EIGENVECTORS AND SPECTRA OF CAYLEY GRAPHS*

PETTERI KASKI

1. INTRODUCTION

This manuscript illustrates from first principles how linear representation theory
of finite groups enables the computation of the spectrum and an eigenvector basis
for Cayley graphs [defined in Section 4]. Applications for such methodology include

e the analysis of random walks on Cayley graphs [1, 2, 10]; and

e algebraic graph theory: the spectrum of the adjacency matrix of a regular

graph is related to several important graph-theoretic quantities such as con-
nectivity and expansion [5, 10]; and

o the study of combinatorial landscapes [11] using fast Fourier transform tech-

niques [12].
The organization of this manuscript is as follows: Section 2 gives a brief introduction
to the fundamental concepts of linear representation theory. The irreducible linear
representations for some specific groups are given as examples in Section 3. Cayley
graphs are defined with examples in Section 4. Section 5 surveys the results of
Diaconis and Shahshahani [1] and Rockmore et al. [12] that connect the inequivalent
irreducible linear representations of a group to the eigenvalues and eigenvectors of a
Cayley graph derived from the group. The spectra of a few selected Cayley graphs
is computed as an example with the help of the representations given in Section 3.

2. LINEAR REPRESENTATION THEORY

This section follows Part I of Serre’s textbook [15] to a large extent. More recent
textbooks are [3] and [8]. For preliminaries in linear algebra and group theory see
e.g. [6, 14].

2.1. Assumptions and notation. All vector spaces are over the complex field C
and have finite dimension. For a finite group G we denote by C[G] the complex
vector space of dimension |G| with base {ey},ce. Thus, an element ¢ € C[G] has
the form
¢:ZN9697 pg € C.
geG

We identify C[G] with the vector space of all complex-valued functions on G.
Namely, a function ¢ : G — C corresponds to the vector ¢ = - ; ¢(g)e, and vice
versa. In particular, the vectors {e,}4ec@ of the standard base correspond to the

functions
1 if g=h;and
€g (h) = .
0 otherwise.
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The inner product of two vectors ¢,v € C[G] is defined by
1 _

(1) (@9) = 5 > bgtby,

9€eqG
where 1), denotes the complex conjugate of 1, .
We use the symbol § for the Kronecker delta, that is,

)1 ifi=j;and

Y10 ifd # .
2.2. Linear representations. Let G be a finite group, and let V be a finite-
dimensional complex vector space. A linear representation of G on V is a group

homomorphism p : G — GL(V'), where GL(V') denotes the group of bijective linear
transformations on V. The degree of a representation is the dimension of V.

Example 2.1. Let G be a finite group. The (left) regular representation preg of G
on C[G] is defined by its action on the base {ep}neq: for all g,h € G

Preg(9)en = €gn.

The regular representation has degree |G|.

Two representations p; : G — GL(V1) and ps : G — GL(V3) are equivalent if
there exists a bijective linear map T : V; — V» such that p2(g) = Tp1(g9)T ! for all
geaq.

2.3. Matrix representations. Let p : G — V be a degree d linear representation
of G and let B = {by,...,bs} be a base for V. The matriz representation of p
relative to B is a map p that associates to each g € G the d x d matrix o(g) of p(g)
relative to B. For 1 < ,j < d, we write g;;(g) for the row-i, column-j coefficient
of o(g). In other words, the g;;(g) are the unique complex numbers that satisfy

d
p(g)b; = Z 0ij(9)bi

forall 1 <i4,j <d.
A matrix representation o defines a collection of d? vectors in C[G]. Namely, for
all1<i,j<d

Qij = Z 0ij(9)eg

g€eG
is a vector in C[G].

2.4. Subrepresentations, irreducibility. Let p : G — GL(V) be a linear repre-
sentation and let W be a vector subspace of V. The subspace W is p-invariant if
for all g € G and w € W it holds that p(g)w € W.

If W is a p-invariant subspace of V, then the restriction p|w of p to W is a
representation of G on W. Such a representation is said to be a subrepresenation
of p.

A representation p : G — GL(V) is said to be irreducible if it has no p-invariant
subspaces other than the trivial subspaces V and 0. Otherwise a representation is
said to be reducible.

Recall from linear algebra that a vector space V is the direct sum of vector
subspaces W and W', denoted V =W @ W' if every v € V decomposes uniquely
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to asum v = w + w' with w € W and w' € W'. The subspace W' is called the
complement of W in the decomposition V.= W @ W’. Recall further that the
complements of W (and thus the decompositions of V into a direct sum involving
W) are in a bijective correspondence with projections onto W. Namely, a projection
P of V onto W associated with the decomposition V =W @& W' is the linear map
defined by Pv = w for all v € W. Conversely, the kernel of a linear map P with
image W and Pw = w for all w € W is a complement of W in V.

Theorem 2.2 (Maschke’s Theorem). Let p : G — GL(V) be a representation of
a finite group G on a finite-dimensional complex vector space V and let W be a
p-invariant subspace of V. Then, there exists a p-invariant complement W' of W.

Proof. Let P be the projection associated with any complement of W in V. Define
a linear map P’ by setting
P = ﬁ > p(9)Pplg) "
9€G

Since W is p-invariant and Pw = w for all w € W, we have that P'w = w for all
w € W. Moreover, W must be the image of P’ since W is the image of P and both
p(g) and p(g)~! map W onto W for all g € G. Thus, P’ is a projection onto W
that corresponds to some complement W' of W. Let now w' € W'. It suffices to
show that P'p(g)w’ =0 for all g € G to establish that W' is p-invariant. For each
g € G we have

p(g)P'p(g)~"! = ﬁ > p(gh)Pp(gh)™" = P'.
heG

Thus, P'p(g)w’ = p(g)P'w' = p(g)0 = 0. O

The above theorem states that a reducible representation decomposes into a
direct sum of subrepresentations acting on p-invariant subspaces of V. Namely, let
W be a p-invariant subspace of V. Then, the above theorem states that there exists
a p-invariant complement W' of W. Thus p(g)v = p(g)(w+w') = p(g)w+ p(g)w' =
p(g)|lww + p(g)|lww' for all v € V and hence p is simply the direct sum of two
subrepresentations p|w and p|w- acting on W and W’. We indicate this by writing
p=plw ®plw:.

