Quantization as a Kan extension

Johan Alm

Abstract

‘All concepts are Kan extensions’—Saunders Mac Lane. In this note we work out a suggestion by
Urs Shreiber and prove that, in a suitably discretized setup, quantization can be understood as Kan
extension of the classical action.

Introduction

In 2007 Urs Schreiber mused on the blog ‘The n-Category Café’ that:

Quantum mechanics, which has historically been considered as a structure internal to
0Cat, has a more natural formulation as a structure internal to 1Cat. This involves refining
functions to “bundles of numbers” (namely fibered categories, or, dually, refining (action)
functors to pseudofunctors) and it involves refining linear maps by spans of groupoids.

In this natural formulation, quantization will no longer be a mystery — but a pushforward:
the quantum propagator (t — U(t)) is the pushforward to a point of the classical action
(pseudo)-functor.?

Schreiber has since collected many toy examples supporting this thesis. In this note we add the follow-
ing substantial fact: It is indeed true that the quantum propagator arises as a pushforward (pushforward
being Kan extension), at least in a suitably discretized setup. Or rather, we prove a very general math-
ematical theorem (‘Theorem 1’) about Kan extension of a Vect-valued functor defined on a groupoid.
Inserting suitable functors and categories into this theorem, we get formulas that suggest we are looking
at the abstract nonsense behind path integral quantization.

To explain the physical content as well as the philosophy behind our result, consider the following
example. Let (M, ds?) be a lorentzian manifold and let P;(M) be the category which has as objects
points © € M and as morphisms  — 2’ thin homotopy classes of paths from z to 2’ in M.2 The
classical dynamics can be encoded in a function S, called an ‘action’, on morphisms in P;(M). Usually
S() has the form of an integral over the path 7, in which case S will behave additively with respect to
composition; S(yov") = S(v) + S(y'). Because of this additive property it will induce a functor

e’ . Py (M) — Vect,

which maps every point z to C and a path v : z — 2’ to the linear map which is multiplication by
the unit modulus complex number exp iS(7y). The solutions to the classical equations of motion are the
paths v which minimize the action, i.e. the paths such that d[expiS(y)] = 0. In quantum mechanics the
configurations of a particle are no longer simply positions (points) in M, but are instead wave functions
¥ : M — C, ie. points in the function space CM. The classical equations of motion are replaced by
linear maps U(T) : CM — CM | giving the proper time T-evolutions of configurations according to the
functional integral formula

(U(TY)(y) = /M dz / Dry eSO a).

The functional integral is over all paths v from z to y with proper time 7(v) := f7 ds = T. Replacing
CM by a smaller vector space H, the maps U(T) (T € R) assemble to define a functor

Z : P1(R) — Vect,

LSchreiber 2007.
2The reason one wants to consider paths up to thin homotopy is that the composition of two smooth paths need not be
smooth, but it is always thinly homotopic to a smooth path.



which sends every ‘time instant’ s € R to the vector space H of configurations and sends a path s — s+T
to the linear map U(T). The passage from exp S to Z is known as (path integral) quantization. Looking
at the formulas, one sees that Z is defined on a much smaller category than the classical action expiS
— a lot of information is forgotten in the quantization. On the other hand, the configuration space
H C CM looks almost like the sum @, ,, expiS(z) = @, C and the propagators U(T) have the form
of ‘sums’ > expiS(7y). This summing over all possible choices behaves mathematically as if it Z is trying
to compensate for the loss of information in the passage from P;(M) to P1(R). Category-theoretically,
Z looks like a colimit, or Kan extension.

