make the
magnitudes of interesting quantities more palatable. An planetary scientist
measures distances in astronomical units (au), 1 au=149597870660(20) me-
ters', the mean Earth-Sun distance. It would be cumbersome for her to use
microns, and of course, the reverse is true for a condensed matter physicist.

Each to her own... It seems like a pretty dull subject. However, in the
realm of modern physics a careful examination of the choice of units leads
to some useful (even profound) insights into the way the Universe works. In
this chapter I briefly review the MKS and cgs systems. Then I introduce
the system that quantum physicists call Natural Units. Although it sounds
arrogant, these really are the natural units for the micro-world. To convince
you of this, I go on to describe some consequences of the use of natural units
to describe relativistic and quantum phenomena.

2 The MKS and cgs Systems of Units (very
briefly)

In the MKS system of units mechanical quantities are expressed using the
kilogram (kg), meter (m), and second (sec), as the fundamental units of mass
(m), length (¢) and time (t). Velocities are quoted as so many “meters per
second”, forces as so many “kg m/sec?”. If the language becomes cumber-
some, new names are introduced: so, for example, the “Newton” is defined
to be 1 kg m/sec?, but introducing new names does not change the {kilogram
meter second} at the core.

When dealing with electromagnetic phenomena, the MKS system in-
troduces a new fundamental unit of charge, the Coulomb, which we can

!The notation 149597870660(20) is to be read 149597870660+20, and is used when
quoting a number to the present limit of experimental accuracy. Otherwise all numbers
and calculations in this section are quoted to four significant figures. The precision mea-
surement of fundamental constants is an epic saga in modern physics — every digit in
these numbers represents years, if not lifetimes, of imaginative and difficult research. You
can find precision measurements of fundamental constants and conversion factors in the
tables provided by the Particle Data Group, available on-line at http://pdg.1bl.gov/
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think of as the charge on approximately 6.24x10'8 electrons. In MKS units
Coulomb’s Law,
P 1 Q1Qs

dmey 12

(MKS) (1)

must include a constant of proportionality (called, for historical reasons,
1/4mey), which measures the force (in Newtons) between two one-Coulomb
charges separated by one meter. Notice that the constant of proportionality
has appeared because we insisted on introducing our own favorite unit of
charge, the Coulomb. Had we chosen a different unit of charge, the propor-
tionality constant would have been different. Wouldn’t it be great if we could
choose a unit of charge so that the constant of proportionality was unity?
That is precisely what is done in the cgs system, which makes the slight
additional change of measuring mass in grams and distance in centimeters.

In the cgs system all physical quantities — not just mechanical — are
expressed in terms of grams (g), centimeters (cm) and seconds (sec). It is easy
to see how the quantities that arise in meachanics, like momentum, energy,
or viscosity have units that are derived from defining equations. Because
p=mv, E=1mv®+ ... and dF,/dA = ndv,/dy we know that?

[momentum] = mft~* gm cm sec '
[energy] = m#*t 2 gm cm? sec™?
[force] = mt™? gm cm sec” >
[viscosity] = m¢~ 1t} gm cm ™! sec”! . (2)

Of course practitioners introduce convenient abbreviations: For example,

e The cgs unit of force is a dyne, equal to one gm cm sec™?;

e The cgs unit of energy is a erg, equal to one gm cm? sec™?;

e The cgs unit of viscosity is a poise, equal to one gm cm™! sec™!.
But the dyne, erg, or poise, have no fundamental significance: everything is
just grams, centimeters, and seconds. From a cgs point of view, any other unit
used in mechanics, like a foot, an atmosphere or an acre merely represents
a convenient short hand for so-many gm®cm®sec®, where the exponents, a,

2In the subsequent equations [z] is to be read “the dimensions of x.”
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b, and ¢ are chosen to give the correct dimensions. It is clear that all the
quantities encountered in mechanics can be expressed in terms mass, length,
and time.

The real power of the cgs approach becomes apparent when we leave the
realm of mechanics. Consider, for example, electrodynamics. When a new
concept such as electric charge is first encountered, it seems necessary to
introduce a new unit to measure its quantity. In the case of charge, both
the Coulomb and the Faraday were introduced in this way before the laws of
electromagnetism were known.

However, the need for an independent unit for electric charge went away
when the dynamical laws of electrostatics were worked out. Coulomb’s Law
enables us to measure charge using the same units we used in mechanics, ¢,
m, and t. Coulomb’s Law tells us that the force produced by charges at a
fixed separation is proportional to the product of the charges and inversely
proportional to their separation squared,

Fcoulomb X % (3)
This affords us the opportunity to define a unit of charge within the existing
cgs system. Simply define one cgs unit of charge as the charge necessary to
produce a force of one dyne at a separation of one centimeter from an equal
charge. Then in this system, the proportionality in eq. (3) becomes equality,

Fcoulomb = % (CQS) (4)

The cgs unit of charge, known as the statcoulomb or esu®, is convenient

because it eliminates the need for the constant of proportionality, 1/4me,
that appeared in eq. (1). Even better, it tells us that charge can be measured
in the same units of mass, length, and time, that were sufficient for mechanics.
To see this consider the balance of dimensions in eq. (4),

[force] = [charge]?/[r]?, so
[charge] = [force]/? ® ¢
= [mtt 2 @0
_ m1/2€3/2t_1 (5)

Sesu = electrostatic unit
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So charge has dimensions m/2¢3/?¢t=! in the cgs system and is measured
in gm'/2cm3/2sec™(!) Since it would be cumbersome to refer to the units
of charge as the “gm'/2cm3/2sec™!”, this unit is given its own name, the
esu. Of course it can also be expressed as the charge of so many electrons (
2.08194345(18) x 10% at the present limit of precision) however the esu has a
fundamental connection to the cgs system that the other units of charge do
not.

The “trick” here was to write Coulomb’s Law without any constant of
proportionality. This is the cgs algorithm for introducing new concepts into
physics without introducing new units: Simply write down the law relating
the new concept to already known quantities without a constant of propor-
tionality. Then let the law define the units. This works as long as the new
quantity under study appears in a mathematical equation that relates it to
known quantities. At this moment in physics history, all the quantities we
measure can be expressed in terms of mass, length, and time. Problem 6
explores how this comes about when a new phenomenon is discovered.

