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The opinion thatNewton’'s law of attractionis necessarily connected with the
geometry of our spaceas, and still is, often professed, especially by astr@ers. The
goal of the following study is to contradict that opmi It will be shown how Newton’s
theory of gravitation must considered in a schema ibatfree of any metric,
corresponding to the modern local-action or field physacsl how the metric will then
be introduced into that schema byaahitrary convention.

1.

Some instances in which the aforementioned opinion edauthe literature might
serve as amtroduction

In one of his early works “Gedanken von der wahren {2aohg der lebendigen
Krafte, etc. []” (1747), § 10 to 11). Kant remarked: “It is apparent that the three-fold
measurement of space originates in the law by which tleedan substances act upon
each other.” Moreover: “The triple measurement teeems to arise because the
substances act upon each other in the existing worldcin & way that the strengths of
the effects vary inversely to the squares of their sépasa Because of that, | believe
that the substances in the existing worldf which, we are a part have essential forces
of such a kind that in conjunction with each otherythall propagate their effects
according to twice the inverse ratio of their distanc&scondly, | believe that the totality
that emerges by means of that law has the propertyt thas$ three dimensions. Thirdly,
| believe that this law is arbitrary, and that God aflosne to choose another — for
example, the inverse-cube ratio. Fourth and finallyelieve that an extension of other
properties and measurements would flow from another law.”

In 1824, P. S. Laplace (") remarked that, due to its simplicity, generality, and
agreement with physical experiments, Newton’s law mestegarded as rigorous, and
further remarked that its most important property is, timsofar as the measurements of

[l Translation: “Thoughts on the true appraisatisfviva etc.”
() P. S. Laplace “Exposition du systéme du monde,” Oeuvres, v. VI, book pclV, pp. 472 (cited
in R. Bonalg, Die nichteuklidische Geometrikeipzig, 1908, pp. 5&t seq)
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the ratios of the reciprocal distances and velocieall bodies in the universe would
diminish, the celestial bodies would describe pathswuald be exactlysimilar to the
ones that they do describe, in such a way that the weiweould always provide the
observer withthe same viewwhen one progressively contracts it to the smallest-
conceivable space. That implies the Euclidian charadtastronomical space (viz., the
existence of similar figures!).

WhereasKant, in remarkable contradiction to his latar priori foundation of
geometry ¥), and with a certain premonition of Einstein’s theahgn regarded geometry
as a consequence of Newton’s law, in such a wayttbauld be assumed to be arbitrary,
Laplace, like most mathematicians froBuclid up to the his own era, decided upon the
absolute validity of geometry, and consider Newton’s tavibe a consequence of it and
certain simple physical axioms. Fbaplace, the latter corresponded to the intuitions of
the theory of action-at-a-distancei.e., Newton’sintegral law and not Laplace’s
differential equation(as in thetheory of local actiojy is in the foreground of all
consideration, such that the law in question would lkeaindd from simple assumptions
about the so-calledentral forcewith the aid of astronomical experiment. Latér,
Bertrand (%) reinforced the inverse-square law with his well-knoweotem: The paths
that a material point describes under the influencecehdral force that is only a function
of the distance arelosedonly when the force is either proportional to theatise or
inversely-proportional to the square of the distance. i§Agnown,Newton (%) himself
justified the exponent 2 by the remark that deviations atf ékxponent from the value 2
would have precession of the perihelia of the planets esnsequence, and therefore
paths that were not precisely closed.]

Laplace and his followers placeBuclidian geometry at the foundation of all of this.
The conversion of Newton’s law twon-Euclidianspaces) likewise came about from
the metric viewpoint: From an external viewpoint, the attractidrdifferent concentric
“balls” that are endowed with equal homogeneous densitgaith other should be
directly proportional to the masses that they werelowved with and inversely
proportional to the area of their surfaces. (It is kndhat due to the smallness of the
possible curvature of our space, the generalization of Kegdavs that one obtains from
this will imply no clue as to how one might resolfe juestion of its Euclidian or non-
Euclidian character with the help of planetary astrondm

So much for the intuitions of the physicsauition-at-a-distanceupon whose floor
most astronomers still stand to this day when they déhlNewton’s (integral) law or
its generalizations. J. Zenneck (°) assumed the standpoint €ield physics with
Maxwell's theory as its model. He based the exponent 2 in Nesviaw on the fact that
from the standpoint of the theory of field actionisithe only law that is consistent with
the assumption of a general (i.e., external to natteurce-freedistribution of field
strengths, so it is only with the precise validity bétt law that the concept dihes of

() 1. Kant, “Prolegomena zu einer jeden kiinftigen Metaphysik,” (17888: “Here (i.e., in the law of
attraction), we then have Nature, from which arlaes that the mind recognizes toderiori, and indeed
chiefly from general principles of the determinatiorspéce.”