2.5. Characters. Let A : V — V be a linear map with a matrix (a;;). Recall from
linear algebra that the trace of A is the scalar

TrA= Zaii,
i

which is independent of the choice of base for V' relative to which the matrix (a;;)
is constructed.

Let p: G = GL(V) be a representation of G on V. The character x, : G - C
of p is defined by

Xp(9) = Trp(g)
forall g € G.
Lemma 2.3. Let x be the character of a representation p of degree d. Then,
(i) x(1) = d; and
(it) x(97") = x(g) for all g € G; and
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(iii) x(ghg™!) = x(h) for all g,h € G.

Proof. Ttems (i) and (iii) follow immediately from the definition of a representation
and the properties of the trace operator. For Item (ii), let ¢ € G, and observe
that g € G has finite order, that is, there exists a positive integer m such that
g™ = 1. Thus, p(g9)™ = p(1) = I, where I denotes the identity map on V. But this
implies that every eigenvalue A of p(g) must satisfy A™ = 1, so the eigenvalues A
are mth roots of unity. Consequently, since the trace of a linear map is the sum of
its eigenvalues, we have

x(9)=Trp(g) =D Ai=> N'=Trp(g) ' =Trp(g ") =x(g ")
O

Recall that we write p = p1 @ p2 if p: G — GL(V) is the direct sum of subrep-
resentations p; : G — GL(V;) acting on subspaces V; of V such that V =V; & V5.

Theorem 2.4. Let p1 : G — GL(V1) and ps : G = GL(V2) be two linear represen-
tations of G, and let x1 and x2 be their characters. Then, the character of p1 & p2
18 X1 + X2-

Proof. Let By = {bgl)}?;l be a base for V; and let By = {b§2)}?i1 be a base for V5.
Thus, the union B; U Bs is a base for the (external) direct sum Vi @ V5. The trace
x(9) = Tr(p1®p2)(g) relative to B1UB; is clearly Tr p1(g)+Tr p2(g) = x1(9)+x2(9),
which proves the claim since trace is independent of base. O

2.6. Schur’s lemma and orthogonality relations.

Theorem 2.5 (Schur’s Lemma). Let p; : G — GL(V;), i = 1,2, be two irreducible
representations of G and let T be a linear map of Vi into Va such that p2(g)T =
Tp1(g) for all g € G. Then,

(i) if p1 and pa are inequivalent, we have T = 0.

(ii) if Vi = Va and p1 = pa, then T = A for some A € C.

Proof. We prove the contrapositive of (i). Suppose T # 0. Put W; = Ker T'. Then,
for w € Wi we have Tp1(g9)w = p2(g9)Tw = p2(g)0 = 0 for all g € G. Thus, W,
is pi-invariant. Since p; is irreducible, we must have either W7 = 0 or W; = V;.
The latter alternative is impossible since T' # 0. Next, put W = ImT. Then, for
w = Tv € Wy we have pa(g)w = Tp1(g)v for all g € G. Thus, W is pe-invariant
and we must have either Wy = V5, or Wy = 0. The latter is impossible since T' # 0.
Now, because KerT = 0 and ImT = V5, it must be that T is bijective and hence
p1 and po are equivalent.

For item (ii) let A be an eigenvalue of T. Put 7' = T — AI. Since X is an
eigenvalue, Ker T # 0. Since p-T' = T'p1, item (i) now shows that this is possible

only when T = 0, so we must have T = \I. O
Corollary 2.6. Assume p; and py are as above. Let T be a linear map of V1 into
Vs and put

Z P2(9)Tpr(9) ™"

gEG
Then,

(i) if p1 and ps are inequivalent, we have T' = 0.
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(il) of Vi = Vo and p1 = pa, then T' = Al for A = (1/d) Tr T, where d is the
degree of p1.

Proof. The following calculation shows that pa(g)T" = T"p1(g) holds for all g € G:

p2(9)T"p1(9)~" |G| > p2(9)p2(MTpr(h) " pr(9) ™!
heG

=1 =S pa(gh)Tpn(gh) ™ = T,
heG

Now, Item (i) follows directly from Item (i) of Schur’s Lemma. Similarly, Item (ii)
of Schur’s Lemma implies that 7' = AI for some A € C. It remains to calculate .
Observe that

Tr p1(9)T L=TrT
|G| Z pl Pl )
geaqG
and TrT' = Tr AI = dX. Solving for A yields A = (1/d) Tr T'. O
Corollary 2.7. Assume p1 and ps are as above. Fix arbitrary bases for Vi and Vs

and denote by o) and o) the corresponding matriz representations of py and ps.
Then,

(i) if p1 and p2 are inequivalent, we have
2) > o (@e? g™ =0
9€eG

for all i, j,r,s.
(ii) if Vi = Va and p1 = p2, then

61'36'7"
(3) LY oD (g)e@ (gt = sl

Gl ! d

where d is the degree of p1 = pa.

