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Abstract

We consider pairs (C, E), where C is a pointed category and E a class of regular/normal

epimorphisms in C, satisfying various exactness properties. The purpose of this thesis is:

1. To introduce and study suitable notions of a relative homological and a relative semi-
abelian category. In the “absolute case”, where E is the class of all regular epimorphisms in
C, the pair (C, E) is relative homological /semi-abelian if and only if C is homological /semi-
abelian; that is, we obtain known concepts. Accordingly we extend known analysis of the
axiom systems, and in particular show that suitable lists of “old style” and “new style” ax-
ioms are equivalent; this requires developing a relative version of what is usually called the
calculus of relations. We then present various non-absolute examples, where these results

can be applied.

2. To formulate and prove relative versions of classical homological lemmas; this includes

Five Lemma, Nine Lemma, and Snake Lemma.
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Introduction

The title of the thesis (“Foundation of relative non-abelian homological algebra”) is sug-
gested by classical work of S. Eilenberg and J. C. Moore [14]. Relative homological algebra
in abelian categories also appears in the first two books in homological algebra, namely in
[12] and [30], and in a number of papers of many students and followers of Samuel Eilen-
berg and Saunders Mac Lane. The term non-abelian has several meanings; here it means
“suitable for non-abelian groups, or rings, or algebras”. Accordingly, the non-abelian cate-
gories of our interest include semi-abelian categories in the sense of G. Janelidze, L. Marki,
and W. Tholen [23], and, more generally, homological categories in the sense of F. Borceux
and D. Bourn [3] and protomodular categories in the sense of D. Bourn [6]. On the other
hand, the term relative refers, just as in the abelian case, to a distinguished class E of
regular /normal epimorphisms in the ground category C - in contrast to the absolute case,
where the role of E is played by the class of all regular epimorphisms in C. And in fact
various axioms we impose on (C, E) make the ground category C semi-abelian or homolog-
ical only in the absolute case. In particular, we do not exclude the trivial case of C being
an arbitrary pointed category and E the class of isomorphisms in C. In the abelian case
this approach goes back to N. Yoneda [34], whose quasi-abelian categories can in fact be
defined as pairs (C, E) where C is an additive category in which the short exact sequences
K — A — B with A — B in E have the same properties as all short exact sequences in an

abelian category.
The purpose of the thesis is two-fold:
1. Detailed study of axiom systems for relative semi-abelian and relative homological cat-

egories; the aim was to obtain the relative versions of the results of [23] for semi-abelian

categories and of homological categories. For, we develop the calculus of E-relations which



easily follows its well-known “absolute version”, in which E is the class of all regular epi-
morphisms in C (see e.g. [10]). Those results of [23], symbolically expressed as OLD=NEW,
actually have a long history behind them, which begins with Mac Lane’s famous “Duality for
Groups” [29]: After observing that several basic concepts in group theory can be described
in abstract categorical terms, making some of them dual to each other, Mac Lane proposes a
number of fundamental categorical constructions to be used in developing categorical group
theory. He then says: “A further development can be made by introducing additional care-
fully chosen dual axioms. This will be done below only in the more symmetrical abelian
case” The “careful choice” took more than fifteen years of many researchers, who arrived
to a “very non-dual” list of non-abelian axioms, which produced categorical versions of
many known results, especially in homological algebra and Kurosh-Amitsur radical theory;
at the same time it seemed to be too technical, and eventually was nearly ignored and/or
forgotten. The development of topos theory in the sixties/seventies strongly supports a
new approach in categorical algebra that arrives to Barr exact categories [1]. A Barr exact
category is abelian whenever it is additive; yet, every variety of universal algebras is Barr
exact, making the old and new approaches seemingly incomparable. The new concept of a
protomodular category, due to Bourn (see [6]), which turned out to be the “missing link”,
is introduced only in 1990, i.e. after twenty years. And the main conclusion of [23] is that
a pointed category satisfies the old forgotten axioms if and only if is Barr exact and Bourn
protomodular, and has finite coproducts. Such categories were called semi-abelian for two
reasons: (a) a category C is abelian if and only if both C and its dual category C°P are
semi-abelian; (b) a Barr exact category is semi-abelian if and only if it admits semidirect
products in the sense of D. Bourn and G. Janelidze [8], and then it is abelian if and only
if its semidirect products are (direct) products. Accordingly, the present work in fact deals
with a number of categorical axioms and exactness properties studied by various authors

for many years, and it involves relativisation of both old and new axioms systems.

2. The study of relative versions of the so-called classical homological lemmas, especially
the Five Lemma, Nine Lemma, and Snake Lemma. The absolute versions are well-known
in the abelian case, and in the non-abelian case given in [3]. The proof of the Snake Lemma
that we give involves partial composition of internal relations in C and goes back at least
to S. Mac Lane [28] (see also e.g. [10] for the so-called calculus of relations in regular cate-

gories).



The thesis consists of the following chapters:

Chapter 1: We begin with recalling the relevant properties of regular and normal epi-
morphisms, and then give a brief overview of regular, Barr exact [1], Bourn protomodular

[6], homological [3], and semi-abelian [23] categories (see also [2]).

Chapter 2: We develop what we call a relative calculus of relations. That is: for a pair
(C,E), in which C is a pointed category and E is a class of regular epimorphisms in C
satisfying certain conditions, we study the relations (R,r1,72) : A — B in C having the
morphisms r; and ro in E. Our calculus of E-relations extends its well-known “absolute

version”, in which E is the class of all regular epimorphisms in C (see e.g. [10]).

Chapter 3: In the first section we introduce a notion of incomplete relative homological

category in such a way that we have:

(a) “Trivial Case”: (C, Isomorphisms in C) is an incomplete relative homological category

for every pointed category C;

(b) “Absolute Case”: (C, Regular epimorphisms in C) is an incomplete relative homo-

logical category if and only if C is a homological category in the sense of [3].

In the second section we consider the special case of C being finitely complete and co-
complete, and define a relative homologcial category accordingly. In the third section we

consider various examples.

Chapter 4: We extend Five Lemma, Nine Lemma, and Snake Lemma to the context of
incomplete relative homological categories. The proofs follow the proofs given in [3], al-
though the proof of Snake Lemma (as already mentioned) substantially uses the calculus of

E-relations described in Chapter 2.

Chapter 5: In the first section we introduce a notion of incomplete relative semi-abelian

category in such a way that we have:

(a) “Trivial Case”: (C, Isomorphisms in C) is an incomplete relative semi-abelian cate-

gory for every pointed category C;



(b) “Absolute Case”: (C, Regular epimorphisms in C) is an incomplete relative semi-

abelian category if and only if C is a semi-abelian category in the sense of [23];

(c) A relative semi-abelian category (C, E) is an incomplete relative homological category
in which: (i) every equivalence E-relation is E-effective (i.e. every equivalence E-
relation is the kernel pair of some morphism in E); (ii) if a morphism f: A — B is in

E then the coproduct Ker(f) 4+ B exists in C.

And, we prove the (incomplete) relative version of the main result of [23], which asserts
that the “old-style” axioms and the “new-style” axioms for the semi-abelian categories are
equivalent. For, we again use the calculus of E-relations described in Chapter 2. In the
second section we consider the special case of C being finitely complete and cocomplete,
and define a relative semi-abelian category accordingly. In the third section we consider

various examples.

The results obtained appear as the three papers [24], [25], [26], and the fourth paper [27] is

submitted for the publication.



Chapter 1

Preliminaries

1.1 Regular and normal epimorphisms

Definition 1.1.1. A morphism f: A — B in a category C is said to be a regular epimor-

phism, if it is the coequalizer of some pair of parallel morphisms in C.

Proposition 1.1.2. In a category C with kernel pairs, every reqular epimorphism is the

coequalizer of its kernel pair. O

Proposition 1.1.3. Let C be a category with pullbacks. The composite gf of regular epi-
morphisms f : A — B and g : B — C in C is a regular epimorphism whenever f is
a pullback stable epimorphism. In particular, the class of pullback stable reqular epimor-

phisms in C is closed under composition.

Proof. Let f : A — B and g : B — C be regular epimorphisms in C, and let (fi, f2),
(91,92), and (hq, ha) be the kernel pairs of f, g, and gf respectively. To prove that gf is
a regular epimorphism it suffices to prove that gf is the coequalizer of hy and ho. For,

consider the commutative diagram

AXCA """" '>B><CB
77,7
h h1 ho g1 | |92
S
AxpA———= 4 LA J—E—
f2
, b
h e
c”



in which:

f = (fh1, fhs) is the canonical morphism, i.e. since (g1, g2) is the kernel pair of g and

gfhi = gfhs, there exists a unique morphism f : AxcA — BxcB with g1 f = fhy
and g2 f = fha;

- I: A— (C'is any morphism with h'h; = h'ho;

- h = (f1, fo) is the canonical morphism, i.e. since (hy, hy) is the kernel pair of gf and
gffi = gffa, there exists a unique morphism h : A xg A — A x¢ A with hih = fi
and hQB = f2, yielding h/fl = h,hlﬁ = h/hzl_l = h/fg;

- Since f is the coequalizer of f1 and fo, and I/ f; = k' f5, there exists a unique morphism
b: B— C' withbf =h'.

We have to show that there exists a unique morphism ¢ : C' — C’ with cgf = h' (since gf is
an epimorphism we do not need to prove the uniqueness of ¢), but since g is the coequalizer
of g1 and g9, it is sufficient to show that bg; = bgo.

It is easy to see that the morphism f : AxcA — BxcB is the composite of the
canonical morphisms (fhy, hs) : AxcA — BxcA and (my, fma) : BXgA — BxcB, where
(BxcA, 1, m2) is the pullback of g and gf. Then, since f is a pullback stable epimorphism,
we obtain that the morphisms (fhy, ha) and (71, fme) are epimorphisms, and therefore their

composite f also is an epimorphism. We have:
bgif = bfhy = h'hy = W'hy = bfhy = bga f,
and since f is an epimorphism we conclude that bg; = bgs, as desired. O

Proposition 1.1.4. Let C be a category with pullbacks. If the composite gf of f : A — B
and g : B — C in C is a reqular epimorphism, then so is the morphism g if any one of the

following conditions hold:
(i) f is an epimorphism;

(ii) gf is a pullback stable epimorphism.



Proof. Under the condition (i), consider the following diagram

C

v

C/
where (g1, g2) is the kernel pair of g, (hi, hs) is the kernel pair of gf, f is the canonical
morphism, and ¢’ : B — C’ is any morphism with ¢'¢g; = ¢’¢g. To prove that g is a regular
epimorphism it suffices to prove that g is the coequalizer of g; and g9; hence, we need

prove the existance of a unique morphism ¢ : C — C’ such that cg = ¢’. Since gf is the

coequalizer of h; and ho, the equalities
(g ) =dg1f =392 = (g )he

imply the existance of a unique morphism ¢ : C — C’ with ¢(gf) = ¢'f. Since f is an
epimorphism, the last equality implies cg = ¢’; and, since gf is an epimorphism, such c is
unique.

Next, suppose condition (ii) holds instead of condition (i). Consider the pullback dia-

gram
BxcA—"> A
T
B C
we have:

- Since m2 can be obtained as a pullback of the pullback of g along g, it is a split

epimorphism, and hence a pullback stable regular epimorphism;

- Since gf is a regular epimorphism and w9 is a pullback stable regular epimorphism,

by Proposition 1.1.3, gm; = gfma is a regular epimorphism;

- Since g f is a pullback stable epimorphism, 7 also is an epimorphism.



Since 71 is an epimorphism and gm; is a regular epimorphism, the first part of the proof

implies that ¢ is an epimorphism, as desired. O

Definition 1.1.5. A morphism f: A — B in a category C is said to be a strong epimor-

phism, if for every commutative diagram of the form

A B
i lh (L1)

C—m=D

f

[

where m is a monomorphism, there exists a unique morphism ¢ : B — C with 8f = g and
mB = h.

As easily follows from Definition 1.1.5, if a category C has equalizers then every regular
epimorphism is strong. Indeed, if f : A — B is a regular epimorphism in C, then it is the
coequalizer of some pair of parallel morphisms (f1, f2). For any commutative diagram (1.1)
with a monomorphism m, we have gf; = g¢fa, therefore there exists a unique morphism
B : B — C with §f = g; and m@ = h since m@f = hf and f is an epimorphism.

Definition 1.1.6. A morphism f: A — B in a category C is said to be a normal epimor-

phism, if it the cokernel of some morphism in C.

Proposition 1.1.7. In a category C with kernels, every normal epimorphism is the cokernel
of its kernel. O

Using the same arguments as in the proofs of Proposition 1.1.3 and Proposition 1.1.4

we can prove the following:

Proposition 1.1.8. Let C be a category with pullbacks. The composite gf of normal
epimorphisms f: A — B and g : B — C in C is a normal epimorphism whenever f is a
pullback stable epimorphism. In particular, the class of pullback stable normal epimorphisms

i C is closed under composition. O

Proposition 1.1.9. Let C be a category with pullbacks. If the composite gf of f : A — B
and g : B — C in C is a normal epimorphism, then so is the morphism g if any one of the

following conditions hold:
(i) f is an epimorphism;

(ii) gf is a pullback stable epimorphism. O



1.2 Regular and Barr exact categories

Definition 1.2.1. A category C is said to be regular (see e.g. [2]), if:
(a) C has finite limits;
(b) C has a pullback stable (regular epi, mono)-factorization system.

If a morphism f in any category C factors as f = me in which e is a regular epimorphism
and m is a monomorphism, then e is the coequalizer of the kernelpair of f, provided that
the latter exists. And, conversely, if e is the coequalizer of the kernelpair of f and m is the
morphism with f = me, then m is a monomorphism if the regular epimorphisms in C are

pullback stable. Therefore, we have:

Proposition 1.2.2. Let C be a category with finite limits. The following conditions are

equivalent:
(i) C has a pullback stable (regular epi, mono)-factorization system.

(i) (a) C has coequlizers of kernel pairs;

(b) Regular epimorphisms in C are pullback stable. O

Regular categories admit a good calculus of relations (see e.g. [10]): Recall, that a
relation R from an object A to an object B in C, written as R : A — B, is a subobject
(ri,m2) : R — A x B, where (r1,r2) is the canonical morphism from R to the product A x B
induced by r1 : R — A and ro : R — B; as subobjects, the relations from A to B form
an ordered set with finite meets. Equivalently, we can define a relation R : A — B as a
triple (R, r1,72) in which R is an object in C and 7 and 79 are jointly monic morphisms.
For the given relations (R,ry,72) : A — B and (S, s1, s2) : B — C the composite SR is the
relation from A to C defined as the mono part of the (regular epi, mono)-factorization of

the morphism (r1p1, sep2) : R xp S — A x C, where (R xp S, p1,p2) is the pullback of 7,



and sq:

That is, the composite of the relations R : A — B and S : B — (' is the subobject
SR — A x C, i.e. it is the triple (SR, t1,t2) where t; = mym and ty = mem and m and
mo are the first and the second product projections of A x C respectively; regularity of C
implies that such a composition is associative.

Recall, that a relation R : A — A in a regular category C is said to be an equivalence
relation if it is reflexive, symmetric, and transitive, i.e. 14 < R, R° < R, and RR < R. It
is easy to see that for a given morphism f : A — B, the kernelpair of f is an equivalence

relation from A to A (for more details about the relations in a regular category see also

11)).

Theorem 1.2.3. For a reqular category the following conditions are equivalent, and define

a Mal’tsev category:

(a) For equivalence relations R and S on an object A, the relation SR is an equivalence

relation.
(b) For such equivalence relations we have SR = RS.
(¢) Every relation R : A — B is difunctional; that is, RR°R = R.
(d) Every reflexive relation is an equivalence relation.
(e) Every reflexive relation is transitive.
(e) Every reflexive relation is symmetric. O
For the proof, see Theorem 3.6 of [10] (see also Theorem 1 of [15]).

Definition 1.2.4. A category C is said to be Barr-exact [1], if:

10



(a) C is a reqular category;

(b) Every equivalence relation in C is effective, i.e. it is the kernel pair of some morphism

in C.

Theorem 1.2.5 (Theorem 5.7 of [10]). A regular category C is an exact Mal’tsev category

if and only if, given regular epimorphisms r : A — B and s : A — C with a common

B——=D

domain, their pushout

s
—_—

exists in C, and moreover, the canonical morphism (r,s) : A — B xp C is a regular

epimorphism. O

1.3 Protomodular categories

Let C be a category and B an object in C. Recall that Ptc(B) = Pt(C | B) is a category,
whose objects are triples (4, f,¢g), in which A is an object in C, and f : A — B and
g : B — A are morphisms in C satisfying fg = 1. A morphism a : (A4, f,g9) — (4', f',¢)
in Ptc(B) is defined as a morphism « : A — A’ in C such that f'a = f and ag = ¢’. Note
that if C has pullbacks, then every morphism v : B — B’ in C induces the pullback functor
v* : Ptc(B') — Pte(B) which pulls back f’ of (4', f/,¢’) along v.

Definition 1.3.1. A category C is said to be protomodular (in the sense of D. Bourn [6]),
if the following conditions hold:

(a) C has pullbacks;

(b) For every morphism v : B — B’ in C, the pullback functor v* : Ptc(B') — Ptc(B)

reflects isomorphisms.

It is easy to see that if C has a zero object 0, then in Definition 1.3.1(b) it suffices to
consider the morphism Op/ : 0 — B’ instead of an arbitrary morphism v : B — B’. Indeed:
in the presence of a zero object C, the category Ptc(0) is isomorphic to the category C,
and since Op/ = v0pg, the reflection of isomorphisms 0%, = 0%v* implies the same for v*.

Since pulling back f’ : A’ — B’ along 0p/ is taking the kernel of f, we obtain the

following

11



Corollary 1.3.2. If C is a category with pullbacks and a zero object, then C is protomodular
if and only if for every object B in C, the kernel functor kerg : Ptc(B) — C reflects

1somorphisms.
This proves the following

Proposition 1.3.3. Let C be a category with pullbacks and a zero object. The following

conditions are equivalent:

(i) C is protomodular.

