
Line Bundles in String Model Building

Andre Lukas

University of Oxford

StringPheno 2019, Cern, June 2019

arXiv: 1810.0444, 1906.0363, 1906.08769, 1906.08730

in collaboration with: Callum Brodie, Andrei Constantin, Rehan Deen, Yang-Hui He

Outline

• Introduction

• Counting line bundle standard models

• Formulae for line bundle cohomology

• Conclusion

• Machine learning line bundle cohomology

Introduction: line bundle models

To define a heterotic line bundle model we need:

(Anderson, Gray, Lukas, Palti, 1106.4804)

Introduction: line bundle models

To define a heterotic line bundle model we need:

- A Calabi-Yau 3-fold X

(Anderson, Gray, Lukas, Palti, 1106.4804)

Introduction: line bundle models

To define a heterotic line bundle model we need:

- A Calabi-Yau 3-fold X

- A line bundle sum on ,

 , so structure group is .

XV = L1 � · · ·� L5

c1(V) = 0 S(U(1)5)

(Anderson, Gray, Lukas, Palti, 1106.4804)

Introduction: line bundle models

To define a heterotic line bundle model we need:

- A Calabi-Yau 3-fold X

- vanishing slopes µ(La) ⌘ c1(La) ^ J2 !
= 0

- A line bundle sum on ,

 , so structure group is .

XV = L1 � · · ·� L5

c1(V) = 0 S(U(1)5)

(Anderson, Gray, Lukas, Palti, 1106.4804)

Introduction: line bundle models

To define a heterotic line bundle model we need:

- A Calabi-Yau 3-fold X

- vanishing slopes µ(La) ⌘ c1(La) ^ J2 !
= 0

- A line bundle sum on ,

 , so structure group is .

XV = L1 � · · ·� L5

c1(V) = 0 S(U(1)5)

- Anomaly:

 in practice:

c2(TX)� c2(V)� c2(Ṽ) = [C]
c2(V)  c2(TX)

(Anderson, Gray, Lukas, Palti, 1106.4804)

Introduction: line bundle models

To define a heterotic line bundle model we need:

- A Calabi-Yau 3-fold X

- vanishing slopes µ(La) ⌘ c1(La) ^ J2 !
= 0

- A line bundle sum on ,

 , so structure group is .

XV = L1 � · · ·� L5

c1(V) = 0 S(U(1)5)

- Anomaly:

 in practice:

c2(TX)� c2(V)� c2(Ṽ) = [C]
c2(V)  c2(TX)

N=1, D=4 GUT with

gauge group

and matter in
SU(5)⇥ S(U(1)5)

10, 1̄0, 5̄,5,1

(Anderson, Gray, Lukas, Palti, 1106.4804)

- freely acting symmetry on , so

 is smooth and non simply-connected

� X X̂ = X/�

- bundle needs to be equivariant so it

 descends to a bundle on

V
X̂V̂

- complete bundle with Wilson line

 to break GUT group

WV̂ �W

- freely acting symmetry on , so

 is smooth and non simply-connected

� X X̂ = X/�

- bundle needs to be equivariant so it

 descends to a bundle on

V
X̂V̂

- complete bundle with Wilson line

 to break GUT group

WV̂ �W

standard-like model

(hopefully) with

gauge group
GSM ⇥ S(U(1)5)

Counting line bundle standard models

How many standard models does string theory contain (at least)?

(Constantin, He, Lukas, 1810.0444)

Counting line bundle standard models

How many standard models does string theory contain (at least)?*

 At this level: String models with the exact (MS)SM spectrum plus modes uncharged  
 under the standard model group.

*

(Constantin, He, Lukas, 1810.0444)

Basic data specifying a model:

Basic data specifying a model:

X ⇠ [A |Q] h := h1,1(X) , ci := c2i(TX) , dijk

Basic data specifying a model:

X ⇠ [A |Q] h := h1,1(X) , ci := c2i(TX) , dijk

V ⇠
�
kia

�i=1,...,h

a=1,...,5
(2kmax + 1)4h choices for |kia|  kmax

Basic data specifying a model:

X ⇠ [A |Q] h := h1,1(X) , ci := c2i(TX) , dijk

V ⇠
�
kia

�i=1,...,h

a=1,...,5
(2kmax + 1)4h choices for |kia|  kmax

symmetry � � = Z2 most common

Basic data specifying a model:

X ⇠ [A |Q] h := h1,1(X) , ci := c2i(TX) , dijk

V ⇠
�
kia

�i=1,...,h

a=1,...,5
(2kmax + 1)4h choices for |kia|  kmax

symmetry � � = Z2 most common

Consistency and standard model constraints: (essentially) diophantine eqs.

Basic data specifying a model:

X ⇠ [A |Q] h := h1,1(X) , ci := c2i(TX) , dijk

V ⇠
�
kia

�i=1,...,h

a=1,...,5
(2kmax + 1)4h choices for |kia|  kmax

symmetry � � = Z2 most common

Consistency and standard model constraints: (essentially) diophantine eqs.

Q: For a given CY manifold, what is the number of consistent line

 bundle models with chiral asymmetry six? N = N(h, ci, dijk)

A rough count

N(h) ' �4.5 + 1.4h

Consider average number of models per CY, , as a function of

 only (neglect dependence on , for now):

N̄ = N̄(h)
h ci dijk

h = h
1,1(X) 2 3 4 5 6

number of CYs 6 12 19 23 8
number of models 0 6 552 21731 41949

number, N̄ , of models per CY 0 0.5 29 945 5244

Table 1: Number of models found in a computer scan for favourable CICYs with h  6 for each h.

satisfied in this case.) A simple approach is to assume that the main dependence of the number of
models is on the Picard number, h, and, to neglect the possible e↵ect of the intersection numbers
and the second Chern class for now. The average number, N̄ = N̄(h) of models per CY as a function
of h, taken from the last row of Table 1, has been plotted (logarithmically) in Fig. 1. A linear fit to

h1,1= 1 h1,1= 2 h1,1= 3 h1,1= 4 h1,1= 5 h1,1= 6
0

1

2

3

4
logHN L versus h1,1

Figure 1: The logarithm of N̄ , the average number of models per CY, as a function of h = h
1,1(X),

taken from the data in Table 1. The red line is a linear fit to the data.

this data (which corresponds to the red line in Fig. 1) leads to

log(N̄(h)) ' �4.1 + 1.4h . (1)

The largest known Picard number is hmax = 491 (which appears within the Kreuzer-Skarke data set)
and the largest value within the CICY list is hCICY = 19. Using the above linear formula to boldly
extrapolate to those values we find

N̄(hCICY) ' 1022 , N̄(hmax) ' 10662 . (2)

Clearly, these numbers are quite dramatic, even if we restrict ourselves to the CICYs. The predicted
number of standard models even within this set is significantly larger than can be currently stored,
let alone found by a scan. However, the method so far is quite crude and the extrapolation to large
h adventurous.

To see some of the problems, consider Fig. 2 which shows the number of models as a function of
h for each CICY (rather than the average over all CICYs with the same h, as considered previously).

2

A rough count

N(h) ' �4.5 + 1.4h

Consider average number of models per CY, , as a function of

 only (neglect dependence on , for now):

N̄ = N̄(h)
h ci dijk

h = h
1,1(X) 2 3 4 5 6

number of CYs 6 12 19 23 8
number of models 0 6 552 21731 41949

number, N̄ , of models per CY 0 0.5 29 945 5244

Table 1: Number of models found in a computer scan for favourable CICYs with h  6 for each h.

satisfied in this case.) A simple approach is to assume that the main dependence of the number of
models is on the Picard number, h, and, to neglect the possible e↵ect of the intersection numbers
and the second Chern class for now. The average number, N̄ = N̄(h) of models per CY as a function
of h, taken from the last row of Table 1, has been plotted (logarithmically) in Fig. 1. A linear fit to

h1,1= 1 h1,1= 2 h1,1= 3 h1,1= 4 h1,1= 5 h1,1= 6
0

1

2

3

4
logHN L versus h1,1

Figure 1: The logarithm of N̄ , the average number of models per CY, as a function of h = h
1,1(X),

taken from the data in Table 1. The red line is a linear fit to the data.

this data (which corresponds to the red line in Fig. 1) leads to

log(N̄(h)) ' �4.1 + 1.4h . (1)

The largest known Picard number is hmax = 491 (which appears within the Kreuzer-Skarke data set)
and the largest value within the CICY list is hCICY = 19. Using the above linear formula to boldly
extrapolate to those values we find

N̄(hCICY) ' 1022 , N̄(hmax) ' 10662 . (2)

Clearly, these numbers are quite dramatic, even if we restrict ourselves to the CICYs. The predicted
number of standard models even within this set is significantly larger than can be currently stored,
let alone found by a scan. However, the method so far is quite crude and the extrapolation to large
h adventurous.

To see some of the problems, consider Fig. 2 which shows the number of models as a function of
h for each CICY (rather than the average over all CICYs with the same h, as considered previously).

2

h = h
1,1(X) 2 3 4 5 6

number of CYs 6 12 19 23 8
number of models 0 6 552 21731 41949

number, N̄ , of models per CY 0 0.5 29 945 5244

Table 1: Number of models found in a computer scan for favourable CICYs with h  6 for each h.

satisfied in this case.) A simple approach is to assume that the main dependence of the number of
models is on the Picard number, h, and, to neglect the possible e↵ect of the intersection numbers
and the second Chern class for now. The average number, N̄ = N̄(h) of models per CY as a function
of h, taken from the last row of Table 1, has been plotted (logarithmically) in Fig. 1. A linear fit to

h1,1= 1 h1,1= 2 h1,1= 3 h1,1= 4 h1,1= 5 h1,1= 6
0

1

2

3

4
logHN L versus h1,1

Figure 1: The logarithm of N̄ , the average number of models per CY, as a function of h = h
1,1(X),

taken from the data in Table 1. The red line is a linear fit to the data.

this data (which corresponds to the red line in Fig. 1) leads to

log(N̄(h)) ' �4.1 + 1.4h . (1)

The largest known Picard number is hmax = 491 (which appears within the Kreuzer-Skarke data set)
and the largest value within the CICY list is hCICY = 19. Using the above linear formula to boldly
extrapolate to those values we find

N̄(hCICY) ' 1022 , N̄(hmax) ' 10662 . (2)

Clearly, these numbers are quite dramatic, even if we restrict ourselves to the CICYs. The predicted
number of standard models even within this set is significantly larger than can be currently stored,
let alone found by a scan. However, the method so far is quite crude and the extrapolation to large
h adventurous.

To see some of the problems, consider Fig. 2 which shows the number of models as a function of
h for each CICY (rather than the average over all CICYs with the same h, as considered previously).

2

A rough count

N(h) ' �4.5 + 1.4h

Consider average number of models per CY, , as a function of

 only (neglect dependence on , for now):

N̄ = N̄(h)
h ci dijk

h = h
1,1(X) 2 3 4 5 6

number of CYs 6 12 19 23 8
number of models 0 6 552 21731 41949

number, N̄ , of models per CY 0 0.5 29 945 5244

Table 1: Number of models found in a computer scan for favourable CICYs with h  6 for each h.

satisfied in this case.) A simple approach is to assume that the main dependence of the number of
models is on the Picard number, h, and, to neglect the possible e↵ect of the intersection numbers
and the second Chern class for now. The average number, N̄ = N̄(h) of models per CY as a function
of h, taken from the last row of Table 1, has been plotted (logarithmically) in Fig. 1. A linear fit to

h1,1= 1 h1,1= 2 h1,1= 3 h1,1= 4 h1,1= 5 h1,1= 6
0

1

2

3

4
logHN L versus h1,1

Figure 1: The logarithm of N̄ , the average number of models per CY, as a function of h = h
1,1(X),

taken from the data in Table 1. The red line is a linear fit to the data.

this data (which corresponds to the red line in Fig. 1) leads to

log(N̄(h)) ' �4.1 + 1.4h . (1)

The largest known Picard number is hmax = 491 (which appears within the Kreuzer-Skarke data set)
and the largest value within the CICY list is hCICY = 19. Using the above linear formula to boldly
extrapolate to those values we find

N̄(hCICY) ' 1022 , N̄(hmax) ' 10662 . (2)

Clearly, these numbers are quite dramatic, even if we restrict ourselves to the CICYs. The predicted
number of standard models even within this set is significantly larger than can be currently stored,
let alone found by a scan. However, the method so far is quite crude and the extrapolation to large
h adventurous.

To see some of the problems, consider Fig. 2 which shows the number of models as a function of
h for each CICY (rather than the average over all CICYs with the same h, as considered previously).

2

For CICYs: hmax = 19 N(hmax) ' 1023

h = h
1,1(X) 2 3 4 5 6

number of CYs 6 12 19 23 8
number of models 0 6 552 21731 41949

number, N̄ , of models per CY 0 0.5 29 945 5244

Table 1: Number of models found in a computer scan for favourable CICYs with h  6 for each h.

satisfied in this case.) A simple approach is to assume that the main dependence of the number of
models is on the Picard number, h, and, to neglect the possible e↵ect of the intersection numbers
and the second Chern class for now. The average number, N̄ = N̄(h) of models per CY as a function
of h, taken from the last row of Table 1, has been plotted (logarithmically) in Fig. 1. A linear fit to

h1,1= 1 h1,1= 2 h1,1= 3 h1,1= 4 h1,1= 5 h1,1= 6
0

1

2

3

4
logHN L versus h1,1

Figure 1: The logarithm of N̄ , the average number of models per CY, as a function of h = h
1,1(X),

taken from the data in Table 1. The red line is a linear fit to the data.

this data (which corresponds to the red line in Fig. 1) leads to

log(N̄(h)) ' �4.1 + 1.4h . (1)

The largest known Picard number is hmax = 491 (which appears within the Kreuzer-Skarke data set)
and the largest value within the CICY list is hCICY = 19. Using the above linear formula to boldly
extrapolate to those values we find

N̄(hCICY) ' 1022 , N̄(hmax) ' 10662 . (2)

Clearly, these numbers are quite dramatic, even if we restrict ourselves to the CICYs. The predicted
number of standard models even within this set is significantly larger than can be currently stored,
let alone found by a scan. However, the method so far is quite crude and the extrapolation to large
h adventurous.

To see some of the problems, consider Fig. 2 which shows the number of models as a function of
h for each CICY (rather than the average over all CICYs with the same h, as considered previously).

2

A rough count

N(h) ' �4.5 + 1.4h

Consider average number of models per CY, , as a function of

 only (neglect dependence on , for now):

N̄ = N̄(h)
h ci dijk

h = h
1,1(X) 2 3 4 5 6

number of CYs 6 12 19 23 8
number of models 0 6 552 21731 41949

number, N̄ , of models per CY 0 0.5 29 945 5244

Table 1: Number of models found in a computer scan for favourable CICYs with h  6 for each h.

satisfied in this case.) A simple approach is to assume that the main dependence of the number of
models is on the Picard number, h, and, to neglect the possible e↵ect of the intersection numbers
and the second Chern class for now. The average number, N̄ = N̄(h) of models per CY as a function
of h, taken from the last row of Table 1, has been plotted (logarithmically) in Fig. 1. A linear fit to

h1,1= 1 h1,1= 2 h1,1= 3 h1,1= 4 h1,1= 5 h1,1= 6
0

1

2

3

4
logHN L versus h1,1

Figure 1: The logarithm of N̄ , the average number of models per CY, as a function of h = h
1,1(X),

taken from the data in Table 1. The red line is a linear fit to the data.

this data (which corresponds to the red line in Fig. 1) leads to

log(N̄(h)) ' �4.1 + 1.4h . (1)

The largest known Picard number is hmax = 491 (which appears within the Kreuzer-Skarke data set)
and the largest value within the CICY list is hCICY = 19. Using the above linear formula to boldly
extrapolate to those values we find

N̄(hCICY) ' 1022 , N̄(hmax) ' 10662 . (2)

Clearly, these numbers are quite dramatic, even if we restrict ourselves to the CICYs. The predicted
number of standard models even within this set is significantly larger than can be currently stored,
let alone found by a scan. However, the method so far is quite crude and the extrapolation to large
h adventurous.

To see some of the problems, consider Fig. 2 which shows the number of models as a function of
h for each CICY (rather than the average over all CICYs with the same h, as considered previously).