The MKS system is different. A new, ad hoc unit, the Coulomb, is intro-
duced, and a proportionality constant, 1/4meg, is introduced into Coulomb’s
Law to preserve the meaning of independently defined units. For this rea-
son the MKS system is not used much in fundamental physics, although
it is most convenient for engineering applications where units matched to
practical applications are highly desirable.

To make sure we understand the cgs approach, and to introduce a small
elaboration, let’s study some further examples from electromagnetism. The
definition of electric field tells us its units: F = eE. Given the units of
force and charge that we have worked out, we find that E has dimensions
m20=1/2¢t=1 and its units are gm'/? cm~Y2 sec™!. A slight complication
arises when magnetism is introduced. The cgs units for the magnetic field
can be determined from the Lorentz Force Law,

F=¢E +ei x B. (6)

We could, of course, change the units for the magnetic field, B, by putting a
(dimensionful) constant of proportionality in front of the second term on the
right hand side of eq. (6), although this seems to run counter to the spirit
of the cgs approach. When electromagnetic radiation is important, however,
it is very convenient to use a system where the electric and magnetic fields
are measured in the same units. This can be accomplished if a constant of
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proportionality with dimensions 1 /velocity is introduced into eq. (6). Elec-
trodynamics offers a natural candidate for this velocity: ¢ — the speed of
light. So a very useful extension of the cgs system to magnetic effects uses

F=¢E+e-xB (7)

ol

as the Lorentz Force Law. Then E and B have the same units. This par-
ticular way of extending the cgs system to electrodynamics is known as the
Gaussian system of units. It requires introducing a few other factors of ¢
into common electromagnetic formulas. Here is a sampling of equations of
electrodynamics written in cgs units?

Fio = 61—;2f12 Coulomb’s Law
T12
V-E=4nmp Gauss’s Law
F=¢eE+ Eﬁ x B Lorentz’s Force Law
c
V=[d- E Definition of voltage
V=IR Ohm's Law
R = p x length/area Resistance from resistivity
LdI
V=--— Faraday's Law
cdt
- — 47T - /
VXB=—j Ampere’s Law (8)
c

It doesn’t matter if you are not familiar with all these equations because I
won’t be using them in great detail. From them you can deduce the dimen-
sions of commonly encountered quantities in the cgs system,

[resistivity] = ¢
[resistance] = ('t
[inductance] = £ '
[magnetic field] m/2 (=12 9)

4For a more comprehensive discussion of electromagnetic units see the Appendix on
units in J. D. Jackson, Classical Electrodynamics, 3rd Edition, where, for example, the
factor of ¢ in Faraday’s Law is discussed.
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Like the electric charge, the cgs units of electric and magnetic fields are
cumbersome. They are usually replaced by the gauss, defined by 1 gauss =
1 gm? em™12 sec™.

There is more to be said about the cgs system. For example, there is
a common variant in which the factor of 47 that decorates the differential
form of Gauss’s law in eq. (8) is removed by redefining the unit of charge. As
you can imagine, the situation can get complicated. Fortunately we are not
heading in this direction. If you are interested, you can find a (thankfully)
short but illuminating discussion in the Appendix to Jackson’s book already
noted.

3 Natural Units

The MKS and cgs systems are convenient, practical systems for most macro-
scopic applications. When we leave the scale of human dimensions to study
very small sizes and very energetic processes, they are no longer so natural.
Centimeters, grams and seconds are not particularly appropriate units for
problems where relativity and quantum mechanics are important. This is
reflected in the appearance of large exponents in quantities like the speed of
light (2.99792458 x 10'% cm sec™!) and Planck’s constant (6.6260693(11)~%7
gm cm? sec™!) expressed in cgs units. In the micro-world, the fundamental
constants ¢ and h set natural scales for velocity and action.® Natural Units
where velocity and action are measured in terms of ¢ and h respectively,
have won wide acceptance among atomic, nuclear, particle and astrophysi-
cists, and theorists of all kinds. They make dimensional analysis very simple
and even suggest the natural time, distance, and energy scales of fundamental
interactions. The use of natural units is surrounded with some unnecessary
confusion and mystery because of the physicists’ habit of abbreviating their
notation and expressing all physical quantities in terms of electron-volts (to
the appropriate power).

In the cgs system mass, length, and time sufficed to give us units for all
physical quantities. Physical laws can be used to relate the units of anything
else to these three. It seems self-evident that the units of mass, length and

SRemember that Planck’s constant has units of action, which are the same as
positionxmomentum. As a reminder, consider the Bohr-Sommerfeld quantization con-
dition, ¢ pdg = nh.
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time are fundamental and independent.® We do not know any fundamental
physical law relating mass, length, and time, that would enable us to use
the units of one to measure the other. However, there is no reason to choose
mass, length, and time to be the three building blocks for our units. We could
instead choose any three other quantities, provided any combination of mass,
length, and time can be re-expressed in terms of them. Natural units choose
instead velocity, action, and energy as the building blocks. Any quantity that
can be expressed in terms of fundamental units of mass, length, and time,
can just as well be expressed in terms of some choice of fundamental units
of velocity, action, and energy.

There are actually wonderful reasons to choose velocity and action to be
two of our fundamental units: ¢, the speed of light, is a natural unit of velocity
and A, Planck’s constant (divided by 27), is a natural unit of action. So if we
use these units, we will typically have very nice expressions for things that
use relativity and quantum mechanics in an essential way. Let us, for a brief
time and for pedagogical purposes, call the speed ¢ a new unit of velocity, the
einstein (abbreviated c), and call the action & a new unit of action, the planck
(abbreviated k). To complete a new set of basic units we need only decide
on another quantity, as long as it is linearly independent from velocity and
action. The conventional choice is energy, and the usual choice of unit is the
electron-volt (abbreviated eV). Everywhere where grams, centimeters, and
seconds appear in the cgs system we use the abbreviations gm, c¢m, and sec.
Likewise, everywhere where the einstein — our fundamental unit of velociy
— appears in the natural unit system, we use the abbreviation c¢. Where
the planck appears, we use the abbreviation A, and where the electron-volt
appears, we use the abbreviation eV.