Let X be the groupoid which has as objects pairs (x, s), where € M and s € R, and as morphisms
(x,s) — (2/,¢") paths v : © — 2’ € P1(M) of proper time 7(y) = s’ —s. We think of an object
(z, s) as a particle at position x at proper time s, and of a morphism (z,s) — (2/,s) as a hypothetical
evolution of the particle. The proper time 7 extends to a functor from X to Py (R), mapping a diagram
(x,8) — (¢/,s+T) to T : s — s+ T. Reinterpreting the classical action expiS : P1(M) — Vect as a
functor on X in the obvious way, we get a diagram

|

-
Pi(R

1S
—— Vect
).

The quantum theory is supposed to be a functor Z : P;(R) — Vect. One could of course proceed to
directly write down a functor Z, using physical arguments to define its form, but this would be very ad
hoc mathematically. We show that there is another way, a way which maybe is physically ad hoc but is
mathematically canonical.

Given a diagram of functors

C i} C//
|
C/

there are really only two distinguished ways to produce a functor H : C’ — C”, namely the left Kan
extension
LangF

of F by G or the right Kan extension
Ran(;F

of F' by G. The left Kan extension is, if it exists, defined by the property that there exists a natural
transformation
A F— LangF oG,

universal in the sense that for any other functor H : ¢ — C" and natural transformation h : F' — HoG,
there exists a unique transformation h : LangF' — H such that h = hg o A\. The right Kan extension is
dually characterized by the existence of a universal natural transformation

p:RangF oG — F.

Both versions of Kan extension can be thought of as providing ‘best approximations’ to the problem of
finding a functor H such that Ho G = F, i.e. to the problem of extending the domain of F from C' to C’
by G, or to ‘pushing forward’ F along G to a functor defined on C’. One may think of the left extension
as an ‘approximation from below’ and of the right extension as ‘approximation from above’. (The precise
meaning of from ‘above’ and from ‘below’ are contained in the universal natural transformations.)
With X, 7 and expiS as above, we prove the following: Let X be a finite subgroupoid of X. Then

Both Kan extensions Lan, expiS and Ran, expiS of the classical action expiS (restricted
to X ) along the proper time projection T : X — P1(R) are equal to a functor

Z : P1(R) — Vect



which maps an ‘instant’ s € R to a certain subspace Z(s) of COPX and an ‘evolution’ T :
s — s+ T to the linear map which maps (Y(x))zex to the vector with components

@)y =3 S wreSDp().
zeX ViT—Y
T(M=T
The subspace Z(s) of COPX is the space of functions v invariant under T = 0 propagation,
i.e. the space of ¥ satisfying Z(0)y = . The factor wr is a weight factor; essentially a
normalization constant.

Hence, at least in a discretized setup, the quantum theory (as encoded by Z) is in a precise mathe-
matical sense the best approximation that there is to the problem of formulating the classical dynamics
as a theory solely formulated on the worldline of the particle. The mathematical result (‘Theorem 1’)
underpinning the above result is general enough to produce similar ‘quantization formulas’ for discretized
field theories as well (see the section ‘Examples’), yieldig similar interpretations of what quantization is
supposed to be mathematically. We believe that our interpretation of the moral of quantization, sug-
gested by the Kan extension formula, is quite general. Usually, one has a classical ‘action’ of some kind
defined for manifolds with some extra structure, e.g. a riemannian metric, a symplectic form, a principal
bundle, or etc. Quantization is what happens when one tries to assign that same action to a manifold
that does not have that structure! Hence one has to mathematically compensate for this by summing
over all possible structures of the specified type.

The contents of the paper are as follows. The first section, ‘Section 1’°, is devoted to a proof of
our main mathematical result, which is a general result concerning Kan extension of a Vect-valued
functor defined on a groupoid. ‘Section 2’ contains a number of examples elucidating the mathematical
constructions and its relation to quantization. In ‘Section 3’ we again return to purely mathematical
considerations, discussing an alternative way to arrive at the Kan extension formulas of ‘Section 1’. At
the end, in the section ‘Conclusions’, we try to put our results in some perspective and sketch some
venues of possible further developement.