2

For CICYs: hmax = 19 N(hmax) ' 1023

All known CYs: hmax = 491 N(hmax) ' 10662

h = h
1,1(X) 2 3 4 5 6

number of CYs 6 12 19 23 8
number of models 0 6 552 21731 41949

number, N̄ , of models per CY 0 0.5 29 945 5244

Table 1: Number of models found in a computer scan for favourable CICYs with h  6 for each h.

satisfied in this case.) A simple approach is to assume that the main dependence of the number of
models is on the Picard number, h, and, to neglect the possible e↵ect of the intersection numbers
and the second Chern class for now. The average number, N̄ = N̄(h) of models per CY as a function
of h, taken from the last row of Table 1, has been plotted (logarithmically) in Fig. 1. A linear fit to

h1,1= 1 h1,1= 2 h1,1= 3 h1,1= 4 h1,1= 5 h1,1= 6
0

1

2

3

4
logHN L versus h1,1

Figure 1: The logarithm of N̄ , the average number of models per CY, as a function of h = h
1,1(X),

taken from the data in Table 1. The red line is a linear fit to the data.

this data (which corresponds to the red line in Fig. 1) leads to

log(N̄(h)) ' �4.1 + 1.4h . (1)

The largest known Picard number is hmax = 491 (which appears within the Kreuzer-Skarke data set)
and the largest value within the CICY list is hCICY = 19. Using the above linear formula to boldly
extrapolate to those values we find

N̄(hCICY) ' 1022 , N̄(hmax) ' 10662 . (2)

Clearly, these numbers are quite dramatic, even if we restrict ourselves to the CICYs. The predicted
number of standard models even within this set is significantly larger than can be currently stored,
let alone found by a scan. However, the method so far is quite crude and the extrapolation to large
h adventurous.

To see some of the problems, consider Fig. 2 which shows the number of models as a function of
h for each CICY (rather than the average over all CICYs with the same h, as considered previously).

2

A refined count
Want to include dependence of on and . N ci dijk

Problem: and are not basis invariant. dijkci

A refined count
Want to include dependence of on and . N ci dijk

Problem: and are not basis invariant. dijkci

Invariants from and : ci dijk (Huebsch, ``Calabi-Yau Manifolds”, p. 174)

A refined count
Want to include dependence of on and . N ci dijk

Problem: and are not basis invariant. dijkci

Invariants from and : ci dijk (Huebsch, ``Calabi-Yau Manifolds”, p. 174)

0 2 4 6 8 10
xth0

1

2

3

4

5
logHNL

logHNL versus xth for each CY

Figure 3: The logarithm of N from the computer scan of CICYs versus the ”theoretical” upper bound
xth, as defined in Eq. (9).

indices down” so there is no invariant which can be obtained by a simple contraction of indices
(given that the only available metric, G, is moduli-dependent).

This problem has been encountered before, in the context of practical applications of Wall’s
theorem, and a solution has been proposed in Ref. [3], p. 174. From the intersection form �(x, y, z) :=R
X x ^ y ^ z the following invariants can be constructed:

d1 = gcd{�(x, y, z) |x, y, z 2 H
2(X,Z)} (10)

d2 = gcd{�(x, y, y) |x, y 2 H
2(X,Z)} (11)

d3 = gcd{�(x, x, x) |x 2 H
2(X,Z)} (12)

Furthermore, combining the intersection form and c2 = c2(TX) we can define the form ⇤(x, y, z, t) =
(�(x, y, z)c2(t) + 3 permutations) which gives rise to the invariants

d4 = gcd{⇤(x, y, z, t) |x, y, z, t 2 H
2(X,Z)} (13)

d5 = gcd{⇤(x, y, z, z) |x, y, z 2 H
2(X,Z)} (14)

d6 = gcd{⇤(x, y, y, y) |x, y 2 H
2(X,Z)} (15)

d7 = gcd{⇤(x, x, x, x) |x 2 H
2(X,Z)} (16)

Ref. [3] also provides a practical way of computing these invariants which involves a scan over only
a finite subset of H2(X,Z), so that they can be worked out from dijk and c2,i.

Combining the approaches of the previous two sections and using these invariants a plausible
Ansatz for logN = x is

x = A0 +B0 h+
7X

i=1

(Ai +Bi h) log di , (17)

5

�(x, y, z) =

Z

X
x ^ y ^ z

A refined count
Want to include dependence of on and . N ci dijk

Problem: and are not basis invariant. dijkci

Invariants from and : ci dijk (Huebsch, ``Calabi-Yau Manifolds”, p. 174)

0 2 4 6 8 10
xth0

1

2

3

4

5
logHNL

logHNL versus xth for each CY

Figure 3: The logarithm of N from the computer scan of CICYs versus the ”theoretical” upper bound
xth, as defined in Eq. (9).

indices down” so there is no invariant which can be obtained by a simple contraction of indices
(given that the only available metric, G, is moduli-dependent).

This problem has been encountered before, in the context of practical applications of Wall’s
theorem, and a solution has been proposed in Ref. [3], p. 174. From the intersection form �(x, y, z) :=R
X x ^ y ^ z the following invariants can be constructed:

d1 = gcd{�(x, y, z) |x, y, z 2 H
2(X,Z)} (10)

d2 = gcd{�(x, y, y) |x, y 2 H
2(X,Z)} (11)

d3 = gcd{�(x, x, x) |x 2 H
2(X,Z)} (12)

Furthermore, combining the intersection form and c2 = c2(TX) we can define the form ⇤(x, y, z, t) =
(�(x, y, z)c2(t) + 3 permutations) which gives rise to the invariants

d4 = gcd{⇤(x, y, z, t) |x, y, z, t 2 H
2(X,Z)} (13)

d5 = gcd{⇤(x, y, z, z) |x, y, z 2 H
2(X,Z)} (14)

d6 = gcd{⇤(x, y, y, y) |x, y 2 H
2(X,Z)} (15)

d7 = gcd{⇤(x, x, x, x) |x 2 H
2(X,Z)} (16)

Ref. [3] also provides a practical way of computing these invariants which involves a scan over only
a finite subset of H2(X,Z), so that they can be worked out from dijk and c2,i.

Combining the approaches of the previous two sections and using these invariants a plausible
Ansatz for logN = x is

x = A0 +B0 h+
7X

i=1

(Ai +Bi h) log di , (17)

5

�(x, y, z) =

Z

X
x ^ y ^ z

0 2 4 6 8 10
xth0

1

2

3

4

5
logHNL

logHNL versus xth for each CY

Figure 3: The logarithm of N from the computer scan of CICYs versus the ”theoretical” upper bound
xth, as defined in Eq. (9).

indices down” so there is no invariant which can be obtained by a simple contraction of indices
(given that the only available metric, G, is moduli-dependent).

This problem has been encountered before, in the context of practical applications of Wall’s
theorem, and a solution has been proposed in Ref. [3], p. 174. From the intersection form �(x, y, z) :=R
X x ^ y ^ z the following invariants can be constructed:

d1 = gcd{�(x, y, z) |x, y, z 2 H
2(X,Z)} (10)

d2 = gcd{�(x, y, y) |x, y 2 H
2(X,Z)} (11)

d3 = gcd{�(x, x, x) |x 2 H
2(X,Z)} (12)

Furthermore, combining the intersection form and c2 = c2(TX) we can define the form ⇤(x, y, z, t) =
(�(x, y, z)c2(t) + 3 permutations) which gives rise to the invariants

d4 = gcd{⇤(x, y, z, t) |x, y, z, t 2 H
2(X,Z)} (13)

d5 = gcd{⇤(x, y, z, z) |x, y, z 2 H
2(X,Z)} (14)

d6 = gcd{⇤(x, y, y, y) |x, y 2 H
2(X,Z)} (15)

d7 = gcd{⇤(x, x, x, x) |x 2 H
2(X,Z)} (16)

Ref. [3] also provides a practical way of computing these invariants which involves a scan over only
a finite subset of H2(X,Z), so that they can be worked out from dijk and c2,i.

Combining the approaches of the previous two sections and using these invariants a plausible
Ansatz for logN = x is

x = A0 +B0 h+
7X

i=1

(Ai +Bi h) log di , (17)

5

⇤(x, y, z, t) = �(x, y, z)c2(t) + perm

A refined count
Want to include dependence of on and . N ci dijk

Problem: and are not basis invariant. dijkci

Invariants from and : ci dijk (Huebsch, ``Calabi-Yau Manifolds”, p. 174)

0 2 4 6 8 10
xth0

1

2

3

4

5
logHNL

logHNL versus xth for each CY

Figure 3: The logarithm of N from the computer scan of CICYs versus the ”theoretical” upper bound
xth, as defined in Eq. (9).

indices down” so there is no invariant which can be obtained by a simple contraction of indices
(given that the only available metric, G, is moduli-dependent).

This problem has been encountered before, in the context of practical applications of Wall’s
theorem, and a solution has been proposed in Ref. [3], p. 174. From the intersection form �(x, y, z) :=R
X x ^ y ^ z the following invariants can be constructed:

d1 = gcd{�(x, y, z) |x, y, z 2 H
2(X,Z)} (10)

d2 = gcd{�(x, y, y) |x, y 2 H
2(X,Z)} (11)

d3 = gcd{�(x, x, x) |x 2 H
2(X,Z)} (12)

Furthermore, combining the intersection form and c2 = c2(TX) we can define the form ⇤(x, y, z, t) =
(�(x, y, z)c2(t) + 3 permutations) which gives rise to the invariants

d4 = gcd{⇤(x, y, z, t) |x, y, z, t 2 H
2(X,Z)} (13)

d5 = gcd{⇤(x, y, z, z) |x, y, z 2 H
2(X,Z)} (14)

d6 = gcd{⇤(x, y, y, y) |x, y 2 H
2(X,Z)} (15)

d7 = gcd{⇤(x, x, x, x) |x 2 H
2(X,Z)} (16)

Ref. [3] also provides a practical way of computing these invariants which involves a scan over only
a finite subset of H2(X,Z), so that they can be worked out from dijk and c2,i.

Combining the approaches of the previous two sections and using these invariants a plausible
Ansatz for logN = x is

x = A0 +B0 h+
7X

i=1

(Ai +Bi h) log di , (17)

5

�(x, y, z) =

Z

X
x ^ y ^ z

0 2 4 6 8 10
xth0

1

2

3

4

5
logHNL

logHNL versus xth for each CY

Figure 3: The logarithm of N from the computer scan of CICYs versus the ”theoretical” upper bound
xth, as defined in Eq. (9).

indices down” so there is no invariant which can be obtained by a simple contraction of indices
(given that the only available metric, G, is moduli-dependent).

This problem has been encountered before, in the context of practical applications of Wall’s
theorem, and a solution has been proposed in Ref. [3], p. 174. From the intersection form �(x, y, z) :=R
X x ^ y ^ z the following invariants can be constructed:

d1 = gcd{�(x, y, z) |x, y, z 2 H
2(X,Z)} (10)

d2 = gcd{�(x, y, y) |x, y 2 H
2(X,Z)} (11)

d3 = gcd{�(x, x, x) |x 2 H
2(X,Z)} (12)

Furthermore, combining the intersection form and c2 = c2(TX) we can define the form ⇤(x, y, z, t) =
(�(x, y, z)c2(t) + 3 permutations) which gives rise to the invariants

d4 = gcd{⇤(x, y, z, t) |x, y, z, t 2 H
2(X,Z)} (13)

d5 = gcd{⇤(x, y, z, z) |x, y, z 2 H
2(X,Z)} (14)

d6 = gcd{⇤(x, y, y, y) |x, y 2 H
2(X,Z)} (15)

d7 = gcd{⇤(x, x, x, x) |x 2 H
2(X,Z)} (16)

Ref. [3] also provides a practical way of computing these invariants which involves a scan over only
a finite subset of H2(X,Z), so that they can be worked out from dijk and c2,i.

Combining the approaches of the previous two sections and using these invariants a plausible
Ansatz for logN = x is

x = A0 +B0 h+
7X

i=1

(Ai +Bi h) log di , (17)

5

⇤(x, y, z, t) = �(x, y, z)c2(t) + perm

Ansatz for :log(N) = x

0 2 4 6 8 10
xth0

1

2

3

4

5
logHNL

logHNL versus xth for each CY

Figure 3: The logarithm of N from the computer scan of CICYs versus the ”theoretical” upper bound
xth, as defined in Eq. (9).

indices down” so there is no invariant which can be obtained by a simple contraction of indices
(given that the only available metric, G, is moduli-dependent).

This problem has been encountered before, in the context of practical applications of Wall’s
theorem, and a solution has been proposed in Ref. [3], p. 174. From the intersection form �(x, y, z) :=R
X x ^ y ^ z the following invariants can be constructed:

d1 = gcd{�(x, y, z) |x, y, z 2 H
2(X,Z)} (10)

d2 = gcd{�(x, y, y) |x, y 2 H
2(X,Z)} (11)

d3 = gcd{�(x, x, x) |x 2 H
2(X,Z)} (12)

Furthermore, combining the intersection form and c2 = c2(TX) we can define the form ⇤(x, y, z, t) =
(�(x, y, z)c2(t) + 3 permutations) which gives rise to the invariants

d4 = gcd{⇤(x, y, z, t) |x, y, z, t 2 H
2(X,Z)} (13)

d5 = gcd{⇤(x, y, z, z) |x, y, z 2 H
2(X,Z)} (14)

d6 = gcd{⇤(x, y, y, y) |x, y 2 H
2(X,Z)} (15)

d7 = gcd{⇤(x, x, x, x) |x 2 H
2(X,Z)} (16)

Ref. [3] also provides a practical way of computing these invariants which involves a scan over only
a finite subset of H2(X,Z), so that they can be worked out from dijk and c2,i.

Combining the approaches of the previous two sections and using these invariants a plausible
Ansatz for logN = x is

x = A0 +B0 h+
7X

i=1

(Ai +Bi h) log di , (17)

5

where Ai and Bi are constants to be determined. We have used the data from the CICY computer
scan to determine the best fit values of Ai and Bi. The result is

(A0, A1, . . . , A7) ' (�7.36, 10.50,�8.90,�0.13, 3.94,�9.93, 0.02, 6.84) (18)

(B0, B1, . . . , B7) ' (1.05,�2.21, 1.89,�0.85,�0.97, 1.52, 0.30,�0.45) . (19)

The comparison of this fit with the data is provided in Fig. 4.

0 1 2 3 4
x0

1

2

3

4
logHNL

logHNL versus x for each CY

Figure 4: The logarithm of N from the computer scan of CICYs versus the quantity x in Eq. (17), where
the constants Ai and Bi have been determined to provide the best fit.

It turns out that the invariants di show relatively little variation with increasing Picard number
h. If we insert typical values for these quantities, together with hCICY = 19 and hmax = 491 into the
above fit result the extrapolated numbers become

N(hCICY) ' 1023 , N(hmax) ' 10696 , (20)

which is not too far away from the earlier result (2).

5 Conclusion

The fit in the previous section, as illustrated in Fig. 4 looks relatively convincing and I believe that an
extrapolation to large h = h

1,1 is trustworthy, as long as the underlying model-building assumption
continue to be satisfied for large h. I do believe that this is the case for the CICY dataset and, hence,
the number of ' 1023 standard models within this set should be taken seriously. The extrapolation
to hmax = 491, the maximal Picard number in the Kreuzer-Skarke dataset, is more questionable.
Some of the model building assumption made have not yet been checked for the Kreuzer-Skarke set,
or there are even indication that they may not satisfied. Firstly, it is not clear that the Kreuzer-
Skarke set contains manifolds which admit freely-acting symmetries with the same frequency as the
CICY set. The only systematic checks have been carried out for low h

1,1 where the frequency of

6

Fixing and by a fit to the data leads to: Ai Bi

where Ai and Bi are constants to be determined. We have used the data from the CICY computer
scan to determine the best fit values of Ai and Bi. The result is

(A0, A1, . . . , A7) ' (�7.36, 10.50,�8.90,�0.13, 3.94,�9.93, 0.02, 6.84) (18)

(B0, B1, . . . , B7) ' (1.05,�2.21, 1.89,�0.85,�0.97, 1.52, 0.30,�0.45) . (19)

The comparison of this fit with the data is provided in Fig. 4.

0 1 2 3 4
x0

1

2

3

4
logHNL

logHNL versus x for each CY

Figure 4: The logarithm of N from the computer scan of CICYs versus the quantity x in Eq. (17), where
the constants Ai and Bi have been determined to provide the best fit.