If we express all physical quantities in terms of ¢, h, and eV, then we
are using natural units. At the core that is all there is to it. Any quantity
expressed in cgs units, je. as gm® cm® sec®, can be converted to natural units

6Tt is always dangerous to say something is “self-evident”, and this is no exception. See
Problem 7 for the reason why.
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using the basic conversion factors between natural and cgs systems,’

1 ¢ =2.99792458 x 10" cm sec™
1 h = 1.05457266(63) x 10~2" gm cm?sec™
1 eV = 1.60217733(49) x 10~ * gm cm?sec™? . (10)

and their (less familiar) inverses,

1 sec = 1.51926689(xx) x 10" h eV~
1 em = 5.06772886(zz) x 10* h ceV™!
1 gm = 5.60958616(zz) x 10** eV ¢ 2 (11)

Some other useful conversion factors are

he = 197.327053(59) MeV fm
= 6.5821220(20) x 10~* MeV sec
e’ = [137.0359895(61)] " hic where e is the electron charge

1 gauss = 1gm'? cm™/2 sec™? (12)

where 1 MeV = 10°eV, and 1 fm = 10~ cm is a femptometer or a ferms,
and remember that 1 erg = 1 gm cm? sec™? and 1 gauss = 1 gm'/? cm™'/?
sec™!. A quirky statement that causes much confusion is that “Ac is equal to
unity in natural units.” Since A is “one planck” and c is “one einstein”, this
statement is really no different than saying that “one gram x one centimeter
is equal to unity in cgs units”!

It is useful to have a generic relation between the units of a quantity in
the cgs system and in natural units. Consider some quantity D which is
known in cgs units, [D] = gm® cm® sec®. Apparently the dimensions of D
are [D] = m®°t¢. In natural units, [D] = [c|*[h]’[eV]". The powers of ¢, A,
and eV are fixed by using the relations

[c] = a7t
R] = met!
[eV] = me*t? (13)

7 Actually, the fact that c is quoted without errors in eq. (10) is a signal that it is used as
a fundamental unit in the cgs system too. The second is defined in terms of the frequency
of a specific atomic spectral line, and 2.99792458x 1010 centimeters is how far light goes
in a second.
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and demanding dimensional consistency between the two systems, [D] =
mbt¢ = c*hPE7Y. The result is,

a = b—2a
g = b+c
7 = a—-b-c (14)

To see how this works let’s express the mass of the electron in natural
units. We start from m, = 9.109 x 1072® gm, and use the third of eqs. (11),

me = 9.109 x 1072% gm x (5.610 x 10*? eV ¢ 2/ gm)
= 0.5110 x 10°% eV ¢ 2 (15)

I hope you will recognize ~ 0.5 MeV as the electron’s rest energy. In natural
units any mass is given by the equivalent rest energy.

Now comes the final, and really the only confusing step: By convention
we drop the factor of ¢=? when we write a mass in natural units, and write
merely m, ~ 0.5110 MeV. When a physicist writes a mass in units of MeV,
the necessary factors of ¢ required to restore dimensional consistency are
“understood”. In fact, when any quantity is written in natural units, all
factors of h and ¢ are suppressed. So although the natural unit system is
based on three fundamental units, the einstein — the fundamental unit of
velocity, the planck — the fundamental unit of action, and the electron-volt
— the fundamental unit of energy, the first two are simply dropped in all
expressions; which of course explains why you have never heard of them as
units. With eqgs. (13)—(14) we can proceed to express any physical quantity
in natural units, following the same steps we used for mass. Here are some
examples:

[mass] = eV ¢ ?
[time] eV'h
[length] eV'he
[momentum| eVc!
[force] eV? ht et
[pressure] eVt h? P
[charge?] he
]

[magnetic field

o2 f3/2 —3/2
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When the factors of ¢ and h are suppressed, all of these things are mea-
sured in electron-volts to some power. So in natural units the units of mass,
energy, and momentum are all eV, the units of length and time are both
eV =1, electric charge is dimensionless, and the units of force and magnetic
field are both eV2. Many physically different quantities are measured in the
same units. That’s why natural units are not for children. You have to be
sophisticated enough to figure out the meaning from the context. As you
become familiar with the system, it becomes easy.

The natural question at this point is “Why bother?”. Aren’t cgs units
good enough? The answer is “No.” The next subsection is devoted to con-
vincing you of this.

4 Advantages of the natural system of units

Natural units have a practical advantage: they are simple and it is easy to
convert back to cgs or MKS when necessary. They also have deeper ad-
vantages, which are more important: they are “natural” in the sense that
they provide scales that are appropriate to problems in relativistic or quan-
tum physics, and they are perfectly suited to dimensional analysis, which
can provide profound insights. These are big claims that need to be demon-
strated.

4.1 Simplicity

The first great advantage — and the great confusion for non-experts — is that
all physical quantities measured in units of electron volts. Really, of course,
our units are {einsteins plancks electron-volts}, but we have suppressed the
factors of ¢ and h.

We could have done the same thing in the cgs system too. We could, for
example, suppress the labels sec and ¢m and measure all quantities as some
power of a fundamental unit of mass, the gram. This is not done for two
reasons: first, because there is nothing particularly fundamental about one
second or one centimeter so we are not eager to suppress the label which tells
us that time was measured in seconds and length in centimeters; and second,
because we are used to having a different set of units for every different
physical quantity. For example, momentum and energy have different units
in the cgs system (cf. eq. (2)), but they would both be measured in grams
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if we suppressed ¢m and sec. If you quoted an answer to a calculation in
grams, you would have to tell your reader whether it was a momentum or an
energy before he would be able to evaluate it in cgs units.

In the case of natural units the first disadvantage is eliminated: & and ¢
are natural units for action and velocity in fundamental physics. The second
disadvantage remains, but it is outweighed by the convenience of measuring
all quantities in the same units. Of course, one must be careful to specify
the physical quantity of interest to avoid confusing things measured in the
same powers of eV. Once the nature of the quantity is known, the problem
of converting back from natural units to cgs units reduces to use of the
conversion factors in eqs. (11) and (12).