Proof. Assuming the notation of the previous corollary, let (t,3) and (¢/,) be the
matrices of T and T" relative to the bases chosen for Vi and V5. Straightforward
computation gives then

-1
zs - |G| g’;bg abes ( )

for all ¢,s. Item (i) of the previous corollary gives ¢}, = 0 for all matrices (¢4); in
particular this holds for the matrix ¢,5 = d4;0sr, which proves Item (i). Similarly,
Item (ii) of the previous corollary gives ¢, = d;5(1/d) Za,b tapdap in the case p; = po
and V; = Vg Setting top = dq;0pr nOW gives

|G| 29(2) 95'13) ) ]-/d Z(szs(sajdbr ab — (l/d) is ]r-

a,b

The relations (2) and (3) are known as the Schur relations.

Theorem 2.8.
(i) If x is the character of an irreducible representation, then {x,x) = 1.
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(ii) If x and X' are the characters of two inequivalent irreducible representations,
then (x,x') =0.

Proof. Recall from Lemma 2.3 that x(9~1) = x(g). Thus,

x(g
1
X)) =1g7 2 X =2 Z 9)e;5(97") =
IGI |G|
g€eq i, €eG
_J1 if pand p’ are equivalent;
lo otherwise,

where the last equality follows from the Schur relations (2) and (3). O

Theorem 2.9. Let p be a linear representation of G on'V andlet p = p1®- - -®py, be
a decomposition of p into irreducible subrepresentations. Then, for any irreducible
representation p' of G on V, the inner product (x,,Xx,) gives the number of py
equivalent to p' in the chosen decomposition.

Proof. Recall that p = p1®- - -@®py, implies by Theorem 2.4 that x, = Xp, + -+ Xp,. -
Since the py are irreducible, the claim follows from the previous theorem. O

Corollary 2.10.

(i) The number of py equivalent to p' does not depend on the chosen decomposi-
tion.
(ii) Two representations with the same character are equivalent.
(iii) Suppose that p decomposes as p = ®}_,mypr, where my, indicates the mul-
tiplicity of the irreducible representation py in p, and the py are pairwise
inequivalent. Then,

n
(4) (Xps Xp) = D_mi,
k=1

In particular, (X,,X,) =1 if and only if p is irreducible.

2.7. Number of irreducible representations. A function ¢ : G — C is called
a class function if ¢(ghg™!) = ¢(h) for all g,h € G. Denote by cf(G) the vector
space of all complex-valued class functions on G. Clearly, cf(G) is a subspace of

C[G].

Theorem 2.11. The dimension of cf(G) is equal to the number of conjugacy
classes of G.

Proof. A class function must be constant on each conjugacy class of G; the values
on the conjugacy classes may be chosen arbitrarily. O

Corollary 2.12. The number of inequivalent irreducible representations of G is
finite.

Proof. The character of a representatation of G is a class function by Lemma 2.3.
The characters of the inequivalent irreducible representations of G form by Theorem
2.8 an orthonormal set in cf(G). The cardinality of such a set is bounded by the
dimension of cf(G), which is finite. O
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Lemma 2.13. Let ¢ be a class function on G and let p : G — GL(V) be a linear
representation of G. Define a linear map p(¢) of V into itself by

(5) ple) = d(9)p(9)
geG
Then, if p is irreducible and has degree d, we have

ﬁ(¢) = %(‘éa XP)IJ

where I denotes the identity map on V.

Proof. Let g € G and observe that
p(9)p(D)p(9) ™ = d(h)p(ghg™) = > b(g~ " hg)p(h) = p(¢)

heG he@
since ¢ is a class function. Item (ii) of Corollary 2.6 now implies that

|G|Z Yyl =T

9€eG
for A = (1/d) Tr p(¢). Since
Trp(d) = > d(9) Trp(g) = Y $(9)xo(9) = |G, X)),
9eG geEG
the claim follows. O

Theorem 2.14. The characters of the inequivalent irreducible representations of G
form an orthonormal base for cf(G). [Hence, the number of inequivalent irreducible
representations of G is equal to the number of conjugacy classes of G by Theorem
2.11.]

Proof. By Theorem 2.8 the characters xi,...,xn oOf the inequivalent irreducible
representations of G form an orthonormal system in cf(G), so it suffices to show
that their linear span is cf(G). For this it suffices to show that (¢, xx) = 0 for
all k = 1,...,n implies ¢ = 0. [Note that the x; form an orthonormal base if
and only if the y; do.] Let ¢ be a class function that satisfies (¢, xx) = 0 for all
k=1,...,n. Then, any representation p of G satisfies p(¢) = 0 because each of its
irreducible constituents py, satisfies pr(¢) = (|G|/dr){¢, xx)I = 0 by Lemma 2.13.
In particular, for the left regular representation pyeg [Recall Example 2.1] we have,

for all g € G,
ﬁreg Z ¢ Preg el Z ¢

9geG geEG
which implies ¢ = 0. O

2.8. Unitarity. Recall from linear algebra that a linear map T of a finite dimen-
sional complex inner product space V into itself is unitary if it preserves the inner
product, that is, for all v,v' € V, (Tv,Tv') = (v,v'). This is equivalent to saying
that T is bijective and T = T*, where T* is the Hilbert adjoint operator defined
by (T'v,v") = (v, T*v'") for all v,v" € V. Recall further that if (¢;;) is a matrix of T'
relative to an orthonormal base of V, then (j;) is the matrix of T* relative to that
base. In particular, if 7' is unitary, then the inverse of (t;;) is simply its complex
conjugate transpose (t;;).
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Theorem 2.15. Let p: G — GL(V) be a linear representation of G. Then, there
exists an inner product on V relative to which the map p(g) is unitary for every
geQ@G.

Proof. Let (-,-) be an inner product on V. [An inner product always exists since
V has finite dimension.] It is straightforward to verify that

(vo') = > (p(g)v, p(g)v")
9€G
is an inner product on V relative to which any p(g) is unitary. O

Let pr : G — GL(V%), k = 1,2, be inequivalent irreducible representations of G
and let dj, be the degree of py.