1 The main theorem

This section is devoted to a proof of our main mathematical result.
Consider a diagram of functors

o —f> Vect
|
A,
where o is a groupoid satisfying the following two conditions:
(i) The set theoretic fiber g=1(b) is a finite set for every b € 4.
(i) For every object a € &/ and morphism § € Ar# with cod(5) = g(a), the number wg(a) defined by
the relation
wg(a)™h = Y [{a:d —algla) =5}
[g<y-4
is a finite number. (Here, and elsewhere, | - | denotes the cardinality of a set.)
Under the above assumptions, define for each object b in Z a vector space
20 = @ fla),
a€g=1(b)
and for each morphism (3 : b — ¥’ a linear map Z(8) : Z(b) — Z(b'), defined by the equation
Ty o ZB) = > Y wsla)f(a),

a€g—1(b) a:a—a’

g(a)=p



with 7,y the projection of Z (') onto the f(a’)-component. For each b € &, put g, := Z(1;).
It is easily verified that gy : Z(b) — Z (b) is idempotent (for all b), and that for all morphisms
B:b—=V, Z(B)op,=Z(B) and gy o Z(8) = Z(B). Tt follows that Z induces a functor

Z : B — Vect,

by Z(b) :=Im(gpy) C Z(b) and Z(8) := Z(8)| z(0)-
With notation and assumptions as above, we prove the following theorem.

Theorem 1. The two Kan extensions
Lang f and Ran f

of f along g coincide as functors — both are equal to the functor Z. The components

Ma) : f(a) — Zog(a),

of the universal natural transformation A : f — Z o g (witnessing Z as the left Kan extension) are given
as A(a) = Pg(a) © Lf(q)- Dually, the components of the universal natural transformation p: Zog — f are

p(a) = Tf(a) © Pg(a)-
1.1 The left Kan extension

In this section we prove that the left Kan extension of f along ¢ is as described in ‘Theorem 1°.
The left Kan extension Lang f is given pointwise by the formula

Lang f(b) = colim((g | b) LNV AN Vect),

where (g | b) is the comma category of arrows from ¢ to b and k is the canonical projection.
For each object (a,0 : g(a) — b) in (g | b), define

Nap) : K fa,B) = f(a) — Z(b),

Moy = D, Y, wsfla)
a’€g—1(b) aza—a’

g(a)=p

We show how the colimit colim £* f can be deduced from the family of maps (;\(a’ 3)) in a series of lemmas.

Lemma 1. The maps (\(4,5)) are the components of a cocone from k* f.
Proof. Let «: (a,8) — (a’,8") be a morphism in (g | b). By linearity and functoriality,
Nagnofl@)=3_ > wyfla'oa).
a// a/:a/_>a//
g(a/)=p'

Since & is a groupoid, there is for every o’ : a — a” a unique o’ such that o’ o @ = o, namely
o' = a”oa™1. By functoriality of g, if g(a”’) = 3, then for o/ = o/’ oa™! we have g(a’) = g(a) "o = 3.

Hence the above equals
Z Z wﬁf(all)v

1" " "
a’ o':a—a

g(a)=p
which is A(,, ) O

Lemma 2. Every other cocone factors through (S\(G,g)).
Proof. Let p,p) : f(a) — M be the components of another cocone. Note that this implies that
Ha,p) = Har1y) © f(@)

for all & : @ — o/ with o/ € ¢7'(b) and g(a) = 3. Using this, define a map p : Z(b) — M by
Bl f(ar) = M(ar1,)- Using the definition of wg it is straightforward to verify that po X ) = fi(a,3. O



Lemma 3. The cocone (5\(&75)) factors through the inclusion Z(b) C Z(b). Moreover, Z(b) is the minimal
subspace with this property.

Proof. Since gy, is idempotent, each component 5\(%3) factors through Z(b) C Z(b) iff pboj\(aﬁ) = X(aﬁ).
This relation is easily verified, again using the definition of wg. To show that Z(b) is the minimal
subspace, note that
Ti@) O Pb= D Ti(a) © MNar1y)-
a'€g—?