To get used to the specification of many different quantities in units of
eV consider all the physical quantities defined in eq. (16) associated with
mec® ~ 0.5110 MeV.2

e Mass

We already know the mass which is 0.5110 MeV in natural units, 0.5110
MeV/c? = m, = 9.109 x 1072® gm, the mass of the electron.

¢ Momentum

p = F/c, so in this case

p = 0.5110 MeV x (1.602 x 1072 erg/eV)/(2.998 x 10'° cm/sec)
= 2.730 x 107" gm cm sec™ !, (17)

a very small number in cgs units.

e Length

According to eqs. (16), £ = hc/E. In this case, since E = m.c?, the
length is ¢ = he/me.c* = h/mec, which you might recognize as the
Compton wavelength of the electron. Here the first conversion factor,
he ~197.3 MeV fm, comes in handy

¢ = (197.3 MeV fm)/(0.5110 MeV) = 3.861 x 10~ cm (18)

e Time

80nly four significant figures are retained throughout.
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This is easy: once we know the length (0.5110 MeV)~! = 3.861 x
10~ cm, the associated time is £/c (= 1.288 x 1072 sec) as required
by eq. (16). This is the time it takes light to travel the electron’s
Compton wavelength.

e Pressure

P = (0.5110 MeV)*/h3¢? is a pressure. Using the versitile conversion
factor, hc ~ 197.3 MeV fm, we find

P = (0.5110 MeV)*/(197.3 MeV fm)?
= 8.878 x 107 MeV /fm®(1.602 x 1072 erg/eV)(10" fm/cm)?
= 1.422 x 10** erg/cm® = 1.422 x 10** dynes/cm”
= 1.400 x 10'® atmospheres (19)

where I have used the conversion factor 1 atmosphere = 1.013 x 10°
dynes cm™2 to express the answer in everyday units. Notice how large
a pressure is associated with the energy scale defined by the electron
mass.

e Electric field

According to eq. (16), |E| = (0.5110 MeV)?/ (k)32 is an electric field
strength. We would like to express it in terms of something familiar,
like volts per centimeter. First, note that by definition 1 eV/e = 1
volt, where e is the electron charge. According to eq. (12), (hc)'/? ~

Vv137.0 e >~ 11.71e, so we can write,
|E| = (5110 MeV)?/ (he x (he)"/?)

(.5110 MeV)?/ (197.3 MeV fm x 11.71 ¢)
= 1.132 x 10" Volts cm™* (20)

e Magnetic field

Although a magnetic field could also be expressed in volts/cm, it is
more conventional to use gauss. So, for completeness we use the final
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conversion factor from eq. (16) to convert

|B] = (.5110 MeV)?/ (he)*?
= (5110 MeV)?/(197.3 MeV fm) =3/
= 0.422 x 107° MeVY/? fm=3/%(1.602 x 1072 erg/eV)*/?
x (10713 cm/fm)~3/2
= 3.771 x 10'? gm1/2 em ™ 2gec™!
= 3.771 x 10" gauss (21)

4.2 Naturalness

h and c set the scale for quantum mechanics and relativity. When we use
them as the basis of our unit system we naturally incorporate fundamental
properties of the system under study. Natural units reduce the basic equa-
tions of relativity and quantum mechanics to identities — E = mc?, E = pe,
XdeBroglie = h/pa E= hwa XCompton = h/mc

These are more than mere formal relations. Each of them has physical
implications in elementary processes. [ will put the factors of A and ¢ that
are usually suppressed in parentheses:

e When an electron and positron annihilate into two photons. The energy
of each photon in the e*e™ center-of-mass is m.(c?) and the frequency
is w = me(c?/h).

e When an electron of momentum p scatters from a heavy target, the
maximum momentum transferred to the target is 2p. By observing the
scattered electrons it is possible to resolve structure within the target
down to distances of order Ax ~ (h)/2p.

e If an external agent were able to confine an electron in a region of
space of size of order its Compton wavelength, it would have to exert
a pressure of order m!/((hc)?).

e In relativistic quantum mechanics particles exert forces on one another
by exchanging other particles over distances allowed by the uncer-
tainty principle. If two particles exchange a third that has mass pu.
Its energy is at least u(c?). The fluctuation can last no longer than
At ~ (B)/u(c?), in which time the particle can travel a distance no
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more than Ax ~ cAt. So the range of the force is Ax ~ (h)/u(c),
which is the exchanged particle’s Compton wavelength.

Even the seemingly more obscure relations have direct physical implica-
tions. As an example consider the phenomenon of electron positron pair cre-
ation in a strong electric field, known picturesquely as “ionizing the vacuum.”
The idea is as follows: In a very strong external electric field a quantum fluc-
tuation can lead to electron-positron pair creation. This limits the possible
strength of an electric field. It is exactly analogous to the breakdown of
an insulator that causes sparking in a condenser and limits the electric field
it can sustain, except here the oppositely charged pairs are created by a
quantum fluctuation in the vacuum rather than by ionizing the atoms of an
dielectric material. A quantum fluctuation can create an electron positron
pair with energy AE > 2m.c? provided the fluctuation lives less than the
time At < h/AFE. In that time, the electron and positron can separate by
a distance of order Ax ~ cAt. As they separate they gain energy e£Az, in
the electric field with strength £. If they gain enough energy to compensate
for their rest mass, they no longer have to annihilate: like Pinnocchio, they
can become real. The condition for real ete™ pair creation is therefore that
the electric field be greater than a critical value, &.;; determined by

h 2
G(Cm)gcrit ~ Qmec (22)
or 2.4 2.4
m_c m_c
Eerit ~ 4—— =4(11.71 < 23
’ hce ( )(hc)3/2 (23)

where T have used e?/fic ~ 1/137. So the critical field is a simple multiple of
the electric field specified by the electron rest energy squared.’

The final reason that I advertised for adopting natural units was the
emergence of important insights from dimensional analysis that is natural in
this unit system. The next section gives a series of applications of dimensional
analysis made simple by the use of concepts associated with natural units.