() J.Bertrand, C. R.77 (1873), pp. 846.

() 1. Newton, Principia mathematicalib. I, sect. IX.

(%) E. Schering Gétt. Nachr. (1870), pp. 311; (1873), pp. 14W Killing , Crelle’s Journad8 (1885),
in particular, pp. 7et seqand pp. 24et seq.

() J. Zenneck Math. Encycl126(1917), pp. 15.
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force in a gravitational field will have any meaning. On jusattbasisJ. Lense (%)
believed that Newton’s law could be regarded as a nattwakequence of the
requirement that théorce fluxthat flowed through a closed surface from the outside
should have only the masses that existed inside ofsthiédce to thank for its origin.
Both authors employed the fact that Laplackfferential equationwhich is fundamental
for Newton’s law, has the form of divergence which then defines the link to the
methods of field physics) The connection between the latter and the metrgpate
remains unaffected.

2.

We now turn to the examination of the connection betwieeld physics and metrics.
The separation of the concepts of force flux and foroegw to be fundamental in that,
while the former belongs to field physics and the lateemetrically-oriented mechanics.

Corresponding to the basic ideas of field physics, roust describe all processes by
field quantities; they are, moreover, nothing but certamthematical functions of
position that characterize the presence of the fisldt they themselves, but their (mostly
mechanical) effects define measurementand are therefore admissible inneetric
picture.

A further consequence of the field physics picture istti@processes that take place
inside of an arbitrary closed surface will be determinethbyfield that originates inside
of it. Thus, field physics takes it must convenienttstgrpoint from the formulation of
certainintegral lawsthat couple an integral over the interior of a closedace with an
integral over the latter. The essence of the integraust be found in nothing but
invariant statements. It then happens that field physics is stggpdy the theory of
integral invariantsor integral forms(°).

The coefficients of amtegral formdefine what one calls \ector of rank one, two,
etc. in mathematical physics. That is the connedbietween field physics and vector
analysis.Vectorsare special cases t&@nsors namely,alternating tensorswhich change
sign when one switches any two of their indices. dnti@ast to the analysis of vectors,
the analysis of general, non-alternating tensors (the.absolute differential calculus) is
necessarily coupled with a metric.

One now imagines an arbitrary, continuous, three-fatgérneled manifoldvi; and
determines it points by any three numbers (i.e., coordingtex,, X3 . Let the field be
given at every point of this “space” by the second-nzettor with the components:

Fos=—Fz, Fai=—-Fi3, Fro=—-Fo.
Theforce flux through an infinitely-small surfacedetermined by the integral form:

Fa3 dXx dxg + F31 dxs dxg + F12 dx dX . (1)

() J. Lense Wien Ber.126(1917), pp. 15.

(®) Cf., alsoH. Liebmann, Nichteuklidische Geometriéeipzig 1905, pp. 224.

() This theory goes back td. Poincaré Nouvelles methods de la mécanique célestectl) H.
Poincaré “Analysis situs,” Journal de I'école polytechique (18953 -Goursat, Journ. de mathi (1908),
331. —F. Kottler, Wiener Ber121(1912), 1661et seq.
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The total force flux that goes through a two-sided, closedyhere-singular, outer
surface is given by:

H Fo dX,dx, + Fa dxs dXxy + Fradx dxe (2)

in which the surface integral is taken over the closgdrasurface. If one represents the
points of it as functions of two parameters then (2) will go to a double integral:

H{Fzsa(xz,xg) o, 006 %), Flza(xl,xz)} du dv. ()
o(u,v) a(u V) o(uv

which is taken over the domain ofandv. One must pay attention to the sequence of
differentials in the productdx, dxs, etc. in (2). Inverting that sequence will demand that
one invert the sign of the term in question.

The vectorial nature of finds its expression in the formulas that couple the
transformed-"to the oldF when one transformsinto the new coordinates:

0
Z F, == 0% 9%, etc. (3)
Y ox, ox,

The force flux is then determined byavariantvector of rank 2.
From the theorems @aussandGreen (which are valid for any metric), (2) can be
converted into a three-fold integral:

m{aﬁs anzians} e e b, @

which is taken over the interior of the outer surfad&e expression inside the integral is
an integral form of rank 3:

Fi123dx dx dxs . (5)
Its only coefficient is:
0 0 0
Fi23= a F23 _a F31+& F12’ (6)

whose defining law comes to light immediately, and whscthe prototype for the well-
known operation div in ordinary vector analysis, atsdfurther consequences include
Laplace’s differential expression.