It turns out that the invariants di show relatively little variation with increasing Picard number
h. If we insert typical values for these quantities, together with hCICY = 19 and hmax = 491 into the
above fit result the extrapolated numbers become

N(hCICY) ' 1023 , N(hmax) ' 10696 , (20)

which is not too far away from the earlier result (2).

5 Conclusion

The fit in the previous section, as illustrated in Fig. 4 looks relatively convincing and I believe that an
extrapolation to large h = h

1,1 is trustworthy, as long as the underlying model-building assumption
continue to be satisfied for large h. I do believe that this is the case for the CICY dataset and, hence,
the number of ' 1023 standard models within this set should be taken seriously. The extrapolation
to hmax = 491, the maximal Picard number in the Kreuzer-Skarke dataset, is more questionable.
Some of the model building assumption made have not yet been checked for the Kreuzer-Skarke set,
or there are even indication that they may not satisfied. Firstly, it is not clear that the Kreuzer-
Skarke set contains manifolds which admit freely-acting symmetries with the same frequency as the
CICY set. The only systematic checks have been carried out for low h

1,1 where the frequency of

6

Fixing and by a fit to the data leads to: Ai Bi

For CICYs: hmax = 19 N(hmax) ' 1023

where Ai and Bi are constants to be determined. We have used the data from the CICY computer
scan to determine the best fit values of Ai and Bi. The result is

(A0, A1, . . . , A7) ' (�7.36, 10.50,�8.90,�0.13, 3.94,�9.93, 0.02, 6.84) (18)

(B0, B1, . . . , B7) ' (1.05,�2.21, 1.89,�0.85,�0.97, 1.52, 0.30,�0.45) . (19)

The comparison of this fit with the data is provided in Fig. 4.

0 1 2 3 4
x0

1

2

3

4
logHNL

logHNL versus x for each CY

Figure 4: The logarithm of N from the computer scan of CICYs versus the quantity x in Eq. (17), where
the constants Ai and Bi have been determined to provide the best fit.

It turns out that the invariants di show relatively little variation with increasing Picard number
h. If we insert typical values for these quantities, together with hCICY = 19 and hmax = 491 into the
above fit result the extrapolated numbers become

N(hCICY) ' 1023 , N(hmax) ' 10696 , (20)

which is not too far away from the earlier result (2).

5 Conclusion

The fit in the previous section, as illustrated in Fig. 4 looks relatively convincing and I believe that an
extrapolation to large h = h

1,1 is trustworthy, as long as the underlying model-building assumption
continue to be satisfied for large h. I do believe that this is the case for the CICY dataset and, hence,
the number of ' 1023 standard models within this set should be taken seriously. The extrapolation
to hmax = 491, the maximal Picard number in the Kreuzer-Skarke dataset, is more questionable.
Some of the model building assumption made have not yet been checked for the Kreuzer-Skarke set,
or there are even indication that they may not satisfied. Firstly, it is not clear that the Kreuzer-
Skarke set contains manifolds which admit freely-acting symmetries with the same frequency as the
CICY set. The only systematic checks have been carried out for low h

1,1 where the frequency of

6

Fixing and by a fit to the data leads to: Ai Bi

For CICYs: hmax = 19 N(hmax) ' 1023

All known CYs: hmax = 491 N(hmax) ' 10696

where Ai and Bi are constants to be determined. We have used the data from the CICY computer
scan to determine the best fit values of Ai and Bi. The result is

(A0, A1, . . . , A7) ' (�7.36, 10.50,�8.90,�0.13, 3.94,�9.93, 0.02, 6.84) (18)

(B0, B1, . . . , B7) ' (1.05,�2.21, 1.89,�0.85,�0.97, 1.52, 0.30,�0.45) . (19)

The comparison of this fit with the data is provided in Fig. 4.

0 1 2 3 4
x0

1

2

3

4
logHNL

logHNL versus x for each CY

Figure 4: The logarithm of N from the computer scan of CICYs versus the quantity x in Eq. (17), where
the constants Ai and Bi have been determined to provide the best fit.

It turns out that the invariants di show relatively little variation with increasing Picard number
h. If we insert typical values for these quantities, together with hCICY = 19 and hmax = 491 into the
above fit result the extrapolated numbers become

N(hCICY) ' 1023 , N(hmax) ' 10696 , (20)

which is not too far away from the earlier result (2).

5 Conclusion

The fit in the previous section, as illustrated in Fig. 4 looks relatively convincing and I believe that an
extrapolation to large h = h

1,1 is trustworthy, as long as the underlying model-building assumption
continue to be satisfied for large h. I do believe that this is the case for the CICY dataset and, hence,
the number of ' 1023 standard models within this set should be taken seriously. The extrapolation
to hmax = 491, the maximal Picard number in the Kreuzer-Skarke dataset, is more questionable.
Some of the model building assumption made have not yet been checked for the Kreuzer-Skarke set,
or there are even indication that they may not satisfied. Firstly, it is not clear that the Kreuzer-
Skarke set contains manifolds which admit freely-acting symmetries with the same frequency as the
CICY set. The only systematic checks have been carried out for low h

1,1 where the frequency of

6

Fixing and by a fit to the data leads to: Ai Bi

For CICYs: hmax = 19 N(hmax) ' 1023

All known CYs: hmax = 491 N(hmax) ' 10696

“a mole of

models”

Formulae for line bundle cohomology
Line bundle cohomology is required for many types of string models.

Computation is usually algorithmic:
(based on Cech cohomology, spectral sequences, Bott-Borel-Weil,….)

Formulae for line bundle cohomology
Line bundle cohomology is required for many types of string models.

Computation is usually algorithmic:
(based on Cech cohomology, spectral sequences, Bott-Borel-Weil,….)

• Line bundles on complete intersection manifolds
(Anderson, Gray, He, Lukas, hep-th/0702210, 0805.2875)

Formulae for line bundle cohomology
Line bundle cohomology is required for many types of string models.

Computation is usually algorithmic:
(based on Cech cohomology, spectral sequences, Bott-Borel-Weil,….)

• Line bundles on complete intersection manifolds
(Anderson, Gray, He, Lukas, hep-th/0702210, 0805.2875)

• Line bundles on toric spaces
(Blumenhagen, Jurke, Rahn, Roschy, 1003.5217)

Formulae for line bundle cohomology
Line bundle cohomology is required for many types of string models.

Computation is usually algorithmic:
(based on Cech cohomology, spectral sequences, Bott-Borel-Weil,….)

• Line bundles on complete intersection manifolds
(Anderson, Gray, He, Lukas, hep-th/0702210, 0805.2875)

• Line bundles on toric spaces
(Blumenhagen, Jurke, Rahn, Roschy, 1003.5217)

• Line bundles on del Pezzo surfaces
(Blumenhagen, Braun, Grimm, Weigand, 0811.2936)

Formulae for line bundle cohomology
Line bundle cohomology is required for many types of string models.

Computation is usually algorithmic:
(based on Cech cohomology, spectral sequences, Bott-Borel-Weil,….)

• Line bundles on complete intersection manifolds
(Anderson, Gray, He, Lukas, hep-th/0702210, 0805.2875)

• Line bundles on toric spaces
(Blumenhagen, Jurke, Rahn, Roschy, 1003.5217)

• Line bundles on del Pezzo surfaces
(Blumenhagen, Braun, Grimm, Weigand, 0811.2936)

• Macaulay 2
(Grayson, Stillman)

Formulae for line bundle cohomology
Line bundle cohomology is required for many types of string models.

Computation is usually algorithmic:
(based on Cech cohomology, spectral sequences, Bott-Borel-Weil,….)

• Line bundles on complete intersection manifolds
(Anderson, Gray, He, Lukas, hep-th/0702210, 0805.2875)

• Line bundles on toric spaces
(Blumenhagen, Jurke, Rahn, Roschy, 1003.5217)

• Line bundles on del Pezzo surfaces
(Blumenhagen, Braun, Grimm, Weigand, 0811.2936)

• Macaulay 2
(Grayson, Stillman)

However . . .

Line bundle cohomology dimensions can be described by

relatively simply, piecewise polynomial formulae.
(Degree of polynomials equals complex dimension of manifold.)

Line bundle cohomology dimensions can be described by

relatively simply, piecewise polynomial formulae.
(Degree of polynomials equals complex dimension of manifold.)

This has been found heuristically by analysing cohomology

data computed algorithmically.

Line bundle cohomology dimensions can be described by

relatively simply, piecewise polynomial formulae.
(Degree of polynomials equals complex dimension of manifold.)

Evidence so far:

(Constantin, Lukas, 1311.1941)
• Formula for tetra-quadric

This has been found heuristically by analysing cohomology

data computed algorithmically.

Line bundle cohomology dimensions can be described by

relatively simply, piecewise polynomial formulae.
(Degree of polynomials equals complex dimension of manifold.)

Evidence so far:

(Constantin, Lukas, 1311.1941)
• Formula for tetra-quadric

(Constantin, Lukas, 1808.09992)
• Formula for a number of CY three-folds

This has been found heuristically by analysing cohomology

data computed algorithmically.

Line bundle cohomology dimensions can be described by

relatively simply, piecewise polynomial formulae.
(Degree of polynomials equals complex dimension of manifold.)

Evidence so far:

(Constantin, Lukas, 1311.1941)
• Formula for tetra-quadric

(Constantin, Lukas, 1808.09992)
• Formula for a number of CY three-folds

(Klaewer, Schlechter, 1809.02547)
• Various complex manifolds

This has been found heuristically by analysing cohomology

data computed algorithmically.

Line bundle cohomology dimensions can be described by

relatively simply, piecewise polynomial formulae.
(Degree of polynomials equals complex dimension of manifold.)

Evidence so far:

(Constantin, Lukas, 1311.1941)
• Formula for tetra-quadric

(Constantin, Lukas, 1808.09992)
• Formula for a number of CY three-folds

(Klaewer, Schlechter, 1809.02547)
• Various complex manifolds

(Larfors, Schneider, 1906.00392)
• Class of CY 3-folds

This has been found heuristically by analysing cohomology

data computed algorithmically.

Line bundle cohomology dimensions can be described by

relatively simply, piecewise polynomial formulae.
(Degree of polynomials equals complex dimension of manifold.)

Evidence so far:

(Constantin, Lukas, 1311.1941)
• Formula for tetra-quadric

(Constantin, Lukas, 1808.09992)
• Formula for a number of CY three-folds

(Klaewer, Schlechter, 1809.02547)
• Various complex manifolds

(Larfors, Schneider, 1906.00392)
• Class of CY 3-folds

(Brodie, Constantin, Deen, Lukas, 1906.08363, 1906.08769)
• Proofs and systematic derivation for complex surfaces

This has been found heuristically by analysing cohomology

data computed algorithmically.

Line bundle cohomology dimensions can be described by

relatively simply, piecewise polynomial formulae.
(Degree of polynomials equals complex dimension of manifold.)

Evidence so far:

(Constantin, Lukas, 1311.1941)
• Formula for tetra-quadric

(Constantin, Lukas, 1808.09992)
• Formula for a number of CY three-folds

(Klaewer, Schlechter, 1809.02547)
• Various complex manifolds

(Larfors, Schneider, 1906.00392)
• Class of CY 3-folds

(Brodie, Constantin, Deen, Lukas, 1906.08363, 1906.08769)
• Proofs and systematic derivation for complex surfaces

For example . . .

This has been found heuristically by analysing cohomology

data computed algorithmically.

Such computations are usually based on the Koszul sequence

0 �! ^
R
N

⇤
⌦ L �! ^

R�1
N

⇤
⌦ L �! · · · �! N

⇤
⌦ L �! L �! L �! 0 , (2.2)

combined with spectral sequence methods, the Bott-Borel-Weil result for cohomologies on the am-
bient space A and, in many cases, knowledge of the maps involved. These methods, implemented
in Ref. [8], have been used for the specific calculations on which our results below are based. The
intermediate steps in those calculations can be complicated, typically the more so the higher the co-
dimension R. As such, there seems to be no a-priori reason for the ranks of line bundle cohomology
groups to be simple when expressed in terms of the line bundle integers kr. However, our results
below indicate that they are. Note, since H

3
(X,L) ⇠= H

0
(X,L

⇤
) and H

2
(X,L) ⇠= H

1
(X,L

⇤
) by

Serre duality, it is sufficient to present the results for h
0
(X,L) and h

1
(X,L) for all line bundles L.

Our approach is empirical. For a given manifold X we compute the cohomology for a large
number of line bundles OX(k1, . . . , km) using the code in Ref. [8]. From these results we identify a
number of regions in k-space and, for each such region, a cubic polynomial in the integers kr which
describe the cohomology ranks in this region. The number of explicit cohomologies computed is
significantly larger than the number of coefficients in the Ansatz, so there is strong evidence the
formulae are correct. The formulae presented below have been checked for all line bundles with
integers in the range �10  kr  10, and in same cases for many more.

We should add a word of caution. A configuration matrix (2.1) really describes a family of
manifolds, parametrised by the complex structure moduli which are encoded in the coefficients of
the defining polynomials. Line bundle cohomology ranks have generic values in this moduli space
but it is also known that they can jump at specific, non-generic loci, due to the complex structure
dependence of the maps in the sequence (2.2). All the cohomology results presented in this note
are valid for generic choices of the defining polynomials. Investigating the situation at jumping loci
would be interesting but goes beyond our present scope.

2.2 The bicubic manifold

Let X be a generic threefold in the ambient space A = P2
⇥P2 defined by the configuration matrix

P2

P2

"
3

3

#2,83

(2.3)

and L = OX(k1, k2) a line bundle over X. Due to the symmetry of this configuration we have
h
q
(OX(k1, k2)) = h

q
(OX(k2, k1)), so without loss of generality we can assume that k1  k2. The

corresponding cohomology formulae are given below, together with two plots in Figure 2 showing
the regions where the expressions take different forms.

7

L = OX(k1, k2)bi-cubic in : P2 ⇥ P2

h
0
(X,L) =

8
>>>>><

>>>>>:

1

2
(1 + k2)(2 + k2) , k1 = 0, k2 � 0

ind(L) , k1, k2 > 0

0 otherwise

(2.4)

h
1
(X,L) =

8
>>>>><

>>>>>:

1

2
(�1 + k2)(�2 + k2) , k1 = 0, k2 > 0

�ind(L) , k1 < 0, k2 > �k1

0 otherwise ,

(2.5)

Here, the index is explicitly given by ind(L) =
3

2
(k1 + k2)(2 + k1k2).

Figure 2: Regions in k-space where h
0
(X,L) (left) and h

1
(X,L) (right) take different polynomial

forms. In the blue regions h
0
(X,L) = ind(L) and h

1
(X,L) = �ind(L). By Serre duality, the plots

for h
2
(X,L) and h

3
(X,L) are obtained from the plots for h

1
(X,L) and, respectively, h

0
(X,L) by

reflection about the origin.

The expressions given above for the semi-axis k1 = 0, k2 > 0 and, implicitly by symmetry, for
the semi-axis k1 > 0, k2 = 0 can be combined into the single formula

h
0
(X,L) =

1

4
(1 + k1)(2 + k1)(1 + k2)(2 + k2) ,

h
1
(X,L) =

1

4
(�1 + k1)(�2 + k1)(�1 + k2)(�2 + k2) ,

h
2
(X,L) = h

3
(X,L) = 0 .

Computing the characteristic, one recovers the formula for the index, as expected.

8

h
0
(X,L) =

8
>>>>><

>>>>>:

1

2
(1 + k2)(2 + k2) , k1 = 0, k2 � 0

ind(L) , k1, k2 > 0

0 otherwise

(2.4)

h
1
(X,L) =

8
>>>>><

>>>>>:

1

2
(�1 + k2)(�2 + k2) , k1 = 0, k2 > 0

�ind(L) , k1 < 0, k2 > �k1

0 otherwise ,

(2.5)

Here, the index is explicitly given by ind(L) =
3

2
(k1 + k2)(2 + k1k2).

Figure 2: Regions in k-space where h
0
(X,L) (left) and h

1
(X,L) (right) take different polynomial

forms. In the blue regions h
0
(X,L) = ind(L) and h

1
(X,L) = �ind(L). By Serre duality, the plots

for h
2
(X,L) and h

3
(X,L) are obtained from the plots for h

1
(X,L) and, respectively, h

0
(X,L) by

reflection about the origin.