9Vacuum breakdown is a fascinating subject first described by Julian Schwinger in 1951
(J. Schwinger, Phys. Rev. 82, 664 (1951)). When the electric field is much weaker than
Eerit the electron-positron pair must tunnel out to a distance of order Az before they can
“become real”. So below &4t pair creation is suppressed by a barrier penetration factor
that can be calculated using the WKB method.
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5 Thinking about fundamental physics with
the help of natural units

c and h are the natural units of velocity and action for the world of physics.
Their presence indicates the importance of relativity or quantum mechanics
respectively. We can learn a great deal about fundamental physics simply by
constructing quantities with the right dimensions out of the appropriate ....

5.1 Studies in electrodynamics

The fine structure constant One number catches the eye in eq. (12):
the squared electron charge is proportional to hc, so e*/hc is a pure (di-
mensionless) number. The units are correct: [e?] = mf3t™2 = [hc|. Let’s
derive its value: start from the charge of the electron in cgs units, e =
4.803 x 10719 gm!'/2ecm?/?sec 1,

e = 2307 x 107 gm cm?® sec?

hic = 3.161 x 107" gm cm®sec?, whence
2

% = 1/137.0359895(61) .

e? /hc is known as the “fine structure constant”, because it was first en-
countered in the study of the fine structure of atomic spectra. It is a fun-
damental measure of the strength of relativistic (note the ¢), quantum (note
the h), electrodynamics (note the €2). For example, let’s try to estimate the
strength of the Coulomb force between an electron and a positron using only
length and energy scales intrinsic the the ete™ system. The electrostatic
potential energy of an electron and positron separated by a distance r is
e?/r. The only separation natural to the system is the Compton wavelength,
Xe = h/mec, and the only scale for measuring energies is the rest energy
mec?, so the quantity, (e2/X.)/m.c* = «a tells us how strong electrodynamic
forces are on quantum, relativistic distance scales. Since @ < 1, the effects
of electrodynamics are relatively weak and can be treated using the methods
of quantum mechanical perturbation theory. Note how different relativistic
quantum physics is from classical physics. Classically electrodynamical forces
can be made as strong as you like by packing more and more charge into a
finite volume. e™e™ pair creatiion — a quantum relativistic effect — puts a
limit on the strength of electromagnetic fields.
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Length scales in electrodynamics What distance scales can be con-
structed from e, me, ki, and ¢? Well, X, = ii/m.c is a distance, and o = e*/hc
is dimensionless, so d, = A/a™,n = 0,41, £2, ... are a series of natural dis-
tance scales characterizing electrodynamics. Let’s look at a few:

en =0, dy = h/me =X, = 3861 x 107! cm: The electron Comp-
ton wavelength, clearly the scale at which relativistic quantum effects
become important for electrons. Since there is no factor of e, it has
nothing to do with electrodynamics. An example of its significance: if
an electron is confined to ~ X, the localization energy from the uncer-
tainty principle is comparable to its rest energy, so electron-positron
pairs are created and the system can no longer be considered a single
particle state.

e n=1,d; = (h/mc)/(e*/hc) = h*/me* = ag = 0.5291 x 107 cm: The
electron Bohr radius, the scale of the non-relativistic quantum electron
bound state. Since there is no factor of ¢, it has no knowledge of
relativity. All other combination of e, m,, h, and ¢ with dimensions
of length have factors of ¢, so only ay can set the scale of the non-
relativistic atom. While we're discussing atoms, the binding energy
has to be of order mc?a? = me*/h? because this is the only energy
without a factor of c.

e n=—1,d,=(h/mc)x (e2/hc) = e*/mc* =r, = 2.817 x 107" cm:
The “classical radius” of the electron. The is the size of a sphere of
charge whose classical electrostatic potential energy equals the elec-
tron’s rest energy. This number was much discussed before the discov-
ery of quantum mechanics. We now know that quantum effects become
important at much larger distance scales, so r is of less interest.

The root mean square velocity of the electron in the hydrogen
atom Here is quite a non-trivial result about the properties characteristic
of electrons in atoms that can be derived from dimensional analysis alone.
The electron in an atomic orbital moves with a root mean square velocity
\/(v?) that can depend only on e, m,, and A, and not on ¢ (and, of course,
on the dimensionless quantum numbers that specify the orbital).!® We know

10T a good approximation the nucleus of the atom is at rest, so its mass cannot enter
the result.
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that [e?/h] = {/t because e*/hc is dimensionless. No other combination
of e, m, and h has dimensions of velocity, so \/(v2)/c ~ e*/hc = 1/137.
The actual result for hydrogen is y/(v?)/c = Na, where N is the principal
quantum number.

Corrections to the spectrum of hydrogen The fine structure of the
spectrum of hydrogen comes from the interaction of the orbiting electron’s
magnetic moment with the magnetic field it sees in its rest frame. Relativity
tells us that an electric field seen from moving frame generates a magnetic
field of magnitude |B| ~ %|E| For hydrogen ¢ ~ « and the electric field
strength can be estimated from the charge and radius of the Bohr atom,

|E| ~ 5 = m;fE). The problem of finding the natural scale for intrinsic
0
magnetic moments is relegated to Problem 3. The result is p ~ <& The

mc

interaction energy between the magnetic moment and field is AE ~ ,u\g | ~
med/hic? = a'mc?. Compared to the binding energy of the atom these
effects are suppressed by a factor of a? ~ 107

However there are other effects of the same order that cannot be ignored.
In particular, there are relativistic corrections to the kinetic energy. Ac-

. . . 2 4
cording to Einstein F = VPE+mt =m+ 2+ L5+ . (note ¢ has been
suppressed). Only the 2— contribution is included in the Schrodinger equa-
tion. The next term gives a correction of order (v?)/c?, which we now know
is of order o®. Since this is the same order as the magnetic interaction en-
ergy they have to be treated at the same time. The complete treatment is

presented in standard texts.