(i) The Split Short Five Lemma holds true in C, that is: for every commutative diagram

K—t a1 .p
K/ " A/ f, B/

with k = ker(f), k' = ker(f’), and f and f’ split epimorphisms, w is an isomorphisms
if u and v are isomorphisms.
Remark 1.3.4. If a protomodular category is also reqular, then the Split Short Five Lemma
is equivalent to the Regular Short Five Lemma, which states: given the commutative diagram
(3.1) with k = ker(f) and k' = ker(f"), if f and f' are regular epimorphisms and u and v

are isomorphisms, then w is an isomorphism [6].
Proposition 1.3.5. If C is a pointed protomodular category with pullbacks, then:

(i) Every regular epimorphism in C is a normal epimorphism.

(ii) Every split epimorphism in C is a normal epimorphism.
Proof.
(i): Let f : A — B be a regular epimorphism in C, ¢ = coker(ker(f)), and let (f1, f2)
and (q1,¢2) be the kernel pairs of f and ¢ respectively. It is a well known fact, that in

this situation the morphisms f; and ¢; (and also fy and ¢g) are split epimorphisms, and

Ker(q1) =~ Ker(f1). This gives us a commutative diagram

Kerr(ql ) K Ax 0A—2 5 4

v
Ker(f1) p AxpA

A

1

12



in which: @ = Coker(Ker(f)), k = ker(f1), ¥ = ker(q1), h is the canonical morphism
between the pullbacks, and f; and ¢; are split epimorphisms. Hence, by protomodularity
we obtain that h is an isomorphism. Since f and ¢ are regular epimorphisms and they have
isomorphic kernel pairs, we conclude that f is a normal epimorphism, as desired.

Since every split epimorphism is a regular epimorphism, (ii) follows directly from (i). O

Theorem 1.3.6 (Proposition 3.1.19 of [3]). Any finitely complete protomodular category C
is a Mal’tsev category. O

This statement was in fact first proved in [7].

1.4 Homological categories

Homological categories, according to [3], provide the most convenient setting for proving
non-abelian versions of various standard homological lemmas, such as the Five Lemma, the

3 x 3-Lemma, and the Snake Lemma. We recall:
Definition 1.4.1 (Definition 4.1.1 of [3]). A category C is homological when
(a) C is pointed;
(b) C is reqular;
(c) C is protomodular.
Or, equivalently, a category C is homological if and only if the following conditions hold:
(a) C has finite limits;
(b) C has a zero object;
(¢) C has coequalizers of kernel pairs;
(d) Regular epimorphisms in C are pullback stable;
(e) The (Split) Short Five Lemma holds in C.

As usually, a sequence of morphisms

Ay pp— Ait (4.1)

13



in a homological category C is said to be exact at A;, if the mono part of the (regular epi,
mono)-factorization of f;_; is the kernel of f;. And, (4.1) is said to be an exact sequence,

if it is exact at A; for each ¢ (unless the sequence either begins or ends with A;).
Proposition 1.4.2 (Lemma 4.1.6 of [3]). In a pointed protomodular category C, in partic-
ular in a homological category, the sequence

0—>A—Tlop o0 oy

is exact if and only if f = ker(g) and g is a regular epimorphism.
Proposition 1.4.3 (Proposition 4.1.9 of [3]). Let C be a homological category.

(i) The sequence

0 A—1-p
is exact if and only if f is a monomorphism.
(i) The sequence
0 A—L-p*.c
is exact if and only if f = ker(g).
(iii) The sequence
A—1-p 0

is exact if and only if f is a reqular epimorphism.

(iv) The sequence

At op .0y

is exact if and only if g = coker(f).

We now recall the above mentioned homological lemmas involving exact sequences (see

again [3]):

Theorem 1.4.4 (The Five Lemma). Let C be a homological category. If in a commutative

diagram
a—top .o t.p t.p
!/ !/ / / /
A I B 7 C'—> D —=F



the two rows are exact sequences, and the morphisms «, 3, §, and € are isomorphisms, then

v 1s also an isomorphism.

Theorem 1.4.5 (The Nine Lemma). Let C be a homological category. If in a commutative

diagram
0 0 0
0 X Y Z 0
0 X' Y’ 7z 0
0 X" Y” z" 0
0 0 0

the three columns and the middle row are exact sequences, then the first row is an ezxact

sequence if and only if the last row is an exact sequence.

Theorem 1.4.6 (The Snake Lemma). Let C be a homological category. If in a commutative

diagram
x—tl -y, 0
lu l’[} w
/ !/
0 X 7 Y 7

the two rows are exact sequences, then there exists a morphism d : Ker(w) — Coker(u),

such that the sequence
Ker(u) — Ker(v) —— Ker(w) 4, Coker(u) — Coker(v) — Coker(w)

where the unlabeled arrows are the canonical morphisms, is exact.

1.5 Semi-abelian categories

The notion of an abelian category was introduced by S. Mac Lane in 1950 in his paper

“Duality for groups” [29]; it was however more restrictive than the one used today, which

15



was given by D. A. Buchsbaum in “Exact Categories and Duality” [9] in 1955 (under the
name “exact category”). Let us recall that a category C is said to be abelian (][9], and, see
also [16], [18]) if the following conditions hold:

(a) C has a zero object;

(b) C has binary products and binary coproducts;

(c) Every morphism has a kernel and a cokernel;

(d) Every monomorphism is a kernel, every epimorphism is a cokernel.

Categories of abelian groups and of modules are abelian categories, which is certainly not
the case for the categories of groups, rings or algebras over rings; the easiest way to see this
is just to note that not all of their monomorphisms are normal. The semi-abelian categories,
introduced by G. Janelidze, L. Marki, and W. Tholen in 1999 (published in 2002; see [23]),
play, however, the same role for groups, rings, and algebras, as the abelian categories do for

the abelian groups and modules. We recall:
Definition 1.5.1. A category C is said to be semi-abelian, if:

(a) C has a zero object and coproducts;

(b) C is Barr-exact;

(c) C is protomodular.

That is, a category C is semi-abelian, if it satisfies the following

Condition 1.5.2 (“New-style axioms”).

(a) C has a zero object, finite limits, and coproducts;

(b) C has coequalizers of kernel pairs;

(¢) The regular epimorphisms in C are pullback stable;

(d) The Split Short Five Lemma holds in C;

(e) All equivalence relations r1,m9 : R — A in C are effective equivalence relations.
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Conditions 1.5.2(a)-1.5.2(e) are regarded as the “new-style axioms” for a semi-abelian
category. As proved in [23], these conditions are equivalent to the “old-style axioms” in-

volving normal monomorphisms and normal epimorphisms:

Condition 1.5.3 (”Old-style axioms”).
(a) C has a zero object, finite limits, and coproducts;
(b) C has cokernels of kernels, and every morphism with a zero kernel is a monomorphism;
(¢) The normal epimorphisms in C are pullback stable;

(d) (Hofmann’s axiom) If in a commutative diagram

A——PB

f/
f and f' are normal epimorphisms, w is a monomorphism, v is a normal monomor-

phism, and ker(f'") < w, then w is a normal monomorphism;

(e) For every commutative diagram

At .p
/ /
A—>B

with f and f' normal epimorphisms and m and m' monomorphisms, if m is a normal

monomorphism then m' also is a normal monomorphism.

Protomodularity in terms of the old-style axioms is the “Hofmann’s axiom” [19], while the

Barr’s exactness condition is Condition 1.5.3(e).

Remark 1.5.4. Using the notion of a homological category, a semi-abelian category can
be defined as a homological category with coproducts in which every equivalence relation is
effective (see Proposition 5.1.2 of [3]). Therefore, one can obtain the “old-style axioms”
also for the homological categories, i.e. define the homological categories using normal

epimorphisms and the Hofmann’s axiom. This will be done in a more general setting in
Chapter 4.
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Chapter 2

Calculus of E-relations

2.1 Category of E-relations

Throughout this chapter we assume that (C, E) is a pair in which C is a category and E is a
class of regular epimorphisms in C containing all isomorphisms and satisfying the following
Condition 2.1.1.

(a) The class E is closed under composition;

(b)) If f € E and gf € E then g € E;

(c) A diagram of the form

has a limit in C provided f, g, f', and ¢’ are in E, and either (i) f =g and f' = ¢', or (ii)
(f,9) and (f',4g") are reflexive pairs (that is, fh = 1g = gh and f'h' =15 = g'h’ for some
h and h'), and f and g are jointly monic.
(d) If
Axpg A _ T A
f

A B
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is a pullback and f and [’ are in E, then m and 7o are also in E;

(e) If hy : H— A and hs : H — B are jointly monic morphisms in C and if « : A — C and
B : B — D are morphisms in E, then there exists a morphism h : H — X in E and jointly

monic morphisms x1 : X — C and 2 : X — D in C making the diagram

commutative.

Remark 2.1.2. If the morphisms f : A — B and ' : A — B are in E, then the pullback
(Axp A" m,m9) of f and [ exists in C by Condition 2.1.1(c), and w1 and 7o are in E by
Condition 2.1.1(d). Therefore, the kernel pair of f (and f') also exists in C.

The two basic examples of a pair (C, E) satisfying Condition 2.1.1 are:

1. “Trivial case”: C is a category and E is the class of all isomorphisms in C.

2. “Absolute case”: C is a regular category and E is the class of all regular epimorphisms

in C.
Proposition 2.1.3. The factorization in Condition 2.1.1(e) is functorial. That is, if
H

(1.1)
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1s a commutative diagram in C, in which:
- (h1,h2), (z1,22), (K}, hYy), and (2}, 2) are jointly monic pairs;
-a, B, h,d, 3, and b’ are morphisms in E;
-m, k, q, I, and n are any morphisms making the diagram (1.1) commutative;
then there exists a morphism x : X — X' for which the diagram (1.1) is still commutative.

Proof. Since h is in E, the kernel pair (u1,uz2) of h exists by Remark 2.1.2. Since 2 and 2,

are jointly monic and the equalities
x’lh’qul = mahiu; = mxi1hu; = mxihus = mohjus = x’lh'un,

x’Qh’qul = nBhoui; = nrohur = nrohus = nfhous = xéh’qug

hold, we conclude that h'qu; = h'qus. Since h is the coequalizer of u; and us, the last
equality implies the existence of a unique morphism z : X — X’ with h'q = zh. It remains
to prove that )z = max; and zbx = nxy; however, since h is an epimorphism, the latter

follows from following equalities:

rixh = 2\ q = maih,

xhrh = 2bh'q = nash.

Proposition 2.1.4. Let

(1.2)

be a commutative diagram in C. If f and f' are in E and (g,h) and (¢',h") are jointly
monic pairs, then there exists a unique isomorphism 3 : B — B’ with ¢'3 = g, Bf = [/,
and '3 = h.
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Proof. Since f and f’ are in E, the kernel pairs of f and f’ exist by Remark 2.1.2; more-
over, they coincide since (g,h) and (¢’,h’) are jointly monic pairs and the diagram (1.2)
is commutative. Since every regular epimorphism is the coequalizer of its kernel pair, we
conclude that there exists a unique isomorphism 3 : B — B’ with 3f = f’, and since f and

f' are epimorphisms we obtain ¢'3 = g and h/3 = h. O

Remark 2.1.5. As follows from Proposition 2.1.4, the factorization in Condition 2.1.1(e)

is unique up to an isomorphism.

Proposition 2.1.6. If a morphism f in C factors as f = em in which e is in E and m is
a monomorphism, then it also factors (essentially uniquely) as f = m'e’ in which m' is a

monomorphism and €' is in E.

Proof. Under the assumptions of Condition 2.1.1(e), take hy = he = m and a = = e,

then we obtain the desired factorization of f. O

Definition 2.1.7. An E-relation R from an object A to an object B in C, written as
R: A — B, is a triple R = (R,r1,72) in which 1 : R — A and ro : R — B are jointly

monic morphisms in E.

Let (R,71,72) = R: A — B and (S5,s1,s2) =5 : B — C be the E-relations in C and
let (P, p1,p2) be the pullback of s; and ro; by Remark 2.1.2 this pullback does exist and p;
and po are in E. Since p; and py are jointly monic and r; and ss are in E, using Condition

2.1.1(e) we obtain the commutative diagram

P

e

N

R T s
NN
Ao g g

in which e is in E, t; and ty are jointly monic, and such factorization (t1e = r1p; and

v

T (1.3)

B

tae = sop9) is unique up to an isomorphism by Remark 2.1.5. Moreover, since 71, p1, S2,
and py are in E, the morphisms ¢; and ¢ are also in E by Conditions 2.1.1(a) and 2.1.1(b).

Accordingly, we introduce:
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Definition 2.1.8. If R: A — B and S : B — C are the E-relations in C, then their
composite SR : A — C' is the E-relation (T, t1,t3) in which T, t1, and to are defined as in
the diagram (1.3).

Proposition 2.1.9. The composition of E-relations in C is associative (if we identify

isomorphic relations).

Proof. Let R: A— B, S: B — C,and T : C — D be the E-relations in C. Consider the

commutative diagram

(1.4)

in which:

- (P,p1,p2) is the pullback of s; and r9, (Q,q1,q2) is the pullback of ¢; and sg, and
(X, 1, 22) is the pullback of ¢; and pe; these pullbacks do exist and the morphisms
P1, P2, Q1, G2, 1, and x2 are in E by Remark 2.1.2.

- (SR, p!,ph) is the composite of the E-relations R : A — B and S : B — C, and
e1 : P — SR is the canonical morphism, i.e. e; is the morphism in E with pje; = r1p;

/
and phep = sap2.

- (Z,z1,22) is the pullback of ¢; and pj, this pullback does exist and the morphisms
z1 and zy are in E by Remark 2.1.2; since pheirq = t1gox2, there exists a unique

morphism z : X — Z with 292 = ¢229 and z1x = ejx1.
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- (T(SR), 2}, 25) is the composite of the E-relations SR : A — C and T : C — D,
and eg : Z — T(SR) is the canonical morphism, i.e. ey is the morphism in E with
ziea = plz1 and zhey = tozs.

- Since x1 and z2 are jointly monic and r1p; and t2g2 are in E, by Condition 2.1.1(e)
there exists a morphism e : X — X’ in E and jointly monic morphisms 2} : X' — A
and zf, : X’ — D for which rip;x; = zle and tagazs = 2he.

We first prove that the square e;z1 = z12 in the diagram (1.4) is the pullback of e; and z;.

For, consider the commutative diagram

p2

€1 q1

S T
21
SR 52 t1
X\

C

which is a part of the diagram (1.4) with the new arrows y1, y2, y, and g defined as follows:

-y1:Y — Pandys: Y — Z are any two morphisms with ejy; = z192.

- Since (@, q1,¢2) is the pullback of sy and t1, and ¢;20y2 = phz1y2 = pheryr = sopayn,
there exists a unique morphism y : Y — @ with 29y = qoy and 1y = pay:1.

- Since (X, z1,z9) is the pullback of ¢; and ps and g1y = payi, there exists a unique
morphism ¢ : Y — X with xoy = y and 21§ = 1.

Since z1 and zo are jointly monic and the equalities

212y = e121y = e1y1 = 21Ya,
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29TY = qax2Y = q2Y = 22Y2

hold, we conclude that xy = ys. That is, there exists a morphism g : Y — X with x1y = 11
and xy = y2, and since x1 and 2 are jointly monic, such g is unique, proving that (X, z,z1)
is the pullback of e; and z;.

After this, since e; is in E, the morphism z : X — Z is in E by Remark 2.1.2, there-
fore, the composite egz is also in E by Condition 2.1.1(a). We obtain: mpiz; = x’le
and togare = xhe in which e € E and 2} and zf are jointly monic morphisms; and,
Zieox = rip1zy and zhegwr = tagaws in which epz € E and 2] and 2 are jointly monic
morphisms. Therefore, by Proposition 2.1.4 we have X’ ~ (T'S)R. Similarly we can prove
that X’ ~ T(SR). Hence, T(RS) =~ (T'R)S, as desired. O

Remark 2.1.10. As follows from the proof of Proposition 2.1.9, to construct the composite
of the E-relations (R,r1,72) : A — B, (S,s1,52) : B — C, and (T,t1,t2) : C — D, we
simply take the pullbacks (P,p1,p2), (Q,q1,q2), and then the composite (X', 2, z}): A — D

will be the E-relation obtained from the following factorization:

/X\
P e Q

(1.5)

p1 p2 q1 q2

R s T

) r2 51 s2 :
v/ 2Ny
A B C D

Using the induction principle, we can compose any finite number of the E-relations accord-

mngly.

For each E-relation R: A — B in C there is an opposite E-relation R° : B — A given
by the triple (R, 72,71), and we have:

Proposition 2.1.11. If (R,r1,72) : A — B and (S, s1,82) : B — C are the E-relations in
C, then:

(i) (R°)° = R.
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(ii) (SR)° = R°S°. O

The objects of C and the E-relations between them form a category Rel(C, E), in which
the identity E-relation on an object A is the E-relation (A,14,14): A — A. It is in fact an
order-enriched category with (R, r1,72) < (R',7],r%) if and only if there exists a morphism
r: R — R with rjr = r1 and r5r = ro (the relevant properties will be given in the next

section).

2.2 Properties of the E-relations

Proposition 2.2.1. Let (R,r1,72) : A — B, (R',7{,75): A— B, (S,s1,82) : B— C, and
(57, 8], 85) : B— C be the E-relations in C. We have:

(i) If R< R’ then R° < R'°.
(ii) If R < R' then SR < SR'.
(11i) If R< R and S < S’ then SR < S'R.

Proof.
(i) is obvious.

ii): If R < R’ then there exists a morphism r : R — R’ with r{r = r1 and rbr = r5. Let
1 2
(P, p1,p2) be the pullback of o and s1 and let (P’,p),p}) be the pullback of 75 and s;.

Consider the commutative diagram:

P
/lx
R SR S

B

1 52

2 51
r

P

/AN

X
N

R SR S
X ] k/
P/



As follows from Proposition 2.1.3, since the pairs of morphisms (p1,p2) and (p},ph) are
jointly monic, and the morphisms 71, sa, 7, and s} are in E, in order to prove that SR < SR’
it suffices to prove that there exists a morphism p : P — P’ for which pip = rp; and
php = p2. However, since r4rp; = rop1 = sipe, the latter follows from the fact that the
square s1p5y = rhp) is the pullback of 75 and s;.

(ii): If R < R and S < S’ then by (ii) we have SR < SR’ and SR’ < S’R’; therefore,
SR<S'R. O

Remark 2.2.2. Any morphism f : A — B in E can be considered as an E-relation
(A,14,f) from A to B. The opposite E-relation f° from B to A will then be the triple
(A, f,14).