O

It follows that Z(b) = Lan, f(b) = colim(, ;) k* f and that the colimiting cone is given by the maps
A(a,p) trivially induced by the maps ;\(a’ 3)- To deduce the action of Lan, f on morphisms, one may argue
as follows. Let 5 :b — b’ be a morphism in &. Given (a’,’) in (g | b), (a’, 80 ') will be an object in
(g | b'). By the universality of the colimiting cones, there is a unique morphism Lan, f(/3) which makes
the following diagram commute (for all choices of (a’, 3')):

f(a") === f(d’)
Aar,67) J Pw,ﬁoﬁ')
20y 2l B) g,

It is easily verified that Z (0) satisfies the analogous diagram, with Z(b) replaced by Z (b), Ao, replaced
by S\(G/ﬁ/), and etc. Moreover, Z(f3) o g, = Z(8) and gy o Z(3) = Z(j3), so Lan, f(3) must be the map
Z(3) restricted to Z(b).

1.2 The right Kan extension

The deduction of the formula for the right Kan extension Rang f is very similar to the calculation of the
left extension, so we shall allow ourselves to be brief.
We start from the pointwise formula

Rang f(b) = lim((b | g) ANV N Vect),

where (b | g) is the comma category of arrows from b to g and j is the canonical projection.
For each object (a,8:b— g(a)) in (b | g), define

Pla.p) : £(b) — j"f(a, ) = f(a),

Papy =Y, > wsfla).

a’€g=1(b) a:a’ —a
a )g(a):B
Repeating the analogous argument for the left extension, we deduce that (p(, ) is a cone to j*f, i.e.
that f(a) o p(a,) = p(ar,) for all @ :a — a’ such that §' = g(a) o 3.
If pap) : M — j*f(a,B) are the components of another cone, then we may define a linear map
p: M — Z(b) by p(m) = (#(a,1,)(M))acg—1 () (m € M). This map is such that

Papon=2_ > wsf(a)onw,) = Hap):
a’ aia'—a —
g(a)=3 =H(a)
Hence every cone factors through (5q,s))-

One easily verifies that p(, ) © @b = p(a,8), SO restricting each component p(4 5 to Z(b) C Z(b) we
get a new cone (p(qgy : Z(b) — j*f(a,3)), still with the property that every other cone factors through
it. The vector space Z(b) is minimal with this property since 7(q) © 96 = p(a,1,)-

Arguing as in the case of the left extension, one deduces that Ran, f(8) = Z(8) := Z(ﬁ)\z(b) for a
morphism 3 in A.



2 Examples

Example 1. Our first example is the setup described in the ‘Introduction’.

Let X be a finite subgroupoid of the path groupoid P;(M) of a lorentzian manifold (M, ds?). Let
% =P (R) =R//R, and let & be the groupoid which has as objects pairs (z,s) € Ob(X) x R and
as morphisms (z,s) — (a/,s') curves v : * — 2’ in X of proper time 7(y) := f7 ds = s’ —s. Let
f=expiS: & — Vect be an ‘exponentiated action’, mapping every object to a copy of C and a curve
(morphism) 7 to exp4S(y), where S is additive with respect to composition of paths. Let g =7 : &/ — £
be the functor which maps a diagram (x, s) — (2, ') to the diagram (s' — s) : s — s’. We get that

Z(s) = COPX

and that Z(T) : Z(s) — Z(s+T) is the linear map that takes (¢(z))zex to the vector with components

ZM@)) =D > wreSDy(a).
zEX VY
T(V)=T

We can extract from this the kernel K(x,y;T), such that (Z(T)y)(y) = >_, K(x,y,T)y(x). With the
obvious discrete measures we can write it suggestively as an integral:

Y(T)=y )
K(z,y;T) =/ Dy e,
7(0)==

In the continuum limit, if such a limit can be shown to exist, this may be expected to reproduce relativistic
quantum mechanics, perhaps modulo some scaling factor.