5.2 The quanta of angular momentum, conductance
and magnetic flux

One of the most striking features of the quantum world is the appearance
of quantization conditions. The quantization of angular momentum is the
most famous: since the units of angular momentum are the same as the
units of action, A makes a natural appearance in quantum mechanics as the
quantum of angular momentum. We no longer think twice that molecular,
atomic, nuclear and particle angular momenta are quantized in multiples of
the fundamental unit of action, A.

In problems involving electrodynamics we can fashion several other fun-
damental quanta out of the basic constants h, ¢ and e, and we can look for
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dynamical observables that might be quantized as integer multiples of these
quanta. Two examples have played an important role in modern quantum
physics, electrical conductance and magnetic fluz.

Conductance The conductance is the constant of proportionality between
current and voltage in Ohm’s Law: I = oV It is the inverse of the resistance
and, referring back to eq. (9), is measured in units of velocity. Conductance
should grow with the strength of the electric charge e and should be indepen-
dent of the sign of e (since the sign of the charge carriers cannot be determined
from Ohm’s law). A quantum of conductance that fills all these requirements
is % — the same velocity encountered in the analysis of atoms. So we should
expect that for systems where quantum effects dominate the conductance,

it comes in multiples of the fundamental quantum of conductance, oy = e

This quantum has made an appearance in two wonderful recent advancFés
in quantum physics: the Quantum Hall Effect, and Landauer Conductivity
in mesoscopic systems. In both cases small systems exhibit quantization of
their conductance in units of oy.

The observation of systems with quantized conductance is very surprising
if you take your intuition from classical physics. In classical electrodynamics
the conductance is a specimen dependent quantity obtained by multiplying
the conductivity, which is a more fundamental property of the material, by
an effective cross sectional area and dividing by an effective wire-length.
One might expect that conductivity would have some fundamental signif-
icance, but not the conductance. However, the units of conductivity are
[conductivity] = ¢~!, and it is not possible to construct a quantity with those
units by combining powers of e, A and ¢ alone. The physical phenomena
that exhibit quantization of conductance do deal directly with the conduc-
tance rather than the conductivity because they involve global aspects of
the system. Perhaps this unintuitive feature explains why quantization of
conductance waited so long to be discovered.

Magnetic Flux The magnetic flux is the integral of magnetic field strength
over an area, d = § B -dS. Referring back again to eq. (16) we see that the
natural units of magnetic flux are m!'/2¢3/2t=2. These are the same units as
the electric charge, e. We would not expect ® to be quantized in units of
e for several reasons: first (and foremost) i does not appear; and second,
magnetic effects are typically first order in 2, so we would expect ¢ to appear
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in the fundamental quantum of flux. Both of these flaws would easily be re-

moved if flux were quantized in units of &y = £ = % This quantum of flux

appears in the study of the Aharonov-Bohm Effect and in the study of the
motion of a charged particle in a constant magnetic field (“Landau levels”).

5.3 The Casimir effect

One of the most unusual effects of the quantization of the electromagnetic
field is known as the Casimir force. Quantum mechanics requires that the
modes of the electromagnetic field experience zero point motion similar to
that of the harmonic oscillator. In fact a zero point energy %hw can be
associated with each mode of the electromagnetic field with frequency w.
Normally this energy is invisible because the vacuum is present both before
and after we perform any measurement.

The presence of a conductor restricts the allowed modes of the electro-
magnetic field. Only those modes for which the electric field is normal and
the magnetic field is tangential to the conductor are allowed. The modi-
fication of the zero point energy generates a force (per unit area) between
two conductors, first computed for two infinite parallel plates by Hendryk
Casimir in 1948. For perfect conductors there is nothing for the force to
depend on other than h, ¢, and the separation between the plates, d. We
can determine the dependence of the force on separation from dimensional
consistency alone:

F
e hecPd. (24)
The dimensions will be consistent only if « = § = 1 and v = —4, so the

Casimir force goes grows like the fourth power of 1/d at small distances.
Electrostatic forces grow only like 1/d?, so the Casimir effect becomes rela-
tively more important at short distances.

Dimensional analysis cannot tell us the coefficient of proportionality in
eq. (24), or even the sign of the force. Casimir found that the force is attrac-
tive and the numerical coefficient is small,

F her?
A ~ T 120d* (25)

Casimir

At a distance of one micron (107* ¢m) the Casimir force is about 0.3
dynes cm ™2, small but detectible with modern atomic force microscopes!
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6 The scale of quantum gravity

So far I have not said anything about gravity. I wanted to leave gravity
to the end for two reasons: first, we do not have a description of gravity
that is consistent with relativity and quantum mechanics, so we’re on shaky
ground when we examine relativistic, quantum gravity using natural units;
and second, the analysis is so powerful that it is the best way to end this
discussion!

As you learn in an introductory physics class, gravity — as we encounter
it in everyday experience — is described by Newton’s Law, which looks de-
ceptively like Coulomb’s law in MKS units. Compare

1 Q1Q
D) = FCoulomb = o 2 .
r 4meg T

mims

FXewton = _GN (26)
where Newton’s constant, Gy = 6.6742(10) x 10~"'m®kg ™ 'sec™2, measures
the strength of gravitational forces.

The essential difference (aside from the sign) between gravity and elec-
trostatics is that the “gravitational charge” that appears on the right hand
side of Newton’s Law is just the inertial mass, which has already defined
by Newton’s 2nd law of motion, F' = ma. This complicates thinking about
gravity in natural units.

To get a fresh perspective, suppose gravity had been discovered in the
same historical fashion as electrostatics. The propensity for objects to attract
one another could be attributed to a “gravitational charge”, Q,

1%

2

FGravity =-K (27>

r

where the constant, K, depends on the units chosen for gravitational charge.
After years of experimentation, someone would have realized that gravita-
tional charge is proportional to inertial mass Q = fm. [We usually attribute
this profound realization to Galileo since it leads to the observation that all
objects fall at the same rate in the Earth’s gravity.] Then eq. (27) would be

replaced by
2M1My

FGraVity = _Kﬁ r2 (28)

which is Newton’s law when we define K% = Gy.

