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Abstract. The Lefschetz Fixed-Point Theorem provides a method of proving

the existence of a fixed-point for self-maps on simplicial complexes. In this
paper we prove the Lefschetz Fixed-Point Theorem. We also prove the Hopf

Trace Formula and the Simplicial Approximation Theorem, two facts that

provide the basis for our proof of the Lefschetz Fixed-Point Theorem.
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1. Introduction

An n-sphere has only two non-trivial homology groups: Hn(Sn) and H0(Sn), and
thus maps from n-spheres to themselves only induce a homomorphism on Hn(Sn),
the map f∗ : Hn(Sn) → Hn(Sn), and the homomorphism on H0(Sn, which is al-
ways the identity map, id : H0(Sn) → H0(Sn). Further, since Hn(Sn) ≈ Z, that
homomorphism must take the form f∗(x) = dx. This allow us to define d as the
degree of the map from a n-sphere to itself; further, we can extend the properties
of degree to prove the Brouwer Fixed-Point Theorem for disks.

Theorem 1.1 (Brouwer Fixed-Point Theorem). Every map f : Dn → Dn has at
least one fixed point.

We would like to generalize both of these notions: we will generalize the idea of
degree with the Lefschetz number, which gives us information about the induced
homomorphisms on all the homology groups of the space, and we will generalize
the Brouwer Fixed-Point Theorem with the Lefschetz Fixed-Point Theorem.

1



2 EDGAR LIN

2. The Lefschetz Fixed Point Theorem

Definition 2.1 (Lefschetz Number). Let X be a finite simplicial complex. Then,
for a map f : X → X, define the number τ(f) such that

τ(f) =
∑
n

(−1)ntr(f∗ : Hn(X)→ Hn(X)).

Then, we call τ(f) the Lefschetz number of f .

Theorem 2.2 (Lefschetz Fixed-Point Theorem). Let X be a finite simplicial com-
plex. For any map f : X → X with Lefschetz number τ(f), if τ(f) 6= 0, then it
must be true that f has at least one fixed point.

I would like to note a few obvious implications of the theorem before proceeding
with a proof. First, if a space is homotopy equivalent to a point, such as all Dn, or if
a space has equivalent homology groups to a point ignoring torsion, as are all RP2n,
then any map from that space to itself has a Lefschetz number of 1 and thus has a
fixed point. Second, the Lefschetz number of the identity map is always the Euler-
characteristic χ(X) of the space, and a flow on a space is a homotopy ft(x) where
f0 is the identity map: therefore, if a space has non-zero Euler-characteristic, all
flows on that space must have a fixed-point. This gives us our hairy ball theorem:
since n-spheres have an Euler-characteristic of 2 if n is even and 0 if n is odd, a
flow on any even n-sphere must have a fixed point.

We require two lemmas before we begin our proof. First, we need the Simplicial
Approximation Theorem, a property of maps on finite simplicial complexex.

Theorem 2.3 (Simplicial Approximation Theorem). If K is a finite simplicial
complex and L is any simplicial complex, then any map f : K → L is homotopic
to some map g : K ′ → L where K ′ is an iterated barycentric subdivision of K.
Furthermore, f(σ) ⊂ st(g(σ)). Proof in appendix 3.2

Second, we need the Hopf Trace Formula, an algebraic property that will supply
us with an alternate method to calculate the Lefschetz number of a map.

Lemma 2.4 (Hopf Trace Formula). Let C∗ be the chain complex

0→ Ck → Ck−1 → . . .→ C0 → 0

where each Ck is finitely generated and abelian, and let Hk, . . . H0 be the corre-
sponding homology groups where

Hn = Ker(δn : Cn → Cn−1) \ Im(δn+1 : Cn+1 → Cn),

and let φ# be a chain map on C∗ that induces homologies φ∗ : Hn → Hn for each
Hn. Then, ∑

n

(−1)ntr(φ∗ : Hn → Hn) =
∑
n

(−1)ntr(φ# : Cn → Cn).

If Hk, . . . ,H0 are the homology groups on some simplicial complex X and φ∗ the
homologies induced by some φ : X → X, this implies that

τ(φ) =
∑
n

(−1)ntr(φ# : Cn → Cn)

Proof in appendix 3.1.

Now we can begin our proof.
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Proof of Theorem 2.2. To prove the Lefschetz fixed-point theorem, we will try to
prove than any map f from a finite simplicial complex X to itself that has no fixed
points must have a Lefschetz number of zero.