Proposition 2.2.3. Let (R,r1,72) : A — B be an E-relation in C. If RR® < 1p then

r1: R — A is an isomorphism.

Proof. Let (R,7m1,72) : A — B be an E-relation in C and let RR° < 1p. Consider the

commutative diagram

in which:
- (P, p1,p2) is the kernel pair of r; : R — A.

- (RR°,p,ph) is the composite of the E-relations R° and R, and e : P — R°R is the

canonical morphism; since RR° < 1p, there exists a morphism f : RR° — B with

lpf =p) and 1pf = p).
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- u,v : X — R are any two morphisms with mu = rv, and (u,v) : X — P is the

unique morphism with p;(u,v) = u and pa(u,v) = v.
We have:
f6<u’ ’U> = p/1€<u7 U) = TP <u7 1)> = rau,
fe(u, U> = pl2€<ua U> = T2p2<u7 U) = Trv,

yielding rou = r9v. Since u and v are any two morphisms with r;u = ryv and since r; and
ro are jointly monic, we obtain u = v. Therefore, r; is a monomorphism, and since r; is in

E, we conclude that r; is an isomorphism, as desired. ]
Similarly we can prove that if R°R < 14 then 79 is an isomorphism.
Proposition 2.2.4. If (R,ry,72) : A — B is an E-relation in C then R = ror1°.

Proof. Let (R,71,72) be an E-relation from A to B. As follows from Remark 2.2.2, r°
is the E-relation from A to R and ry is the E-relation from R to B. Since the pullback
of an identity morphism is again an identity, and since E contains all isomorphisms, the

composite ror1° : A — B is the E-relation obtained from the following factorization:

R
PN
y
R R R
AATI 1r R 1r %é"'—AB

That is, ror1° is the E-relation (R, r1,72) from A to B, proving the desired. ]

Proposition 2.2.5. If f : A — B and g : C — B are the morphisms in E, then the
E-relation ¢°f from A to C in C is given by the pullback (A xp C,p1,p2) of [ along g.

Proof. Let f : A — B and g : C — B be the morphisms in E, and let (P, p1,p2) be the
pullback of f along g; by Remark 2.1.2, the morphisms p; and py are in E. As follows from
Remark 2.2.2, f is the E-relation from A to B and ¢° is the E-relation from B to C. Since

E contains all isomorphisms, the composite ¢°f : A — C is the E-relation obtained from
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the following factorization:

P

7113 P2
v

AP c

That is, (P, p1,p2) is the E-relation ¢°f from A to C, proving the desired. O

Remark 2.2.6. As follows from Proposition 2.2.5, if f : A — B is a morphism in E, then
the E-relation f°f : A — A is given by the pullback (A xp A, f1, f2) of f with itself. That
is, f°f = (A xp A, fi1, f2) is the kernel pair of f, and therefore 14 < f°f.

Proposition 2.2.7. If a morphism f: A — B isin E, then ff° =1p.

Proof. Let f : A — B be amorphism in E. As follows from Remark 2.2.2, f is the E-relation
from A to B and f° is the E-relation from B to A. Since E contains all isomorphisms and

f is in E, the composite ff° is the E-relation obtained from the following factorization:

A

That is, f°f is the identity E-relation (B, 1p,1p) from B to B, as desired. O

Remark 2.2.8. It follows from Proposition 2.2.7 that for every morphism f: A — B in E
the following equalities

frefr=1r

frre=r
hold.
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Theorem 2.2.9. Let

p—tsc
I 2
A — B

be a diagram in C. If the morphisms f, g, h, and k are in E, then:

(i) kh° < ¢°f if and only if the diagram (2.1) commutes.

(ii) kh® = ¢°f if and only if the diagram (2.1) commutes and the canonical morphism
(h,k) : D - AxpC isin E.

Proof. Consider the diagram (2.1) in which the morphisms f, g, h, and k are in E. By
Proposition 2.2.5, we have ¢°f = (A x g C, p1,p2); and, the composite kh° is the E-relation

(X, x1,22) from A to C obtained from the following factorization:

NG
/\/\

(i): Let kh® < g¢°f; that is, there exists a morphism z : X — A xp C with pjz = 1
and paxr = x9. To prove that the diagram (2.1) is commutative, it suffices to prove that
there exists a morphism d : D — A xp C with pid = h and psd = k. For, consider the

commutative diagram

(2.2)




and take d = xe; then p1d = p1xe = x1e = h and pad = poxe = x9e = k, as desired.

Conversely, suppose the diagram (2.1) is commutative, i.e. fh = gk. To prove kh°® < ¢°f,
we need to show that there exists a morphism z : X — A xpgC with p1x = 21 and psx = x5.
For, consider the diagram (2.2); since e is in E and fzie = fh = gk = gxee we conclude
that fzq = gxa. Therefore, since (A xp C,p1,p2) is the pullback of f and g, there exists a
unique morphism z : X — A xg C with pix = z1 and pex = x2, as desired.

(ii): Let kh°® = ¢°f. As follows from (i), the diagram (2.1) is commutative; therefore the
diagram (2.2) is also commutative and since ¢°f = (A xp C,p1,p2) and kh® = (X, 21, x2),
we conclude that z : X — A xp C is an isomorphism. Since (h, k) = ze and e is in E, by
Condition 2.1.1(a), the morphism (h, k) is also in E.

Conversely, suppose the diagram (2.1) is commutative and the canonical morphism
(h,k) : D — A xpCisin E. As follows from (i), kh® < ¢°f and therefore, there exists
a morphism z : X — A xp C with p1jz = z1 and psx = z5. To prove that kh® = ¢°f it
suffices to prove that z is an isomorphism. For, consider the commutative diagram (2.2).
Since pixe = x1e and pare = x9e we conclude that (h, k) = ze, and since (h, k) and e are in
E, the morphism z is also in E by Condition 2.1.1(b). Moreover, since p; and py are jointly
monic and p1x = x1 and pex = x2, x is a monomorphism. Therefore, since every morphism

in E is a normal epimorphism, we conclude that x is an isomorphism, as desired. ]

2.3 Equivalence E-relations

Definition 2.3.1. An E-relation R: A — A in C is said to be
(a) a reflexive E-relation if 14 < R;
(b) a symmetric E-relation if R° < R (so that R° = R);
(¢) a transitive E-relation if RR < R;
(d) an equivalence E-relation if it is reflexive, symmetric, and transitive.

As follows from Definition 2.3.1, if R is a reflexive and a transitive E-relation then
RR = R; indeed, since R is reflexive we have R < RR, which together with transitivity
gives RR = R.

Proposition 2.3.2. The composite of reflexive E-relations in C is a reflexive E-relation.
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Proof. f R : A —- Aand S : A — A are reflexive E-relations in C, then 1 < R and
1 < S. Therefore, 1 < SR by Proposition 2.2.1(iii), proving that SR : A — A is a reflexive
E-relation. O

Proposition 2.3.3. Let R: A — A and S : A — A be equivalence E-relations in C. If
the composite SR is an equivalence E-relation, then SR = SV R (i.e. SR is the smallest

equivalence E-relation containing both S and R).

Proof. Let T : A — A be an equivalence E-relation with R < T and S < T. Since T is
an equivalence E-relation, we have TT' < T'. Therefore, SR < T by Proposition 2.2.1(iii),
proving the desired. O

Proposition 2.3.4. If a morphism f: A — B is in E, then the kernel pair (AXxp A, f1, f2)

of [ is an equivalence E-relation in C.

Proof. 1If f : A — B is a morphism in E, then by Remark 2.2.6 the kernel pair of f is the
E-relation f°f : A — A and we have 14 < f°f, therefore, f°f is a reflexive E-relation.
Moreover, it is symmetric since (f°f)° = f°f by Proposition 2.1.11, and it is transitive
since f°ff°f = f°f by Remark 2.2.8. O

Definition 2.3.5. An E-relation R: A — B in C is said to be difunctional if RR°R = R.

Theorem 2.3.6. If (R,71,72) : A — A and (5, s1,s2) : A — A are equivalence E-relations

in C then the following conditions are equivalent:
(a) SR:A— A is an equivalence E-relation.
(b) SR =RS.
(c) Every E-relation is difunctional.
(d) Every reflexive E-relation is an equivalence E-relation.
(e) Every reflexive E-relation is symmetric.
(f) Every reflexzive E-relation is transitive.

Proof.
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(a)=(b): Let SR : A — A be an equivalence E-relation in C. Since R, S, and SR
are symmetric E-relations, we have: R = R°, § = S° and SR = (SR)°. Therefore,
SR = R°S° = RS, as desired.

(b)=(a): Let SR = RS. We have:
- 1< Rand 1< S since R and S are reflexive.
- R° < R and S° < S since R are S are symmetric.
- RR< Rand SS < S since R and S are transitive.
Using Proposition 2.2.1(iii), we obtain:
- 1 < SR, therefore SR is reflexive.

- S°R° < SR; since (SR)° = (RS)° = S°R°, we conclude that (SR)° < SR, therefore,

SR is symmetric.

- SSRR < SR; since SRSR = SSRR, we conclude that SRSR < SR, therefore, SR

1s transitive.

That is, SR is a reflexive, symmetric, and a transitive E-relation, proving that SR is an

equivalence E-relation.

(b)=(c): Let (U,ui,u2) : X — Y be an arbitrary E-relation in C. By Proposition 2.2.4,
U = usu1°; therefore, to prove that the E-relation U : X — Y is difunctional, i.e. UU°U = U,
it suffices to prove uou;®ujus®usu1® = usu1°. Since uy and ue are in E, by Remark 2.2.6,
the E-relations u1°uy : U — U and us®us : U — U are the kernel pairs of w; and wuo
respectively, therefore, they are the equivalence E-relations by Proposition 2.3.4. Hence, by
(b), u1°uius®us = u2°usui®uy, and multiplying the last equality on the left by ug and on

the right by u1°, using Proposition 2.2.7 we obtain usui ujus®usu1® = uou1°, as desired.

(¢c)=(d): Let (U,u1,uz) : X — X be a reflexive E-relation in C. U is symmetric since
U° = 1xU°lx < UU°U = U, and U is transitive since UU = UlxU < UU°U = U.

Therefore, U is an equivalence E-relation in C.
(d)=(e) is obvious.

(e)=(c): Let (U,u1,uz) : X — Y be an arbitrary E-relation in C. The proof is essentially

the same as the proof of (b)=-(c): here uj°ujus®us = us°usu;°uy since the composite of
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the equivalence E-relations u1°u; : U — U and us®us : U — U is reflexive by Proposition

2.3.2, therefore, by (e) the composite u;°ujuz®ug is also symmetric.
(c)=(a): f R: A— Aand S: A — A are equivalence E relations in C, then their composite

SR : A — Ais areflexive E-relation by Proposition 2.3.2. Since (¢) implies (d), we conclude

that SR is an equivalence E-relation.

()

c
(f) Let (U,ui,u2) : X — Y be an arbitrary E-relation in C. As stated in the proof
of (b)=(c), to prove that the E-relation U : X — Y is difunctional, it suffices to prove

f): Since (c) implies (d), and (d) implies (f), we conclude that (c) implies (f).

=(f):
=(c):
U1 U U usu1® = uouq®. Since the kernel pairs of w1 and uo are the equivalence E-relations
ui’uy : U — U and u2®us : U — U respectively, by Proposition 2.3.2 their composite
u®ugui®uy : U — U is a reflexive E-relation; therefore, us®usuq®uy is transitive by (f), and
we have ugust1 “uius®usur u; = ususu1®uy. Multiplying the last equality on the left by
ug and on the right by u1°, using Proposition 2.2.7 we obtain uouquius®usu1® = usu1°, as
desired. O

Remark 2.3.7. Theorem 2.3.6 is the relative version of Theorem 1.2.5.
Consider the following
Condition 2.3.8. (a) C is pointed;
(b) If f: A — B is in E then the kernel of f exists in C;

(¢) If in a commutative diagram

K A B
wl
/
K—>A~—>B

k =%ker(f), k' =ker(f"), and f and f' are in E, then w is an isomorphism.

Remark 2.3.9. Condition 2.3.8(c) is the relative version of the Short Five Lemma. Ac-
cordingly, we will say that Condition 2.3.8(c) is the E-Short Five Lemma.

Theorem 2.3.10. If (C, E) satisfies Condition 2.3.8, then every reflexive E-relation in C

1s transitive.
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Proof. Let (R,r1,r2) : A — A be a reflexive E-relation in C. We have:

- The pullback (P, p1,p2) of r2 and 71 exists in C and the morphisms p; and ps are in
E by Remark 2.1.2.

- Since py is in E, the kernel k : K — P of ps exists by Condition 2.3.8(b).

- Since rq, 19, p1, and py are in E, the composites r1p; and r9po are also in E by

Condition 2.1.1(a), and therefore the limit of the diagram

P
AN
r1p1 AN

A
\ T2p2

R——A \
N

Since R is a reflexive E-relation there exists a morphism « : A — R with ra = roa = 14.

(3.1)

exists by Condition 2.1.1(c).

Consider the commutative diagram:

/

A
\ P p2
ary \

\\ p1

N

R—7—

R
A
Since the square rop; = rips is a pullback and roary = r1, there exists a unique morphism

s: R — P with p1s = ar; and pas = 1, yielding that ps is a split epimorphism. Next, let
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(Q, q1,q2) be the limit of the diagram (3.1) and consider the commutative diagram:

R
RN
1r \\
AN

X

T2p2

A

Since rip1s = riar; = r1 and ropes = 1o, there exists a unique morphism ¢t : R — @ with
qit = 1r and ¢ot = s. We have pagot = pos = 1g, therefore the composite page is a split
epimorphism. Furthermore, since rop1k = ripsk = 0 = ropok and (Q, g1, q2) is the limit of

the diagram (3.1), there exists a unique morphism f : K — @ making the diagram

commutative.

Since 1 and rg are jointly monic and (Q, g1, ¢2) is the limit of the diagram (3.1), we
conclude that ¢ is a monomorphism. Therefore, since ps is in E by Proposition 2.1.6 we
obtain the factorization pago = mie; in which e is in E and my is a monomorphism. Since
P2q2 is a split epimorphism, it is a strong epimorphism and therefore m; is an isomorphism.

Hence, since E contains all isomorphism, p2ge is in E by Condition 2.1.1(a). We have
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p2qa2f = p2k = 0, let us prove that f = ker(pags). For, consider the commutative diagram

P2
in which ¢ = page and = : X — @ is any morphism with gxr = 0. Since pagexr = gz = 0
and k = ker(py), there exists a unique morphism z : X — K with kZ = ¢of. Since ¢2 is a
monomorphism and g3 fZ = gsx, we conclude fZ = x, and since k is a monomorphism such
Z is unique, proving f = ker(pagz). Since py and pago are in E, by the E-Short Five Lemma

we conclude that g2 is an isomorphism. Finally, consider the commutative diagram

where e : P — RR is the canonical morphism, i.e. it is the morphism in E for which
tie = r1p1 and tee = ropy, and (E, e1, e2) is the kernel pair of e which does exist by Remark
2.1.2. Since r1 and 7 are jointly monic we conclude that gigy le, = 0145 ey, therefore,
since e is in E (i.e. it is is a regular epimorphism and therefore it is the coequalizer of its
kernel pair), there exists a morphism r : RR — R with re = q1q, 1 Moreover, since e is
an epimorphism, rire = r1q1q2_1 = t1e and rore = r2q1q2_1 = toe we obtain r1r = t; and
ror = to. That is, there exists a morphism r : RR — R with rir = t1 and ror = to, proving

that R is a transitive E-relation. O
Theorem 2.3.10 together with Theorem 2.3.6 gives

Corollary 2.3.11. If (C,E) satisfies Condition 2.3.8, then every reflexive E-relation in C

1s an equivalence E-relation. ]
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Theorem 2.3.12. Let

A—2 - C
' v
B——D

be a commutative diagram in C with r, s, and t in E and let (R,7r1,72), (S,$1,$2), and

(T,t1,t2) be the kernel pairs of r, s, and t respectively (they do exist by Remark 2.1.2). If
(C,E) satisfies Condition 2.3.8, then the following conditions are equivalent:

(i) (r,s): A— B xpCisinE (by Remark 2.1.2 this pullback does ezist).
(ii)) SR=T.
(iii) RS =T.

Proof. As follows from Proposition 2.3.4, (R, r1,72), (S, s1,52), and (T, t1,t2) are the equiv-
alence E-relations in C and by Remark 2.2.6 we have r°r = R, s°s = S, and t°t = T.
Since R and S are the equivalence E-relations, the composite SR is a reflexive E-relation
by Proposition 2.3.2, therefore, SR is an equivalence E-relation by Corollary 2.3.11. Then,
SR = RS by Theorem 2.3.6, proving (ii)<>(iii).

(i)=(ii): Suppose (r,s) : A — BxpC is a morphism in E. Since ur =t = vs and morphisms
r, s, and t are in E, the morphisms « and v are also in E by Conditions 2.1.1(a) and 2.1.1(b).
Then, by Theorem 2.2.9 we obtain sr°® = v°u. Multiplying the last equality on the left by
s° and on the right by r we obtain s°sr°r = s°v°ur. Since s°v° = (vs)® = t° and ur = t,
the last equality implies SR = T, as desired.

(ii)=(i): Let SR =T, that is s°sr°r = s°v°ur. Multiplying the last equality on the left by s
and on the right by r°, we obtain ss°sr°rr® = ss®v°urr®. Since r and s are in E, rr° = 1p
and ss® = 1¢ by Proposition 2.2.7, therefore sr° = v°u. After that, Theorem 2.2.9 implies
that (r, s) is in E, proving the desired. O
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Chapter 3

Relative homological categories

3.1 Axioms for incomplete relative homological categories

Throughout this section we assume that (C,E) is a pair in which C is a pointed category

and E is a class of epimorphisms in C containing all isomorphisms. Consider the following
Condition 3.1.1. (a) The class E is closed under composition;

(b) If f € E and gf € E then g € E;

(c) If f: A— B isin E then ker(f) and coker(ker(f)) exist in C;

(d) A diagram of the form

has a limit in C provided f and g are in E, and either (i) f = g and f' = ¢, or (i) f’

and g' are in E, (f,g9) and (f',g") are reflerive pairs, and f and g are jointly monic.