Corollary 2.16. For k = 1,2, fiz a base for Vj that is orthonormal in an inner
product relative to which pi(g) is unitary for every g € G. Denote by o%) the
matriz representation of py relative to this base. Then,

(k) )y _ OirdjsOkt
(6) (035 0r3) A

forall1 <k t<2 1<4,j<dg, andl <r,s<d;.

Proof. By unitarity the entries of the matrices o(*) (g) satisfy

k), \— k
o (9)™" = ot (9)
for all g € G and 1 < 4,5 < dg. Thus, (6) simply combines the Schur relations (2)
and (3). O

We call a matrix representation o(%) that meets the conditions of the above corollary
a unitary matrix representation.

2.9. Decomposition of the regular representation. Recall the regular repre-
sentation pre; of G on C[G] from Example 2.1.

Theorem 2.17. The character Xeg 0f the regular representation preg of G satisfies
|G| ifg=1; and
0 if g # 1.

Proof. For every g € G the matrix of preg(g) relative to base G is a permutation
matrix defined for all hy, hs € G by

(7 Xreg (9) = {

1 if hy = ghy; and
0 otherwise.

Ohohy (g) = {
Now observe that Xeg(9) = >, 0nn(g) and that opn(g) = 1 if and only if g =
hh™t =1. 0

Denote by x1,--.,Xxn the characters of the irreducible inequivalent representa-
tions pi,...,pn of G, and let dy, ... ,d, denote the degrees of the representations.

Corollary 2.18. Forallk=1,...,n, we have
(Xregan) = dp.-
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Proof. Recall from Lemma 2.3 that xx(1) = dj. Now,

1 —_— 1 -
{Xreg: Xk) X = mrxreg(Dxk(1) = 7= |Gldy = d
)= g 2 el are C]
O
Thus, preg decomposes into the direct sum preg = GF_; di.ps-
Corollary 2.19. The degrees dj, satisfy the relation Y ,_, di = |G].
Proof. By Theorem 2.9, we have
n n
Gl = Xreg(1) = Y dixi(1) = Y di.
k=1 k=1
O
Corollary 2.20. For k = 1,...,n, let o) be a unitary matriz representation of

pr- Then, the vectors
(8) oM e, 1<k<n, 1<ij<d
form an orthogonal base for C[G].

Proof. Pairwise orthogonality [and hence linear independence] was demonstrated
in Corollary 2.16. The vectors span C[G] by the previous corollary. O

The base (8) incorporates a convenient factorization of C[G] into preg-invariant
subspaces as the following lemma demonstrates. Let ¢, 9 : G — C. The convolution
¢ x 1 is defined by

(Bx9)(g) =D dlgh™)

heG

for each g € G. A direct calculation shows that convolution and the left regular
representation pre; are connected by

(9) Preg(9)0(h) = (eg % 9)(h) = ¢(g™ " h).

Lemma 2.21. For k = 1,... ,n, let o®) be a unitary matriz representation that
corresponds to pr. Then, for all g € G and 1 <1i,j < dy,

k k
(10) Preg(9)8) = ey % o) Zg( '(9)a?.

Proof. Let g,h € G. A direct calculation gives

(eg % 2N (B) = D eg(he™ )@l (2) = 8 (97 'h) = Zg““’ o ()
z€G

O

Thus, for all k = 1,... ,n and 1 < j < di, the vectors {@gf)}lgisdk constitute a
base for a preg-invariant subspace of C[G] of dimension dj.



10 PETTERI KASKI

2.10. Direct products of groups. Let V] and V5 be finite-dimensional complex
vector spaces. We denote by V] ® V2 the tensor product of V7 and V5.

Let G and G’ be finite groups. Let p : G — GL(V) be a representation of G
and let p’' : G' = GL(V') be a representation of G'. Denote by G x G’ the direct
product of G and G'. Define the representation p#p' : G x G' — GL(V ® V') by
setting

(p#0')(9,9") = p(9) ® p'(g")
for all (g9,¢') € G xG".

Theorem 2.22. Let p1,...,pn be the inequivalent irreducible representations of
G and let py,...,pl, be the inequivalent irreducible representations of G'. Then,
piftp; : G x G' = GL(V; ® V;), where 1 <i <n and 1< j <n', is a complete set
of inequivalent irreducible representations of G X G'.

Proof. Since
Xoiteo;(9,9') = Trpi(g) ® pj(g") = Tr pilg) - Tr p(9") = X0.(9) - X1, (9);

we have

1 -
(Xpi#p;-aka#p;) = m ZXp,-#p; (9:9)Xou0,(9,9")

(|G|pr1 75 @) (7 2 xilo )

= <Xpi ’ ka) : (Xp; ’ Xp;) = 6ik6jl-

Thus, the Xpi#tp, are irreducible and pairwise inequivalent by Theorem 2.8 and
Corollary 2.10. To establish completeness it suffices [recall Corollary 2.19] to show
that the squares of the degrees of the representations sum to |G x G'|. The degree
of p;i#p} is clearly d;d}, where d; is the degree of p; and dj is the degree of pl.

Thus, 3, ;(did})* = (X, d7)(22;d;°) = GI|G'| = |G x G'|. O

2.11. The Fourier transform. Let p : G — GL(V) be a representation of G and
let ¢ : G — C. The map
=Y ¢(9)nl9)

geG

defined in Lemma 2.13 is the Fourier transform of ¢ relative to p.

Theorem 2.23 (Fourier Inversion Formula). Let py,...,p, be a complete set of
representatives for the irreducible inequivalent representations of G and denote by
d; the degree of p;. Let ¢ : G — C. Then, for all g € G,

(11) é(g) = é > diTepilg 5.