The expressions given above for the semi-axis k1 = 0, k2 > 0 and, implicitly by symmetry, for
the semi-axis k1 > 0, k2 = 0 can be combined into the single formula

h
0
(X,L) =

1

4
(1 + k1)(2 + k1)(1 + k2)(2 + k2) ,

h
1
(X,L) =

1

4
(�1 + k1)(�2 + k1)(�1 + k2)(�2 + k2) ,

h
2
(X,L) = h

3
(X,L) = 0 .

Computing the characteristic, one recovers the formula for the index, as expected.

8

Such computations are usually based on the Koszul sequence

0 �! ^
R
N

⇤
⌦ L �! ^

R�1
N

⇤
⌦ L �! · · · �! N

⇤
⌦ L �! L �! L �! 0 , (2.2)

combined with spectral sequence methods, the Bott-Borel-Weil result for cohomologies on the am-
bient space A and, in many cases, knowledge of the maps involved. These methods, implemented
in Ref. [8], have been used for the specific calculations on which our results below are based. The
intermediate steps in those calculations can be complicated, typically the more so the higher the co-
dimension R. As such, there seems to be no a-priori reason for the ranks of line bundle cohomology
groups to be simple when expressed in terms of the line bundle integers kr. However, our results
below indicate that they are. Note, since H

3
(X,L) ⇠= H

0
(X,L

⇤
) and H

2
(X,L) ⇠= H

1
(X,L

⇤
) by

Serre duality, it is sufficient to present the results for h
0
(X,L) and h

1
(X,L) for all line bundles L.

Our approach is empirical. For a given manifold X we compute the cohomology for a large
number of line bundles OX(k1, . . . , km) using the code in Ref. [8]. From these results we identify a
number of regions in k-space and, for each such region, a cubic polynomial in the integers kr which
describe the cohomology ranks in this region. The number of explicit cohomologies computed is
significantly larger than the number of coefficients in the Ansatz, so there is strong evidence the
formulae are correct. The formulae presented below have been checked for all line bundles with
integers in the range �10  kr  10, and in same cases for many more.

We should add a word of caution. A configuration matrix (2.1) really describes a family of
manifolds, parametrised by the complex structure moduli which are encoded in the coefficients of
the defining polynomials. Line bundle cohomology ranks have generic values in this moduli space
but it is also known that they can jump at specific, non-generic loci, due to the complex structure
dependence of the maps in the sequence (2.2). All the cohomology results presented in this note
are valid for generic choices of the defining polynomials. Investigating the situation at jumping loci
would be interesting but goes beyond our present scope.

2.2 The bicubic manifold

Let X be a generic threefold in the ambient space A = P2
⇥P2 defined by the configuration matrix

P2

P2

"
3

3

#2,83

(2.3)

and L = OX(k1, k2) a line bundle over X. Due to the symmetry of this configuration we have
h
q
(OX(k1, k2)) = h

q
(OX(k2, k1)), so without loss of generality we can assume that k1  k2. The

corresponding cohomology formulae are given below, together with two plots in Figure 2 showing
the regions where the expressions take different forms.

7

L = OX(k1, k2)bi-cubic in : P2 ⇥ P2

h
0
(X,L) =

8
>>>>><

>>>>>:

1

2
(1 + k2)(2 + k2) , k1 = 0, k2 � 0

ind(L) , k1, k2 > 0

0 otherwise

(2.4)

h
1
(X,L) =

8
>>>>><

>>>>>:

1

2
(�1 + k2)(�2 + k2) , k1 = 0, k2 > 0

�ind(L) , k1 < 0, k2 > �k1

0 otherwise ,

(2.5)

Here, the index is explicitly given by ind(L) =
3

2
(k1 + k2)(2 + k1k2).

-4 -2 0 2 4
-4

-2

0

2

4

3
2
(k1+k2)(2+k1k2)

1
2
(1+k2)(2+k2)

1
2
(1+k1)(2+k1)

0

-4 -2 0 2 4
-4

-2

0

2

4

- 3
2
(k1+k2)(2+k1k2)

- 1
2
(1-k2)(2-k2)

- 1
2
(1-k1)(2-k1)

0

Figure 2: Regions in k-space where h
0
(X,L) (left) and h

1
(X,L) (right) take different polynomial

forms. In the blue regions h
0
(X,L) = ind(L) and h

1
(X,L) = �ind(L). By Serre duality, the plots

for h
2
(X,L) and h

3
(X,L) are obtained from the plots for h

1
(X,L) and, respectively, h

0
(X,L) by

reflection about the origin.

The expressions given above for the semi-axis k1 = 0, k2 > 0 and, implicitly by symmetry, for
the semi-axis k1 > 0, k2 = 0 can be combined into the single formula

h
0
(X,L) =

1

4
(1 + k1)(2 + k1)(1 + k2)(2 + k2) ,

h
1
(X,L) =

1

4
(�1 + k1)(�2 + k1)(�1 + k2)(�2 + k2) ,

h
2
(X,L) = h

3
(X,L) = 0 .

Computing the characteristic, one recovers the formula for the index, as expected.

8

del Pezzo surface : dP1 OdP1(k0, k1) = OdP1(k0l + k1e1)

del Pezzo surface : dP1 OdP1(k0, k1) = OdP1(k0l + k1e1)

associated to the blow-ups. The intersection form is determined by the relations

l · l = 1 , l · ei = 0 , ei · ej = ��ij . (2.6)

Line bundles are labelled by an integer vector k = (k0, k1, . . . , kr) 2 Zr+1 and are written as OdPr(k) =
OdPr(k0l + k1e1 + · · · + krer). The canonical bundle and Serre duality take the form

KdPr = �3l +
rX

i=1

ei , h
2(OdPr(k)) = h

0(OdPr(�k0 � 3, �k1 + 1, . . . , �kr + 1)) (2.7)

and, hence, del Pezzo surfaces have an ample anti-canonical bundle. The index theorem reads explic-
itly

ind(OdPr(k)) = h
0(OdPr(k))�h

1(OdPr(k))+h
2(OdPr(k)) = 1+

1

2
k0(k0+3)+

1

2

rX

i=1

ki(1�ki) . (2.8)

As discussed above, these two results can be used to determine h
1 and h

2 once h
0 is known for all

line bundles.
Line bundle cohomology dimensions on del Pezzo surfaces can be calculated by three algorithmic

methods:

• The del Pezzo surfaces dPr for r = 0, 1, 2, 3 have a toric realisation. For those cases the algorithm
of Ref. [19] which computes line bundle cohomology on toric spaces can be used.

• All del Pezzo surfaces dPr have realisations as (favourable) complete intersections in products
of projective spaces [18] so that the algorithm of Refs. [20–24] can be used.

• Ref. [25] provides an algorithm to compute line bundle cohomology dimensions on all del Pezzo
surfaces which is based on counting certain polynomials on P2.

We have used all three methods in order to obtain the required training data. We note that for
all cases we have checked the three methods agree wherever they overlap. As explained above, this
data can be used to extract analytic, piecewise quadratic formulae for cohomology dimensions by
“eyeballing”, although this process can be tedious.

As a simple example, the so-obtained formula for the zeroth cohomology of line bundles on dP1

is given by

h
0(OdP1(k0, k1)) =

8
>>>><

>>>>:

1

2
(k0 + 1)(k0 + 2) k0 � 0 , k1 � 0

1

2
(k0 + 1)(k0 + 2) +

1

2
k1(1 � k1) k1 < 0 , k0 > 0 , k0 + k1 � 0

0 otherwise

(2.9)

As is evident there are three regions R↵ is this case. In line with our general discussion, these regions
are two-dimensional and cohomology dimensions match continuously at the boundaries. The second
row corresponds to the (nef) cone where h

0 is given by the index, as comparison with Eq. (2.8)
confirms. The formula in the first row can be obtained by combining the master formula (2.4) with
Eq. (2.5) and inserting for C the single divisor with self-intersection �1, namely e1. A more detailed
discussion of these issues and further examples can be found in Ref. [15]. Our goal in Section 4 will
be to conjecture formulae such as Eq. (2.9) from machine learning.

5

del Pezzo surface : dP1 OdP1(k0, k1) = OdP1(k0l + k1e1)

associated to the blow-ups. The intersection form is determined by the relations

l · l = 1 , l · ei = 0 , ei · ej = ��ij . (2.6)

Line bundles are labelled by an integer vector k = (k0, k1, . . . , kr) 2 Zr+1 and are written as OdPr(k) =
OdPr(k0l + k1e1 + · · · + krer). The canonical bundle and Serre duality take the form

KdPr = �3l +
rX

i=1

ei , h
2(OdPr(k)) = h

0(OdPr(�k0 � 3, �k1 + 1, . . . , �kr + 1)) (2.7)

and, hence, del Pezzo surfaces have an ample anti-canonical bundle. The index theorem reads explic-
itly

ind(OdPr(k)) = h
0(OdPr(k))�h

1(OdPr(k))+h
2(OdPr(k)) = 1+

1

2
k0(k0+3)+

1

2

rX

i=1

ki(1�ki) . (2.8)

As discussed above, these two results can be used to determine h
1 and h

2 once h
0 is known for all

line bundles.
Line bundle cohomology dimensions on del Pezzo surfaces can be calculated by three algorithmic

methods:

• The del Pezzo surfaces dPr for r = 0, 1, 2, 3 have a toric realisation. For those cases the algorithm
of Ref. [19] which computes line bundle cohomology on toric spaces can be used.

• All del Pezzo surfaces dPr have realisations as (favourable) complete intersections in products
of projective spaces [18] so that the algorithm of Refs. [20–24] can be used.

• Ref. [25] provides an algorithm to compute line bundle cohomology dimensions on all del Pezzo
surfaces which is based on counting certain polynomials on P2.

We have used all three methods in order to obtain the required training data. We note that for
all cases we have checked the three methods agree wherever they overlap. As explained above, this
data can be used to extract analytic, piecewise quadratic formulae for cohomology dimensions by
“eyeballing”, although this process can be tedious.

As a simple example, the so-obtained formula for the zeroth cohomology of line bundles on dP1

is given by

h
0(OdP1(k0, k1)) =

8
>>>><

>>>>:

1

2
(k0 + 1)(k0 + 2) k0 � 0 , k1 � 0

1

2
(k0 + 1)(k0 + 2) +

1

2
k1(1 � k1) k1 < 0 , k0 > 0 , k0 + k1 � 0

0 otherwise

(2.9)

As is evident there are three regions R↵ is this case. In line with our general discussion, these regions
are two-dimensional and cohomology dimensions match continuously at the boundaries. The second
row corresponds to the (nef) cone where h

0 is given by the index, as comparison with Eq. (2.8)
confirms. The formula in the first row can be obtained by combining the master formula (2.4) with
Eq. (2.5) and inserting for C the single divisor with self-intersection �1, namely e1. A more detailed
discussion of these issues and further examples can be found in Ref. [15]. Our goal in Section 4 will
be to conjecture formulae such as Eq. (2.9) from machine learning.

5

No deeper mathematical understanding yet for three-folds.

del Pezzo surface : dP1 OdP1(k0, k1) = OdP1(k0l + k1e1)

associated to the blow-ups. The intersection form is determined by the relations

l · l = 1 , l · ei = 0 , ei · ej = ��ij . (2.6)

Line bundles are labelled by an integer vector k = (k0, k1, . . . , kr) 2 Zr+1 and are written as OdPr(k) =
OdPr(k0l + k1e1 + · · · + krer). The canonical bundle and Serre duality take the form

KdPr = �3l +
rX

i=1

ei , h
2(OdPr(k)) = h

0(OdPr(�k0 � 3, �k1 + 1, . . . , �kr + 1)) (2.7)

and, hence, del Pezzo surfaces have an ample anti-canonical bundle. The index theorem reads explic-
itly

ind(OdPr(k)) = h
0(OdPr(k))�h

1(OdPr(k))+h
2(OdPr(k)) = 1+

1

2
k0(k0+3)+

1

2

rX

i=1

ki(1�ki) . (2.8)

As discussed above, these two results can be used to determine h
1 and h

2 once h
0 is known for all

line bundles.
Line bundle cohomology dimensions on del Pezzo surfaces can be calculated by three algorithmic

methods:

• The del Pezzo surfaces dPr for r = 0, 1, 2, 3 have a toric realisation. For those cases the algorithm
of Ref. [19] which computes line bundle cohomology on toric spaces can be used.

• All del Pezzo surfaces dPr have realisations as (favourable) complete intersections in products
of projective spaces [18] so that the algorithm of Refs. [20–24] can be used.

• Ref. [25] provides an algorithm to compute line bundle cohomology dimensions on all del Pezzo
surfaces which is based on counting certain polynomials on P2.

We have used all three methods in order to obtain the required training data. We note that for
all cases we have checked the three methods agree wherever they overlap. As explained above, this
data can be used to extract analytic, piecewise quadratic formulae for cohomology dimensions by
“eyeballing”, although this process can be tedious.

As a simple example, the so-obtained formula for the zeroth cohomology of line bundles on dP1

is given by

h
0(OdP1(k0, k1)) =

8
>>>><

>>>>:

1

2
(k0 + 1)(k0 + 2) k0 � 0 , k1 � 0

1

2
(k0 + 1)(k0 + 2) +

1

2
k1(1 � k1) k1 < 0 , k0 > 0 , k0 + k1 � 0

0 otherwise

(2.9)

As is evident there are three regions R↵ is this case. In line with our general discussion, these regions
are two-dimensional and cohomology dimensions match continuously at the boundaries. The second
row corresponds to the (nef) cone where h

0 is given by the index, as comparison with Eq. (2.8)
confirms. The formula in the first row can be obtained by combining the master formula (2.4) with
Eq. (2.5) and inserting for C the single divisor with self-intersection �1, namely e1. A more detailed
discussion of these issues and further examples can be found in Ref. [15]. Our goal in Section 4 will
be to conjecture formulae such as Eq. (2.9) from machine learning.

5

No deeper mathematical understanding yet for three-folds.

For larger there are many regions and case distinctions, so

we need a better understanding and a “master formula”.

h1,1

del Pezzo surface : dP1 OdP1(k0, k1) = OdP1(k0l + k1e1)

associated to the blow-ups. The intersection form is determined by the relations

l · l = 1 , l · ei = 0 , ei · ej = ��ij . (2.6)

Line bundles are labelled by an integer vector k = (k0, k1, . . . , kr) 2 Zr+1 and are written as OdPr(k) =
OdPr(k0l + k1e1 + · · · + krer). The canonical bundle and Serre duality take the form

KdPr = �3l +
rX

i=1

ei , h
2(OdPr(k)) = h

0(OdPr(�k0 � 3, �k1 + 1, . . . , �kr + 1)) (2.7)

and, hence, del Pezzo surfaces have an ample anti-canonical bundle. The index theorem reads explic-
itly

ind(OdPr(k)) = h
0(OdPr(k))�h

1(OdPr(k))+h
2(OdPr(k)) = 1+

1

2
k0(k0+3)+

1

2

rX

i=1

ki(1�ki) . (2.8)

As discussed above, these two results can be used to determine h
1 and h

2 once h
0 is known for all

line bundles.
Line bundle cohomology dimensions on del Pezzo surfaces can be calculated by three algorithmic

methods:

• The del Pezzo surfaces dPr for r = 0, 1, 2, 3 have a toric realisation. For those cases the algorithm
of Ref. [19] which computes line bundle cohomology on toric spaces can be used.

• All del Pezzo surfaces dPr have realisations as (favourable) complete intersections in products
of projective spaces [18] so that the algorithm of Refs. [20–24] can be used.

• Ref. [25] provides an algorithm to compute line bundle cohomology dimensions on all del Pezzo
surfaces which is based on counting certain polynomials on P2.

We have used all three methods in order to obtain the required training data. We note that for
all cases we have checked the three methods agree wherever they overlap. As explained above, this
data can be used to extract analytic, piecewise quadratic formulae for cohomology dimensions by
“eyeballing”, although this process can be tedious.