(e) If

AXBA’LA’

l | Lf,

A B
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is a pullback and f is in E, then mo is also in E;

(f) If hy : H — A and hy : H — B are jointly monic morphisms in C and if a : A — C
and 8 : B — D are morphisms in E, then there exists a morphism h: H — X in E

and jointly monic morphisms x1 : X — C and 9 : X — D in C making the diagram

commutative.

Remark 3.1.2. Comparing Condition 2.1.1 and Condition 3.1.1, we have:

- Conditions 3.1.1(a), 3.1.1(b), and 3.1.1(f) are the same as Conditions 2.1.1(a), 2.1.1(b),
and 2.1.1(e) respectively.

- In Condition 3.1.1(d) we do not require all of the four morphisms f, g, f’, and ¢’ to be in
E as we did in Condition 2.1.1(c); accordingly, in Condition 3.1.1(e) we do not require for
both of the morphisms f and f' to be in E as we did in Condition 2.1.1(d).

Lemma 3.1.3. Let (C,E) be a pair satisfying Conditions 3.1.1(a)-3.1.1(c) and 3.1.1(f)

and suppose every morphism in E is a normal epimorphism. Consider the commutative

L (1)

A ——PB

f/

diagram:

(i) Ifa: A— A" and 3: B— B' are in E and if f : A — B factors as f = me in which
e is in E and m is a monomorphism, then f': A" — B’ also factors as f' = m'e’ in

which €' is in E and m’' is monomorphism.

(1)) If « : A — A" and B : B — B’ are monomorphisms and if f' : A — B’ factors as
f'=m'e in which €' is in E and m' is a monomorphism, then f : A — B also factors

as f = me in which e is in E and m is a monomorphism.
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Proof.

(i): Consider the commutative diagram (1.1) and suppose « and ( are in E and f = me
in whiche: A — Cisin E and m : C — B is a monomorphism. Since  is in E and m
is a monomorphism, by Proposition 2.1.6 there exists a morphism v : C' — C’ in E and a

monomorphism m’ : C’ — B’ such that Sm = m’y. Consider the commutative diagram:

A*Q>A/

,yet e/ | ‘/f/
5

0/*/)31
m

Since « is in E and m/ is a monomorphism, Condition 3.1.1(c) and the fact that every mor-
phism in E is a normal epimorphism, imply the existence of a unique morphism e’ : A" — C’
with €’ = ye and m’e’ = f’. Since «, e, and v are in E, the morphism ¢’ is also in E
by Conditions 3.1.1(a) and 3.1.1(b). Hence, f* = m/e’ in which €’ is in E and m’ is a

monomorphism, as desired.

(ii): Consider the commutative diagram (1.1) and suppose « and 3 are monomorphisms and
f'=m'¢ in which ¢’ : A’ — " is in E and m' : ¢’ — B’ is a monomorphism. Since « is a
monomorphism and €’ is in E, by Proposition 2.1.6 there exists a morphisme : A — C in E

and a monomorphism « : C' — C’ such that ¢’a = ve. Consider the commutative diagram:

A*€>

-C
" lm’v

- /
B T) B

Since e is in E and 3 is a monomorphism, Condition 3.1.1(c) and the fact that every mor-
phism in E is a normal epimorphism, imply the existence of a unique morphism m : C — B
with me = f and fm = m/vy, m is a monomorphism since so is m’y. Hence, f = me in

which e is in E and m is a monomorphism, as desired. ]

Definition 3.1.4. The pair (C,E) is said to be an incomplete relative homological category
(a) Condition 3.1.1 holds in C;

(b) Every morphism in E is a normal epimorphism;
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(¢) The E-Short Five Lemma holds in C, i.e. in every commutative diagram of the form

K A B
K—5=A——~B

with f and [ in E and with k = ker(f) and k' = ker(f’), the morphism w is an

isomorphism;

(d) If in a commutative diagram

K—* a7t .p

ul lw
! /

K —= A — =B

f, f', and w are in E, k = ker(f) and k' = ker(f’), then there exists a morphism

e: A— M inE and a monomorphism m : M — A’ in C such that w = me.

We will also say that the pair (C,E) is an incomplete relative weakly homological category
whenever it satisfies Conditions 3.1.1(a)-3.1.1(e) and conditions (a)-(c) of Definition 3.1.4.
The two basic examples of a pair (C, E) satisfying conditions (a)-(d) of Definition 3.1.4

are:

1. “Trivial case”: C is a pointed category and E is the class of all isomorphisms in C.

2. “Absolute case”: C is a homological category and E is the class of all regular epi-
morphisms in C (recall that every regular epimorphism in a homological category is

a normal epimorphism).
Lemma 3.1.5. If a pair (C,E) satisfies Conditions 3.1.1(a)-3.1.1(c) and every morphism

in E is a regular epimorphism, then (C,E) satisfies conditions (c) and (d) of Definition

8.1.4 if and only if in every commutative diagram of the form

K—F a4t .p
K'—= A — B

with k = ker(f), k' =ker(f’), and with f, f', and u in E, the morphism w is also in E.
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Proof. Suppose (C, E) satisfies Conditions 3.1.1(a)-3.1.1(c), and conditions (c) and (d) of
Definition 3.1.4. Consider the commutative diagram (1.2) with k = ker(f), k' = ker(f’),
and with f, f/, and u in E. By condition (d) of Definition 3.1.4 we have w = me in which
e: A — Misin E and m : M — A’ is a monomorphism. Consider the commutative
diagram:

K$KI

ek‘{ m Lk’
L

M —— A
Since u is a normal epimorphism and m is a monomorphism, there exists a unique morphism
m : K' — M with mu = ek and mm = k’; m is a monomorphism since so k’. Since
f'mm = 0, m is a monomorphism, and k' = ker(f’), we conclude that m = ker(f'm). By
Condition 3.1.1(b), f'm is in E, therefore we can apply the E-Short Five Lemma to the

diagram

and conclude that m is an isomorphism. Hence, by condition 3.1.1(a) w is in E, as desired.

Conversely, suppose for every commutative diagram (1.2) with k& = ker(f), ¥’ = ker(f’),
and with f and f’ in E, if u is in E then w is also in E. It is a well know fact that under
the assumptions of condition (¢) of Definition 3.1.4, ker(w) = 0; moreover, since E contains
all isomorphisms and f and f’ are in E, w: A — A’ is also in E. Since every morphism in
E is a normal epimorphism, we conclude that w is an isomorphism, proving condition (c)
of Definition 3.1.4. The proof of condition (d) of Definition 3.1.4 is trivial. O]

Assuming that condition (b) of Definition 3.1.4 holds, we can say that the condi-
tions/axioms used here are much weaker than those used by G. Janelidze, L. Marki, and
W. Tholen [23]. However, various arguments from [23], used there in the proof of the equiv-
alence of the so-called old and new axioms, can be extended to our context to obtain various
reformulations of the conditions (a)-(d) of Definition 3.1.4. Some of them are given in this

section.

Condition 3.1.6. (a) Every morphism in E is a reqular epimorphism;

42



(b) If f € E then coker(ker(f)) € E;

(c) (“Relative Hofmann’s axziom”) If in a commutative diagram
A B

A/*)B/

f/

f and f" are in E, w is a monomorphism, v is normal monomorphism, and ker(f") < w,

then w s a normal monomorphism.
Theorem 3.1.7. If (C,E) is a pair satisfying Condition 3.1.1, then:
(i) Condition (b) of Definition 3.1.4 implies Conditions 3.1.6(a) and 3.1.6(b).

(ii) Condition (c) of Definition 3.1.4 and Conditions 3.1.6(a) and 3.1.6(b) imply condition
(b) of Definition 3.1.4.

Proof.

(i) is obvious.

(ii): Let f : A — B be a regular epimorphism in E, and let k£ = ker(f) and ¢ = coker(k),
they do exist by Condition 3.1.1(c) and ¢ is in E by Condition 3.1.6(b) . To prove that f is

a normal epimorphism it suffices to prove that the canonical morphism & : Coker(k) — B

is an isomorphism. For, consider the commutative diagram

Ax Coker(k ) Coker

q2

ﬁ

AXB

in which:

- (f1, f2) is the kernel pair of f and (g1, ¢2) is the kernel pair of ¢, they do exist by
Condition 3.1.1(d) and the morphisms f1, f2, ¢1, and g2 are in E by Condition 3.1.1(e).

- h: AXcoker(k)A — AX pA is the canonical morphism.
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Since there are canonical isomorphisms
Ker(q1) ~ Ker(q) ~ Ker(f) ~ Ker(f)

(note that these kernels do exist by Condition 3.1.1(c)), we can apply the E-Short Five
Lemma (condition (c) of Definition 3.1.4) to the diagram

q1

KeI'(Q1) Ax Coker(k)A A
~ h
Ker(f1) AxpA A

1

This makes h an isomorphism; since f and ¢ are regular epimorphisms, the latter implies

that A is also an isomorphism. O
Theorem 3.1.8. If (C,E) is a pair satisfying Condition 3.1.1, then:
(i) Condition (c) of Definition 3.1.4 implies Condition 3.1.6(c).

(ii) Condition (b) and (d) of Definition 3.1.4 and Condition 3.1.6(c) imply Condition (c)
of Definition 3.1.4.

Proof.

(i): According to the assumptions of Condition 3.1.6(c), consider the commutative diagram

K A B
/ /
K—~A—=B

in which f and f" are in E, ¥’ = ker(f’), k is a morphism with wk = ¥, w is a monomor-
phism, and v is a normal monomorphism. Since f'k’ = f'wk = vfk = 0 and v is a monomor-
phism, we obtain fk = 0. Letting k : K — A to be another morphism with fk = 0, the
equalities f'wk = vfk = 0 imply the existence of a unique morphism k” : K — K with
wk = k'k"; since w is a monomorphism we conclude that k = ker(f). Since f is in E, the

pullback (A’ x g B, 71, m) of f’ along v exists by Condition 3.1.1(d), and w5 is in E by
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Condition 3.1.1(e). After this, applying condition (c) of Definition 3.1.4 to the diagram

K—r 42— .p

)

K —> A'xpB—~B,

where (w, f) : A — A’Xp/ B is the canonical morphism and h' = (w, f)k, we conclude that
(w, f) is an isomorphism. Since normal monomorphisms are pullback stable and v is a

normal monomorphism, 7 is also a normal monomorphism and therefore so is w, proving

Condition 3.1.6(c).

(ii): We have to show that if in a commutative diagram

K A B
K—~A——B

f and f’ are in E, and k and k' are their kernels respectively, then w is an isomorphism.
It is a well known fact that in the situation above the kernel and the cokernel of w is
zero. Since E contains all isomorphisms, by condition (d) of Definition 3.1.4 there exists a
factorization w = me in which e is a morphism in E and m is a monomorphism. Moreover,
since w has a zero kernel, e is an isomorphism since every morphism in E is a normal epimor-
phism (condition (b) of Definition 3.1.4). Therefore, w is a monomorphism, and applying
Condition 3.1.6(c) to the diagram (1.3) we conclude that w is a normal monomorphism.

Since w has a zero cokernel, the latter implies that w is an isomorphism, as desired. ]
Theorem 3.1.7 together with Theorem 3.1.8 gives:
Corollary 3.1.9. The following conditions are equivalent:
(i) The pair (C,E) is an incomplete relative homological category.
(i) The pair (C,E) satisfies Condition 3.1.1 and:

(a) Every morphism in E is a regular epimorphism;

(b) If f € E then coker(ker(f)) € E;
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(¢) The E-Short Five Lemma holds in C;

(d) If in a commutative diagram

K—* a4t .p

ul lw
! /

K —=A— =B

f, [, and u are in E, k = ker(f) and k' = ker(f'), then there exists a morphism

e: A— M inE and a monomorphism m : M — A’ in C such that w = me.
(i) The pair (C,E) satisfies Condition 3.1.1 and:

(a) Every morphism in E is a normal epimorphism;
(b) The relative Hofmann’s Aziom holds in C;

(c) If in a commutative diagram

K—* a4t .p
1 /
K'—= A — =B

f, [, and u are in E, k = ker(f) and k' = ker(f'), then there exists a morphism

e: A— M in E and a monomorphism m : M — A’ in C such that w = me.

O]

Remark 3.1.10. Note that since the incomplete relative homological categories satisfy Con-
ditions 2.1.1 and 2.8.8, all the results of Chapter 1 can be applied to them without any

restrictions.

The axioms of incomplete relative homological category (C,E), (precisely, Condition
3.1.1) are much simplified when the ground category C is finitely complete/cocomplete.

This special case will be considered in the next section.

3.2 Relative homological categories

Throughout this section we assume that (C,E) is a pair in which C is a pointed, finitely
complete category with cokernels, and E is a class epimorphisms in C containing all iso-

morphisms. Consider the following
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Condition 3.2.1. (a) The class E is closed under composition;
(b) If f € E and gf € E then g € E;
(c) The class E is pullback stable;

(d) If a morphism f in C factors as f = em in which e is in E and m is a monomorphism,
then it also factors (essentially uniquely) as f = m'e’ in which m' is a monomorphism

and € is in E.

Lemma 3.2.2. Let (C,E) be the pair satisfying Conditions 3.2.1(a) and 3.2.1(c). If
f:A—C and g : B — D are morphisms in E, then so is the canonical morphism
fxg:AxB—CxD.

Proof. Let f: A— C and g: B — D be the morphisms in E. Consider the commutative

diagram
A<—AXB——B

fl fxlp

C<~—CxB——>B8 (2.1)

C<=——CxD——D

in which the unlabeled arrows are the suitable product projections. It is easy to see that
the top left and the bottom right squares of the diagram (2.1) are pullbacks. Therefore,
since f and g are in E, the morphisms f x 15 and 1. X g are also in E by Condition 3.2.1(c),
and therefore the composite (1. x g)(f x 1p) is also in E by Condition 3.2.1(a). Since
fxg=(1xg)(f x1p), we conclude that f x g is in E, proving the desired. O

Remark 3.2.3. Note that in Lemma 3.2.2 it is not necessary for the ground category C to
be pointed and have all finite limits and cokernels, we only require the existence of products

and pullbacks.
Comparing Conditions 3.1.1 and 3.2.1, we have:

Proposition 3.2.4. The pair (C,E) satisfies Condition 3.1.1 if and only if it satisfies
Condition 3.2.1.
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Proof. Since C has finite limits and cokernels, Conditions 3.1.1(c) and 3.1.1(d) always
hold in C, Conditions 3.1.1(a), 3.1.1(b), and 3.1.1(e) are the same as Conditions 3.2.1(a)
3.2.1(b) and 3.2.1(c) respectively, Condition 3.2.1(d) follows from Condition 3.1.1(f) (see
Proposition 2.1.6); therefore we only need to prove that Condition 3.1.1(f) follows from
Condition 3.2.1(d).

For, let hy : H — A and he : H — B be jointly monic morphisms in C and let
a:A— Cand @:B— D be morphisms in E. Since o and 3 are in E, so is the morphism
axf:AxB — CxD by Lemma 3.2.2, and since hy and hs are jointly monic, the canonical
morphism (hy, ho) : H — A X B is a monomorphism. Since (h1, h2) is a monomorphism
and a x § is in E, by Condition 3.2.1(d) there exists a factorization (a x 3)(h1, h2) = me in

whiche: H — X isin E and m : X — C x D is a monomorphism. We obtain the diagram

H
N
\
A° X B
a B
C*=————CxD——=F——D

in which m and my are the product projections and z;1 = mym and zo = mom. We have
x1e = myme = mi(a X B){h1,hy) = ah; and z9e = mame = ma(a X B)(h1,he) = [he;
moreover, since m is a monomorphism and w; and 7o are jointly monic, the morphisms x
and x9 are also jointly monic. Hence, there exists a morphism e in E, and jointly monic

morphisms z; and xg for which x1e = ah; and x9e = ho proving Condition 3.1.1(f). O
Definition 3.2.5. The pair (C,E) is said to be a relative homological category if:

(a) Condition 3.2.1 holds in C;

(b) Every morphism in E is a normal epimorphism;

(¢) The E-short five lemma holds in C;

(d) If in a commutative diagram

K—* a4t .p
K — A —= D



f, f', and w are in E, k = ker(f) and k' = ker(f’), then there exists a morphism

e: A— M inE and a monomorphism m : M — A" in C such that w = me.

We will also say that the pair (C,E) is a relative weakly homological category whenever it
satisfies Condition 3.2.1(a)-3.2.1(c) and conditions (a)-(c) of Definition 3.2.5.

Comparing Definition 3.2.5 and Definition 3.1.4, we have:

Theorem 3.2.6. If C is a pointed category with finite limits and cokernels, and E is a class
of epimorphisms in C containing all isomorphisms, then (C,E) is a relative homological

category if and only if (C,E) is an incomplete relative homological category.

Proof. The proof follows directly from Proposition 3.2.4. Indeed: conditions (b), (c), and
(d) of Definition 3.2.5 are the same as the conditions (b), (c), and (d) of Definition 3.1.4,
and Conditions 3.2.1 and 3.1.1 are equivalent by Proposition 3.2.4. O

As follows from Theorem 3.2.6, Lemma 3.1.5, Theorem 3.1.7, and Theorem 3.1.8 hold

true in the relative homological categories, therefore, we have:
Corollary 3.2.7. The following conditions are equivalent:

(i) The pair (C,E) is a relative homological category.

(i) The pair (C,E) satisfies Condition 3.2.1 and:

(b) Every morphism in E is a reqular epimorphism;
(c) If f € E then coker(ker(f)) € E;
(d) The E-Short Five Lemma holds in C;

(e) If in a commutative diagram

K A B
! /
K —7=A—~B

f, [, andu are in E, k = ker(f) and k' = ker(f'), then there exists a morphism

e: A— M in E and a monomorphism m : M — A’ in C such that w = me.

(i) The pair (C,E) satisfies Condition 3.2.1 and:
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(a) Every morphism in E is a normal epimorphism;
(b) The relative Hofmann’s Aziom holds in C;

(¢) If in a commutative diagram

K—* a4t .p
! !
K'—5= A~ =B

f, [, and u are in E, k = ker(f) and k' = ker(f'), then there exists a morphism

e: A— M inE and a monomorphism m : M — A’ in C such that w = me.

3.3 Examples

Proposition 3.3.1. The following conditions are equivalent:

(i) A pair (C,E) in which E is the class of all split epimorphisms in C, is a relative

weakly homological category.
(i) C is a protomodular category in the sense of D. Bourn [6].

Proof. The implication (i)=-(ii) follows directly from the definitions.