The projector g projects out the states 1p € COPX that are invariant under T' = 0 propagators, i.e.
Z(s) = Im(ps) consists only of what is sometimes called ‘physical states’.

Example 2. This example is an attempt to formulate something with the flavour of Chern-Simons
theory.

Let X be a finite version of the path groupoid P;(S) of a manifold S, and let X be the finite groupoid.
One may regard an n-dimensional quantum field theory with worldvolume ¥ x P;(R) and target X as
a 0 + 1-dimensional field theory on P;(R) with target X*. Motivated by this we let & = X x P;(R)
and g : & — B = P1(R) be the cartesian projection. Let f = x : & — Vect be any functor. We then
get

Z(s)= P x(@,9),

P:X—-X

and for T :s — s+ T
Taspr) 0 Z(T) =Y > pxsx(n,T).

O nd—P

Here pix= is the Leinster measure (aka ‘the groupoid measure’) on the groupoid X*. Note that a natural
transformation n : ® — &’ can be regarded as a functor X x I — X, for I the ‘interval category’ {a — b}.

For X equal to the one-object groupoid BG of a finite group G, we get a Dijkgraaf-Witten-type
theory, which is a finite toy model of Chern-Simons theory.? It is interesting that the Dijkgraaf-Witten
measure ppgs appears here by pure abstract nonsense, as opposed to being inserted by hand (as it was
in the original construction by Dijkgraaf and Witten). Specifying further to ¥ = {pt} (so that we are
effectively looking at a 1-dimensional QFT with gauge group G), and letting x be the composite of a
character BG — BU(1) on G and the representation BU (1) — Vect of U(1) in C, we get Z(s) = C and

2(T) = ﬁ 3" x(o).

geG

This toy example has been described elsewhere, see e.g. p. 4 of Freed et al. 2009.

3See, e.g. Freed and Quinn 1992 or the detailed discussion beginning on p.67 of Bartlett 2005.



Example 3. Let X be an oriented four-manifold and let P4(X) be the groupoid which has as objects
smooth three-dimensional submanifolds ¥ C X and as morphisms ¥ — Y’ submanifolds M of X with
boundary (—X) U X’ (or such submanifolds M defined up to smooth homotopy, suitably defined). We
think of the objects as ‘simultaneity slices’ of a spacetime, and of the morphisms as (sub-)spacetimes
between such slices. Let % be a groupoid obtained by first choosing a finite subcategory of P4(X) and
then discretizing all its objects 3 and morphisms M to finite groupoids. Let BG be the one-object
groupoid of a finite group G and let & be the groupoid which has as objects pairs (3, A) with ¥ € £
and A : ¥ — BG, and as morphisms (2;,, Ain) — (Zout, Aout) pairs (M, A) where M : X;, — Zout
is a morphism in % and A € BGM satisfies A|Xi, = Ain, A|Xous = Aows. Morally, o7 is the category
whose objects are simultaneity slices with a specified G-connection and whose morphisms are spacetime
bordisms with compatible connections. Physically, the G-connections are gauge-fields.

Let f =1 : .o — Vect be any functor and led g : & — % be the forgetful functor that forgets the
gauge field. We get

25 = P 124,
AeBG*
and, for M : ¥, — Yout,
T 0 Z(M) =" > wyI(M,A).
Ain AcBGM

AlSin=Ain
A‘Eoutonut

If I has the form of an exponentiated action (say defined by integration over M of a lagrangian density),
then, as in Example 1, we can introduce a discrete measure and write

Aout .
K(Aionut;M) :/ DAezSM(A),
Ain

which suggests a quantized gauge theory.