Let’s forget, for the moment, about Galileo’s great discovery, and return
to eq. (27). Following the path of electrostatics, let’s define a unit of gravita-
tional charge in the cgs system analogous to the esu: the “gravitostatic unit”
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or gsu is the amount of matter that produces a gravitational force of 1 dyne
at a separation of 1 centimeter. The cgs units of the gsu are gm'/2cm3/2sec™!,
just the same as the cgs units of the esu. The relationship between the gsu

and the kilogram can be read off from Newton’s Law:
lgsu = 3.87080(58)kg (29)

You can easily check that the gravitational force between two masses of
3.87... kilograms separated by 1 centimeter is 1 dyne. In comparison one esu
is 3.336 x 107!% Coulombs. So the electrostatic force between an everyday
quantity of charge (the Coulomb) is much larger than the gravitational force
between an everyday quantity of mass (the kilogram). Apparently gravity is
much weaker than electromagnetism.

We can pursue the analogy with electrodynamics further by defining a
dimensionless measure of the strength of relativistic quantum gravity, ag,
analogous to a = e?/hic. We need to know the gravitational charge on the
electron, let’s call it g, in gsu. Eq. (29) tells us the relationship between gsu
and kilograms, so it is easy to convert the electron’s mass, m, = 9.109 x
10728 gm, to find g = /G ym. = 2.353 x 10733 gsu. Then we find

g9’ —46
ag =3- = 2.759 x 107 ! (30)
This is the gravitational interaction energy of two electrons separated by
their Compton wavelengths as a fraction of the electron’s rest mass.

The breathtakingly small size of o is a measure of the weakness, and
therefore the elusiveness of relativistic quantum gravity. One big reason why
we have not discovered how to combine quantum mechanics with gravity is
that ag is so small.

The search for a consistent relativistic quantum theory of gravity is one
of the great unsolved problems of modern physics, so it is quite interesting
to learn at what scales it might be important. To get further information
let’s write Newton’s constant in natural units,

Gy = 6.6742(10) x 10~ %cm?®/gm sec?
= 6.7087(10) x 107*°GeV2hc® (31)

When quantum mechanics is important, actions are of order h. When rela-
tivity is important speeds are of order c¢. Thus G, written in natural units,
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gives the energy, length, and time scales of relativistic quantum gravity,

1
EPlanck - \/? ~1.2x 1019GeV
N

Cpranck = VG =~ 1.7 x 107%3¢cm
tplanck = VGn ~ 5 x 107 *sec | (32)

where all the relations have been written in natural units. All of these are
named in honor of Max Planck. Relativistic quantum gravity will be im-
portant particles are collided at energies of order Eppae (our current record
is about 10® GeV), or when we probe lengths of order fpp,q (our current
record is about 10717 c¢m), or when the age of the Universe was about tpjanck
(many orders of magnitude earlier than we can now probe). Although a rel-
ativistic quantum theory of gravity is one of the great challenges for 21st
century physics, the realms where its effects are important are so far from
our experimental capacity that we have little to guide us.
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7

Exercises

. cgs and natural units for mechanical quantities

Find the cgs units — which must take the form gm®cm®sec® — for each

of the following quantities that arise in mechanics. Then express each
of them in natural units in the fashion of eq. (16),

(a
(b

Force
Surface tension (energy per unit area)

¢) Number density (number per unit volume)

(

(d
(e
(f

Momentum density (momentum per unit volume)

Energy flux (energy per unit area per unit time)

~— N N N N N

Viscosity of a fluid defined by (ﬁ” = n%i;, where F), and v, are

the force and velocity in the x direction, which may be functions
of y).

. cgs and natural units for electromagnetism

There are several slightly different ways for generalizing cgs units to
electromagnetism. The differences revolve around factors of ¢ and 4.
We use units where Gauss’ Law reads V - E = 4mp and where a factor
of ¢ is introduced into the Lorentz force law so that E and B have the
same units. This system is known as “Gaussian units”. We prefer to
think of it as cgs extended to include electromagnetism. The cgs units
for electric charge and electric field are derived in the lecture notes.

(a) Using the defining equations for electromagnetic quantities given
in eq (7) find both the cgs and natural units for E and B, electric
and magnetic fields; p and f, charge and current densities; I,
current; R, resistance; p, resistivity; and L, inductance.

(b) If E and B are electric and magnetic fields, show that
i. E? and B2 have the units of energy density,
ii. %E x B has units of momentum density, and

iii. ¢E x B has units of energy flux.
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3. Units for magnetic moments

The magnetic moment (i) of a system determines its interaction energy
with a magnetic field,

—

AE =ji-B. (33)

(a) What are the cgs units for magnetic moments?
(b) What are the natural units for magnetic moments?

(c) A particle’s magnetic moment is linearly proportional to its elec-
tric charge, e, and to its spin, S. Write an expression for a par-
ticle’s magnetic moment in terms of its mass (m) and the fun-
damental constants A and c. Call the dimensionless constant of
proportionality g.

(d) For an electron, g. ~ 2 and its spin is quantized to +A/2. What
is the interaction energy for an electron when its spin is parallel
to a magnetic field of 10° gauss?

4. The Casimir Polder Force

Before his work on parallel plates, Casimir together with X. Polder
studied the quantum mechanical force between two polarizable molecules.
The form of this force can be predicted from dimensional considera-
tions.

(a) The static polarizability, a, of a system is defined by the equation,
p=aFE (34)

where pis the electric dipole moment (with dimensions chargex

distance) and E is a constant electric field. Show that the dimen-
sions of « are £3.

(b) In quantum mechanics molecule-1 can fluctuate to a polarized
state, thereby producing an electric field that polarizes molecule-
2 (or wvica versa). The two then attract one another until they
fluctuate back to an unpolarized state. Casimir and Polder used
relativistic quantum mechanics and found a force between the two
molecules proportional to the product of their static polarizabili-
ties and not depending on any of their other properties,

F=—-Kojay/r? (35)
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(c)

(The minus sign denotes attraction). Determine the parameter p
by demanding consistency of dimensions. [Hint: By hypothesis K
depends only on A and c.]

If the same calculation is done using non-relativistic quantum me-
chanics one also finds a power law. Can this force be proportional
to the product of static polarizabilites as well? If so, what is the
power law? If not explain why not.