(ii)=(i): The only condition that requires a verification here is condition (b) of Definition

3.2.5; however, it holds by Proposition 1.3.5. 0

Proposition 3.3.2. If C has coequalizers of kernel pairs and E is the class of all reqular

epimorphisms in C, then the following conditions are equivalent:
(i) (C,E) is a relative weakly homological category.
(ii) (C,E) is a relative homological category.
(i1i) C is a homological category in the sense of F. Borceux and D. Bourn [3].

Proof.
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(i)=(iii): As follows from (i), the class of all regular epimorphisms in C is pullback stable.
Therefore, since C has kernel pairs and their coequalizers, C admits a (regular epi, mono)-
factorization system by Proposition 1.2.2. Since C has all finite limits, the latter implies
that C is a regular category. Furthermore, since C has pullbacks and a zero object, proto-
modularity is equivalent to the Split Short Five Lemma by Proposition 1.3.3; and since the
E-Short Five Lemma coincides with the Regular Short Five Lemma when E is the class of
all regular epimorphisms in C, it follows from Remark 1.3.4 and Proposition 1.3.3 that C

is a protomodular category. Therefore, C is a homological category.

(iii)=-(ii): Let C be a homological category and let E be the class of all regular epimorphisms
in C. Conditions 3.2.1(a) and 3.2.1(b), and condition (b) of Definition 3.2.5 hold in C
by Proposition 1.1.3, Proposition 1.1.4, and Proposition 1.3.5 respectively. Since C has
pullback stable (regular epi,mono)-factorization system, Conditions 3.2.1(c) and 3.2.1(d),
and condition (d) of Definition 3.2.5 are satisfied, and Condition (c) of Definition 3.2.5
holds since the Regular Short Five Lemma holds in a homological category by Remark
1.3.4. Therefore, (C,E) is a relative homological category.

Since the implication (ii)=-(i) is trivial, this completes the proof. O

Example 3.3.3. Let (C,E) be a relative weakly homological category and let (C',E') be
a pair, in which C' is a category with finite limits and E' is a class of morphisms in C'
satisfying Conditions 3.2.1(a), 3.2.1(b), and 3.2.1(c). If the functor F : C — C' preserves
finite limits, then the pair (C,ENF~Y(E)), in which F~1(E') is the class of all morphisms
e in E for which F(e) is in E', is a relative weakly homological category. In particular we
could take C' to be an arbitrary category with finite limits and E' = SplitEpi to be the
class of all split epimorphisms in C'. According to the existing literature (see e.g. [33]),
an important example is provided by the forgetful functor F from the homological category
C of topological groups to the category C' of topological spaces; the class F~'(SplitEpi)
and the corresponding concept of exactness play a significant role in the cohomology theory
of topological groups. This also applies to the classical case of profinite groups, where,
however, F~Y(SplitEpi) coincides with the class of all normal epimorphisms, as shown in
Section 1.1.2 of [32]; another such result is used in [31]. The results of [20] also suggest
considering the forgetful functor from the category of topological groups to the category of
groups. On the other hand one can replace topological groups with more general, so-called

protomodular (=semi-abelian), topological algebras, which form a homological category due

o1



to a result of F. Borceur and M. M. Clementino [4].
Let us also mention the following “trivial” examples:

Example 3.3.4. If C is an abelian category, and E is the proper class of epimorphisms in
C in the sense of relative homological algebra (see e.g. Chapter IX in [30]) then (C,E) is a

relative weakly homological category.

Example 3.3.5. A pair (C,E), in which E is the class of all isomorphisms in C, always

1s a relative homological category.

Example 3.3.6. A pair (C,E), in which E is the class of all morphisms in C, is a relative

homological category if and only if C is a trivial category.
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Chapter 4

Homological lemmas in incomplete
relative homological categories

4.1 E-exact sequences

Throughout this section we assume that (C, E) is an incomplete relative homological cate-
gory.

Definition 4.1.1. A sequence of morphisms

fi— fi
Az‘—l ! AZ' Az‘+1

i C is said to be:

(i) E-exact at A;, if the morphism f;_1 admits a factorization f;_1 = me, in whiche € E
and m = ker(f;).

(ii) an E-exact sequence, if it is E-exact at A; for each i (unless the sequence either begins

with A; or ends with A;).
As in the “absolute case” (see Proposition 1.4.2), we have:

Proposition 4.1.2. (i) The sequence

0 A—t g9 . (1.1)

is E-exact if and only if f = ker(g).
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(i1) If the sequence

A B C 0 (1.2)

is E-exact then g = coker(f) and g is in E.

(iii) The sequence

0 A B C 0 (1.3)

is E exact if and only if f = ker(g) and g is in E.

Proof.

(i): If (1.1) is an E-exact sequence then f = me in which e is in E and m = ker(g). Since
m is a monomorphism we have ker(f) = ker(e), but ker(f) = 0 since (1.1) is E-exact at A.
Since every morphism in E is a normal epimorphism we conclude that e is an isomorphism,
and therefore f = ker(g). Conversely, suppose f = ker(g). Then, f is a monomorphism
and therefore ker(f) = 0, and since E contains all isomorphisms we conclude that (1.1) is
E-exact at A. Since f = fl and f = ker(g), the E-exactness of (1.1) at B follows again

from the fact that E contains all isomoprhisms.

(ii): If (1.2) is an E-exact sequence then f = me in which e is in E and m = ker(g),
and g = m/e¢’ in which ¢’ is in E and m’ = ker(0). Since the kernel of a zero morphism
is an isomorphism, we conclude that ¢ is in E. Since every morphism in E is a normal
epimorphism and m = ker(g), we conclude that g = coker(m). Since e is an epimorphism,

the latter implies that g = coker(f).

(iii): The proof follows from the proofs of (i) and (ii). O
In the next sections we will often use the following simple fact:

Lemma 4.1.3. In a pointed category C consider the commutative diagram:

K-t a1 .p
l l L 1.4
K/ 7 Al f, B/

(i) If k' = ker(f") and ker(v) = 0 then k = ker(f) if and only if the left hand square of
the diagram (1.4) is a pullback.
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(it) If f = coker(k) and coker(u) = 0 then f' = coker(k') if and only if the right hand
square of the diagram (1.4) is a pushout.

Proof. Consider the commutative diagram

k f

K A B
Ok
e
0
u w v (1.5)
0 \%
Opr / m
! / /
K o A Iz B

consisting of the diagram (1.4).

(i): If k' = ker(f’) and ker(v) = 0, then in the diagram (1.5), (K’,k’,0x/) and (0, 19,0p) are
the pullbacks. Therefore, (K, k,0F) is a pullback, i.e. k = ker(f), if and only if (K, u, k) is
a pullback.

(ii): If f = coker(k) and coker(u) = 0, then in the diagram (1.5), (B, f,0p) and (0,0x, 1)
are the pushouts. Therefore, (B’, f/,0p/) is a pushout, i.e. f' = coker(k’), if and only if
(B', f’,v) is a pushout. O

4.2 The Five Lemma

Theorem 4.2.1 (The Five Lemma). Let (C,E) be an incomplete relative homological cat-

egory. If in a commutative diagram

A B C D E
at ﬁl vl la le (2.1)
A/ f/ B/ g/ Cl o D/ Y El

the two rows are E-exact sequences, coker(a) = 0, ker(e¢) = 0, and 8 and 0 are isomor-

phisms, then 7 is also an isomorphism.

Proof. Since the first and the second rows of the diagram (2.1) are E-exact at D and D’

respectively, there exists the factorizations h = hahy and b’ = h4h) in which hy and b} are

95



morphisms in E and hg = ker(k) and hf, = ker(k’). Since b, = ker(k’) and k'dhe = ekhy = 0,

there exists a unique morphism 4 : C' — C’ with dhy = hb%. We obtain the commutative

diagram:
_ h
5. 2 D k
%
y
/
¢ R, D —

Since hy = ker(k), hl, = ker(k’), and ker(e) = 0, the square dhe = h%7¥ is a pullback by

Lemma 4.1.3(i). Therefore, since ¢ is an isomorphism, so is 7.

Since the first row of the diagram (2.1) is E-exact at C, there exists a factorization

g = g2¢1 in which ¢ is in E and go = ker(h), and since hgy is a monomorphism we conclude

that go = ker(hy1). Moreover, since the first row of the diagram (2.1) is E-exact at B, and

g2 is a monomorphism and g¢; is a normal epimorphism, we conclude that g; = coker(f).

Similarly, the E-exactness of the second row of the diagram (2.1) at C’ and B’ implies the

existence of the factorization ¢’ = g¢h¢}, in which ¢§ = coker(f’) and g5 = ker(h}). We

obtain the commutative diagram:

A B
/ /
\ I B 9

oo

[u [ —

<

Since g1 = coker(f), g} = coker(f’), and coker(a) = 0, the square g}3 = Bg; is a pushout

by Lemma 4.1.3(ii). Therefore, since 3 is an isomorphism, so is 3.

Finally, we obtain the commutative diagram

_ h
B g2 C 1
n/ !
B o C ",

Qi

<

Qe
2

in which g, = ker(h1), g5 = ker(h}), the morphisms h; and h} are in E, and 3 and 7 are

isomorphisms. Then, by the E-Short Five Lemma the morphism = is also an isomorphism,

proving the desired.
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4.3 The Nine Lemma

Theorem 4.3.1 (The Nine Lemma). Let (C,E) be an incomplete relative homological

category. If in a commutative diagram

0 0 0
0 x—l.y—9 .y 0
u v w
0 X' I Y! " 7! 0 (3 1)
u’ v’ w’
O X/l ” Y// — Z/l O
f g
0 0 0

the three columns and the middle row are E-exact sequences, then the first row is an E-exact

sequence if and only if the last row is an E-ezact sequence.

Proof. Let us first assume that the last row of the diagram (3.1) is an E-exact sequence.
As follows from Proposition 4.1.2(iii), since the three columns and the second and the third
rows of the diagram (3.1) are E-exact sequences, the morphisms u/, v/, w', ¢’ and ¢" are
in E, and u = ker(v'), v = ker(v'), w = ker(w'), f’ = ker(¢'), and f” = ker(g”). And, to
prove that the first row of the diagram (3.1) is an E-exact sequence it suffices to prove that
f =ker(g) and g € E.

Since w is a monomorphism and wgf = ¢’ f'u = 0, we have gf = 0. We first prove that
f = ker(g). It easily follows from Lemma 4.1.3 that the square f'u = vf is a pullback.
Indeed, since f” is a monomorphism and u = ker(u’) and v = ker(v’), we can apply Lemma

4.1.3 to the diagram

i u’

X X/ X//

(N

e A

and conclude that f'u = vf is the pullback of v and f’. Let f: X — Y be any morphism
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with gf = 0 and consider the following diagram:

X' Y ——Z7

Since f’ = ker(¢') and ¢g'vf = ¢’ f'u = 0, there exists a unique morphism z’ : X — X’ with
f'#’ = vf. Since () is a pullback, the latter implies the existence of a unique morphism
Z:X — X with fz = f and uZ = #’. Since f is a monomorphism, a morphism Z with
fx = f is unique, proving that f = ker(g).

It remains to prove that ¢ is in E. For, let (Y”x z»Z' m,m) be the pullback of ¢”
and w’, since g’ is in E this pullback does exist by Condition 3.1.1(d), and 7y is in E by

Condition 3.1.1(e). Consider the commutative diagram

x—t ey Ly
u’l <’Ul 7g/>
" Y VA /
X (f// 70> X zZ" ™2 Z
b wl
Xl/ Yl/ Z//
f// g//

in which (v/, ¢’) and (f”,0) are the canonical morphisms. Since f” = ker(g”) and
(Y'x guZ' w1, m2) a pullback of ¢” and w’, we conclude that (f”,0) = ker(mz). Then, since
' =ker(g’) and v’ € E, the morphism (v/, ¢’) is also in E by Lemma 3.1.5.

Next, consider the commutative diagram

v

Y Y’ l
o o

Z—>Y//XZ//Z Y//
(0,w)

v "

g

1

in which (0, w) is the canonical morphism. Since (Y x z»Z, 71, m2) is the pullback of ¢” and
w', and w = ker(w’), we conclude that (0,w) = ker(m). Sine v = ker(v'), we can apply

Lemma 4.1.3 to the diagram (3.2) and conclude that g is in E, as desired.
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Let us now assume that the first row of the diagram (3.1) is E-exact and prove that
the last row of (3.1) is an E-exact sequence, for, it suffices to prove that f” = ker(¢”) and
g" € E.

Since ¢"v' = w'¢’ and ¢’,w’, and v/, are in E, the morphism ¢” is also in E by Conditions
3.1.1(a) and 3.1.1(b); hence, we only need to prove that f” = ker(¢”). Since v’ is an
epimorphism and ¢” f"v' = w'g'f’ = 0, we conclude that ¢”f” = 0. Since ¢” is in E,

k = ker(g") exists by Condition 3.1.1(c); consider the commutative diagram:

! !
X' ! y! —2 7
N
u’ K v’ w’
k1 ) 7 &
" " 1"
X f// Y g// Z

We have:

- Since ¢"f” = 0 and k = ker(g"”), there exists a unique morphism k; : X” — K with
-

- Since ¢"V'f" = ¢" v/ = 0 and k = ker(g”), there exists a unique morphism kg : X’ — K
with kky = o' f'.

Since ¢” is in E and k = ker(g”), the sequence

0 K Y”

4
- 7 0

is E-exact. Therefore, we obtain the commutative diagram

0 0 0
k
0 Xt x—25K 0
f f k
0 Y~ Y Y 0
g g/ g//
0 72— 27" 0
0 0 0
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in which the three columns, the second and the third rows are E-exact sequences. Then,

by the first part of the proof, the sequence

u ko

0 X X' K 0

also is E-exact. Finally, we obtain the following commutative diagram

/

0 X —— X' —— X" 0
0 X—>X ——K 0

in which both rows are E-exact sequences; since every morphism in E is a normal epimor-

phism, we conclude that kp is an isomorphism. Thus, f” = ker(¢”), as desired. O

4.4 The Snake Lemma

Let (C,E) be an incomplete relative homological category. In Chapter 2 we defined the
composition of E-relations in C. In this chapter we will also need to compose certain
relations in C:

Let R = (R,r1,72) : A — B be a relation from A to B, i.e. a pair of jointly monic mor-
phisms 71 : R — A and r9 : R — B with the same domain, and let S = (S, s1,s2): B — C
be a relation from B to C. If the pullback (R xp S,m,m2) of ro and s; exists in C, and
if there exists a morphism e : R xp S — T in E and a jointly monic pair of morphisms

1: 7T — Aand to : T — C in C making the diagram

\ (4.1)
\ / %
commutative, then we will say that (T, t1,t2) : A — C'is the composite of (R,71,72) : A — B
and (S,s1,s2) : B — C. One can similarly define partial composition for three or more
relations satisfying a suitable associativity condition. Omitting details, let us just mention

that, say, a composite RR'R” might exist even if neither RR’ nor R'R” does (in particular,

this extends the composition of E-relations considered in Chapter 1 (see Definition 2.1.8)).
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Convention 4.4.1. We will say that a relation R = (R,ry,r2) : A — B is a morphism in

C if r1 is an isomorphism.

Theorem 4.4.2 (Snake Lemma). Let (C,E) be an incomplete relative homological category.

Consider the commutative diagram

0 0 0
K, fr K, 9K K,
ku ke kw
x—T1 .y <y 0
o
u w (4.2)
0 x ! R —
qu d qv quw
.
Qu - Qv - Quw
f Q 9gqQ
0 0 0

in which all columns, the second and the third rows are E-exact sequences. If the morphism

g factors as g’ = ghg) in which gy is in E and g4 is a monomorphism, then:
(a) The composite quf'"vg°ky : Kw — Qu is a morphism in C.

(b) The sequence

K, K, Ky ——=Q, @ Qu  (43)
where d = qu f'°vg°ky, is E-ezact.

Proof. Under the assumptions of the theorem, consider the commutative diagram (4.2).
Since the three columns of the diagram (4.2) are E-exact sequences, by Proposition 4.1.2

the morphisms k,, k,, kv, and gy, ¢q,, and g, are the kernels and the cokernels of u, v,
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and w respectively. Since the second and the third rows of the diagram (4.2) are E-exact,
again by Proposition 4.1.2, g = coker(f), g is in E, and f’ = ker(¢'). Consider the following

commutative diagram

0 0 0
fx 9K
K, K, K,
s 7
kv N s g B
ko, ) Lo Xz Kw kw
0 . T - -
L/
x 7 : Y J Z 0
u Xl/ d w
0 P Y A
f g
qu L “{ qu
Qv
Qu= - Qv - Qu
fo 9Q
0 0 0

(4.4)

in which:
(i) All the horizontal and the vertical arrows are as in the diagram (4.2).

(ii) f = fof1 where f; : X — X" is a morphism in E and f3 : X" — Y is the kernel of ¢
(such factorization of f does exist in C since the second row of the diagram (4.2) is

E-exact).

(iii) (Y xzKy,m1,m2) is the pullback of g and k,,, by Condition 3.1.1(d) this pullback does

exist in C. Since g is in E; the morphism 73 is also in E by Condition 3.1.1(e), and
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(iv)

(vi)

(vii)

since k,, is a normal monomorphism so is 7.

Since gk, = kywgx, (iii) implies the existence of a unique morphism h : K, — Y x z K,

with m1h = k, and moh = gg. Since k, and 7; are normal monomorphisms, so is h.

Since gfy = 0 = k0, (iii) implies the existence of a unique morphism 6 : X” — Y x z K,
with 710 = fy and w6 = 0. Therefore, since fo = ker(g) and my is in E, we conclude
that my = coker(6).

Since f1 is in E, it is an epimorphism, and therefore the equalities g'vfaf1 = ¢'vf =
= ¢'f'u = 0 imply g'vfs = 0. Since f’ = ker(g’) the latter implies the existence of a
unique morphism v’ : X” — X’ with f'v’/ = vfs. Since vfofi = f'u/f1 and f1 is an
epimorphism, we conclude that u’f; = u. Moreover, since g, = coker(u) and f; is an

epimorphism, we obtain ¢, = coker(u').

Since f = ker(¢') and g'vm; = wgm = wkymy = 0, there exists a unique morphism
0 YxzK, — X" with f'¢ = vm. It follows that (Y xzK,,p,m) is the pullback
of f/ and ¢. Indeed: Let hy : H — X' and hy : H — Y be any morphisms with
f'h1 = vhy. Consider the diagram:

/ / !