Proof. We have

Tr pi(g =D o) Tepi(g~'h) = Y ¢()xilg~"h),

heG heG
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so the right hand side of (11) simplifies to

T 2 6 Do dixsla ™) = 3 6(h) sl ™) = 6(o),

hed i=1 heG

where the last two equalities follow from xreg = Ez dix: and (7). O

Theorem 2.24 (Plancherel Formula). Let p1,...,p, be a complete set of repre-
sentatives for the irreducible inequivalent representations of G and denote by d; the
degree of p;. Let ¢, : G — C. Then,

(12) |G|2 Zd le 1 ) Y
where p;(¢)* denotes the Hilbert adjoint operator, evaluated relative to an inner

product in which p;(g) is unitary for all g € G.
Proof. We have

D diTepi(@)pi()* =Y d(g)(h) > di Tr pi(g)pi(h)* = 1G] Y d(9)1(9)
[ g,h i 9
where the second equality follows from p;(h)* = p;(h™!) and Y, d; Trp;(gh™!) =
Xreg(gh_l)- O
Theorem 2.25. Let ¢,v : G — C. Then,
p(¢ ) = p(d)p(¢)-

Proof. A direct calculation gives

ploxv) = (¢x)(g)plg) = Y dlgh™ )p(h)p(g)
9eG g9,h€G
= > d(9)b(h)plgh) = p(d)p(¥)-
g9,heG

3. REPRESENTATIONS OF CERTAIN GROUPS

3.1. Cyclic and abelian groups. Denote by Z, the cyclic group of order r. We
use additive notation for the elements {0,1,2,...,r — 1} of Z,. The conjugacy
classes of Z, are singleton sets because = +y —z = ' for some z,y,y’ € Z, implies
y = y'. Thus, Z, has r irreducible representations, each of degree 1.

Let w, = 2™/7 where i is the imaginary unit. Recall that
r—1 .
r if x =0; and
13 w® = ’
(13) y;o " {0 ifx#0.

Let V = C be the complex vector space of dimension one. For each x € Z,., define
Pzt Ly = GL(V) by p,(y)v = w2¥v for all y € Z, and v € V. The map p, is
clearly a linear representation since the inverse of p,(y) is py(—y) and

paly + 4o = wi¥H v = wVwiV'v = py(y)pa(y' )0
holds for all y,y' € Z,andv € V.



12 PETTERI KASKI

Let x, be the character of p,. Clearly, x(y) = w?¥ for all y € Z,. The
representations p, are irreducible and pairwise inequivalent by Theorem 2.8 and
Corollary 2.10 since the characters satisfy the orthogonality relation

r—1 r—1

<Xz7Xz’) = % Z Xa:(y)Xz' (y) = % Z wT(‘:c—:c')y = 6zac’>
y=0 y=0

where the last equality follows from (13).

Recall from group theory (see e.g. [14]) that every finite Abelian group is iso-
morphic to a direct product of cyclic groups [of prime power order]. Thus, the
results from Section 2.10 enable the construction of the irreducible inequivalent
representations of an arbitrary finite Abelian group from the irreducible inequiva-
lent representations of the component cyclic groups.

Let us consider as an example Z7, the n-fold direct product of the cyclic group
Z,. We regard an element z € Z" as an n-tuple © = (21,22, ... ,2,) of elements of
Z..

By Theorem 2.22 the degree-one irreducible representation p, : Z? — GL(V)
that corresponds to x € Z" satisfies

(14) paly)v = wF ="V

for all y € Z7 and v € V. Since the representation has degree one, the character
Xz 18 “equal” to the representation, that is,

(15) Xe(y) = wii=1 "

for all z,y € Z].

3.2. The dihedral group. Recall that the dihedral group D,, n > 3, is a group
of order 2n which is generated by two elements r, s such that

r® =1, s =1, sr=r"ls.
The elements of D,, are easily seen to be 1,7,72,... ,r*» 1 s, sr,...,sr" L.
The conjugacy classes of D,, are different depending on whether n is odd or even.
For odd n there are three types of conjugacy classes:

||
5 B3N
{rk, =k}, 1<k<(n-1)/2| 2 |(n-1)/2"
{sr7 : 0<j<n-1} n 1

For even n there are five types of conjugacy classes:

-1 ] #
{1} 1 1
{rk,r"=*} 1<k<n/2-1| 2 |n/2—-1
{rn/2} 1 1
{sr¥tl . 0<j<n/2-1} |n/2 1
{sv% : 0<j<n/2-1} n/2 1

For odd n the irreducible representations of D,, are:
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p d #
s'rv =1 1 1
sUr¥ e (1) 1 1

ku
' H( 0wk )

0 ,wfku
st — n
(e

For even n the irreducible representations of D,, are:
p
s'r* =1
sUr% i (—1)Y
sUrt = (1)

sVrt s (—1)¥tY

ku
g H( 0 wz’“‘)

0 w—ku
srto— n
(e "

A direct calculation shows that these maps are indeed group homomorphisms as
required. Irreducibility and pairwise inequivalence are straightforward to verify
with the help of Theorem 2.8, Corollary 2.10, and (13). Since the squares of the
degrees d sum to 2n, the above constitute a complete set of representatives for the
irreducible inequivalent representations of D.,,.

1<k<(m-1)/2]2|(n—-1)/2

—_ e = ey
— = = = (T3

,1<k<n/2-1]2|n/2-1

3.3. The symmetric group. The representation theory of the symmetric group
is a subfield of its own, with entire books devoted to the subject [9, 4]. Our
treatment will be limited to quoting formulas that enable the computation of the
degree, character, and unitary representing matrices for the inequivalent irreducible
representations of the symmetric group.