3 Kan extension as limits over weak sections

Consider the Kan extension diagram

o —f> Vect

14

Here L, f is the Left Kan extension Lang f. Let A : f — L, f o g be the natural transformation encoding
the universality of L, f. Recall the following terminology:

Definition 1. The category of (weak) left sections of g is the category I';(¢g) which has

e as objects pairs (¢,n,) where ¢ is a functor from % to &/ and 7, is a natural transformation
"9 — la,

e and as morphisms (¢,n4) — (¢’, 74 ) natural transformations v : ¢ — ¢’ with the property that
Ng' © gV = 1N¢.

There is an obvious forgetful functor U : T'y(g9) — [8, &/], where [%, o/] is the category of functors
from % to 7. Using this functor we can transgress the functor f on & to the category of sections I';(g),

forming the functor
taf =%, floU:Ti(g9) — [#, Vect].

We claim that the Kan extension Ly f can be computed as a colimit of this transgressed functor.
As a prelimiary step, note that the natural transformation A : f — L, fog induces a family of natural
transformations

Ny tf(o,mg) = ¢ f — Ly f ((¢,m9) € Tu(9))



by
Apume) (0) := Ly f(ns(D)) 0 A (D).

(Drawing the relevant 2-cell diagrams makes this construction obvious.)
Remark 1. The transformations A4 ,,) form the components of a cocone under tg, f.

Proof. Let v : (¢,n4) — (¢',m¢ ) be a morphism in I';(g) and pick b € . We have

(M@ mp 0 tarf())(0) = Lgf(ng (b)) o A& (b)) o f(v(b))
= Lyf(ns (b) 0 g(v(0)) o M(b))
= Lgf(ng(b)) o A(¢(b))
= Ao (D)
This proves the claim. O

Note that, in the notation of the preceeding sections of the paper,

Aome) () = Mobymov) = 2 Z wy, @) f(a).
a (y¢
it

This means that for each fixed b in %, the cocone

f(¢(0)) ), f(¢'(b)

X \ / (6.1) € T1(9))
(¢JI¢) (¢7 (p’)

Lyf(b)
is universal.
Lemma 4. The cocone (A(g,y,)) is the colimiting cone of tg; f.

Proof. By the remarks above, we have a pointwise equality L, f(b) = tg; f(b). We must only show equality
on morphisms.
Let 8 :b — V' be a morphism in %. We get a cocone

f (V(b))

F(@(b) ——— f(¢(b))
A (b \L K b//w 0y (b 9'(3))

under {tg;f(¢,n4)(b)}. By universality of the cocone {4 y.,)(0) : tgif(#,n4)(b) — Ly f(b)}, there exists
a unique morphism tg; f(3) : Ly f(b) — Ly f(b") such that

Ay () 0 f(D(B)) = tgif(B) 0 Ngny) (D).
Our claim is that tg, f(8) = Lyf(8) = Z(B). Inserting tg;f = Z(/3) in above equation, the right hand

side equals
Z(Z Y. D wypwsflaca ))

a’ o':p(b)—a’ aa—>a
ga’)=ny (b) 9()=P

while the left hand side equals

Z( Y. wyanfla’o ¢(6))>-

a o :p(b)—a
g(a)=n,(b")

A simple counting argument, repeating the argument in ‘Lemma 1’, ‘Section 1.1’, and using the definition
of the weights w shows that these two expressions are equal. O]



Corollary 1. The Kan extension Lan, f is equal to the colimit colimp,(g)tg;f of the transgression of f
over the category of weak left sections.

There is a similar relation for the right Kan extension. Let R, f := Rang f be the right Kan extension
of f along g, and let p: Ryf o g — f be the associated universal transformation.

Definition 2. The category of (weak) right sections of g is the category I',.(¢g) which has

e as objects pairs (¢, &) consisting of a functor ¢ : % — &7 and a transformation & : 1 — &y og

e and as morphisms (¢, &) — (¢, &y ) natural transformations v : ¢ — ¢’ such that gv o &, = &yr.