One now addresses the presentation oirntiegjral lawsthat were mentioned to begin
with, which couple the internal phenomena with tleddfion the surface. Whether the
former is the origin of the latter or vice versarriglevant from the standpoint of field
physics. Newtonian physics, by contrast, assumes taauibstance (i.e., mass) of the
field that is found inside of the outer surface is therse of the effect. As is known, this
one-sidectausalpicture is converted intofanctionalcorrelation for field physics.

One describes the internal processes by a threentelgral:
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j j 5 0% dX dXs . (7)

The third-rank vectops 23 characterizes the singular locations in the field, Wwinne
regards as its causes or sources in the older conceiptiothe matter. Now, the field is
determined by its singularities (or the latter are detezthby the field) with the help of
theintegral theorem:

[]| Fosdhx,dx + Fa1 dxs dxy + Fip i de = [[[ 45 00 Ao i - (8)

This is Faraday’s law of force fluxwhich Faraday expressed by means of the well-
known geometric concept dihes of force. With the help of the conversion (4), upon
passing to the limit'}, it will imply the differential equation:

oF,;  OF;,  OF,
+ + = . 9
ox, 0%, 0x Hazs ©

Fi23=

This is thenucleus of Laplace’s differential equatiand theorigin of Newton’s law
of attraction.

3.

The foregoing can be extended formally. Vectorsga@metricquantities, so they
are, in any event, subject to the lawdoflity. It then happens that one can express one
and the same substratum by two different vectors, e.gector of rankp and a
contravariant vector of rank— pin ann-dimensional spaceGrassmanncalled the one
vector thecomplemenof the other one.

In order to arrive at this, one considers the buafllmes and planes at any poinof
the three-fold extended manifoMs ; in the infinitesimal vicinity of it, one has linegyr
in space, and therefore projective geometry. A conti@vavector of rank one then
determines a line of that bundle by the ratios of itmmanents, etc. Instead of that
bundle, one can also consider a projective pErthat one cuts the bundle with; we
prefer the latter representation. Tdontravariantvectors of rank 1 (which are affixed to
the pointx of the original three-fold extended manifdid) then determine any system of
triangular coordinates of the points in that plane leyrtbomponents. However, one can
determined a point in the plaBeby means of any two lines that intersect at it, intaud
to its point coordinates. One will then obtain the twavad sub-determinants from the
matrix of line coordinates of the two lines, and they nalstiously be the components of
acovariantvector of rank 2 that belongs to the originahtravariantvector of rank 1 by
means of the law of duality.

() The questions of the admissibility of the passage tdithie and the validity of the differential
equation (9) inside of matter remain undisturbed héteWeyl made it clear in the"4edition of Raum-
Zeit-Materie 275,et seqthat (9) is not applicable inside of matter. The irdelgiw (8) remains untouched
by that.
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Up to now, the proportionality factor with which the nfmgeneous triangular
coordinates are multiplied, which is left arbitrary in jpobive geometry, has not been
considered.

Correspondingly, one must leave the proportiondétor on the definition of the
complementand thus, of thelual vectoy arbitrary, if one is to avoid the introduction of
metric viewpoints.

If one then seeks the contravariant vector thatoisplementary (or dual) to the
covariant vector of the force flux with the components

Fas, Fa1, Fi2,

and whose components are denoted by:

n] n] O

Fl F2 F3

then they will be proportional to the former in the préssa sequence, from the
theorems of projective geometry that were just invok&te arbitrary proportionality
factor, which must naturally be the same for all vetat the locatiorx of the triply-
extended manifoldvs, is not some scalar, but, as one easily sees, amyiant vector
&1230f rank 3. One then ha¥(

O O O
Fos = &123 F*, Fa1=&23 F?, Fio = &123 F°, (10)

m|
for thecomplement of F. One easily convinces oneself of the validity of #lations
(10) by transforming to new coordinatésin which one likewise postulates relations of

m|
the form (10) for the new’ (F', resp.). In order for that to be trug,s must actually
transform like a vector of rank 3:

fia5= 1, 200 % %) (11)
0(%, %, %)

O O O
F', F?, F® then represents a contravariant vector of rarilel1;one has:

() If the complement of a covariant vector of rgmknith the componentsFilizwip is given by the

relations:
=gy o F P

iipip

in which, iy iz iy ip+1 ... In Must be a positive permutation of 1 2n... Analogous statements are true for the
complement of its contravariant vector. The complenoé the complement of a vector is equal to either
the same vector or its opposite.