We shall briefly recall some basic definitions and terminology for the convenience
of the reader. A permutation 7 of a finite set X is a bijection of X onto itself. A
point z € X is fized by 7 if m(x) = x; otherwise x is moved by . Two permutations
w1, are disjoint if every point moved by the other is fixed by the other. The
identity permutation fixes every point £ € X. A permutation 7 is a k-cycle if there

exist z1,... ,z € X such that 7 fixes every xz € X \ {z1,...,25} and
w(x1) =22, w(x2) =23, ...,7(Tp_1) =1k, w(TE)=121.
We write 7 = (z1 22 --- 1) to indicate that 7 is a k-cycle of the above form.

A transposition is a 2-cycle. The product of two permutations m,mo is the per-
mutation 7y defined by mima(z) = w1 (m2(z)) for all z € X. Every permutation
7 decomposes uniquely [up to ordering of cycles in the product] into a product of
pairwise disjoint cycles, where there is exactly one cycle of length 1 for each point
fixed by w. The lengths of the cycles in the decomposition form a partition of the
integer n, called the cycle partition of «.

A partition of a positive integer n is a sequence A = (\1,...,Ap) of positive
integers such that Ay > Ay > --- > Ay, and Zle A; = n. We write A F n to indicate
that X is a partition of n. We denote the total number of partitions of n by p(n).
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The symmetric group of degree n consists of all permutations of an n-set X with
the product of two permutations defined as above. We write S, for the symmetric
groupon X ={1,... ,n}.

The conjugacy class of a permutation w9 € S, is characterized by its cycle
partition. Namely, let 7 € S,,. For any k-cycle (21,22, ... ,x;) in the cycle decom-
position of my, we have

7(x1, 2, ... ,xp)m + = (w(z1), 7(T2),... ,7(21)).
Thus, conjugation by 7 alters the content of the disjoint cycles in ¢ in an arbitrary
way, but the cycle partition remains invariant. Consequently, S,, has p(n) conjugacy
classes.

The inequivalent irreducible representations of S,, are conveniently indexed by
the partitions of n. We write px, xa, and dy, respectively, for the irreducible
representation, the character, and the degree of the representation associated with
AbEn.

The Young diagram of a partition A = (A1,... ,Ap) F n is the set

N =1{G.j) - 1<i<h 1<j< A
We write X’ for the conjugate partition of A defined by X' = (A},...,A},), where
W=h,  Nj=masli : @))€}, 1<5<H.

For example, consider the partition A = (4,3,1,1) of 9. Then,

XXXX XXXX
XXX n_ XX '
X X

Let (i,5) € [A]. The hook length hi; is defined by hi; = X; —j + A —i + 1.
Theorem 3.1 (Hook Formula). Let A+ n. Then,
n!
" Mepenh’
For a proof see e.g. [9, Theorem 2.3.21] or [3, pp. 49-50].

Denote by x’ the value of the irreducible character x, for a permutation with
cycle partition g = (1, - .. , ) F n. The following formula is quoted from [13]:

dy

Theorem 3.2 (Frobenius Character Formula). Let (Ay,...,An), (1,... ,p¢) F 1
and 1 > h. Then, x4 equals the coefficient of Hle AR
t

I @-—z)[[E+--+af).

1<i<j<l i=1
See [3, Section 4.10] for a proof. Diaconis and Shahshahani [1] cite [7] for an
accessible proof of the following special case for transpositions:

(2,1,...,1) 1 h

X 2 .
A = ) Z(,\j — (25 — N)).

(16) n(n —1) 4

For a survey of alternative character formulas, see [13].
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A A-tableau is obtained by assigning each (i, j) € [A] one of the integers 1,... ,n,
allowing no repeats. For example, two (4,3, 1,1)-tableaux are

1234 4239
567 785
8 ’ 6

9 1

A tableau is standard if its entries increase along rows and columns. For example,
the left (4,3,1,1)-tableau above is standard, while the right one is not.

Theorem 3.3. The number of standard \-tableauz is d .

For a proof, see e.g. [9, Corollary 3.1.13].

Let t* be a standard A-tableau. Denote by t** the standard tableau obtained by
deleting the point n from ¢*. The last letter sequence t7, ... ,t}; of all the standard
A-tableaux is defined as follows: For every pair ¢},t} of standard A-tableux, i < j
if and only if either

(i) the point n occurs in ¢} in a higher row than in ¢}; or

(i) #}* = t7 and i = t? for some k <l and § + (n —1).
For example, the last letter sequence of the 5 standard (3, 2)-tableaux is

135 < 125 < 134 < 124 < 123
24 34 25 35 45 -

Let ¢} be a standard A-tableau, A - n. For r,s € {1,2,...,n}, denote by (ir, )
and (i, ;) the coordinates (i,j) € [\] of the points 7, s in ¢}. The azial distance
D3\(r, s) between r and s in ¢} is defined by

D,’?(T, 3) = (is _js) - (ir _jr)'

We write (m — 1, m)t? for the A-tableau in which the points m — 1, m have been
interchanged in t;\

Theorem 3.4. Let A - n and suppose t7, ... ,tsA is the last letter sequence of the
standard A-tableux. Then, for all transpositions 7 = (m — 1,m), 2 < m < n, the
linear map px(7) is represented by a unitary matriz o™V (1) whose coefficients are

defined by:
(1) gz(.;\) (1) = £1 if t} contains m—1 and m in the same row [+1] or column [-1];
(i) ifi < j and t} = (m—1,m)t}, then o™ (r) contains the following submatriz:

( o) o (r) ) _ ( —DMm—1,m)"'  \/T-DMm—1,m)? )

1
V) oY (r) VI—DNm—1,m)2  D}m—1,m)"!

(iii) gz(.;.‘) (1) = 0 everywhere else.