X 7 Y 7 Z
Since k,, = ker(w) and wghs = g'vhe = ¢'f'hy = 0, there exists a unique morphism
hs : H — K, with ky,hs = ghe; since (x) is a pullback, the last equality implies that
there exists a unique morphism h* : H — Y x 7 K,, with moh* = hg and m h* = ho.
Since f’ is a monomorphism, the equalities f'oh* = vmih* = vhy = f'h; imply

ph* = hy. Hence, there exists a unique morphism h* : H — Y x 7z K, with mh* = ho
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and ph* = hy (uniqueness follows from the fact that m; is a monomorphism), proving

that the square f’¢ = vm is the pullback of f/ and .

(viii) h = ker(p). Indeed: since f’ is a monomorphism, the equalities f'oh = vmh = vk, =0
imply ph = 0. Let b/ : H — Y xzK,, be another morphism with ¢h’ = 0. Consider
the diagram:

H/
h//
- n
= @
K, Yxz Ky —— X'
ko 7T1 f
Y Y’

v
Since k, = ker(v) and v h’ = f'oh’ = 0, there exists a unique morphism b’ : H' — K,
with k,h” = m1h/. Since 71 is a monomorphism and 1 hh" = k,h"” = m1h', we conclude

that hh” = h’. Since h is a monomorphism, this means that h = ker(y).

(ix) Since f’ is a monomorphism, the equalities f'©f = vm0 = vfo = f'u' imply 8 = u';
then, since ¢, = coker(u’), we obtain q,pf = q,u’ = 0. Since 7o = coker(f), the last

equality implies the existence of a unique morphism d : K,, — Q,, with dmy = ¢,.

(a): Since (Y xz Ky, m1,m2) is the pullback of g and ky, 71 is a monomorphism, and

(Y xz Ky, m,p) is the pullback of f' and v (see (vii) above), we obtain the commuta-

64



tive diagram

P
N
P P
NN
P P P

N
AN
AN
AN A
N
N A
N AN
N
N
A

where P =Y Xz K, and all the diamond parts are pullbacks. Since w3 and ¢, are in E,

by Condition 3.1.1(f) we have the factorization (unique up to an isomorphism)

Y Xz Kw
lyxzy X
T
\
Y x7 K, . R . X’ (4.5)
. T1 T2
Ky~ " Qu

where r : Y xz K, — R is a morphism in E and r; : R — K,, and r : R — (@, are
jointly monic morphisms in C. As follows from the definition of composition of relations,
(R, 71, 72) is the composite relation g, f'*vg°k,, from K, to Q, (Note, that since the pullback
(Y xz Ky, m,m) of ky and g, and the pullback (Y xz Ky, 71, ) of v and f’ exists in C,
the composite relations ¢°k,, : K, — Y and f°v:Y — X’ exist. Moreover, since w5 and g,
are in E, the composite ¢, (f"“v)(g°ky) of the three relations g°k,, f°v, and ¢, also exists
and we have ¢, (f"“v)(9°kw) = quf v9°kw).

Since the morphism d : K,, — @, is such that ¢, = dma (see (ix) above), we obtain
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the following factorization:

Y Xz Kw
Y xz Ky ,,Kvw § X' (4.6)
N d )
Ky~ S Qu

Comparing the diagrams (4.5) and (4.6), we conclude that the relation (K, 1x,,,d) can be

identified with the relation (R,r1,72). Therefore, r; is an isomorphism, as desired.

(ii): To prove that the sequence (4.3) is E-exact, we need to prove that it is E-exact at K,
Ky, Qu, and Q.
E-exactness at K,: It follows from the fact that the first column of the diagram (4.4) is

E-exact at X', that the kernel of u’ exists in C. Indeed, consider the commutative diagram

Xl/
f1 u’
cuy
X S X' % Qu (4.7)
k{\l %
Ky,

in which v = wauy is the factorization of uw with us = ker(q,) and w; € E (which does
exists since the first column of the diagram (4.4) is E exact at X'), and v} is the induced
morphism (g,u’ = 0 by (vi)). Since f; and u; are in E, «} is also in E by Condition 3.1.1(b),
and therefore the kernel of u exists by Condition 3.1.1(c). Since ug is a monomorphism we
conclude that Ker(u') ~ Ker(u}).
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Consider the following part of the diagram (4.4)

0 0 0
K, fr K, 9K K,
e "y = ‘m
ku Ku/ kv kw
s
x 1 e J Z 0
N~
u X" v w
A’
0 X' - Y’ - A
f g
in which:
- ky = ker(u').

Since k, = ker(v) and v fok,s = f'u'k, = 0, there exists a unique morphism
m: Ky — K, with kym = fok,s.

Since ks = ker(u') and v’ f1k,, = uk, = 0, there exists a unique morphism e : K,, — Ky
with ke = fiky.

Since k, is a monomorphism and k,me = fok, e = fofiky = fky = ky fx, we conclude

that me = fx.

The E-exactness at K, will be proved if we show that e € E and m = ker(gx). The
latter, however, easily follows from Lemma 4.1.3(i). Indeed: since the kernels of 1y/ and
f' are zeros, by Lemma 4.1.3(i) the squares fik, = kye and fok, = k,m are pullbacks.
Therefore, since f; is in E the morphism e is also is in E by Condition 3.1.1(e); and since
ky is a monomorphism and the kernel of a monomorphism is zero, by the same Lemma
4.1.3 we obtain m = ker(gx).

E-ezxactness at K,: Consider the commutative diagram (4.4), we have: dgx = dmah =
= guh = 0 (by (iv), (ix), and (viii)). To prove that the sequence (4.3) is E-exact at K, it
suffices to prove that the kernel of d exists in C and that the induced morphism from K,

to the kernel of d is in E.
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It easily follows from Lemma 3.1.3 that there exists a factorization d = dod; where
ds is a monomorphism and d; is in E. Indeed: since the second column of the Diagram
(4.4) is E-exact at Y’ there exists a factorization v = wvyvy, where vy = ker(g,) (i.e. vy
is a monomorphism) and v is in E. Since m : YV Xz K, — Y and f' : X' — Y’ are

monomorphisms, we can apply Lemma 3.1.3(ii) to the diagram
©
Y xz Ky —X'
T f/

Y

Yl

(where ¢ : Y xz K, — X' is defined as in (vii)) and conclude that ¢ = pop1 were ¢ is a
monomorphism and 7 is in E. Then, since my : Y xz K,, — K,, and ¢, : X' — Q, are in

E, applying Lemma 3.1.3(i) to the diagram

Y Xz Ky X'
2 qu
K’LU Qu

d

we obtain the desired factorization of d. Since d; is in E, the kernel of d; exists by Condition
3.1.1(c); moreover, since da is a monomorphism and d = dad;, we conclude that the kernel
of d also exists (precisely, it is the kernel of dy). Let kq : Kq — K, be the kernel of d, since
dgx = 0 there exists a unique morphism ey : K, — Ky with kzeq = g ; it remains to prove

that ey is in E. For, consider the commutative diagram

e
K, : Ky
h h',‘: ka
0 T2
X" YXZKU) Kw
uf . X’XQqu d
K(Iu u2 X, qu Qu

in which:
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- The morphisms 6 : X" — Y xz K, and h: K, = Y xz K,, are defined as in (v) and

(iv) respectively.
- The morphisms v} : X" — K, and uy : K, — X' are as in the diagram (4.7).

- (X'x g, Ky, ), m) is the pullback of ¢, and d (note that by Condition 3.1.1(d) the
pullback of ¢, and d does exist in C since ¢, is in E), and s = (¢, m2), 8/ = (ug,0),
and ' = (0, kq) are the canonical morphisms; since ¢, is in E, the morphism 7} is
also in E by Condition 3.1.1(e).

- Since (X' x g, Ky, 7}, ™) is the pullback of ¢, and d, and us = ker(g,,) and kq = ker(d),

we conclude that 6 = ker(n}) and h' = ker(}).

Since 6 = ker(ms), 8’ = ker(n}), and the morphisms w9, 75 u} are in E, the morphism
s YxzK,, — X'xg,Ky is also in E by Lemma 3.1.5. And, since h = ker(y) and
R’ = ker(7}), the square sh = h'e4 is the pullback of s and A’ by Lemma 4.1.3(i). Therefore,

since s is in E, the morphism e, is also in E by Condition 2.1.1(e), as desired.

E-ezactness at Qy: Consider the commutative diagram (4.4), we have: fodm = fhqup =
= quf'e = qum = 0 (by (ix) and (vii)), and since 79 is an epimorphism we conclude that
fégd = 0. To prove that the sequence (4.3) is E-exact at @, it suffices to prove that the
kernel of fé exists in C and that the induced morphism from K,, to the kernel of fé is in
E.

It easily follows from Lemma 3.1.3(i) that there exists a factorization f, = fo,fo,
where f;, is a monomorphism and f, is in E. Indeed: since g, and g, are in E, f' is
a monomorphism and E contains all isomorphisms, we can apply Lemma 3.1.3(i) to the
diagram

x Ly

QuTQv

and obtain the desired factorization of fg. Since f; is in E, the kernel of f{, exists by
Condition 3.1.1(c), and therefore, since fég is a monomorphism we conclude that the kernel
y . . o y ) p
of f¢, also exists (precisely, it is the kernel of le). Let k I K = Qu be the kernel of f(,,
. ;o . . . ] . . .
since fid = 0 there exists a unique morphism e I Ky — K A with e 1 k = d; it remains

to prove that e, is in E. Since g, is in E, the pullback (Kfé2 XQ, X', p1,p2) of kfég and
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qu exists by Condition 3.1.1(d) and p; is in E by Condition 3.1.1(e); therefore, we have the

commutative diagram

> YI/
p .

, N

Kpoxqu X' 2o xr T Ly
P1 qu quv

K
f Q - Q
Q k/é u fQ v

in which vy = ker(gy,) (recall, that since the second column of the diagram (4.4) is E-
exact at Y’ there exists a factorization v = w9y such that v; € E and vy = ker(q,));
and, since q,f'ps = fék‘fépl = 0 and vy = ker(q,), there exists a unique morphism
p: be XQ, X' = Y" with vop = f'ps. Let us first prove that the square f'ps = vop is

the pullback of f’ and vy. For, consider the commutative diagram

U2

Qv

Qu

in which a1 : A — X’ and as : A — Y are any morphisms with f'a; = veas. Since
kf(fg = ker(fé) and fc’?qual = quf'a1 = quuaas = 0, there exists a unique morphism ag :
A— Kfé2 with k:fbag = quai. Then, since (Kfég XQ, X', p1,p2) is the pullback of l{:fé2 and
Gu, there exists a unique morphism a : A — Kfég xq, X' with poa = a1 and pia = as.
Moreover, pa = as since vopa = f'psa = f'a; = veas and vy is a monomorphism. That is,
there exists a morphism a : A — Kfé2 X, X' such that psa = a1 and pa = as, and, such a
is unique since po is a monomorphism, proving that (K ) X Qu X', p2,p) is the pullback of

f' and wvs.
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Next, consider the commutative diagram:

Y~ YxzKy———> K,
[ () ef/Q
v
/ !
) Y// Kle XQu X 4>p1 KfQ d
V2 D2 kfé
Y’ 7 X' o Qu

Since (K £l XQu X', pa,p) is the pullback and f'¢ = vm, there exists a unique morphism
P:Y Xz Ky — Kf(/;) XQ, X' with payp = ¢ and pi) = vim. We have:

kg1 = qupatp = qup = dma = kg e m

and since l{:fé2 is a monomorphism we conclude that p1y) = e £4 T2 Since [ = vm and
f'p2 = vop are the pullback squares (see (vii)), we conclude that (Y xz Ky, 71,1) is the
pullback of p and v;. Therefore, since v; is in E, the morphism v is also in E by Condition
3.1.1(e). That is, in the equality p1vp = €1, m2 the morphisms 79, %, and p; are in E,
therefore eyy, 1s also in E by Conditions 3.1.1(a) and 3.1.1(b), as desired.

E-ezactness at Q,: Consider the commutative diagram (4.4), we have: g, fhqu = qug'f' =0,
and since ¢, is an epimorphism we conclude that gb fég = 0. To prove that the sequence
(4.3) is E-exact at @Q,, it suffices to prove that the kernel of gb exists in C and that the
induced morphism from @, to the kernel of gb isin E.

It easily follows from Lemma 3.1.3(i) that g; = gg, 90, in which g, is a morphism in
E and ng is a monomorphism. Indeed: according to the assumptions of the theorem, we
have ¢ = ghg] were g} is a morphism in E and g5 is a monomorphism, therefore, since g,
and g, are in E we can apply Lemma 3.1.3(i) to the diagram

/

g

Y’ z'

Q’UTQU]
Q

and obtain the desired factorization of gb. Since gbl is in E, the kernel of g’Q1 exists by

Condition 3.1.1(c), and therefore, since 9222 is a monomorphism we conclude that the kernel
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of gg also exists (precisely, it is the kernel of g, ). Let kgb K a ~ Q. be the kernel of
gb, since gég fclg = 0 there exists a unique morphism Cqr, Q. — K o with kgrQeg/Q = fé; it

remains to prove that €gt) is in E. For, consider the commutative diagram

f g

X Y Z
P i
u v w
V9 wo
z
f! g
X' Y’ - 4
€2 "\ er s I/ /
/
Ky, e QuXQ.Z
qu qu
‘D)
€ _/ /
9Q kg/Q V51
Qu 7 Qv 7 Qu

in which:

- Since the second and the third columns of the diagram (4.4) are E-exact at Y’ and
Z' respectively, we have the factorizations v = vov; and w = wow;, where vy, w; € E,

ve = ker(qy), and wy = ker(qy,).

- (Quxq,Z',p1,ph) is the pullback of gi, and g, (note that by Condition 3.1.1(d) the
pullback of g5 and g, does exist since g, is in E), and e1 = (g, ¢"), f" = <k9€2’0>’
and z = (0,ws) are the canonical morphisms; since g, is in E, the morphism p} is
also in E by Condition 3.1.1(e).

- Since (Quvx@,Z',p},ps) is the pullback of g’Q and ¢, and, kg/Q = ker(g’Q) and wy =
= ker(qy), we conclude that f” =ker(p,) and z = ker(p}).

- Since f” = ker(p}) and phe1 f' = ¢’ f’ = 0 there exists a unique morphism es : X” — Kgb
with f’e; = e1f’. Since k:g/Q is a monomorphism and k:g/QeQ = pifea = plerf =

=quf' = foqu = k:gégengqu, we conclude that €gr,Qu = €2

- Since z = ker(p}) and pjejve = q,v2 = 0, there exists a unique morphism 3 : ¥ — Z

with ejvg = zy. Since wagyv; = phzyvy = pheivavr = ¢g'vavr and vy is an epimorphism,

72



we conclude that woy = ¢g've. Therefore, since wojvy = g'vovy = ¢g'v = wg = wowr g
y=g

and w9 is a monomorphism we obtain yv; = wsg.

Since vy, g, and wy are in E, and §v; = wig, the morphism ¥ is also in E by Conditions
3.1.1(a) and 3.1.1(b). Therefore, since vy = ker(gy), zZ = ker(p}), and ¥, g, and p| are in
E, by Lemma 3.1.5 the morphism e; is also in E. Then, since f = ker(¢'), f” = ker(p}),
the square f”ey = ey f’ is a pullback by Lemma 4.1.3(i); therefore, since e; is in E, the
morphism e is also in E by Condition 3.1.1(e). Finally, since e, ¢, = e2 and e2 and ¢, are

9q
in E, the morphism €ql, is also in E by Condition 3.1.1(b), as desired. O
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Chapter 5

Relative semi-abelian categories

5.1 Axioms for incomplete relative semi-abelian categories

Definition 5.1.1. Let (C,E) be an incomplete relative homological category. An equiva-
lence E-relation (R,r1,712) in C is said to be E-effective, if it is the kernel pair of some

morphism in E.

Definition 5.1.2. Let C be a pointed category and let E be a class of epimorphisms in
C containing all isomorphisms. The pair (C,E) is said to be an incomplete relative semi-

abelian category if:
(a) (C,E) is an incomplete relative homological category;

(b) If f : A — B is in E then the coproduct Ker(f) + B exists in C;

(c) Every equivalence E-relation in C is E-effective.

As follows from Definition 5.1.2, the two basic examples of an incomplete relative semi-

abelian category are:
1. “Trivial case”: C is a pointed category and E is the class of all isomorphisms in C.

2. “Absolute case”: C is a semi-abelian category [23] and E is the class of all regular

epimorphisms in C.

As proved in [23], the so called “old” and the “new” axioms that characterize semi-
abelian categories are equivalent. Below, we consider the relative versions of the “old” and
the “new” axioms, and show that also in the (incomplete) relative case these two sets of

axioms are equivalent.
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Theorem 5.1.3. Let (C,E) be an incomplete relative semi-abelian category. If f: A — B
is a split epimorphism in E with fg = 1p and K = Ker(f) then the canonical morphism
[k,g9] : K+ B — A is an extremal epimorphism.

Proof. Let (C,E) be an incomplete relative semi-abelian category, and let f : A — B be
a morphism in E with & = ker(f). Note that since f is in E, the kernel K of f and the
coproduct K + B exist in C by Condition 3.1.1(c) and condition (b) of Definition 5.1.2.
It follows from Condition 3.1.1(f) and the E-Short Five Lemma that [k, g] is an extremal
epimorphism. Indeed, let [k, g] = ma were m : X — A a monomorphism. Consider the

commutative diagram

(k9]
K+B——=X

L1

k
k?/

A
|
I
in which ¢1 : K — K + B is the first coproduct injection and k' : K/ — X is any morphism
with fmk’ = 0. Since k = ker(f), the latter implies the existence of a unique morphism  :
K' — K with kk = mk’; therefore, since kk = [k, glt1k = mat1k and m is a monomorphism
we obtain zt1k = k’. Since (fm)(xt;) = 0, and for any other morphism &' : K’ — X with
(fm)k’' = 0 there exists a unique morphism k : K’ — K with z11k = k’, we conclude that

xt1 = ker(fm). Consider the commutative diagram:

K X- B
er oy (1.1)
.
N
K . A 7 B

Since m is a monomorphism and f is in E, by Condition 3.1.1(f) there exists a factorization
fm = mqey in which e; : X — X is a morphism in E and m; : X1 — B is a monomorphism;

ts : B — K + B is the second coproduct injection. Since mj is a monomorphism and
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mieixie = fmaie = f[k,g|ta = fg = 1p, we conclude that m; is isomorphism. Therefore,
fm is in E and we can apply the E-Short Five Lemma to the diagram (1.1), yielding that

m is an isomorphism, as desired. O

Theorem 5.1.4. Let (C,E) be an incomplete relative semi-abelian category. If f: A — B
is a split epimorphism in E and g : B — A is a morphism with fg = 1p, then ker(f) and

g are jointly extremal epic.