5. Thermodynamics in natural units and applications

The concept of temperature can be integrated into the natural unit
system by remembering that k7" is an energy, where k = 8.617343(15) x
107%eV/°K, is Boltzmann’s constant. So a temperature is given by the
equivalent energy or, in other words, “Boltzmann’s constant is set equal
to unity”. The familiar statement that room temperature is equivalent
to about 1/40 eV, made more precise,

300°K = [38.681684(68)] eV | (36)

is a useful conversion factor.

(a)
(b)
(c)

To what temperature in °K does the mass of the electron corre-
spond?

The lowest temperatures achieved in recent years are a few micro-
Kelvin. What is 1°uK in eV?

Entropy is defined in thermodynamics by dS = %heversible, or
in statistical mechanics by S = kInT' (where dQ eversible iS the
amount of heat added reversibly to a system, and I" is the number
of configurations of a system with identical macroscopic proper-
ties). What are the units of entropy in the natural unit system?

Recently D. T. Son has suggested that there is a fundamental
bound on the wiscosity (n) of a system in terms of its entropy
density (0 — the entropy per unit volume). Son’s conjecture is

h
> —0 37
nZ (37)
Show that Son’s conjucture is dimensionally consistent. The vis-
cosity of water at standard temperature and pressure is given by
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0.89 x 1073 Pascal-seconds, and its entropy per unit volume is
2.8 x 10723 ecm™3. Calculate the ratio /o and show that the Son
bound is satified. [Note: You will need to convert Pascal-seconds
to cgs units.]

(e) Onme of the very few results from relativistic quantum gravity is
Hawking’s conjecture that black holes radiate thermal (“black
body”) radiation characterized by a temperature proportional to
their their surface area: Tiawking = CA. [The surface area of
a black hole is 47 times the square of its Schwartzschild radius.]
Recognizing that C' depends on relavistic (c), quantum (h), gravity
(Gy), write

C = NP 2GR, (38)

where N is a pure number and determine p;, ps, and p3 by de-
manding the consistency of dimensions in Tawking = C'A.

Hawking found N = 1/4. What is the Hawking temperature
(in °K) of a black hole with a radius of 2 kilometers (which is
approximately the Schwartzschild radius of the Sun)?

6. The Bag Model of the Proton

The proton and neutron ( “nucleons” for short) are made of three almost
massless quarks. The mass of the nucleon is approximately 940 MeV.
The quarks are confined to the interior of nucleons because it takes
work to “open up” a region of space, a “bag”, in which they can be
present. A very simple model of the nucleon treats it as a spherical bag
of radius R. The energy includes only two terms: a) the work done to
create the bag, and b) the zero point energy of the confined quarks.
The work that must be done to create the bag is parameterized by an
energy per unit volume, B, known as the bag constant. So it takes
energy E(bag) = BV to create a nucleon bag of volume V. The three
quarks have kinetic energy F(kinetic) = 3(|p’|) (remember ¢ = 1) and
(|P']) can be estimated from the uncertainty principle: (|p’|) =~ 1/R
(remember i = 1), where R is the radius of the nucleon’s bag. So the
total rest energy (ie. its rest mass) of a three quark bag as a function
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of R is

E(R) = FE(kinetic) + E(bag)
3 A4rm
= —+ __BR?
R—i— 3 R (39)

The radius R will adjust dynamically to minimize the total energy.

(a) Restore the factors of i and ¢ to eq. (39) to make it dimensionally
correct. Then set A = ¢ = 1 for the rest of the problem.

(b) Find the radius Ry which minimizes the bag’s rest energy. Ry will
be a function of B. Find the mass of the nucleon as a function of
B by substituting R = Ry in eq. (39).

(c¢) Given the mass of the nucleon, M = 940 MeV, find the numerical
value of B. What are its units in the natural unit system?

(d) B has the units of pressure. Convert the answer from part (c)
into atmospheres. Don’t be surprised by the huge value of your
answer: This is the pressure exerted by the vacuum on quarks!

(e) Compute the radius Ry in centimeters. The observed radius of
the nucleon is about 1.0 x 107" cm. Given that we made several
very crude estimates, for example we chose (|p'|) ~ 1/R instead of
(|P']) = /R, what do you think of the accuracy of your answer?

7. The Discovery of “Wierdness”

In the year 2010 an experimenter discovers a new force between elec-
trons. After many experimental studies, she determines that it falls
like the 3/2 power of distance,

Fiy = 3 12 (4())

wy measures the strength that this new force couples to particle k.
Because this new force is wierd, the constants w;, become known as
“wierdness”. After many years of hard work, the wierdness of the
electron is measured to be

w, = 1.18 £ 0.05 x 10 °w.s.u., (41)

where the w.s.u. is the cgs unit of wierdness.
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b

(a) What are the cgs units of wierdness in terms of gm®cm’sect?

(b) Using the basic constants of nature, A and ¢, find a measure of
the energy scale where the relativistic quantum wierdness of the
electron will be important. Express your answer in the form —
Ewierdnoss = wghﬁc’y-

(c) Evaluate Fyicrdness in MeV.

8. Supernatural units!

Theorists who study relativistic quantum gravity use an extended ver-
sion of natural units where they take h = ¢ = Gy = 1. Let’s call them
“supernatural units”.

(a) Explain why in this system of units all physical quantities are pure
(dimensionless) numbers!

(b) Write a new set of conversion relations giving 1 sec, 1 gm, and 1
cm in terms of G, h, and ¢, analagous to eq. (11)

(¢) What is the mass M = 1 in supernatural units? What is the
length, L = 1?7 [Hint: you will find eq. (31) valuable.|

d) The age of the Universe is approximately 10'° years. What is this
g y Y
in supernatural units?

(e) Recently astrophysicists have discovered that the universe is filled
with a substance, called “dark energy” which behaves like a neg-
ative bag constant (see Problem 6). It causes the Universe to
expand just like the bag constant tries to make a proton contract.
The dark energy density is approximately xx erg/cm3. Express
this in supernatural units.

The astounding size of the dimensionless numbers describing the age
of the Universe and the dark energy density in supernatural units con-
stitute one of the principal puzzles of modern physics.