For a proof, see [9, Section 3.4]. The representing matrices of the transpositions
(m — 1,m) given in the above theorem can be used to construct the representing
matrix o () for any 7 € S, since any permutation can be written as a product
of transpositions (m — 1,m).
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4. CAYLEY GRAPHS

Let G be a finite group and let a : G — C be a complex-valued function on G.
The Cayley color graph X (G, ) is the complete directed graph with vertex set G
where each arc (g1, g2) € G x G is associated a color a(gag;™).

If « is the characteristic function of a subset S C G, that is,

1 ifgeS;and
alg) =4~ 17
0 ifgé¢s,

then X(G, ) is a Cayley digraph and we denote it by X (G, S). If S is in addition
inverse-closed (that is, S = S™!) and does not contain the identity of G, then we
say that X (G, S) is a Cayley graph. In both cases above we regard X (G, S) as the
(di)graph formed by deleting the arcs of color 0 from the color graph.

Example 4.1. Let G = Z%, n > 1, and suppose S consists of all z € Z% with
exactly one coordinate equal to 1. The resulting Cayley graph X(Z%,S) is the
familiar n-dimensional hypercube. The cases n = 1,2, 3,4 are depicted below.

0 1

1 n 011 11
010 110
001 101
o—O0
; Lo NV
000 100

Example 4.2. Let G = Sy, the symmetric group on {1,2,3,4}, and take S to be
the set of all transpositions on {1,2,3,4}. The resulting Cayley graph X (Sy, S) is
depicted below.
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Example 4.3. Let G = D, the dihedral group of order 2n, and take S = {r,r"~!, s}.
The resulting Cayley graph X (D, S) is depicted below in the case n = 5.
2

T

r4 1

The adjacency matriz A of a Cayley color graph X (G, «) is the |G| x |G| matrix
whose row-g, column-g; entry ag,,, is a(g29; 1 for all g1, g> € G. In case of Cayley
digraphs and Cayley graphs the adjacency matrix of X (G,S) corresponds to the
standard definition: there is an arc (respectively, edge) from g; to g if and only if
gogr = @(gagy *) = 1, which is equivalent to saying that there exists an s € S such
that go = sg1.

The following two properties of Cayley graphs are easily verified:

Theorem 4.4. Let X(G,S) be a Cayley graph. Then,
(i) X is regular of degree |S|.
(il) X is connected if and only if S generates G.

Theorem 4.5. The automorphism group of a Cayley graph is vertex-transitive and
contains the right regular permutation representation of G as a subgroup.

Proof. Recall that the right regular permutation representation of G' consists of the
permutations {m,},eq of G, where m,(h) = hg™! for all g, h € G. Clearly,

Tg1g2 (h) = hg2_191_1 = Tge (h)gl_l = Tgy (7792 (h)),
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so this collection indeed defines a permutation representation. We shall first prove
that {74} 4eq is a subgroup of the automorphism group. For this it suffices to show
that for every hi, ho € G, there is an edge between hy and hs if and only if there is
an edge between my(hy) and m,(hs) for every g € G. This is the case since

a(hihy') = a(hig 'ghy ") = a(mg(hi)my(ha) )
holds for all g, hy, ho € G. Vertex-transitivity is now clear since for every hy, hs € G

there exists a g € G such that my(h1) = h, namely g = hy “hy. O

The Petersen graph below is an example of a graph that has a vertex-transitive
automorphism group but is not a Cayley graph.

Theorem 4.6. A graph X is a Cayley graph if and only if the automorphism group
of X has a subgroup that is vertex-transitive and in which no permutation other than
the identity fixes a vertex.

Proof. See e.g. [5, Lemma 3.7.2]. O

5. EIGENVALUES AND EIGENVECTORS OF CAYLEY COLOR GRAPHS

Let G be a finite group and let X (G, a) be a Cayley color graph. In this section
we view the adjacency matrix (az) of X as the linear map A : C[G] — C[G] defined

by
Aep = Z agney
9€a@

for all g,h € G.
The following theorem connects the study of Cayley color graphs on G to the
representation theory of G.

Theorem 5.1. Let X(G,a) be a Cayley color graph. Then, the adjacency matriz
A [when viewed as a linear map of C[G] into itself] satisfies

A= a(g)pres(9);

geG

where preg is the left regular representation of G on C[G].
Proof. Let ¢ : G — C and h € G. We have

Ag(h) = alhg™)d(g) = D alg)p(g™"h) = Y a(g)preg(9)d(h).

geG g9eG geG
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Thus, the decomposition of preg into invariant orthogonal subspaces [see Lemma
2.21] yields immediately the following theorem.

Theorem 5.2. Let X(G,a) be a Cayley color graph, and let py, : G — GL(V}),
k=1,... ,n, be a complete set of irreducible inequivalent representation of G. Let
dy be the degree of py, and let o'%) be a unitary matriz representation of p'*). Then,
forallk=1,... ,n and 1 <1i,j <dy,

d
00 = Y ol = > (X a0l

geqG =1 “ge@

Corollary 5.3 (Diaconis and Shahshahani [1]). Let &, denote the set of eigenval-
ues of the linear map pr(ca). Then,

(i) the set of eigenvalues of A equals U}_, &; and

(i) if the eigenvalue X occurs with multiplicity my(\) in pr(a), then the multi-

plicity of X in A is Y p_, dpmg(N).

Proof. Equation (17) shows that the vectors BJ(-k) = {ﬁgf)}ls,-sdk span an A-
invariant subspace Wj(k) of C[G] of dimension dj [cf. Lemma 2.21]. Moreover,
(17) shows that A restricted to WJ-(k) has [relative to Bj(k)] the matrix form

> alg)e™(g),

geG

which is the matrix of pi(c) relative to the basis used to construct the o*)(g).
Now, since C[G] = ®}_, 69?;1 W]-(k), the characteristic polynomial f(\) of A and
the characteristic polynomials gg(A) of pr(a), k =1,...,n, are related by

FO) =TT g™
O

When « is a class function we can say much more, thanks to Lemma 2.13. According
to Roichmann [13], the following result on the eigenvalues of A was first proved in
Diaconis and Shahshahani [1]. The corresponding eigenvectors were determined [at
least] in Rockmore et al. [12].