As a simple example, the so-obtained formula for the zeroth cohomology of line bundles on dP1

is given by

h
0(OdP1(k0, k1)) =

8
>>>><

>>>>:

1

2
(k0 + 1)(k0 + 2) k0 � 0 , k1 � 0

1

2
(k0 + 1)(k0 + 2) +

1

2
k1(1 � k1) k1 < 0 , k0 > 0 , k0 + k1 � 0

0 otherwise

(2.9)

As is evident there are three regions R↵ is this case. In line with our general discussion, these regions
are two-dimensional and cohomology dimensions match continuously at the boundaries. The second
row corresponds to the (nef) cone where h

0 is given by the index, as comparison with Eq. (2.8)
confirms. The formula in the first row can be obtained by combining the master formula (2.4) with
Eq. (2.5) and inserting for C the single divisor with self-intersection �1, namely e1. A more detailed
discussion of these issues and further examples can be found in Ref. [15]. Our goal in Section 4 will
be to conjecture formulae such as Eq. (2.9) from machine learning.

5

No deeper mathematical understanding yet for three-folds.

Such a master formula now exists for many complex surfaces.
(Brodie, Constantin, Deen, Lukas, 1906.08363, 1906.08769)

For larger there are many regions and case distinctions, so

we need a better understanding and a “master formula”.

h1,1

On a complex surface , there is a map of (effective) divisors

Based on these empirical results, we write down a general form of the map D ! D̃ which applies to
all smooth compact complex projective surfaces and we prove that it preserves the zeroth cohomology
dimensions, that is, h0(S,OS(D̃)) = h

0(S,OS(D)). Moreover, it follows that iterating the map D ! D̃

leads, after a finite number of steps, to a divisor D̃ in the nef cone. Provided there is a vanishing
theorem which asserts that hq(S,OS(D̃)) = 0 for q = 1, 2, it follows that

h
0(S,OS(D)) = h

0(S,OS(D̃)) = ind(OS(D̃)) . (1.2)

For such cases, which we show include Hirzebruch and del Pezzo surfaces as well as all compact toric
surfaces we have, therefore, a mathematical proof for the existence of index formulae for h

0 and a
practical way of deriving them.

In fact, for Hirzebruch and del Pezzo surfaces we prove that already a single application of the map
D ! D̃ projects into the nef cone and that a suitable vanishing theorem is available in either case.
This leads to a mathematical proof for the empirical formula (1.1).

We will presently provide a summary of our main results. Subsequently, the plan for the remainder of
the paper is as follows. In the next section, we explain how cohomology formulae can be extracted from
cohomology data, computed by algorithmic methods, focusing on Hirzebruch and del Pezzo surfaces. In
a first instance, we extract piecewise quadratic formulae from the data which are subsequently refined
to index formulae. The reader less interested in this “empirical” aspect of the work can skip to Section 3
which contains our main mathematical statements. Section 4 illustrates these mathematical results in
the context of simple examples. We conclude in Section 5.

The present paper has two companion papers. Ref. [3] is more mathematical in style and provides
rigorous proofs for the various mathematical statements. In Ref. [4], we explore how techniques from
machine learning can help to uncover the structure of line bundle cohomology.

Summary of results

For the reader interested in applying these index formulae to specific surfaces - but who is not necessarily
patient enough to work through the entire paper - we will now summarise the main results concisely.
For a smooth compact complex projective surface S we first require knowledge of the e↵ective (Mori)
cone, M(S). In practice this amounts to providing the set of Mori cone generators M̂(S) or the set
of generators N̂ (S) of the nef cone N (S), which is dual to the Mori cone. We also need to know the
intersection form (D,D

0) ! D · D
0 on S. For all divisors not in the Mori cone, that is D /2 M(S),

we have h
0(S,OS(D)) = 0. On the other hand, all divisors D 2 M(S) have strictly positive zeroth

cohomology dimension. For such e↵ective divisors we define the map D ! D̃ by

D̃ = D �

X

C2I
✓(�D · C) ceil

✓
D · C

C2

◆
C , (1.3)

where the sum runs over the set I of all irreducible curves with negative self-intersection. The Heaviside
function ✓ ensures that only curves C withD·C < 0 contribute to the sum and ceil is the ceiling function.
Hence, to write down this map explicitly, we need to know the irreducible, negative self-intersection
curves on the surface S - information that can be obtained for many cases of interest.

The key statement about the map (1.3) is that it leaves the zeroth cohomology dimension unchanged,
that is, h0(S,OS(D̃)) = h

0(S,OS(D)). Since the nef cone N (S) is the cone of divisors D which intersect
all algebraic curves non-negatively, it is clear that repeated application of the map (1.3) eventually leads
to a divisor D̃ in the nef cone. If there is a vanishing theorem, typically Kodaira vanishing or one of its
refinements, which asserts that hq(S,OS(D̃)) = 0 for q = 1, 2 then the zeroth cohomology can be written
as an index, using Eq. (1.2). It turns out that this is the case for many surfaces of interest, including
Hirzebruch surfaces, del Pezzo surfaces, and compact toric surfaces, and, hence, index formulae for
the zeroth cohomology dimensions exist for all these cases. The relevant vanishing theorems will be
reviewed in the main text.

Let us first summarise how this general result applies to Hirzebruch surfaces Fn. The Picard lattice
of all Hirzebruch surfaces is two-dimensional and we can introduce a basis (D1, D2) of divisor classes,
such that the intersection form is defined by D

2
1 = �n, D1 · D2 = 1 and D

2
2 = 0 (see Appendix A

4

D !

(where are the irreducible, negative self-intersection curves) I

such that .

of a shifted divisor D̃. For Hirzebruch surfaces this shifted divisor has been defined in Eq. (2.16) and
the analogous result for del Pezzo surfaces is given in Eq. (2.32).

The main purpose of this section is to develop the mathematics underlying Eq. (3.1) in as much
generality as possible and to find proofs for the Hirzebruch and del Pezzo index formulae. It turns out
that the argument naturally proceeds in two steps. The first step, discussed in the following subsection,
is to introduce a certain divisor shift which can be shown to leave the zeroth cohomology dimension
unchanged. The second step is taken in Section (3.2) where we combine the divisor shift with certain
vanishing theorems. As we will see, this will lead to index formulae for certain classes of surfaces,
including Hirzebruch and del Pezzo surfaces. For general mathematical background see, for example,
Refs. [15, 16].

3.1 Cohomology-preserving shifts

For both Hirzebruch and del Pezzo surfaces we have seen that a certain divisor shift plays a crucial
role in writing down an index formula. Moreover, the equations (2.16) and (2.32) for these shifts have
a similar structure which suggests there exists a generalisation to all complex surfaces. The following
theorem defines this general shift and asserts that it leaves the dimension of the zeroth cohomology
unchanged.

Theorem 3.1. Let D be an e↵ective divisor on a smooth compact complex projective surface S, with
associated line bundle OS(D). Let I be the set of irreducible negative self-intersection divisors. Then
the following map on the Picard lattice,

D ! D̃ = D �

X

C2I
✓(�D · C) ceil

✓
D · C

C2

◆
C , (3.2)

preserves the zeroth cohomology,

h
0
�
S,OS(D̃)

�
= h

0
�
S,OS(D)

�
. (3.3)

While it can happen that there are infinitely many irreducible negative self-intersection divisors, only
finitely many can have a negative intersection with a given divisor D. This means only finitely many
terms appear in the sum in Eq. (3.2). Note that once the intersection form and the negative self-
intersection divisors on S are known it is straightforward to evaluate Eq. (3.2) explicitly. We will
sometimes refer to Eq. (3.2) as the “master formula” for cohomology.

A mathematical proof of Theorem 3.1 is given in an accompanying paper [3] and a proof sketch, by an
alternative method, is provided in Appendix C. Here, we would like to provide an intuitive explanation.

In the next two paragraphs, the term “divisor” will refer to an actual divisor, rather than to a
divisor class as in the rest of the paper. First recall that in the context of the divisor line bundle
correspondence the projectivisation of the zeroth cohomology H

0(S,OS(D)) can be identified with the
linear system, |D|, of the associated divisor. The linear system |D| of a divisor consists of all e↵ective
divisors equivalent to D and we can, loosely, think of it as the deformations of D. The dimension of
the linear system and, hence, the dimension of the zeroth cohomology remains unchanged if we remove
from D a piece without deformations, that is, a rigid piece.

How can a rigid piece in a divisor D be detected? A rigid divisor C has negative self-intersection,
C

2
< 0. If such a rigid divisor C is contained in D it gives a negative contribution to the intersection

number D ·C. Of course this negative contribution might be overwhelmed by other positive ones but if
it so happens that D ·C < 0 we can conclude that D contains the rigid divisor C. This is the detection
method for rigid divisors underlying Theorem 3.1, as the step function in Eq. (3.2) indicates. In fact,
the value of the ceiling function in Eq. (3.2) gives the multiple of C contained in D. Eq. (3.2) removes
the multiples of all rigid divisors in D which can be detected in this manner and, hence, the dimension
of the zeroth cohomology remains unchanged.

It is important to note that iterating the map (3.2) is not necessarily trivial. The rigid pieces which can
be detected in the divisor D̃, obtained after applying the map to D once, might well be di↵erent from
the ones detected in D. Hence, we should apply the map (3.2) multiple times until the result stabilises.
We denote the divisor which results from this process by D̃ and this divisor has the following property.

16

S

If for (Kodaira vanishing or similar) then hq(S,OS(D̃)) = 0 q = 1, 2

h0(S,OS(D)) = ind(D̃)

On a complex surface , there is a map of (effective) divisors

Based on these empirical results, we write down a general form of the map D ! D̃ which applies to
all smooth compact complex projective surfaces and we prove that it preserves the zeroth cohomology
dimensions, that is, h0(S,OS(D̃)) = h

0(S,OS(D)). Moreover, it follows that iterating the map D ! D̃

leads, after a finite number of steps, to a divisor D̃ in the nef cone. Provided there is a vanishing
theorem which asserts that hq(S,OS(D̃)) = 0 for q = 1, 2, it follows that

h
0(S,OS(D)) = h

0(S,OS(D̃)) = ind(OS(D̃)) . (1.2)

For such cases, which we show include Hirzebruch and del Pezzo surfaces as well as all compact toric
surfaces we have, therefore, a mathematical proof for the existence of index formulae for h

0 and a
practical way of deriving them.

In fact, for Hirzebruch and del Pezzo surfaces we prove that already a single application of the map
D ! D̃ projects into the nef cone and that a suitable vanishing theorem is available in either case.
This leads to a mathematical proof for the empirical formula (1.1).

We will presently provide a summary of our main results. Subsequently, the plan for the remainder of
the paper is as follows. In the next section, we explain how cohomology formulae can be extracted from
cohomology data, computed by algorithmic methods, focusing on Hirzebruch and del Pezzo surfaces. In
a first instance, we extract piecewise quadratic formulae from the data which are subsequently refined
to index formulae. The reader less interested in this “empirical” aspect of the work can skip to Section 3
which contains our main mathematical statements. Section 4 illustrates these mathematical results in
the context of simple examples. We conclude in Section 5.

The present paper has two companion papers. Ref. [3] is more mathematical in style and provides
rigorous proofs for the various mathematical statements. In Ref. [4], we explore how techniques from
machine learning can help to uncover the structure of line bundle cohomology.

Summary of results

For the reader interested in applying these index formulae to specific surfaces - but who is not necessarily
patient enough to work through the entire paper - we will now summarise the main results concisely.
For a smooth compact complex projective surface S we first require knowledge of the e↵ective (Mori)
cone, M(S). In practice this amounts to providing the set of Mori cone generators M̂(S) or the set
of generators N̂ (S) of the nef cone N (S), which is dual to the Mori cone. We also need to know the
intersection form (D,D

0) ! D · D
0 on S. For all divisors not in the Mori cone, that is D /2 M(S),

we have h
0(S,OS(D)) = 0. On the other hand, all divisors D 2 M(S) have strictly positive zeroth

cohomology dimension. For such e↵ective divisors we define the map D ! D̃ by

D̃ = D �

X

C2I
✓(�D · C) ceil

✓
D · C

C2

◆
C , (1.3)

where the sum runs over the set I of all irreducible curves with negative self-intersection. The Heaviside
function ✓ ensures that only curves C withD·C < 0 contribute to the sum and ceil is the ceiling function.
Hence, to write down this map explicitly, we need to know the irreducible, negative self-intersection
curves on the surface S - information that can be obtained for many cases of interest.

The key statement about the map (1.3) is that it leaves the zeroth cohomology dimension unchanged,
that is, h0(S,OS(D̃)) = h

0(S,OS(D)). Since the nef cone N (S) is the cone of divisors D which intersect
all algebraic curves non-negatively, it is clear that repeated application of the map (1.3) eventually leads
to a divisor D̃ in the nef cone. If there is a vanishing theorem, typically Kodaira vanishing or one of its
refinements, which asserts that hq(S,OS(D̃)) = 0 for q = 1, 2 then the zeroth cohomology can be written
as an index, using Eq. (1.2). It turns out that this is the case for many surfaces of interest, including
Hirzebruch surfaces, del Pezzo surfaces, and compact toric surfaces, and, hence, index formulae for
the zeroth cohomology dimensions exist for all these cases. The relevant vanishing theorems will be
reviewed in the main text.

Let us first summarise how this general result applies to Hirzebruch surfaces Fn. The Picard lattice
of all Hirzebruch surfaces is two-dimensional and we can introduce a basis (D1, D2) of divisor classes,
such that the intersection form is defined by D

2
1 = �n, D1 · D2 = 1 and D

2
2 = 0 (see Appendix A

4

D !

(where are the irreducible, negative self-intersection curves) I

such that .

of a shifted divisor D̃. For Hirzebruch surfaces this shifted divisor has been defined in Eq. (2.16) and
the analogous result for del Pezzo surfaces is given in Eq. (2.32).

The main purpose of this section is to develop the mathematics underlying Eq. (3.1) in as much
generality as possible and to find proofs for the Hirzebruch and del Pezzo index formulae. It turns out
that the argument naturally proceeds in two steps. The first step, discussed in the following subsection,
is to introduce a certain divisor shift which can be shown to leave the zeroth cohomology dimension
unchanged. The second step is taken in Section (3.2) where we combine the divisor shift with certain
vanishing theorems. As we will see, this will lead to index formulae for certain classes of surfaces,
including Hirzebruch and del Pezzo surfaces. For general mathematical background see, for example,
Refs. [15, 16].

3.1 Cohomology-preserving shifts

For both Hirzebruch and del Pezzo surfaces we have seen that a certain divisor shift plays a crucial
role in writing down an index formula. Moreover, the equations (2.16) and (2.32) for these shifts have
a similar structure which suggests there exists a generalisation to all complex surfaces. The following
theorem defines this general shift and asserts that it leaves the dimension of the zeroth cohomology
unchanged.

Theorem 3.1. Let D be an e↵ective divisor on a smooth compact complex projective surface S, with
associated line bundle OS(D). Let I be the set of irreducible negative self-intersection divisors. Then
the following map on the Picard lattice,

D ! D̃ = D �

X

C2I
✓(�D · C) ceil

✓
D · C

C2

◆
C , (3.2)

preserves the zeroth cohomology,

h
0
�
S,OS(D̃)

�
= h

0
�
S,OS(D)

�
. (3.3)

While it can happen that there are infinitely many irreducible negative self-intersection divisors, only
finitely many can have a negative intersection with a given divisor D. This means only finitely many
terms appear in the sum in Eq. (3.2). Note that once the intersection form and the negative self-
intersection divisors on S are known it is straightforward to evaluate Eq. (3.2) explicitly. We will
sometimes refer to Eq. (3.2) as the “master formula” for cohomology.

A mathematical proof of Theorem 3.1 is given in an accompanying paper [3] and a proof sketch, by an
alternative method, is provided in Appendix C. Here, we would like to provide an intuitive explanation.

In the next two paragraphs, the term “divisor” will refer to an actual divisor, rather than to a
divisor class as in the rest of the paper. First recall that in the context of the divisor line bundle
correspondence the projectivisation of the zeroth cohomology H

0(S,OS(D)) can be identified with the
linear system, |D|, of the associated divisor. The linear system |D| of a divisor consists of all e↵ective
divisors equivalent to D and we can, loosely, think of it as the deformations of D. The dimension of
the linear system and, hence, the dimension of the zeroth cohomology remains unchanged if we remove
from D a piece without deformations, that is, a rigid piece.