The transformation p defines a family of arrows

Pty i Bof — 0 f ((¥,&) € Tr(9))
by
Pp.e,) (D) = p(1(b)) o Ry f(&y (D).

These constitute the components of a cone to
tgrf :=[B, floU :I'1(9) — [B, Vect],

for U : (,&y) — 1 the canonical forgetful functor. This cone can be shown to be universal, noting that
Pep,e.) () = Po(v),e, (b)) and repeating the arguments for the colimit over the category of left sections.
Hence
Rgf = limpr(g)tgrf.

Let us summarize the content of the above discussion.

Given b € A, let (-)]p : T1(g) — (g | b) be the functor (¢, n4) — (#(b),n4(b)). There for ay category
€, there is a natural functor €% — €{* which we shall also denote as (-)|,. There is a commuting
diagram

(@ 1) <y Ol gy

o e e

g O e Ol ey

|
i Ol | on

Vect " &% Vect” 2% Vect "'}
Taking the colimit of the vertical maps calculates the left Kan extension: the colimit over the left- and
rightmost columns calculates the spaces Z(b) and Z(b'), while the colimit of the centermost column gives
the morphisms Z(3). There is a corresponding diagram for the right Kan extension.

We feel that above diagram may provide an important clue as to our Kan extension formulas should
generalize to higher categories. Namely, consider a scenario where 4 = X is a groupoid. Then the
notions of (weak) left and right sections coincide, since any natural transformation ¢*g — 1 can be
inverted. In other words, we can define a category I'(g) = I';(g) = I';(g) of weak sections of g. Given a
cospan of groupoids (to be thought of as a bordism)

Ein — X Eouiﬁv

we get a diagram
F(Einvg) A— P(ng) - F(Eoutag)

tg f sz tg fl thflzm
[Xin, Vect] [, Vect] [Xout, Vect].

A higher-categorical version of our Kan extension formula would, maybe, involve taking colimits (or
limits) of the vertical maps in such diagrams. If ¥, and X,,; are both copies of the final category 1,
then this prescription calculates the Kan extension (both left and right) of f along g, as we have shown.
When ¥;,, and X,,; are not of that simple form, then we ought to get something like a higher categorical
version of Kan extension. A very similar proposal for a categorical definition of path integrals in higher
categorical (extended) QFTs appeared recently in Freed et al. 2009 (see p.12).




Conclusions

There are two immediate directions in which the result we have proven begs to be generalized. Firstly,
the result should extend to higher categories (the categorified versions of n-dimensional quantum field
theories). Secondly, it ought to be possible to find at least traces of the universality described by the Kan
extension formula also in the continuum (i.e. non-discretized) theory of particle quantum mechanics.

One of the main difficulties with the first extension of our result, that to higher categories, seems to be
to know what the right definitions to start from are. For example, it seems both desirable and unavoidable
to have the freedom to allow the background field (‘action’) f to be a pseudofunctor. (Dijkgraaf-Witten
theory for example uses a group cocycle as a backgroud field.) The difficulties with the second route of
generalization also involve knowing what definitions to start from, but it also involves making sense of
the full-fledged path integral, which is a very thorny business. Maybe the universal categorical properties
of Kan extension in conjunction with a generalization of the Leinster measure can help us to finally nail
the right definition of the (non-discrete) path integral?

A related but purely mathematical problem is the following: Given a manifold M, a vector bundle
E — M with connection on M induces a Vect-valued functor on P;(M), assigning fibers of E to
points and parallel transport maps to paths. Given a smooth map ¢ : M — N, can one Kan extend
the ‘transport functor’ on Py (M) along ¢ : P1(M) — P1(N) to obtain a transport functor on Py (V)
equivalent to a bundle with connection on N7 If so, then this would be a new and possibly interesting
mathematical operation on vector bundles.
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