By Lemma 2.4, we can calculate the Lefschetz number of a map by taking the
traces of the induced chain maps on some chain complex instead of the induced
maps between homology groups. So, we can prove that a map has a Lefschetz
number of zero by showing that for the cellular chain complex implied by a CW-
complex K on X, the map takes no generator of any H(Kn,Kn−1) in to itself.
Since those generators correspond to the cells of each Kn, if we choose K to be a
simplicial complex, those generators will be simplices. Therefore, we will use the
fact that f takes no point to itself to try to find some simplicial complex K such
that we can use Theorem 2.3 to approximate f by a simplicial map g that takes no
simplex of any Kn to itself.

First we will construct a subdivision L of X such that no simplex of L contains
both x and f(x). We note that since X is compact, if d is a metric on X, then,
d(x, f(x)) being greater than 0 for all x, there exists some smallest distance δ > 0
such that δ ≤ d(x, f(x)) for all x ∈ X. Then, we iteratively barycentrically divide
X until we obtain a simplicial complex L such that for all simplices σ ∈ L, the
diameter of st(σ) is less than δ

2 .
Now, we’ve constructed a subdivision L of X with simplices small enough that

f takes no point in any simplex to the same simplex—however, f does not takes
simplices to simplices and so does not induce “nice” maps when we use our simplicial
complex to create a cellular chain complex. Fortunately, by Theorem 2.3, since f is
a map between finite simplicial complexes, f can be approximated by a homotopic
map g : K → L, where K is a subdivision of L that takes simplices to simplices.
And, for all σ ∈ K and for any x ∈ σ, all points in g(σ) are within a distance of δ

2

of f(x), while all points in σ are within a distance of δ
2 of x, so, since x and f(x)

are at least a distance of δ apart, no point is in both σ and g(σ).
Since g is simplicial from K to L, g maps each simplex of Kn to some simplex of

Ln. Since K is a subdivision of L, each simplex in Ln corresponds to some subcom-
plex of Kn. Therefore g induces a mapping from each Kn to Kn. Thus, using K as
a CW-complex on X, g induces chain maps g∗ : Hn(Kn,Kn−1) → Hn(Kn,Kn−1)
on the resulting cellular chain complex. Each Hn(Kn,Kn−1) is free abelian with
the simplices of Kn as its basis: therefore, since g takes no simplex of any Kn to
itself, no g∗ takes any basis element of Kn to itself; thus tr(g∗ : Hn(Kn,Kn−1) →
Hn(Kn,Kn−1)) = 0 for all n. By Theorem 2.4, this implies τ(g) = 0; and, since g
is homotopic to f , τ(f) = τ(g) = 0.

Thus, since if f is fixed-point free, τ(f) = 0, if τ(f) 6= 0, f has at least one fixed
point. �

3. Appendix

3.1. Proof of Hopf Trace Formula.
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Proof. Our proof rests on a simple property of maps of short exact sequences to
themselves: given maps α, β, and γ that form the following commutative diagram:

0 A B C 0

0 A B C 0

α β γ

we have

tr(α) + tr(γ) = tr(β).

To prove this, we start from the fact that trace ignores torsion: therefore for
the rest of this proof, let A,B, and C refer to the free-abelian components of those
groups. We then use the fact that all short exact sequences of free-abelian groups
split, so we have the following commutative diagram:

B

0 A C 0

A⊕ C

j

≈

i

where the maps on the bottom take a ∈ A to (a, 0) and (0, c) to c ∈ C. Let A
have a basis {a1, a2 . . . , ai} and C have a basis {c1, c2, . . . , cj}: then, A ⊕ C has
{(a1, 0), . . . , (ai, 0)}∪{(0, c1), . . . , (0, cj)} as a basis, so the union of the equivalents
of {(a1, 0), . . . , (ai, 0)} and of {(0, c1), . . . , (0, cj)} forms a basis for B. Let the bases
that map to (an, 0) be called a′n and those that map to (0, cm) be called c′m. Our
commutative diagram tells us that the bases a′n are the images of the bases an
under the map i and that j takes the bases c′n to the bases cn of C.

Thus, returning to our maps from the sequence to itself, since the set of a′n
and c′n together form a basis for B, we can calculate the trace of β by adding
the sum of the number of times β takes each a′n to itself over all a′n to the sum
of the number of times β takes each c′n to itself over all c′n. We note that our
commutative diagram tells us that for all an, iα(an) = βi(an). Thus, if α maps an
to k1a1 + · · · + knan + · · · + kiai, then, since i(an) = a′n, β maps a′n to βi(an) =
iα(an) = k1a

′
1 + · · ·+kna

′
n+ · · ·+kiai

′. Thus if α maps an to itself kn times, β also
maps a′n to itself kn times, so the first sum in our calculation for tr(β) is merely
tr(α). Similarly, since jβ(c′n) = γj(c′n) and cn = j(c′n), our second sum is equal to
tr(γ). Thus we have tr(β) = tr(α) + tr(γ).