How can a rigid piece in a divisor D be detected? A rigid divisor C has negative self-intersection,
C

2
< 0. If such a rigid divisor C is contained in D it gives a negative contribution to the intersection

number D ·C. Of course this negative contribution might be overwhelmed by other positive ones but if
it so happens that D ·C < 0 we can conclude that D contains the rigid divisor C. This is the detection
method for rigid divisors underlying Theorem 3.1, as the step function in Eq. (3.2) indicates. In fact,
the value of the ceiling function in Eq. (3.2) gives the multiple of C contained in D. Eq. (3.2) removes
the multiples of all rigid divisors in D which can be detected in this manner and, hence, the dimension
of the zeroth cohomology remains unchanged.

It is important to note that iterating the map (3.2) is not necessarily trivial. The rigid pieces which can
be detected in the divisor D̃, obtained after applying the map to D once, might well be di↵erent from
the ones detected in D. Hence, we should apply the map (3.2) multiple times until the result stabilises.
We denote the divisor which results from this process by D̃ and this divisor has the following property.

16

S

This happens for all del Pezzo and Hirzebruch surfaces.

If for (Kodaira vanishing or similar) then hq(S,OS(D̃)) = 0 q = 1, 2

h0(S,OS(D)) = ind(D̃)

On a complex surface , there is a map of (effective) divisors

Based on these empirical results, we write down a general form of the map D ! D̃ which applies to
all smooth compact complex projective surfaces and we prove that it preserves the zeroth cohomology
dimensions, that is, h0(S,OS(D̃)) = h

0(S,OS(D)). Moreover, it follows that iterating the map D ! D̃

leads, after a finite number of steps, to a divisor D̃ in the nef cone. Provided there is a vanishing
theorem which asserts that hq(S,OS(D̃)) = 0 for q = 1, 2, it follows that

h
0(S,OS(D)) = h

0(S,OS(D̃)) = ind(OS(D̃)) . (1.2)

For such cases, which we show include Hirzebruch and del Pezzo surfaces as well as all compact toric
surfaces we have, therefore, a mathematical proof for the existence of index formulae for h

0 and a
practical way of deriving them.

In fact, for Hirzebruch and del Pezzo surfaces we prove that already a single application of the map
D ! D̃ projects into the nef cone and that a suitable vanishing theorem is available in either case.
This leads to a mathematical proof for the empirical formula (1.1).

We will presently provide a summary of our main results. Subsequently, the plan for the remainder of
the paper is as follows. In the next section, we explain how cohomology formulae can be extracted from
cohomology data, computed by algorithmic methods, focusing on Hirzebruch and del Pezzo surfaces. In
a first instance, we extract piecewise quadratic formulae from the data which are subsequently refined
to index formulae. The reader less interested in this “empirical” aspect of the work can skip to Section 3
which contains our main mathematical statements. Section 4 illustrates these mathematical results in
the context of simple examples. We conclude in Section 5.

The present paper has two companion papers. Ref. [3] is more mathematical in style and provides
rigorous proofs for the various mathematical statements. In Ref. [4], we explore how techniques from
machine learning can help to uncover the structure of line bundle cohomology.

Summary of results

For the reader interested in applying these index formulae to specific surfaces - but who is not necessarily
patient enough to work through the entire paper - we will now summarise the main results concisely.
For a smooth compact complex projective surface S we first require knowledge of the e↵ective (Mori)
cone, M(S). In practice this amounts to providing the set of Mori cone generators M̂(S) or the set
of generators N̂ (S) of the nef cone N (S), which is dual to the Mori cone. We also need to know the
intersection form (D,D

0) ! D · D
0 on S. For all divisors not in the Mori cone, that is D /2 M(S),

we have h
0(S,OS(D)) = 0. On the other hand, all divisors D 2 M(S) have strictly positive zeroth

cohomology dimension. For such e↵ective divisors we define the map D ! D̃ by

D̃ = D �

X

C2I
✓(�D · C) ceil

✓
D · C

C2

◆
C , (1.3)

where the sum runs over the set I of all irreducible curves with negative self-intersection. The Heaviside
function ✓ ensures that only curves C withD·C < 0 contribute to the sum and ceil is the ceiling function.
Hence, to write down this map explicitly, we need to know the irreducible, negative self-intersection
curves on the surface S - information that can be obtained for many cases of interest.

The key statement about the map (1.3) is that it leaves the zeroth cohomology dimension unchanged,
that is, h0(S,OS(D̃)) = h

0(S,OS(D)). Since the nef cone N (S) is the cone of divisors D which intersect
all algebraic curves non-negatively, it is clear that repeated application of the map (1.3) eventually leads
to a divisor D̃ in the nef cone. If there is a vanishing theorem, typically Kodaira vanishing or one of its
refinements, which asserts that hq(S,OS(D̃)) = 0 for q = 1, 2 then the zeroth cohomology can be written
as an index, using Eq. (1.2). It turns out that this is the case for many surfaces of interest, including
Hirzebruch surfaces, del Pezzo surfaces, and compact toric surfaces, and, hence, index formulae for
the zeroth cohomology dimensions exist for all these cases. The relevant vanishing theorems will be
reviewed in the main text.

Let us first summarise how this general result applies to Hirzebruch surfaces Fn. The Picard lattice
of all Hirzebruch surfaces is two-dimensional and we can introduce a basis (D1, D2) of divisor classes,
such that the intersection form is defined by D

2
1 = �n, D1 · D2 = 1 and D

2
2 = 0 (see Appendix A

4

D !

(where are the irreducible, negative self-intersection curves) I

such that .

of a shifted divisor D̃. For Hirzebruch surfaces this shifted divisor has been defined in Eq. (2.16) and
the analogous result for del Pezzo surfaces is given in Eq. (2.32).

The main purpose of this section is to develop the mathematics underlying Eq. (3.1) in as much
generality as possible and to find proofs for the Hirzebruch and del Pezzo index formulae. It turns out
that the argument naturally proceeds in two steps. The first step, discussed in the following subsection,
is to introduce a certain divisor shift which can be shown to leave the zeroth cohomology dimension
unchanged. The second step is taken in Section (3.2) where we combine the divisor shift with certain
vanishing theorems. As we will see, this will lead to index formulae for certain classes of surfaces,
including Hirzebruch and del Pezzo surfaces. For general mathematical background see, for example,
Refs. [15, 16].

3.1 Cohomology-preserving shifts

For both Hirzebruch and del Pezzo surfaces we have seen that a certain divisor shift plays a crucial
role in writing down an index formula. Moreover, the equations (2.16) and (2.32) for these shifts have
a similar structure which suggests there exists a generalisation to all complex surfaces. The following
theorem defines this general shift and asserts that it leaves the dimension of the zeroth cohomology
unchanged.

Theorem 3.1. Let D be an e↵ective divisor on a smooth compact complex projective surface S, with
associated line bundle OS(D). Let I be the set of irreducible negative self-intersection divisors. Then
the following map on the Picard lattice,

D ! D̃ = D �

X

C2I
✓(�D · C) ceil

✓
D · C

C2

◆
C , (3.2)

preserves the zeroth cohomology,

h
0
�
S,OS(D̃)

�
= h

0
�
S,OS(D)

�
. (3.3)

While it can happen that there are infinitely many irreducible negative self-intersection divisors, only
finitely many can have a negative intersection with a given divisor D. This means only finitely many
terms appear in the sum in Eq. (3.2). Note that once the intersection form and the negative self-
intersection divisors on S are known it is straightforward to evaluate Eq. (3.2) explicitly. We will
sometimes refer to Eq. (3.2) as the “master formula” for cohomology.

A mathematical proof of Theorem 3.1 is given in an accompanying paper [3] and a proof sketch, by an
alternative method, is provided in Appendix C. Here, we would like to provide an intuitive explanation.

In the next two paragraphs, the term “divisor” will refer to an actual divisor, rather than to a
divisor class as in the rest of the paper. First recall that in the context of the divisor line bundle
correspondence the projectivisation of the zeroth cohomology H

0(S,OS(D)) can be identified with the
linear system, |D|, of the associated divisor. The linear system |D| of a divisor consists of all e↵ective
divisors equivalent to D and we can, loosely, think of it as the deformations of D. The dimension of
the linear system and, hence, the dimension of the zeroth cohomology remains unchanged if we remove
from D a piece without deformations, that is, a rigid piece.

How can a rigid piece in a divisor D be detected? A rigid divisor C has negative self-intersection,
C

2
< 0. If such a rigid divisor C is contained in D it gives a negative contribution to the intersection

number D ·C. Of course this negative contribution might be overwhelmed by other positive ones but if
it so happens that D ·C < 0 we can conclude that D contains the rigid divisor C. This is the detection
method for rigid divisors underlying Theorem 3.1, as the step function in Eq. (3.2) indicates. In fact,
the value of the ceiling function in Eq. (3.2) gives the multiple of C contained in D. Eq. (3.2) removes
the multiples of all rigid divisors in D which can be detected in this manner and, hence, the dimension
of the zeroth cohomology remains unchanged.

It is important to note that iterating the map (3.2) is not necessarily trivial. The rigid pieces which can
be detected in the divisor D̃, obtained after applying the map to D once, might well be di↵erent from
the ones detected in D. Hence, we should apply the map (3.2) multiple times until the result stabilises.
We denote the divisor which results from this process by D̃ and this divisor has the following property.

16

S

This happens for all del Pezzo and Hirzebruch surfaces.

Example : gives previous formula dP1 I = {e1}

If for (Kodaira vanishing or similar) then hq(S,OS(D̃)) = 0 q = 1, 2

h0(S,OS(D)) = ind(D̃)

On a complex surface , there is a map of (effective) divisors

Based on these empirical results, we write down a general form of the map D ! D̃ which applies to
all smooth compact complex projective surfaces and we prove that it preserves the zeroth cohomology
dimensions, that is, h0(S,OS(D̃)) = h

0(S,OS(D)). Moreover, it follows that iterating the map D ! D̃

leads, after a finite number of steps, to a divisor D̃ in the nef cone. Provided there is a vanishing
theorem which asserts that hq(S,OS(D̃)) = 0 for q = 1, 2, it follows that

h
0(S,OS(D)) = h

0(S,OS(D̃)) = ind(OS(D̃)) . (1.2)

For such cases, which we show include Hirzebruch and del Pezzo surfaces as well as all compact toric
surfaces we have, therefore, a mathematical proof for the existence of index formulae for h

0 and a
practical way of deriving them.

In fact, for Hirzebruch and del Pezzo surfaces we prove that already a single application of the map
D ! D̃ projects into the nef cone and that a suitable vanishing theorem is available in either case.
This leads to a mathematical proof for the empirical formula (1.1).

We will presently provide a summary of our main results. Subsequently, the plan for the remainder of
the paper is as follows. In the next section, we explain how cohomology formulae can be extracted from
cohomology data, computed by algorithmic methods, focusing on Hirzebruch and del Pezzo surfaces. In
a first instance, we extract piecewise quadratic formulae from the data which are subsequently refined
to index formulae. The reader less interested in this “empirical” aspect of the work can skip to Section 3
which contains our main mathematical statements. Section 4 illustrates these mathematical results in
the context of simple examples. We conclude in Section 5.

The present paper has two companion papers. Ref. [3] is more mathematical in style and provides
rigorous proofs for the various mathematical statements. In Ref. [4], we explore how techniques from
machine learning can help to uncover the structure of line bundle cohomology.

Summary of results

For the reader interested in applying these index formulae to specific surfaces - but who is not necessarily
patient enough to work through the entire paper - we will now summarise the main results concisely.
For a smooth compact complex projective surface S we first require knowledge of the e↵ective (Mori)
cone, M(S). In practice this amounts to providing the set of Mori cone generators M̂(S) or the set
of generators N̂ (S) of the nef cone N (S), which is dual to the Mori cone. We also need to know the
intersection form (D,D

0) ! D · D
0 on S. For all divisors not in the Mori cone, that is D /2 M(S),

we have h
0(S,OS(D)) = 0. On the other hand, all divisors D 2 M(S) have strictly positive zeroth

cohomology dimension. For such e↵ective divisors we define the map D ! D̃ by

D̃ = D �

X

C2I
✓(�D · C) ceil

✓
D · C

C2

◆
C , (1.3)

where the sum runs over the set I of all irreducible curves with negative self-intersection. The Heaviside
function ✓ ensures that only curves C withD·C < 0 contribute to the sum and ceil is the ceiling function.
Hence, to write down this map explicitly, we need to know the irreducible, negative self-intersection
curves on the surface S - information that can be obtained for many cases of interest.

The key statement about the map (1.3) is that it leaves the zeroth cohomology dimension unchanged,
that is, h0(S,OS(D̃)) = h

0(S,OS(D)). Since the nef cone N (S) is the cone of divisors D which intersect
all algebraic curves non-negatively, it is clear that repeated application of the map (1.3) eventually leads
to a divisor D̃ in the nef cone. If there is a vanishing theorem, typically Kodaira vanishing or one of its
refinements, which asserts that hq(S,OS(D̃)) = 0 for q = 1, 2 then the zeroth cohomology can be written
as an index, using Eq. (1.2). It turns out that this is the case for many surfaces of interest, including
Hirzebruch surfaces, del Pezzo surfaces, and compact toric surfaces, and, hence, index formulae for
the zeroth cohomology dimensions exist for all these cases. The relevant vanishing theorems will be
reviewed in the main text.

Let us first summarise how this general result applies to Hirzebruch surfaces Fn. The Picard lattice
of all Hirzebruch surfaces is two-dimensional and we can introduce a basis (D1, D2) of divisor classes,
such that the intersection form is defined by D

2
1 = �n, D1 · D2 = 1 and D

2
2 = 0 (see Appendix A

4

D !

(where are the irreducible, negative self-intersection curves) I

such that .

of a shifted divisor D̃. For Hirzebruch surfaces this shifted divisor has been defined in Eq. (2.16) and
the analogous result for del Pezzo surfaces is given in Eq. (2.32).

The main purpose of this section is to develop the mathematics underlying Eq. (3.1) in as much
generality as possible and to find proofs for the Hirzebruch and del Pezzo index formulae. It turns out
that the argument naturally proceeds in two steps. The first step, discussed in the following subsection,
is to introduce a certain divisor shift which can be shown to leave the zeroth cohomology dimension
unchanged. The second step is taken in Section (3.2) where we combine the divisor shift with certain
vanishing theorems. As we will see, this will lead to index formulae for certain classes of surfaces,
including Hirzebruch and del Pezzo surfaces. For general mathematical background see, for example,
Refs. [15, 16].

3.1 Cohomology-preserving shifts

For both Hirzebruch and del Pezzo surfaces we have seen that a certain divisor shift plays a crucial
role in writing down an index formula. Moreover, the equations (2.16) and (2.32) for these shifts have
a similar structure which suggests there exists a generalisation to all complex surfaces. The following
theorem defines this general shift and asserts that it leaves the dimension of the zeroth cohomology
unchanged.

Theorem 3.1. Let D be an e↵ective divisor on a smooth compact complex projective surface S, with
associated line bundle OS(D). Let I be the set of irreducible negative self-intersection divisors. Then
the following map on the Picard lattice,

D ! D̃ = D �

X

C2I
✓(�D · C) ceil

✓
D · C

C2

◆
C , (3.2)

preserves the zeroth cohomology,

h
0
�
S,OS(D̃)

�
= h

0
�
S,OS(D)

�
. (3.3)

While it can happen that there are infinitely many irreducible negative self-intersection divisors, only
finitely many can have a negative intersection with a given divisor D. This means only finitely many
terms appear in the sum in Eq. (3.2). Note that once the intersection form and the negative self-
intersection divisors on S are known it is straightforward to evaluate Eq. (3.2) explicitly. We will
sometimes refer to Eq. (3.2) as the “master formula” for cohomology.

A mathematical proof of Theorem 3.1 is given in an accompanying paper [3] and a proof sketch, by an
alternative method, is provided in Appendix C. Here, we would like to provide an intuitive explanation.

In the next two paragraphs, the term “divisor” will refer to an actual divisor, rather than to a
divisor class as in the rest of the paper. First recall that in the context of the divisor line bundle
correspondence the projectivisation of the zeroth cohomology H

0(S,OS(D)) can be identified with the
linear system, |D|, of the associated divisor. The linear system |D| of a divisor consists of all e↵ective
divisors equivalent to D and we can, loosely, think of it as the deformations of D. The dimension of
the linear system and, hence, the dimension of the zeroth cohomology remains unchanged if we remove
from D a piece without deformations, that is, a rigid piece.