Kottler — Newton’s law and metrics. 7

O 3 0O
F=YF % e (12)

=1 X

The force flux can then be determined in the same veay the covariant vector of rank

m|
2 or its complemenE . If one then sets:

Hi23= P &123, (13)
in which pis a scalar factor, then one can also write:

0 oy, 0 5y, O 3y
a(glzaF )+£(£123F )+&(‘91st ) = P &123, (14)

in place of (9). One recognizes the prototypehefusual notation for the divergence (the
Laplace differential expression, resp.) in this.

As we promised at the beginning of this paper, hage then brought Newton’'s
theory of gravitation into the schema (9) [(14)5p4, which is free of any metriand is
equivalent to the integral law (8). That is thbe hucleus of Newton’s theory from the
standpoint of field physics, and is nothing but timathematical expression for the
concept of local action.

It remains for us to show how the metric will méroduced into this schema by an
arbitrary convention.

4.

Force flux is a field concept, and as such, itasaeement is not practicable. Only its
mechanical effects — i.e., the force — can be niedsu

It is know from Lagrangian mechanics how one cefing (measure, resp.) force in
arbitrary coordinates;, X2, X3 . One measures force by therk that it can perform. In
this, the work that infinitely-small displacemeriteomass point from the locatiotto the
locationx + dx performs will be given by Bnear differential form:

dA= P1 dx, + P2 dx + P3 dxs . (15)

With Lagrange, one calls the coefficieptsf this differential form thgeneralized force.
The form is then given by @variantvector of rank 1.

Now, it is known that force is ordinarily represesh by a line segment in mechanics.
Thus, it shall be a contravariant vector of rank This contradiction usually remains
unnoticed, since one employs Cartesian orthogamaidinates for the usual calculation
of work in physics, as well as in engineering. B®wrer, it is well-known that
contravariance and covariance coincide in suchdoates.

In truth, the representation of a force by a Begment is based uptre introduction
of a metric Indeed, when one recalls the development ofrteehanics and analysis in
the context of the laws of levers, one can almast that metric geometry, and in
particular, the concept of orthogonality, arisenirthe work product (15) in mechanics.
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From the previously-developed viewpoint of field physics,ttaen of thought that is
implicit in this is, however, the following one: Onmilly, only the covariant vectdt of

m|
rank 2 or the complementary contravariant ve¢toof rank 1 have any meaning as field
guantities (i.e.force fluy. One needs to measure force flux by the work donendy t

m|
forcep, which is a covariant vectdf of rank 1. One must define a covariant vegtof

m|
equal rank from the contravariant vectér. One achieves that with the help of a polar
correlation, namelygeneralized orthogonality
For this, one imagines any conic section as being dnawheiprojective plank that

was treated in n@. A line with the line coordinates, pz, ps will belong to the point of
O

O O
the planeE whose point coordinates afe', F?, F® by means of the polar system of
that conic, and that line will represent the desired Gantvector — i.e., the force that
belongs to the force flux.
In order to express this in formulas, one must givectilec section by means of its

guadratic form in the point coordinatés &,, 3 of the planee. Let:

Yadd  (ax=a (16)

be the form. Naturally, thay are, in general functions of the locatwmat which one
consider the linear bundle (plaig resp.); i.e., the metric that is introduced generally
changes from point to point on the three-fold extendadifimid M .

With the help of this orthogonality, one has a c@rdrvector of rank 1 in:

3 O 3 O 3 Dk
Da F< o Dlay FY, Dag Y
k=1 k=1 k=1

O
which belongs to the contravariant vectér of equal rank. A scalar proportionality
factor still remains arbitrary. However, since therdgbn of force is still free of it, one
can really set:

3 |
pi= > a F*, i=1,2,3. (17)
k=1
By introducing the form that is reciprocal to (16), oné get:

0 3
F“=>a"p k=1,2,3, (18)
i=1

. . 3 , 1 k=l
in which thea = a“ fulfill the known relations:)_a,a' = &} = {
i=1 .