Proof. Let (C,E) be an incomplete relative semi-abelian category, and let f: A — B be a
split epimorphism in E with fg = 1p, and k = ker(f). Let m : M — A be a monomorphism

with mk = k and mg = ¢, and consider the commutative diagram

& /
K A B
9 A
m ‘m
k g !
I
M- -->p8
7 B

in which m : B — B is a monomorphism, f : M — B is a morphism in E, and fm = mf;
such factorization does exist since m is a monomorphism and f is in E. The equalities
mfg= fmg= fg = 1p imply that m is a split epimorphism, therefore it is an isomorphism,
yielding that fm is in E. Since fmk = 0, m is a monomorphism, and k = ker(f), we

conclude that k& = ker(fm). Therefore, we can apply the E-Short Five Lemma to the

diagram
K—tsn " p
ml
K——>A 7 B
yielding that m is an isomorphism, as desired. O

Remark 5.1.5. Note that in the proofs of Theorem 5.1.8 and Theorem 5.1.4 we did not
use all the axioms of incomplete relative semi-abelian category. Precisely, Theorem 5.1.4
holds true in C whenever the pair (C,E) in which C is a pointed category and E is a class
of epimorphisms in C containing all isomorphisms, satisfies Conditions 3.1.1(a), 3.1.1(b),
3.1.1(c), 3.1.1(f), and the E-Short Five Lemma; and Theorem 5.1.3 holds true in C if in
addition it satisfies condition (b) of Definition 5.1.2.
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Theorem 5.1.6. Let (C,E) be an incomplete relative homological category in which every
equivalence E-relations is E-effective (i.e. satisfies condition (c) of Definition 5.1.2). If

r:A— Bands:A— C arein E, then there exists morphisms u: B — D andv : C — D

A C
rl Lv (1.2)
BT>D

in E such that the diagram

S
-

commutes and the canonical morphism (r,s) : A — B xp C is in E.

Proof. Let r : A — B and s : A — C be the morphisms in E, and let (R,r;,72) and
(S, s1,52) be the kernel pairs of r and s respectively; they do exist by Condition 3.1.1(d),
and R and S are the equivalence E-relations by Proposition 2.3.4. Moreover, since every
morphism in E is a regular epimorphism, r and s are the coequalizers of their kernelpairs.
Let (SR,t1,t2) : A — A be the composite of the E-relation of R and S. Then, SR is
a reflexive E-relation by Proposition 2.3.2, moreover, SR is an equivalence E-relation by
Corollary 2.3.11. Since every equivalence E-relation is E-effective, (SR, t1,t2) is the kernel
pair of some morphism ¢t : A — D in E; and since every morphism in E is a regular
epimorphism, we conclude that t is the coequalizer of ¢; and ts.

Consider the commutative diagram

SR=<— "
A
; t2
Yy t1 T T2
82
—_— —— C
S1 :
¢
T ‘v
v
By >D

in which the dotted arrows are defined as follows:

- Since 1 < S we have R < SR by Proposition 2.2.1(iii), therefore, there exists a unique

morphism z : R — SR with t12 = r1 and tox = ro.

- Since 1 < R we have S < SR by Proposition 2.2.1(iii), therefore, there exists a unique
morphism y : § — SR with t1y = s1 and {2y = s9.
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- Since r is the coequalizer of r1 and 79, and try = ttix = ttox = tre, there exists a
unique morphism w : B — D with ur = t; since t and r are in E, the morphism u is
also in E by Condition 3.1.1(b).

- Since s is the coequalizer of s1 and so, and ts; = tt1y = ttoy = tss, there exists a
unique morphism v : C — D with vs = ¢; since t and s are in E, the morphism v is

also in E by Condition 3.1.1(b).

It is left to prove that the canonical morphism (r,s) : A — B xp C' is in E. The latter,
however, follows directly from Theorem 2.3.12 since the morphisms r, s, and t are in E,
and the kernel pair of ¢ is (SR, t;,%2). O

Remark 5.1.7. In the exact Mal’cev category C, the diagram (1.2) with r and s regular
epimorphisms, is a pushout by Theorem 1.2.5; the same is true if (C,E) is a “relative
semi-abelian category” (see Theorem 5.2.3 below). In the incomplete relative semi-abelian
category (C,E), however, the diagram (1.2) is not necessarily a pushout since C does not

have all kernel pairs.

Theorem 5.1.8. Let (C,E) be an incomplete relative homological category. If (C,E) sat-

isfies condition (b) of Definition 5.1.2 then the following conditions are equivalent:

(i) Every equivalence E-relation in C is E-effective, i.e. (C,E) is an incomplete relative

semi-abelian category.

(ii) For every commutative diagram

A/ > B/

f/
with f and f' in E and m and m’ monomorphisms, if m is a normal monomorphism,

coker(m) exists in C and it is in E, then m’ is also a normal monomorphism and

coker(m’) exists and is it in E.

Proof.

(i) = (ii): Let (C,E) be an incomplete relative semi-abelian category. Under the assump-

tions of (ii), consider the commutative diagram (1.3). Since f’ : A" — B’ and coker(m) :
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A" — Coker(m) are in E, by Theorem 5.1.6 there exists the morphisms u : Coker(m) — C
and v : B’ — C in E such that ucoker(m) = v f’ and the canonical morphism (coker(m), f’) :

A" — Coker(m)xcB' is in E. We obtain the commutative diagram

A ! B

w«mw /

coker(m) Coker(m) XcB/ <

in which:

- (Coker(m)xcB’, 71, m2) is the pullback of u and v; since u and v are in E, the mor-

phisms 7; and 7y are also in E by Condition 3.1.1(e).

- k: K — B’ is the kernel of v (since v is in E, the kernel of v exists by Condition
3.1.1(c)) and since every morphism in E is a normal epimorphism we conclude that
v = coker(k). Since vm/f = vf'm = ucoker(m)m = 0 and f is an epimorphism, we
have vm’ = 0. Therefore, there exists a unique morphism ¢ : B — K with kt = m/;

since m’ is a monomorphism, so is t.

- kK =(0,k) : K — Coker(m)xcB’ is the canonical morphism; since k = ker(v), we

conclude that k' = ker(my).

To prove that m’ is a normal monomorphism and coker(m') exists and is in E, it suffices
to prove that ¢ is an isomorphism, but since ¢ is a monomorphism, we only need to prove
that ¢ is in E. Let us first prove that (A, tf, m) is the pullback of k" and (coker(m), f'). We
have:

71 {coker(m), f'ym = coker(m)m = 0 = w1 k'tf,

mo(coker(m), f/Ym = f'm = m'f = ktf = mok'tf,
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and since m and 7o are jointly monic we conclude that k'tf = (coker(m), f'ym. Let x; :
X — K and z2 : X — A’ be any morphisms with k’z; = (coker(m), f')xs. Consider the

commutative diagram:

A —2 L Goker(m)

(coker(m), f’)

K— Coker(m)x¢B' —;— Coker(m)

Since m is a normal monomorphism we have m = ker(coker(m)); therefore, since
coker(m)ze = mi(coker(m), fYxs = mk'zy = 0, there exists a unique morphism x :
X — A with max = z2. Since £’ is a monomorphism and k'tfx = (coker(m), f'ymz =
= (coker(m), f"Yxo = k'x1, we conclude that tfx = 1, proving that the square k'tf =
= (coker(m), f')ym is the pullback of k¥’ and (coker(m), f’). Therefore, since the class E is
pullback stable and (coker(m), f’) is in E, the morphism ¢f is also in E; but then ¢ is also
in E since so is f (by Condition 3.1.1(b)), as desired.

(ii) = (i): Let (C,E) be an incomplete relative homological category satisfying condition (b)
of Definition 5.1.2 and let (R,71,72) : A — A be an equivalence E-relation in C. Since R is
a reflexive E-relation, there exists a morphism d : A — R such that rid = 14 = rod. Since
r1 is in E, ker(r;) and coker(ker(rq)) exist by Condition 3.1.1(c), moreover, coker(ker(r;))
is in E by Condition 3.1.6(b). Let k = ker(r1) and m = rqk; since k is a monomorphism so

is m. And since E contains all isomorphisms, we can apply (ii) to the diagram

K

K———
R

A

and conclude that m is a normal monomorphism, and coker(m) exists and is in E; moreover,
since m is a normal monomorphism we have m = ker(coker(m)). Let ¢ = coker(m) and

consider the commutative diagram



qri

K+A R——=A4—"—0Q
h/ \/
v qr2
L

in which:

- [k,d] : K + A — R is the canonical morphism (note that the coproduct K + A of K
and A does exist by condition (b) of Definition 5.1.2).

- | : L — Ris the equalizer of gri and gro; since g, r1 and r9 are in E, the composites gry

and grg are also in E, and therefore their equalizer does exist by Condition 3.1.1(d).

- Since gqri[k,d] = qralk,d] and [ is the equalizer of gry and gra, there exists a unique
morphism h : K + A — L with lh = [k, g].

As follows from Theorem 5.1.3, the morphism [k, d] is an extremal epimorphism. Therefore,
since [k, d] = hl and [ is a monomoprhism, we conclude that [ is an isomorphism. Since [ is

the equalizer of ¢gry and grs, the latter implies that gry = qra. We obtain the commutative

diagram

m

K~ >p———=4 *__. Coker(m)
: 2
T q1 | | g2
N
AXCoker(m)A

in which:

- (q1,q2) is the kernel pair of ¢; since ¢ is in E, the kernel pair of ¢ does exist by
Conditions 3.1.1(d).

- Since gqr; = qra, and (g1, ¢2) is the kernel pair of ¢, there exists a unique morphism

t:R— AXCoker(m)A with g1t = r1 and ot = ro.

Since ¢ is in E, it remains to prove that ¢ is an isomorphism. The latter, however, easily

follows from the E-Short Five Lemma. Indeed, since ¢ is in E the morphism ¢; is also
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in E by Condition 3.1.1(e). Therefore, since there are canonical isomorphisms Ker(q;) ~

~ Ker(q) =~ K, we can apply the E-short five lemma to the diagram:

K—F——p—"—>4
‘(t
4>ker(q1) AXBA o A
and conclude that ¢ is an isomorphism, as desired. O

From Corollary 3.2.7 and Theorem 5.1.8 we obtain:

Corollary 5.1.9. Let C be a pointed category and let E be a class of epimorphisms in C

containing all isomorphisms. The following conditions are equivalent:
(i) The pair (C,E) is an incomplete relative semi-abelian category.
(i) The pair (C,E) satisfies Condition 3.1.1 and:

(a) Every morphism in E is a reqular epimorphism;

(b) If f € E then coker(ker(f)) € E;

(c) If f: A — B is in E then the coproduct Ker(f) + B exists in C;
(d) The E-Short Five Lemma holds in C;

(e) If in a commutative diagram

K—* a4t .p

ul lw
! /

K'—5> A~ > B

f, [, and u are in E, k = ker(f) and k' = ker(f'), then there exists a morphism

e:A— M inE and a monomorphism m : M — A’ in C such that w = me.

(f) Every equivalence E-relation C is E-effective equivalence E-relation.
(11i) The pair (C,E) satisfies Condition 3.1.1 and:

(a) Every morphism in E is a normal epimorphism;

(b) If f : A — B is in E then the coproduct Ker(f) + B exists in C;
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(c) (“Relative Hofmann’s axiom”) If in a commutative diagram

A——PB

fl
f and f' are in E, w is a monomorphism, v is a normal monomorphism, and

ker(f") < w, then w is a normal monomorphism;

(d) If in a commutative diagram

K A B
! /
K'—=A—~B

f, [, and u are in E, k = ker(f) and k' = ker(f'), then there exists a morphism

e: A— M inE and a monomorphism m : M — A’ in C such that w = me;

(e) For every commutative diagram

A/ > B/

f/
with f and " in E and m and m’ monomorphisms, if m is a normal monomor-

phism, coker(m) exists in C and it is in E, then m’ is also a normal monomor-

phism and coker(m') exists and is it in E.

Conditions 5.1.9(ii) and 5.1.9(iii) are to be considered, respectively, as the (incomplete)
relative versions of what was called “new style” and “old style” axioms for a semi-abelian

category in [23].

5.2 Relative semi-abelian categories

Throughout this section we assume that (C,E) is a pair in which C is a pointed cate-
gory with finite limits and cokernels, and E is a class epimorphisms in C containing all

isomorphisms.
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Definition 5.2.1. The pair (C,E) is said to be a relative semi-abelian category if:
(a) (C,E) is a relative homological category;
(b) C has coproducts;
(c) Every equivalence E-relation in C is E-effective.
Comparing Definition 5.2.1 and Definition 5.1.2, we have:

Theorem 5.2.2. If C is a pointed category with finite limits, cokernels, and coproducts,
and E is a class of epimorphisms in C containing all isomorphisms, then (C,E) is a relative

semi-abelian category if and only if (C,E) is an incomplete relative semi-abelian category.

Proof. The proof follows from Theorem 3.2.6. Indeed, by Theorem 3.2.6, condition (a) of
Definition 5.2.1 is equivalent to the condition (a) of Definition 5.1.2. Moreover, since C has
coproducts, condition (b) of Definition 5.2.1 and of Definition 5.1.2 are the same and always

hold in C, and, condition (c) of Definition 5.2.1 and of Definition 5.1.2 are the same.  [J

Therefore, the theorems proved in the previous section hold true in the relative semi-

abelian categories.

Theorem 5.2.3. Let C be a relative homological category in which every equivalence E-

relation is E-effective. If r : A — B and s : A — C are in E, then the pushout diagram

11—44514>-(7

Tl Lv (2.1)

B——D
exists in C, and the morphisms u, v, and (r,s) : A — B xp C are in E.

Proof. By Theorem 5.1.6 there exists the morphisms v : B — D and v : C — D in E
such that the diagram (2.1) commutes and the canonical morphism (r,s) : A — B xp C
is in E. Moreover, if (R,71,72) and (S, s1,s2) are the kernel pairs of r and s, and if
(SR,t1,t2) : A — C is the composite of the E-relations R and S, then R, S, and SR are
the equivalence E-relations and (SR, t1,t2) is the kernel pair of ¢ = ur = vs. Therefore, it
remains to prove that the square ur = vs is a pushout. For, let w: B — D and v : C — D

be any morphisms with ur = vs, and let (Z, 21, 22) be the kernel pair of ar. Since (Z, 21, 22)
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is the kernel pair, it is an equivalence relation (note that it may not be an equivalence E-
relation since the composite ur is not necessarily in E), yielding ZZ = Z, and since R < Z
and S < Z, we obtain SR < Z. Therefore, there exists a morphism z : SR — Z with

z1Z = t1 and 29Z = to. Consider the commutative diagram:

—=A—'>D

i

A——=D

Since t is the coequalizer of ¢1 and to, and since urt; = urzi1z = urzez = urto, there exists
a unique morphism d : D — D with dt = @r. Since @r = ¥s, the latter implies dt = vs. We
have dur = ur and dvs = vs, and since r and s are epimorphisms, we conclude du = u and
dv = v. A morphism d : D — D satisfying the last two equalities is unique since ¢ is an

epimorphism, proving that the square ur = vs is a pushout. ]

Note that the crucial part in the proof that the square (2.1) is a pushout in Theorem
5.2.3, is that since C has all finite limits, we can take the kernel pair of the morphism
wr which is not in E, which does not always exist in the incomplete relative semi-abelian
categories.

Using Theorem 5.2.2 and Corollary 5.1.9 we obtain the equivalent definitions of a relative

semi-abelian category:
Corollary 5.2.4. The following conditions are equivalent:
(i) The pair (C,E) is a relative semi-abelian category.
(i) The pair (C,E) satisfies Condition 3.2.1, C has coproducts, and:
(a) Every morphism in E is a reqular epimorphism;
(b) If f € E then coker(ker(f)) € E;
(¢) The E-Short Five Lemma holds in C;

(d) If in a commutative diagram

K—* -4t .p
K — A ——D



f, f', andu are in E, k = ker(f) and k' = ker(f’), then there exists a morphism

e: A— M inE and a monomorphism m : M — A" in C such that w = me.

(e) Every equivalence E-relation C is E-effective equivalence E-relation.
(iii) The pair (C,E) satisfies Condition 3.2.1, C has coproducts, and:

(a) Every morphism in E is a normal epimorphism;

(b) (“Relative Hofmann’s axiom”) If in a commutative diagram
A B

Al > Bl

f/

f and [’ are in E, w is a monomorphism, v is a normal monomorphism, and

ker(f') < w, then w is a normal monomorphism;

(c) If in a commutative diagram

K—* -4t .p
! /
K —=A'——B

f, [, and u are in E, k = ker(f) and k' = ker(f'), then there exists a morphism

e: A— M in E and a monomorphism m : M — A’ in C such that w = me.

(d) For every commutative diagram

A ——PB

f/
with f and " in E and m and m’ monomorphisms, if m is a normal monomor-

phism with coker(m) € E then m’ also is a normal monomorphism with

coker(m’) € E.

Conditions 5.2.4(ii) and 5.2.4(iii) are to be considered, respectively, as the relative versions

of what was called “new style” and “old style” axioms for a semi-abelian category in [23].
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5.3

Examples

Let us first prove the following

Theorem 5.3.1. Let C be a semi-abelian category and let E be a class of regular epimor-

phisms in C satisfying the following conditions:

(1)
(i)
(iii)

(iv)

(v)

If f and gf are in E then g is also in E;

The class E is pullback stable;

If
f

A——B
CT‘D

is a pushout diagram and f and g are in E, then h and k are also in E;

If a morphism f in C factors as f = em in which e is in E and m is a monomorphism,
then it also factors (essentially uniquely) as f = m'e’ in which m' is a monomorphism

and €' is in E;

If in a commutative diagram

K—* a4t .p
K — A ——=D

f = coker(k), f' = coker(k'), there exists factorizations k = me and k' = m'e’ were e
/ : . / :
and € are normal epimorphisms and m and m’ are normal monomorphisms, and, u

and f are in E, then w is also in E.