How can a rigid piece in a divisor D be detected? A rigid divisor C has negative self-intersection,
C

2
< 0. If such a rigid divisor C is contained in D it gives a negative contribution to the intersection

number D ·C. Of course this negative contribution might be overwhelmed by other positive ones but if
it so happens that D ·C < 0 we can conclude that D contains the rigid divisor C. This is the detection
method for rigid divisors underlying Theorem 3.1, as the step function in Eq. (3.2) indicates. In fact,
the value of the ceiling function in Eq. (3.2) gives the multiple of C contained in D. Eq. (3.2) removes
the multiples of all rigid divisors in D which can be detected in this manner and, hence, the dimension
of the zeroth cohomology remains unchanged.

It is important to note that iterating the map (3.2) is not necessarily trivial. The rigid pieces which can
be detected in the divisor D̃, obtained after applying the map to D once, might well be di↵erent from
the ones detected in D. Hence, we should apply the map (3.2) multiple times until the result stabilises.
We denote the divisor which results from this process by D̃ and this divisor has the following property.

16

S

This happens for all del Pezzo and Hirzebruch surfaces.

Example : gives previous formula dP1 I = {e1}

Example : gives formula I = {e1, e2, l � e1 � e2}dP2 dP2

If for (Kodaira vanishing or similar) then hq(S,OS(D̃)) = 0 q = 1, 2

h0(S,OS(D)) = ind(D̃)

On a complex surface , there is a map of (effective) divisors

Based on these empirical results, we write down a general form of the map D ! D̃ which applies to
all smooth compact complex projective surfaces and we prove that it preserves the zeroth cohomology
dimensions, that is, h0(S,OS(D̃)) = h

0(S,OS(D)). Moreover, it follows that iterating the map D ! D̃

leads, after a finite number of steps, to a divisor D̃ in the nef cone. Provided there is a vanishing
theorem which asserts that hq(S,OS(D̃)) = 0 for q = 1, 2, it follows that

h
0(S,OS(D)) = h

0(S,OS(D̃)) = ind(OS(D̃)) . (1.2)

For such cases, which we show include Hirzebruch and del Pezzo surfaces as well as all compact toric
surfaces we have, therefore, a mathematical proof for the existence of index formulae for h

0 and a
practical way of deriving them.

In fact, for Hirzebruch and del Pezzo surfaces we prove that already a single application of the map
D ! D̃ projects into the nef cone and that a suitable vanishing theorem is available in either case.
This leads to a mathematical proof for the empirical formula (1.1).

We will presently provide a summary of our main results. Subsequently, the plan for the remainder of
the paper is as follows. In the next section, we explain how cohomology formulae can be extracted from
cohomology data, computed by algorithmic methods, focusing on Hirzebruch and del Pezzo surfaces. In
a first instance, we extract piecewise quadratic formulae from the data which are subsequently refined
to index formulae. The reader less interested in this “empirical” aspect of the work can skip to Section 3
which contains our main mathematical statements. Section 4 illustrates these mathematical results in
the context of simple examples. We conclude in Section 5.

The present paper has two companion papers. Ref. [3] is more mathematical in style and provides
rigorous proofs for the various mathematical statements. In Ref. [4], we explore how techniques from
machine learning can help to uncover the structure of line bundle cohomology.

Summary of results

For the reader interested in applying these index formulae to specific surfaces - but who is not necessarily
patient enough to work through the entire paper - we will now summarise the main results concisely.
For a smooth compact complex projective surface S we first require knowledge of the e↵ective (Mori)
cone, M(S). In practice this amounts to providing the set of Mori cone generators M̂(S) or the set
of generators N̂ (S) of the nef cone N (S), which is dual to the Mori cone. We also need to know the
intersection form (D,D

0) ! D · D
0 on S. For all divisors not in the Mori cone, that is D /2 M(S),

we have h
0(S,OS(D)) = 0. On the other hand, all divisors D 2 M(S) have strictly positive zeroth

cohomology dimension. For such e↵ective divisors we define the map D ! D̃ by

D̃ = D �

X

C2I
✓(�D · C) ceil

✓
D · C

C2

◆
C , (1.3)

where the sum runs over the set I of all irreducible curves with negative self-intersection. The Heaviside
function ✓ ensures that only curves C withD·C < 0 contribute to the sum and ceil is the ceiling function.
Hence, to write down this map explicitly, we need to know the irreducible, negative self-intersection
curves on the surface S - information that can be obtained for many cases of interest.

The key statement about the map (1.3) is that it leaves the zeroth cohomology dimension unchanged,
that is, h0(S,OS(D̃)) = h

0(S,OS(D)). Since the nef cone N (S) is the cone of divisors D which intersect
all algebraic curves non-negatively, it is clear that repeated application of the map (1.3) eventually leads
to a divisor D̃ in the nef cone. If there is a vanishing theorem, typically Kodaira vanishing or one of its
refinements, which asserts that hq(S,OS(D̃)) = 0 for q = 1, 2 then the zeroth cohomology can be written
as an index, using Eq. (1.2). It turns out that this is the case for many surfaces of interest, including
Hirzebruch surfaces, del Pezzo surfaces, and compact toric surfaces, and, hence, index formulae for
the zeroth cohomology dimensions exist for all these cases. The relevant vanishing theorems will be
reviewed in the main text.

Let us first summarise how this general result applies to Hirzebruch surfaces Fn. The Picard lattice
of all Hirzebruch surfaces is two-dimensional and we can introduce a basis (D1, D2) of divisor classes,
such that the intersection form is defined by D

2
1 = �n, D1 · D2 = 1 and D

2
2 = 0 (see Appendix A

4

D !

(where are the irreducible, negative self-intersection curves) I

such that .

of a shifted divisor D̃. For Hirzebruch surfaces this shifted divisor has been defined in Eq. (2.16) and
the analogous result for del Pezzo surfaces is given in Eq. (2.32).

The main purpose of this section is to develop the mathematics underlying Eq. (3.1) in as much
generality as possible and to find proofs for the Hirzebruch and del Pezzo index formulae. It turns out
that the argument naturally proceeds in two steps. The first step, discussed in the following subsection,
is to introduce a certain divisor shift which can be shown to leave the zeroth cohomology dimension
unchanged. The second step is taken in Section (3.2) where we combine the divisor shift with certain
vanishing theorems. As we will see, this will lead to index formulae for certain classes of surfaces,
including Hirzebruch and del Pezzo surfaces. For general mathematical background see, for example,
Refs. [15, 16].

3.1 Cohomology-preserving shifts

For both Hirzebruch and del Pezzo surfaces we have seen that a certain divisor shift plays a crucial
role in writing down an index formula. Moreover, the equations (2.16) and (2.32) for these shifts have
a similar structure which suggests there exists a generalisation to all complex surfaces. The following
theorem defines this general shift and asserts that it leaves the dimension of the zeroth cohomology
unchanged.

Theorem 3.1. Let D be an e↵ective divisor on a smooth compact complex projective surface S, with
associated line bundle OS(D). Let I be the set of irreducible negative self-intersection divisors. Then
the following map on the Picard lattice,

D ! D̃ = D �

X

C2I
✓(�D · C) ceil

✓
D · C

C2

◆
C , (3.2)

preserves the zeroth cohomology,

h
0
�
S,OS(D̃)

�
= h

0
�
S,OS(D)

�
. (3.3)

While it can happen that there are infinitely many irreducible negative self-intersection divisors, only
finitely many can have a negative intersection with a given divisor D. This means only finitely many
terms appear in the sum in Eq. (3.2). Note that once the intersection form and the negative self-
intersection divisors on S are known it is straightforward to evaluate Eq. (3.2) explicitly. We will
sometimes refer to Eq. (3.2) as the “master formula” for cohomology.

A mathematical proof of Theorem 3.1 is given in an accompanying paper [3] and a proof sketch, by an
alternative method, is provided in Appendix C. Here, we would like to provide an intuitive explanation.

In the next two paragraphs, the term “divisor” will refer to an actual divisor, rather than to a
divisor class as in the rest of the paper. First recall that in the context of the divisor line bundle
correspondence the projectivisation of the zeroth cohomology H

0(S,OS(D)) can be identified with the
linear system, |D|, of the associated divisor. The linear system |D| of a divisor consists of all e↵ective
divisors equivalent to D and we can, loosely, think of it as the deformations of D. The dimension of
the linear system and, hence, the dimension of the zeroth cohomology remains unchanged if we remove
from D a piece without deformations, that is, a rigid piece.

How can a rigid piece in a divisor D be detected? A rigid divisor C has negative self-intersection,
C

2
< 0. If such a rigid divisor C is contained in D it gives a negative contribution to the intersection

number D ·C. Of course this negative contribution might be overwhelmed by other positive ones but if
it so happens that D ·C < 0 we can conclude that D contains the rigid divisor C. This is the detection
method for rigid divisors underlying Theorem 3.1, as the step function in Eq. (3.2) indicates. In fact,
the value of the ceiling function in Eq. (3.2) gives the multiple of C contained in D. Eq. (3.2) removes
the multiples of all rigid divisors in D which can be detected in this manner and, hence, the dimension
of the zeroth cohomology remains unchanged.

It is important to note that iterating the map (3.2) is not necessarily trivial. The rigid pieces which can
be detected in the divisor D̃, obtained after applying the map to D once, might well be di↵erent from
the ones detected in D. Hence, we should apply the map (3.2) multiple times until the result stabilises.
We denote the divisor which results from this process by D̃ and this divisor has the following property.

16

S

This happens for all del Pezzo and Hirzebruch surfaces.

Example : gives previous formula dP1 I = {e1}

Example : gives formula I = {e1, e2, l � e1 � e2}dP2 dP2

(For more details see talks by Callum Brodie and Andrei Constantin)

If for (Kodaira vanishing or similar) then hq(S,OS(D̃)) = 0 q = 1, 2

h0(S,OS(D)) = ind(D̃)

On a complex surface , there is a map of (effective) divisors

Based on these empirical results, we write down a general form of the map D ! D̃ which applies to
all smooth compact complex projective surfaces and we prove that it preserves the zeroth cohomology
dimensions, that is, h0(S,OS(D̃)) = h

0(S,OS(D)). Moreover, it follows that iterating the map D ! D̃

leads, after a finite number of steps, to a divisor D̃ in the nef cone. Provided there is a vanishing
theorem which asserts that hq(S,OS(D̃)) = 0 for q = 1, 2, it follows that

h
0(S,OS(D)) = h

0(S,OS(D̃)) = ind(OS(D̃)) . (1.2)

For such cases, which we show include Hirzebruch and del Pezzo surfaces as well as all compact toric
surfaces we have, therefore, a mathematical proof for the existence of index formulae for h

0 and a
practical way of deriving them.

In fact, for Hirzebruch and del Pezzo surfaces we prove that already a single application of the map
D ! D̃ projects into the nef cone and that a suitable vanishing theorem is available in either case.
This leads to a mathematical proof for the empirical formula (1.1).

We will presently provide a summary of our main results. Subsequently, the plan for the remainder of
the paper is as follows. In the next section, we explain how cohomology formulae can be extracted from
cohomology data, computed by algorithmic methods, focusing on Hirzebruch and del Pezzo surfaces. In
a first instance, we extract piecewise quadratic formulae from the data which are subsequently refined
to index formulae. The reader less interested in this “empirical” aspect of the work can skip to Section 3
which contains our main mathematical statements. Section 4 illustrates these mathematical results in
the context of simple examples. We conclude in Section 5.

The present paper has two companion papers. Ref. [3] is more mathematical in style and provides
rigorous proofs for the various mathematical statements. In Ref. [4], we explore how techniques from
machine learning can help to uncover the structure of line bundle cohomology.

Summary of results

For the reader interested in applying these index formulae to specific surfaces - but who is not necessarily
patient enough to work through the entire paper - we will now summarise the main results concisely.
For a smooth compact complex projective surface S we first require knowledge of the e↵ective (Mori)
cone, M(S). In practice this amounts to providing the set of Mori cone generators M̂(S) or the set
of generators N̂ (S) of the nef cone N (S), which is dual to the Mori cone. We also need to know the
intersection form (D,D

0) ! D · D
0 on S. For all divisors not in the Mori cone, that is D /2 M(S),

we have h
0(S,OS(D)) = 0. On the other hand, all divisors D 2 M(S) have strictly positive zeroth

cohomology dimension. For such e↵ective divisors we define the map D ! D̃ by

D̃ = D �

X

C2I
✓(�D · C) ceil

✓
D · C

C2

◆
C , (1.3)

where the sum runs over the set I of all irreducible curves with negative self-intersection. The Heaviside
function ✓ ensures that only curves C withD·C < 0 contribute to the sum and ceil is the ceiling function.
Hence, to write down this map explicitly, we need to know the irreducible, negative self-intersection
curves on the surface S - information that can be obtained for many cases of interest.

The key statement about the map (1.3) is that it leaves the zeroth cohomology dimension unchanged,
that is, h0(S,OS(D̃)) = h

0(S,OS(D)). Since the nef cone N (S) is the cone of divisors D which intersect
all algebraic curves non-negatively, it is clear that repeated application of the map (1.3) eventually leads
to a divisor D̃ in the nef cone. If there is a vanishing theorem, typically Kodaira vanishing or one of its
refinements, which asserts that hq(S,OS(D̃)) = 0 for q = 1, 2 then the zeroth cohomology can be written
as an index, using Eq. (1.2). It turns out that this is the case for many surfaces of interest, including
Hirzebruch surfaces, del Pezzo surfaces, and compact toric surfaces, and, hence, index formulae for
the zeroth cohomology dimensions exist for all these cases. The relevant vanishing theorems will be
reviewed in the main text.

Let us first summarise how this general result applies to Hirzebruch surfaces Fn. The Picard lattice
of all Hirzebruch surfaces is two-dimensional and we can introduce a basis (D1, D2) of divisor classes,
such that the intersection form is defined by D

2
1 = �n, D1 · D2 = 1 and D

2
2 = 0 (see Appendix A

4

D !

(where are the irreducible, negative self-intersection curves) I

such that .

of a shifted divisor D̃. For Hirzebruch surfaces this shifted divisor has been defined in Eq. (2.16) and
the analogous result for del Pezzo surfaces is given in Eq. (2.32).

The main purpose of this section is to develop the mathematics underlying Eq. (3.1) in as much
generality as possible and to find proofs for the Hirzebruch and del Pezzo index formulae. It turns out
that the argument naturally proceeds in two steps. The first step, discussed in the following subsection,
is to introduce a certain divisor shift which can be shown to leave the zeroth cohomology dimension
unchanged. The second step is taken in Section (3.2) where we combine the divisor shift with certain
vanishing theorems. As we will see, this will lead to index formulae for certain classes of surfaces,
including Hirzebruch and del Pezzo surfaces. For general mathematical background see, for example,
Refs. [15, 16].

3.1 Cohomology-preserving shifts

For both Hirzebruch and del Pezzo surfaces we have seen that a certain divisor shift plays a crucial
role in writing down an index formula. Moreover, the equations (2.16) and (2.32) for these shifts have
a similar structure which suggests there exists a generalisation to all complex surfaces. The following
theorem defines this general shift and asserts that it leaves the dimension of the zeroth cohomology
unchanged.

Theorem 3.1. Let D be an e↵ective divisor on a smooth compact complex projective surface S, with
associated line bundle OS(D). Let I be the set of irreducible negative self-intersection divisors. Then
the following map on the Picard lattice,

D ! D̃ = D �

X

C2I
✓(�D · C) ceil

✓
D · C

C2

◆
C , (3.2)

preserves the zeroth cohomology,

h
0
�
S,OS(D̃)

�
= h

0
�
S,OS(D)

�
. (3.3)

While it can happen that there are infinitely many irreducible negative self-intersection divisors, only
finitely many can have a negative intersection with a given divisor D. This means only finitely many
terms appear in the sum in Eq. (3.2). Note that once the intersection form and the negative self-
intersection divisors on S are known it is straightforward to evaluate Eq. (3.2) explicitly. We will
sometimes refer to Eq. (3.2) as the “master formula” for cohomology.

A mathematical proof of Theorem 3.1 is given in an accompanying paper [3] and a proof sketch, by an
alternative method, is provided in Appendix C. Here, we would like to provide an intuitive explanation.