Corollary 5.4. Let o be a class function. Then, every vector in the orthogonal

basis {@Ef)} of C[G] is an eigenvector of A. The eigenvalue associated with ég-“) is

G _ 1
(18) =) = L S a0
dy, dy,
geG
Proof. Lemma 2.13 gives for a class function a
G _
3 alo)e (0) = ta, e,
k
9€G

which substituted into (17) proves the claim. O
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5.1. Example: Hamming graphs. The Hamming graph H(n,r) is the Cayley
graph X (Z",S), where S is the set of all elements of Z? with exactly one nonzero
coordinate. In particular, the Hamming graph H(n, 2) is the familiar n-dimensional
hypercube. [Recall Example 4.1.]

We now determine the eigenvalues and eigenvectors of H(n,r). Since ZT is
abelian, all of its conjugacy classes are singleton sets. This implies that the char-
acteristic function a of S is a class function, and hence we can apply Corollary
5.4.

The eigenvectors of the adjacency matrix A of H(n,r) are thus {o(*)},¢z», where

@(z) (y) = wy i wiyi7 y € Z:}

is the complex conjugate of the 1-dimensional representation (14) associated with
x € Z!. The corresponding eigenvalue A, can be evaluated using (18) and the
character formula (15): The characteristic function of S is

1 if there is exactly one ¢ such that y; # 0; and
a(y) = :
0 otherwise.

Thus, if we denote by wg(x) the number of nonzero coordinates in x, we have

n p—l n p—1
Ap = Z a(y)Xa(y) = Z Z wriYi = —n + Z Z Wi
YELT i=1 y;=1 =1 yi=0

— et (1 = wn (@) = ( — D = rw(a),

where the second last equality follows from (13).
For example, the eigenvectors 3(*) together with their eigenvalues A, for n = 3,
r = 2 are given in the table below.

y |000 001 010 011 100 101 110 111] X
(000) 1 1 1 1 1 1 1 1] 3
%01 1 -1 1 -1 1 -1 1 —-1] 1
(010) 1 1 -1 -1 1 1 -1 -1| 1
o011 1 -1 -1 1 1 -1 -1 1] -1
t100) 1 1 1 1 -1 -1 -1 -=-1] 1
ot1on) 1 -1 1 -1 -1 1 -1 1] -1
o119 1 1 -1 -1 -1 -1 1 1] -1
o1y 1 -1 -1 1 -1 1 1 —-1]-3

5.2. Example: The dihedral group. We next consider the dihedral group D,,,
n > 3, and the generating set S = {r,r"~! s}, which is inverse closed, but not a
union of conjugacy classes. [Recall Section 3.2 and Example 4.3.] For simplicity
we assume 7 to be odd. The spectrum of the adjacency matrix of X (D,,S) can be
computed using Corollary 5.3. For the two 1-dimensional representations

oM (st =1, o®)(s"rt) = (-1)",
we obtain

N =3, () =1

For the remaining (n — 1)/2 2-dimensional representations, 1 < k < (n —1)/2,

ku —ku
Q(k)(ru) = ( wg Pku ) ) Q(k)(sru) = ( 0 w% ) )

ku
Wy, Wy,
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we obtain

k —k
k) (o [ wh+wy, 1 [ 2cos2wk/n 1
0% (e) = ( 1 wyk+wk )T 1 2cos2wk/n )’

The eigenvalues of the g(a) are easily determined to be

A | m) | €
N =3 1 @07
Ao =1 1 L ’

M =2cos27k/n+1, 1<k<(n-1)/2|1,1 | @17, (@1,-DT

which are the eigenvalues of A by Corollary 5.3. From (17) we obtain that a cor-
k)

responding set of eigenvectors of A is formed by the linear combinations ), &; @Ej ,

where ¢ = (&)7 is an eigenvector of $(¥)(a) corresponding to A.

5.3. Example: The symmetric group and transpositions. Let S be the set of
all transpositions of {1,2,...,n}. The transpositions constitute a conjugacy class
of Sj,, so we can use Corollary 5.4 to analyze the spectrum of the adjacency matrix
of X(S,,S). For a partition A I n, the dimension dy can be determined using the
Hook Formula [Theorem 3.1], and the normalized character value xg?’l"" 1) /dx can
be computed using (16). The corresponding eigenvalue Ay of the adjacency matrix

A is then
1 /n\ (@1,.,1)
A - praneeat)
A dy (2))()\

The table below lists the seven largest Aj.

AFn dy 1=y | (1) - Ay
(n) 1 0 0
(n—1,1) n—1 2/(n—1) n
(n—2,2) nin —3)/2 4/n 2(n—1)
(n—2,1,1) (n—1)(n-2)/2 4/(n—1) 2n
(n—3,3) n(n —1)(n —5)/6 6(n—2)/(n(n—1)) | 3(n—2)
(n—3,2,1) n(n —2)(n—4)/3 6/n 3(n—1)
n-3,1,1,1) | (n=1)(n-2)(n—-3)/6 | 6/(n—1) 3n
From the table we can conclude that the spectrum of the graph in Example 4.2 is

AF4 A,\ m(A)\) = di

@) 6 1

(3,1) 2 9

(2,2) 0 4

2,1,1) | -2 9

(1,1,1,1) | =6 1

A corresponding base of eigenvectors for C[S4] could now be computed with the
help of Theorem 3.4.
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