If E is the closure of E under composition, then (C,E) is a relative semi-abelian category.

Proof. By mathematical induction it suffices to consider the case where E is the class of all

those morphisms in C which can be presented as the composite of some composable pair of

morphisms in E.
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Since C is a semi-abelian category, the composite of regular epimorphisms is a regular
epimorphism by Proposition 1.1.3, and every regular epimorphism is a normal epimorphism
by Proposition 1.3.5. Therefore, E is a class of normal epimorphisms in C which is closed
under composition. Moreover, since the Regular Short Five Lemma holds in C (see Remark
1.3.4), the E-Short Five Lemma also holds, again, since the composite of regular epimor-
phism in C is a regular epimorphism. Let us prove the rest of the axioms defining a relative

semi-abelian category.
(a) If f and gf are in E then g is also in E: Let f = fof1 and gf = hohy where f1: A — B,
fo: B—C,h : A— D, and hy : D — F are the morphisms in E. Consider the

commutative diagram

A f1 B f2 . c
N,

h1 G i> H 9
ki e Ty
N

D e F

in which:

- hifi = fihi is the pushout of h; and f; and therefore h; and f; are in E by condition
(iii) of Theorem 5.3.1. Since haohi = gfaf1 there exists a unique morphism k; : G — F
with k1 fi = he and kjhy = g fa, moreover, by condition (i) of Theorem 5.3.1, ki is in

E since so are the morphisms fl and ho.

- fohi = h:1 fo is the pushout of h; and fo, and therefore h:1 and f, are also in E by
condition (iii) of Theorem 5.3.1. Since f; is an epimorphism and k1hy fi = ki fih1 =
= hoh1 = gfaf1 we conclude that kih; = gfo, therefore, there exists a unique mor-
phism ko : H — F with kyfo = ki and k2h:1 = g. Moreover, by condition (i) of

Theorem 5.3.1. ks is in E since so are the morphisms fg and kj.

Therefore, since g = k2h=1 and h,:l and ks are in E, the morphism ¢ is in E, as desired.

(b) The pullback stability of E easily follows from the pullback stability of E. Indeed, let
f: A — C be amorphism in E, i.e. f= fof) where f; : A — B and f, : B — C are the

morphisms in E, and let ¢ : D — C be any morphism in C. Consider the commutative
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diagram

PL>BXCDL>D

AUC
f

in which (B x¢ D, m,ms) is the pullback of fo and g, (P, p1,p2) is the pullback of f; and
71, and p = mape. Since the pullback of f along g is (P, p1,p) and the morphisms f; and
fo are in E, by pullback stability of E we obtain that the morphisms w5 and po are in E,

therefore p is in E, as desired.

(c) If a morphism f in C factors as f = em in which e is in E and m is a monomorphism,
then it also factors as f = me in which m is a monomorphism and € is in E: Let m : A — B
be a monomorphism and let e : B — D be a morphism in E, i.e. e = ege; where the
morphisms e; : B — C and ez : C — D are in E. Using condition (iv) of Theorem 5.3.1 we

obtain the commutative diagram

A B
z C’ L/. C \§ e
el €2
RN
Do
D - D

in which m’ and m are monomorphisms, and €} and ¢} are in E. Let € = e}e], then € is in
E since €] and €}, are in E. Therefore, we have emn = mé in which € is a morphism in E

and m is a monomorphism, as desired.

(d) If in a commutative diagram

K—*t -4t .p
K — A ——=D



f, f, and u are in E, k = ker(f) and k' = ker(f’), then w is in E: Since u is in E we have
u = uguj where the morphisms u; and ug are in E. Let (Q, ¢1,¢2) be the pushout of u; and

k, and consider the commutative diagram

K k A ! B
N )
u1 U ¢
/ X
/ . \
| U -z Qo |
/
uz ho
\ /
N V¥
K’ v A 7 B

in which hy : Q — B and hy : Q — A’ are the canonical morphisms and ¢ = me is
the (normal epi, mono)-factorization of go (i.e. e : U — U is a normal epimorphism and
m : U — @ is a monomorphism, and, such a factorization does exist by Proposition 1.2.2).
(d) will be proved if we show that ¢; and hy are in E, the latter, however, follows from
condition (v) of Theorem 5.3.1. Indeed, since f = coker(k) and the square guu; = ¢1k is a
pushout, we conclude that hy = coker(qs). Moreover, since k is a normal monomorphism
and euy and ¢ are normal epimorphisms, and m is a monomorphism, we conclude that m
is a normal monomorphism (see Condition 1.5.3(e)). Then, since u; is in E, the morphism
q1 is also in E by condition (v) of Theorem 5.3.1. Furthermore, since f is in E, the latter
implies that h; is also in E by condition (i) of Theorem 5.3.1, and therefore, again by

condition (v) of Theorem 5.3.1 we obtain that hs is in E, as desired.

(e) For every commutative diagram

A/ > B/

f/

with f and f’ in E and m and m’ monomorphisms, if m is a normal monomorphism with

coker(m) € E then m’ also is a normal monomorphism with coker(m/) € E: Let ¢ : A’ — Q
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be the cokernel of m and let (Q', f”,¢') be the pushout of f’ and ¢. Since ¢ is in E we have

q = q2q1 where the morphisms ¢; and g2 are in E. Consider the commutative diagram

A ! B
m m’

A ! B

y y

X ——X %
q

k{ RN

Q Iz Q'

in which (X', z, ¢}) is the pushout of f" and ¢1, and ¢} : X’ — @’ is the canonical morphism.
Since (@', f",q') and (X', z,q}) are the pushouts, the square f”g2 = g5 is also a pushout.
Since ¢; is in E and f’ is in E, it easily follows from condition (iii) of Theorem 5.3.1 that
q¢) is in E and z is in E, and, f” is in E and ¢} is in E; therefore, ¢/ is in E. It remains to
prove that ¢’ = coker(m'). However, since C is a semi-abelian category, by Theorem 1.2.5,
the canonical morphism (g, f’) : A — Qx/B’, where (Qx ¢ B’, 71, m2) is the pullback of
/" and ¢, is a regular epimorphism; therefore, the proof of ¢’ = coker(m') follows from the
first part of the proof of Theorem 5.1.8.
After this, it follows from Corollary 5.2.4 that (C, E) is a relative semi-abelian category.
O

Proposition 5.3.2. If C is a semi-abelian category and E is the class of all central ex-
tensions, in the sense of Huq [21], in C; more precisely, if E is the class of normal epi-
morphisms f : A — B with [Ker(f), A] = 0, where [Ker(f), A] denotes the commutator of
Ker(f) and A in the sense of Huq [21]), then (C,E), where E is defined as in Theorem

5.8.1, is a relative semi-abelian category.

Proof. Let C be a semi-abelian category, let E be the class of all central extensions in
C, and let E be the closure of E under composition. As follows from Theorem 5.3.1, to
prove that (C, E) is a relative semi-abelian category it suffices to prove that (C, E) satisfies
conditions (i)-(v) of Theorem 5.3.1.

Central extensions are pullback stable since they are covering maps in the sence of cat-
egorical Galois theory (see e.g. [5], Corollary 6.6.2). Let us prove the rest of the conditions
of Theorem 5.3.1.
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(a) If f and gf are in E, then g is also in E: Let f: A — B and gf : A — C be the central
extensions in C (note that in the proof we will not use the fact that f is a central extension,
it suffices for f to be a (pullback stable) regular epimorphism) and let k¢, kg, and k¢ be

the kernels of f, g, and gf respectively. We obtain the commutative diagram

Ker(gf) ' >Ker(g)

T
l kg kg
Ker(f) f . f\?/g/f ¢
af

in which [ : Ker(f) — Ker(gf) and f : Ker(gf) — Ker(g) are the canonical morphisms. It
easily follows that the square fk,r = kg f is a pullback, therefore f is a normal epimorphism
(since f is a normal epimorphism and normal epimorphisms in a semi-abelian category are
pullback stable) and I = ker(f).

Since gf is a central extension, there exists a unique morphism ¢4 : Ker(gf) x A — A

such that the diagram

1,0 0,1
Ker(gf) (L0 Ker(gf) X A<¥ A
kg qujt 1a
y
A

commutes; and, to prove that g is a central extension, we need to prove the existence of a

unique morphism ¢, : Ker(g) x B — B making the diagram

Ker(g) <14’0>>Ker(g) x B D B
kg %‘pg 15
'
B
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commutative. For, consider the commutative diagram:

Ker(f) (.0 Ker(f) x Ker(f) oL Ker(f)
! Ixky kg
Ker(gf) (L0 Ker(gf) x A .1 A
f
B

Since | = ker(f) and kf = ker(f), we conclude that [ x k¢ = ker(f x f); moreover, since
f and f are normal epimorphisms, f x f is a also a normal epimorphism and therefore

[ x f = coker(l x kyf). Since (1,0) and (0, 1) are jointly epic and the equalities

f@gf(l x kf)<1>0> = f¢gf<170>l = fkgfl = kgﬂ =0,

hold, we conclude that fo,(I x kf) = 0. Therefore, since f x f = coker(l x k), there
exists a unique morphism ¢, : Ker(g) x B — B with gog(fx f) = fegs. It remains to prove
that ¢, (1,0) = k, and ¢,4(0,1) = 15. However, since f and f are epimorphisms, the latter

follows from the following equalities:
(pg<170>f: Spg(f_ X f)<170> = fSDgf<1aO> = fkgf = kg.f7

(0, 1)f = ¢g(f x £)(0,1) = f4s(0,1) =15/,



is a pushout diagram and f and g are in E, then h and k are also in E: We shall only prove
that h is a central extension, as the proof for k£ being the central extension is similar. Let
f and g be central extensions in C and let k¢ : Ker(f) — A and kj, : Ker(h) — C be the

kernels of f and h respectively. We obtain the commutative diagram

k
Ker(f) .y ! B
l g k
v
Ker(h) o C——D

where [ : Ker(f) — Ker(h) is the canonical morphism. Since f and g are regular epimor-
phisms, h and k are also regular epimorphisms, and therefore they are normal epimorphisms
since C is a semi-abelian category. Since the canonical morphism (g, f) : A — C xp B is a
normal epimorphism (by Theorem 1.2.5) and normal epimorphisms are pullback stable, we
conclude that [ is a normal epimorphism and therefore [ = coker(k;) where k; : Ker(l) —
Ker(f) is the kernel of I.

Since f is a central extension, there exists a unique morphism ¢ : Ker(f) x A — A

()~ Ker(f) x A<22 4
kg ij/

Y

A

commutes; and to prove that h is a central extension, we need to prove the existence of a

such that the diagram

Ker

unique morphism ¢y, : Ker(h) x C' — C making the diagram

Ker(h) a

O Ker(h) x ¢ <21
o
kn : 1o
\ V /
C
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commutative. For, consider the commutative diagram:

Ker(l) — %, Ker(l) x Ker(g) <2 Ker(g)

ki ki xkg kg
Ker(f) — ¥ Ker(f) x A 01 A
1| \Fr or Ixg g

C

N

Since k; = ker(l) and k4 = ker(g), we conclude that k; x k, = ker(l x g); moreover, since
I and g are normal epimorphisms, [ X g is a also a normal epimorphism and therefore

l x g = coker(k; x kg). Since (1,0) and (0,1) are jointly epic and the equalities
gey(ky x kg)(1,0) = gps(1,0)k = gk sk = kplky = 0,

gpr(ky X kg)(0,1) = gs(0,1)kg = glaky =0

hold, we conclude that gpg(k; x kg) = 0. Therefore, since [ x g = coker(k; x kg), there
exists a unique morphism ¢y, : Ker(h) x C' — C with ¢ (I X g) = gy¢. It remains to prove
that op(1,0) = kj, and ¢x(0,1) = 1¢. However, since [ and g are epimorphisms, the latter

follows from the following equalities:
en(L,00l = pr(l x g)(1,0) = gps(1,0) = gk = knl,

©n(0,1)g = pn(l x g){(0,1) = gp(0,1) = g.

(c¢) If a morphism f in C factors as f = em in which e is in E and m is a monomorphism,
then it also factors as f = m’e’ in which m/ is a monomorphism and €’ is in E: Let f = em
in which m : A — B is a monomorphism and e : B — (' is a central extension in C. Since
C is a semi-abelian category, we have the factorization f = m/e’ in which ¢/ : A — B’ is a
regular epimorphism and m’ : B’ — C is a monomorphism; (¢) will be proved if we show

that €’ is a central extension.
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Let k. : Ker(e) — B be the kernel of e and let k. : Ker(e’) — A be the kernel of e/. We

obtain the commutative diagram

K, ke
A = B

e \ e
B———C

in which n : Ker(e’) — Ker(e) is the canonical morphism.
Since e is a central extension, there exists a unique morphism ¢, : Ker(e) x B — B such

that the diagram

Ker(e) o Ker(e) x B o B
éﬂoe
ke 5 1p
v
B

commutes; and, to prove that €’ is a central extension, we need to prove the existence of a

unique morphism @, : Ker(e') x A — A making the diagram

Ker(e') ) Ker(e') x A&A
k‘e/ %we, 1a
Y
A
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commutative. For, consider the following commutative diagram

Ker(hl)
kn,
Ker(e') + A
hy 2
/
Ker(e) x A o A
1a 8
nxm
Ker(e) L0 Ker(e) x B o0
m Pe
1p
ke
B

in which:
- 11 : Ker(e') — Ker(¢/) + A and 19 : A — Ker(e') + A are the coproduct injections.
- h1 =[(1,0),(0,1)] : Ker(e’) + A — Ker(e’) x A and hg = [ke, 14] : Ker(e/) + A — A

are the canonical morphisms; since C is a semi-abelian category, h; is a normal

epimorphism.

- kp, : Ker(hy) — Ker(e') + A is the kernel of hq; since h; is a normal epimorphism we

conclude that hy = coker(kp, ).

- Since m is a monomorphism and mhaky, = @e(n x m)hiky, = 0 we conclude that
hokp, = 0.

- Since h; = coker(kp,) and hoky, = 0, there exists a unique morphism
e : Ker(e') x A — A with @ hy = ha.

It remains to prove that ¢ (1,0) = ke and ¢ (0,1) = 14. The latter, however, easily

follows from the equalities:

e (1,0) = perhit1 = hot1 = ke,
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e (0,1) = perhity = haty = 14.

(d) If in a commutative diagram

K—* -4t .p
K — A ——D

f = coker(k), f' = coker(k’), there exists factorizations k = me and k' = m/e’ were e
and €’ are normal epimorphisms and m and m’ are normal monomorphisms, and, u and
f are in E, then w is also in E: Let us prove a more general fact, namely, if a normal
epimorphism h is a central extension in C and h = gf where f: A - Band g: B — C
are normal epimorphisms, then f is also a central extension. For, let kp, : Ker(h) — A

and kg, : Ker(g) — B be the kernels of h and g respectively. We obtain the commutative

diagram
kp, h
Ker(h) A C
I f
v
K
er(g) =B —5>C

in which f : Ker(h) — Ker(g) is the canonical morphism; the square ky f = fky, is a pullback
by Lemma 4.1.3(i) and therefore f and f have isomorphic kernels. Let ks : Ker(f) — A be
the kernel of f and let kj : Ker(f) — Ker(h) be the kernel of f.

Since h is a central extension, there exists a unique morphism ¢y, : Ker(h) x A — A

such that the diagram

Ker(h) L0 Ker(h) x A SELUES A
o
k‘h 14
Y

commutes; and to prove that f is a central extension, we need to prove the existence of a

unique morphism ¢ : Ker(f) x A — A making the diagram

Ker(f) L0 Ker(f)xA&A
kg s 1a

v
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commutative. However, since the diagram

Ker(f) — 2 Ker(f) x A=—2D 4
ky " kyxla
Ker(h) — \Ker(h) X Ao A
. \\ on -
A

commutes, we can simply take ¢f = @p(ky x 14); then ¢¢(1,0) = @p(ky x 14)(1,0) =
= knky = ks and @(1,0) = 14, proving the desired. O

Remark 5.3.3. As shown by M. Gran and T. Van der Linden in [17], the class E in
Proposition 5.3.2 coincides with the class of central extensions in C in the sense of [22]

with respect to its abelianization reflection C — Ab(C).

Example 5.3.4. Let C be a homological category and let S be a class of objects in C

satisfying the following conditions:

(i) S is closed under subobjects, i.e. if m : S — A is a monomorphism and A is in S,

then S also is in S;

(ii) S is closed under cokernels, i.e. if 0 - A — B — C' — 0 is a short exact sequence in
C and A and B are in S, then C also is in S;

(i1i) S is closed under extensions, i.e. if 0 - A — B — C — 0 is a short exact sequence

i C and A and C are in S, then B also is in S;

(iv) Every equivalence relation (R,71,712) : A — A with Ker(r1) € S is an effective equiva-

lence relation.

As easily follows from Corollary 5.2.2, if E is the class of all normal epimorphisms in C
whose kernels are in S, then (C,E) is a relative semi-abelian category. In particular, we

can take:

(a) C to be a semi-abelian category and S to be any class of objects in C satisfying

conditions (i)-(iit) (if C were abelian, this would mean that S is a Serre class).
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(b) C to be a homological additive category and S to be a class of objects in C satisfy-
ing conditions (i)-(ii), such that every monomorphism m : S — A where S is in
S is a normal monomorphism. For instance, we could take C to be a category of

abelian Hausdorf topological groups and S to be the class of all finite abelian Hausdorf

topological groups.

Remark 5.3.5. Recall that (E,M)-normal categories in the sense of M. M. Clementino,
D. Dikranjan, and W. Tholen [18] are also a kind of “relative semi-abelian categories”.

However, that relativization with respect to a factorization system (E, M) is quite different.

Indeed, we observe:

(a) If C is an (E,M)-normal category in which E is contained in the class of normal
epimorphisms of C, then E is the class of all normal epimorphisms, M is the class

of all monomorphisms, and C is a semi-abelian category.

(b) The same is true if (C,E) is a relative semi-abelian category in which (E, M) forms

a proper factorization system for some M.

(¢) Therefore, the two relativizations have “trivial intersection”, i.e. if C is an (E,M)-
normal category and (C,E) is a relative semi-abelian category at the same time, then

again, C simply is a semi-abelian category with (E, M) = (Normal Epi, Mono).
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