(19)
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From (15) and (17), one will then have:
dA= > a, F dx (20)

for the work that is done by the force flix One can glimpse the historical origin of the
angle measure (orthogonality, projectien,al) in this work product of mechanics. By
the defective duality of the Euclidian metric, the nueament of length is independent of
it. However, since nothing has been required ofaiheone can identify them with the

coefficients of the quadratic form, which establish tfeel@ngth, and therefore, the angle
measure itM3 . Accordingly, let:

ds = 23: a, dx dx (21)

ik=1

be that form. As we mentioned, we have a clue far identification in the laws of
levers.
We summarize them: First of all, the covarianttee€& of rank 2 was the force flux,

m|
from which arises the complementary contravariantore€ of rank 1, and from that
arises thepolar reciprocal (or briefly, thereciprocal) covariant vectop of rank 1 of
force:

0 3
Fa3 = &123 F' = €123 Za”‘ P . etc. (22)
k=1

by means of orthogonality. In this, we have set:

123 = P &123.

It is unnecessary to base the arbitrary temsgyon the metric (21) that we introduced
just now. When one establishes thatder 1 the integral:

J:U Mg dx dxe dxs

when taken over a closed domain, shall give its voluha,will come about in the same
way as when it is measured on the basis of (21).lldte from this that:

&123= \/_a ) (23)

in whicha is the always-positive [for a positive-definite form (Pdgterminant:

a; &,
A= | 8y 8y 8y
8y 85 85



Kottler — Newton’s law and metrics. 10

Upon transforming to new coordinatés./a actually behaves like a vector of rank 3, as
long as the functional determinant satisfies:

0%, %,%) 5 o
2%, %, %)

In the opposite case, one must gt =—./ & in order to remain in agreement with (11).
One should never lose sight of this rule when osefinds the Grassmann complement

with the help of a vector of rank 3 that is defingd(23), as is customary.
We finally have:

F23:\/_aFDl :\/Eia”‘g, etc.
k=1
H123= \/_a,O-

According to the chosen normalization (28)means the (volume) density of matter, so
the integral:

J:U Mg dx dxo dxs

will give the totalmassthat is found in the domain)(
Finally, Laplace’s equation (14) will be:

0 3 0 S 0 SE
AT (Va4 0| =Vap. @

In the case where (15) is a complete differentla, forcep will be conservative and
representable by a potentgl

pk:%, k=1, 2, 3.

One will then obtain the familiar form:

() H. Weyl, loc. cit, pp. 98, referred to vectors lileas (linear) tensors, in order to distinguish them
g
from the notation/a F, which he referred to as (linear) tensensities and “believed that the difference
between quantity and intensity (to the extent that it dras physical meaning) has been captured more
rigorously.” From what we have done here, this diffeeeiscvery well present, but must be grasped in a
g
completely different wayF or F are intensities, while theare quantities.
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fZ [fZ 'ka¢j 2 (25)

from (24); i.e., the second-order Beltrami differengatameter, which will reduce to the
classicalaplace form:

0°¢ 0% 0°F_
o 6X2 a)% =p (258)

for a Euclidiands’ (21) in Cartesian coordinates.

5.

If one reviews what we have done up to now then onesesldirectly that thay or
the form (21) can still remain completely open. Thdrimeannot be derived from a
mechanical viewpoint then; it is, moreover, a resultaof arbitrary convention as
Poincaré has emphasized so often.

One can choose any metric, so the associated fonewfon’s law would then drop
out of (25), which would then naturally not have thee form of the inverse-square of
the distance, and one could then seek to compare tak vath experiment. If the
chosen metric is not in glaring contradiction to approximate Euclidian nature of space
then one will certainly be able to arrive at agreemwtht experiment to within the error
in observation. The fact that space is approximatelfidtans does not need to amaze
one; any manifold is Euclidian in an infinitesimal regio@ne can then glimpse in that
fact at most an indication of the immensity of spacegyerhaps the smallness of Man.

It is not our problem here to discuss how the choiceufmetric actually comes
about. It has been known sindelmholtz, Riemann, andLie that the assumption of the
unchanging mobility of the fixed bodiégiz., the requirement of homogeneity and
isotropy in space) reduces the choice to the EuclidiamoarEuclidian space forms of
constant curvature. The close decision between Eaclaid non-Euclidian space forms
is, however, subject to only more open possibilities, ané known, cannot be resolved
experimentally to this day.

From the foregoing then, pure field physics is in no e@ynected with the metric of
space. That seems to contradict Einstein’s theory,hwhg is known, derives gravitation
from the metric on space and time. The task of glagfthat contradiction will have to
be addressed in a later work. FEoOnstein, it is not thefield that brings in the metric, but
light, and only by its help can we comprehend our environment.