Now that we have this fact, we will take two commutative diagrams of maps
from short exact sequences to themselves formed from the chain maps induced
by φ. These diagrams will relate Cn and Hn with Zn = Ker(δn : Cn → Cn−1)
and Bn = Im(δn+1 : Cn+1 → Cn). By the definitions of Zn and Bn, we have the
following short exact sequence and its φ induced maps, where γn is the induced
map φ# : Cn → Cn:

0 Zn Cn Bn−1 0

0 Zn Cn Bn−1 0

ζn

i

γn

δn

βn−1

i δn
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And, from the definition of Hn as Zn \ Bn, we have the following short exact
sequence, where ηn is the induced map φ∗ : Hn → Hn:

0 Bn Zn Hn 0

0 Bn Zn Hn 0

βn ζn ηn

This gives us the following relations between the traces of mappings:

tr(γn) = tr(ζn) + tr(βn−1)
tr(ζn) = tr(βn) + tr(ηn)

and thus,

tr(γn) = tr(βn) + tr(ηn) + tr(βn−1)

so we have ∑
n(−1)ntr(φ# : Cn → Cn)

=
∑
n(−1)ntr(γn)

=
∑
n(−1)ntr(βn) + tr(ηn) + tr(βn−1)

=
∑
n(−1)ntr(ηn)

=
∑
n(−1)ntr(φ∗ : Hn → Hn)

�

3.2. Proof of Simplicial Approximation Theorem.

Proof. We start with a lemma that will help us determine that a set of vertices do
indeed define a simplex:

Lemma 3.1. For vertices v1, . . . , vn of a simplicial complex X, either the intersec-
tion st(v1) ∩ · · · ∩ st(vn) = ∅, or v1, . . . , vn are the vertices of a simplex of X and
the intersection is the star of that simplex.

Proof. For each vertex vi, its star st(vi) is the union of the interiors of all simplices
with vi as a vertex. Since the interiors of simplices on a simplicial complex don’t
overlap, st(v1)∩· · ·∩st(vn) is the union of the interiors of all simplices that are in all
st(v1), . . . , st(vn). That is, it is the union of the interiors of all simplices that have
v1, . . . , vn in its set of vertices. If the intersection is non-empty, then there exists at
least one simplex that has v1, . . . , vn as a subset of its set of vertices, and therefore
the simplex σ with vertices v1, . . . , vn exists as a face of that simplex. Furthermore,
the union contains the interiors of all simplices that have those vertices as a subset
and therefore σ as a face, so it is in fact st(σ). �

Now that we have this lemma, we want to subdivide K until for each simplex of
our subdivision, we can approximate its vertices to vertices of L with intersecting
stars: this implies that the simplex maps to a simplex of L. We know that the
preimages of the open stars of the vertices of L form an open cover on K. Therefore,
it has a Lebesgue number ε such that for each set with diameter less than ε, there
is some vertex whose open star’s preimage wholly contains that set.

We can iteratively barycentrically subdivide K until we obtain K ′ where each
simplex of K ′ has a diameter less than ε

2 . Then, for each vertex v of K ′, the
diameter of St(v) is less than ε, so f(St(v)) is wholly contained in the open star of
some vertex of L. Call that vertex g(v): this gives us a map g : K ′0 → L0 where
f(St(v)) ⊂ st(g(v)).
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Now take any simplex σ of K ′. For all vertices vi of σ, σ ∈ St(vi). Therefore
f(σ) ⊂ st(g(vi)) for all i, so f(σ) ⊂

⋂
i st(g(vi)) 6= ∅. That means that {g(vi)} is

the set of vertices of a simplex in L: g maps the vertices of each simplex in K ′ to the
vertices of a simplex in L. Further, if we extend g so that it linearly maps each σ
to the simplex defined by the image of σ’s vertices, f(σ) ⊂

⋂
i st(g(vi)) = st(g(σ)).

Therefore, each f(x) is in a simplex that has g(σ) as a face, so, since simplices are
convex, f(x) and g(x) are connected by a linear path. Therefore, since f is given
as continuous and g, being linear within each simplex, must also be continuous, we
can construct a homotopy ft(x) = (1− t)f(x) + tg(x) between f and g along those
linear paths, so f and g are homotopic.

�
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