In the next two paragraphs, the term “divisor” will refer to an actual divisor, rather than to a
divisor class as in the rest of the paper. First recall that in the context of the divisor line bundle
correspondence the projectivisation of the zeroth cohomology H

0(S,OS(D)) can be identified with the
linear system, |D|, of the associated divisor. The linear system |D| of a divisor consists of all e↵ective
divisors equivalent to D and we can, loosely, think of it as the deformations of D. The dimension of
the linear system and, hence, the dimension of the zeroth cohomology remains unchanged if we remove
from D a piece without deformations, that is, a rigid piece.

How can a rigid piece in a divisor D be detected? A rigid divisor C has negative self-intersection,
C

2
< 0. If such a rigid divisor C is contained in D it gives a negative contribution to the intersection

number D ·C. Of course this negative contribution might be overwhelmed by other positive ones but if
it so happens that D ·C < 0 we can conclude that D contains the rigid divisor C. This is the detection
method for rigid divisors underlying Theorem 3.1, as the step function in Eq. (3.2) indicates. In fact,
the value of the ceiling function in Eq. (3.2) gives the multiple of C contained in D. Eq. (3.2) removes
the multiples of all rigid divisors in D which can be detected in this manner and, hence, the dimension
of the zeroth cohomology remains unchanged.

It is important to note that iterating the map (3.2) is not necessarily trivial. The rigid pieces which can
be detected in the divisor D̃, obtained after applying the map to D once, might well be di↵erent from
the ones detected in D. Hence, we should apply the map (3.2) multiple times until the result stabilises.
We denote the divisor which results from this process by D̃ and this divisor has the following property.

16

S

Machine learning line bundle cohomology

Regular “function learning” of line bundle cohomology with

neural networks is possible. (Fabian Ruehle 1706.07024)

Machine learning line bundle cohomology

Regular “function learning” of line bundle cohomology with

neural networks is possible. (Fabian Ruehle 1706.07024)

Q: Can we use machine learning to conjecture piecewise  
 polynomial formulae for line bundle cohomology?

Design a net which matches the structure of the formula:

(W1,b1)k (W2,b2)� �
Rn Rn1 Rn1 Rn2

Rn2

x = (ki, kikj , . . .) (W3,b3)
RN

Rn2 · R

Design a net which matches the structure of the formula:

(W1,b1)k (W2,b2)� �
Rn Rn1 Rn1 Rn2

Rn2

x = (ki, kikj , . . .) (W3,b3)
RN

Rn2 · R

Design a net which matches the structure of the formula:

g✓

(W1,b1)k (W2,b2)� �
Rn Rn1 Rn1 Rn2

Rn2

x = (ki, kikj , . . .) (W3,b3)
RN

Rn2 · R

Design a net which matches the structure of the formula:

g✓

Training data:

are [11]

h
0(OX(k)) =

8
>>>><

>>>>:

1

2
(1 + k2)(2 + k2) , k1 = 0, k2 � 0

ind(OX(k)) , k1, k2 > 0

0 otherwise

(2.13)

h
1(OX(k)) =

8
>>>><

>>>>:

1

2
(�1 + k2)(�2 + k2) , k1 = 0, k2 > 0

�ind(OX(k)) , k1 < 0, k2 > �k1

0 otherwise ,

(2.14)

with the index given by ind(OX(k)) = 3
2(k1+k2)(2+k1k2). In line with our general discussion, we have

two-dimensional regions as well as one-dimensional ones, the latter along the positive coordinate axis.
Moreover, it is evident from the above formulae that cohomology dimensions jump discontinuously
across boundaries. As for surfaces, we would like to be able to conjecture formulae such as the above
from machine learning.

2.4 Set-up for machine learning

In summary, we are interested in exploring machine learning of line bundle cohomology on manifolds
X with complex dimensions d = 2, 3, of the type introduced above. Line bundles on these manifolds
are labelled by integer vectors k 2 Zh with components ki and are denoted OX(k). The cohomology
dimensions h

q(OX(k)) 2 Z�0, where q = 0, . . . , d, can be explicitly computed using the various
algorithmic methods outlined above. This leads to our training/validation data which is of the form

Zh
3 k �! h

q(OX(k)) 2 Z�0
. (2.15)

In practice, this data can only be obtained algorithmically for relative small values of |ki|. It will be
taken from a “training box” defined by |ki|  kmax, where kmax varies from 5 to 20, depending on the
manifold.

As discussed, there is evidence - and proofs in some cases - that cohomology dimensions on these
spaces are described by formulae which are piecewise polynomial, with polynomials of degree d. For
this reason, it will sometimes be useful to modify the training data to

(ki, kikj)ij �! h
q(OX(k)) for d = 2

(ki, kikj , kikjkl)ijl �! h
q(OX(k)) for d = 3 .

(2.16)

By providing all monomials up to degree d in ki as an input the problem is e↵ectively converted into
a piecewise linear one.

A common measure for how successfully a trained network performs is the mean square loss
on the validation set. In the case of function approximation, a mean square loss translates into a
typical accuracy with which the function in question is approximated. For our application to bundle
cohomology it makes sense to introduce a di↵erent and often more stringent measure of success. In
practice, we are not necessarily satisfied with cohomology dimensions approximated by the network
within, say, a few percent. We would like the network to predict the exact cohomology dimensions,
after rounding to the nearest integer. We will, therefore, measure the success of training by the
percentage of cohomology dimensions within the training box which are correctly reproduced after
rounding.

Our networks have been realised with the Mathematica machine learning suite, and the fully-
connected networks in the next section as well as the networks that learn cohomology formulae have

7

(W1,b1)k (W2,b2)� �
Rn Rn1 Rn1 Rn2

Rn2

x = (ki, kikj , . . .) (W3,b3)
RN

Rn2 · R

Design a net which matches the structure of the formula:

g✓

Assume net has been trained: ! g✓̄, W̄3, b̄3

Training data:

are [11]

h
0(OX(k)) =

8
>>>><

>>>>:

1

2
(1 + k2)(2 + k2) , k1 = 0, k2 � 0

ind(OX(k)) , k1, k2 > 0

0 otherwise

(2.13)

h
1(OX(k)) =

8
>>>><

>>>>:

1

2
(�1 + k2)(�2 + k2) , k1 = 0, k2 > 0

�ind(OX(k)) , k1 < 0, k2 > �k1

0 otherwise ,

(2.14)

with the index given by ind(OX(k)) = 3
2(k1+k2)(2+k1k2). In line with our general discussion, we have

two-dimensional regions as well as one-dimensional ones, the latter along the positive coordinate axis.
Moreover, it is evident from the above formulae that cohomology dimensions jump discontinuously
across boundaries. As for surfaces, we would like to be able to conjecture formulae such as the above
from machine learning.

2.4 Set-up for machine learning

In summary, we are interested in exploring machine learning of line bundle cohomology on manifolds
X with complex dimensions d = 2, 3, of the type introduced above. Line bundles on these manifolds
are labelled by integer vectors k 2 Zh with components ki and are denoted OX(k). The cohomology
dimensions h

q(OX(k)) 2 Z�0, where q = 0, . . . , d, can be explicitly computed using the various
algorithmic methods outlined above. This leads to our training/validation data which is of the form

Zh
3 k �! h

q(OX(k)) 2 Z�0
. (2.15)

In practice, this data can only be obtained algorithmically for relative small values of |ki|. It will be
taken from a “training box” defined by |ki|  kmax, where kmax varies from 5 to 20, depending on the
manifold.

As discussed, there is evidence - and proofs in some cases - that cohomology dimensions on these
spaces are described by formulae which are piecewise polynomial, with polynomials of degree d. For
this reason, it will sometimes be useful to modify the training data to

(ki, kikj)ij �! h
q(OX(k)) for d = 2

(ki, kikj , kikjkl)ijl �! h
q(OX(k)) for d = 3 .

(2.16)

By providing all monomials up to degree d in ki as an input the problem is e↵ectively converted into
a piecewise linear one.

A common measure for how successfully a trained network performs is the mean square loss
on the validation set. In the case of function approximation, a mean square loss translates into a
typical accuracy with which the function in question is approximated. For our application to bundle
cohomology it makes sense to introduce a di↵erent and often more stringent measure of success. In
practice, we are not necessarily satisfied with cohomology dimensions approximated by the network
within, say, a few percent. We would like the network to predict the exact cohomology dimensions,
after rounding to the nearest integer. We will, therefore, measure the success of training by the
percentage of cohomology dimensions within the training box which are correctly reproduced after
rounding.

Our networks have been realised with the Mathematica machine learning suite, and the fully-
connected networks in the next section as well as the networks that learn cohomology formulae have

7

(W1,b1)k (W2,b2)� �
Rn Rn1 Rn1 Rn2

Rn2

x = (ki, kikj , . . .) (W3,b3)
RN

Rn2 · R

Design a net which matches the structure of the formula:

g✓

Assume net has been trained: ! g✓̄, W̄3, b̄3

Suppose the above network has been trained leading to the values ✓̄ and (W̄3, b̄3) of the weights and
biases. Of course this network can then be used to predict individual cohomology dimensions, just as
the conceptually simpler networks studied in the previous section. However, our main purpose here
is more ambitious.

Suppose that for each vector k inside the training box we compute, after some suitable network
surgery to extract g✓̄ and (W̄3, b̄3) from the trained network, the vector

a(k) :=
�
g✓̄(k) · b̄3 , g✓̄(k) · W̄3

�
. (4.1)

Intuitively, we should think of a(k) as the vector of coe�cients in the polynomial which describes the
cohomology of O(k). This intuition leads us to identify two vectors k and k0 as being described by
the same polynomial and, hence, as belonging to the same region in the Picard lattice by using the
following condition.

k, k0 in the same region $ |a(k) � a(k0)| < ✏ (4.2)

Here, ✏ > 0 is suitably small. In this way, we can identify the regions in the Picard lattice as point
sets within the training box.

Once this is accomplished, we are almost finished. For each point set, we can select a number
of points - preferably in the interior of the set - and their cohomology values and fit to this subset
a polynomial of the appropriate degree. In short, once the regions have been found the polynomials
are easily determined. Turning this around, with the polynomials at hand, their range of validity
within the training box is easily established. This can be used to “clean up” the regions which are
typically not precise, particularly along the boundaries, when determined from the network using
Eq. (4.2). With the precise regions known as point sets, conventional algorithms can then be used to
determine their defining inequalities. Altogether, this provides a method to generate a conjecture for
a cohomology formula, similar to the ones in Eqs. (2.9), (2.13), (2.14), from machine learning.

To summarise, our algorithm has the following main steps.

(1) Train the network in Fig. 4 with line bundle cohomology data for a manifold, given in the
form (2.16). The width (n1, n2) of the network is varied and fixed by optimising the success
rate.

(2) From the trained network, find the regions in the Picard lattice by using the relation (4.2).

(3) For each so-obtained region, find the corresponding polynomial by a simple fit to points in the
interior of the region.

(4) Use these polynomials to determine the exact regions of their validity.

(5) Determine the bounding inequalities of these exact regions, using standard algorithms.

A simplifying assumption underlying this algorithm is that there is indeed only one polynomial per
region which describes the cohomology dimensions. Sometimes, it happens that the cohomology in
a given region shows an alternating even/odd pattern, so that two polynomials are required (higher
order patterns can also arise). This has been observed in Ref. [13] and, in the case of surfaces, this
behaviour can be traced back to the ceiling function in the master formula (2.4) (see Ref. [15] for
details). For the present section, we have selected examples which do not show such an alternating
behaviour and we will now demonstrate that the algorithm works successfully for such examples.

4.2 Surface examples

We begin with the zeroth cohomology on the del Pezzo surface dP1, in part to illustrate the algorithm
in a simple case. Recall that the rank of the Picard group is two and line bundles OX(k) are
parametrised by a two-dimensional integer vector k = (k0, k1).

13

Suppose the above network has been trained leading to the values ✓̄ and (W̄3, b̄3) of the weights and
biases. Of course this network can then be used to predict individual cohomology dimensions, just as
the conceptually simpler networks studied in the previous section. However, our main purpose here
is more ambitious.

Suppose that for each vector k inside the training box we compute, after some suitable network
surgery to extract g✓̄ and (W̄3, b̄3) from the trained network, the vector

a(k) :=
�
g✓̄(k) · b̄3 , g✓̄(k) · W̄3

�
. (4.1)

Intuitively, we should think of a(k) as the vector of coe�cients in the polynomial which describes the
cohomology of O(k). This intuition leads us to identify two vectors k and k0 as being described by
the same polynomial and, hence, as belonging to the same region in the Picard lattice by using the
following condition.

k, k0 in the same region $ |a(k) � a(k0)| < ✏ (4.2)

Here, ✏ > 0 is suitably small. In this way, we can identify the regions in the Picard lattice as point
sets within the training box.

Once this is accomplished, we are almost finished. For each point set, we can select a number
of points - preferably in the interior of the set - and their cohomology values and fit to this subset
a polynomial of the appropriate degree. In short, once the regions have been found the polynomials
are easily determined. Turning this around, with the polynomials at hand, their range of validity
within the training box is easily established. This can be used to “clean up” the regions which are
typically not precise, particularly along the boundaries, when determined from the network using
Eq. (4.2). With the precise regions known as point sets, conventional algorithms can then be used to
determine their defining inequalities. Altogether, this provides a method to generate a conjecture for
a cohomology formula, similar to the ones in Eqs. (2.9), (2.13), (2.14), from machine learning.

To summarise, our algorithm has the following main steps.

(1) Train the network in Fig. 4 with line bundle cohomology data for a manifold, given in the
form (2.16). The width (n1, n2) of the network is varied and fixed by optimising the success
rate.

(2) From the trained network, find the regions in the Picard lattice by using the relation (4.2).

(3) For each so-obtained region, find the corresponding polynomial by a simple fit to points in the
interior of the region.

(4) Use these polynomials to determine the exact regions of their validity.

(5) Determine the bounding inequalities of these exact regions, using standard algorithms.

A simplifying assumption underlying this algorithm is that there is indeed only one polynomial per
region which describes the cohomology dimensions. Sometimes, it happens that the cohomology in
a given region shows an alternating even/odd pattern, so that two polynomials are required (higher
order patterns can also arise). This has been observed in Ref. [13] and, in the case of surfaces, this
behaviour can be traced back to the ceiling function in the master formula (2.4) (see Ref. [15] for
details). For the present section, we have selected examples which do not show such an alternating
behaviour and we will now demonstrate that the algorithm works successfully for such examples.

4.2 Surface examples

We begin with the zeroth cohomology on the del Pezzo surface dP1, in part to illustrate the algorithm
in a simple case. Recall that the rank of the Picard group is two and line bundles OX(k) are
parametrised by a two-dimensional integer vector k = (k0, k1).

13

Training data:

are [11]

h
0(OX(k)) =

8
>>>><

>>>>:

1

2
(1 + k2)(2 + k2) , k1 = 0, k2 � 0

ind(OX(k)) , k1, k2 > 0

0 otherwise

(2.13)

h
1(OX(k)) =

8
>>>><

>>>>:

1

2
(�1 + k2)(�2 + k2) , k1 = 0, k2 > 0

�ind(OX(k)) , k1 < 0, k2 > �k1

0 otherwise ,

(2.14)

with the index given by ind(OX(k)) = 3
2(k1+k2)(2+k1k2). In line with our general discussion, we have

two-dimensional regions as well as one-dimensional ones, the latter along the positive coordinate axis.
Moreover, it is evident from the above formulae that cohomology dimensions jump discontinuously
across boundaries. As for surfaces, we would like to be able to conjecture formulae such as the above
from machine learning.

2.4 Set-up for machine learning

In summary, we are interested in exploring machine learning of line bundle cohomology on manifolds
X with complex dimensions d = 2, 3, of the type introduced above. Line bundles on these manifolds
are labelled by integer vectors k 2 Zh with components ki and are denoted OX(k). The cohomology
dimensions h

q(OX(k)) 2 Z�0, where q = 0, . . . , d, can be explicitly computed using the various
algorithmic methods outlined above. This leads to our training/validation data which is of the form

Zh
3 k �! h

q(OX(k)) 2 Z�0
. (2.15)

In practice, this data can only be obtained algorithmically for relative small values of |ki|. It will be
taken from a “training box” defined by |ki|  kmax, where kmax varies from 5 to 20, depending on the
manifold.

As discussed, there is evidence - and proofs in some cases - that cohomology dimensions on these
spaces are described by formulae which are piecewise polynomial, with polynomials of degree d. For
this reason, it will sometimes be useful to modify the training data to

(ki, kikj)ij �! h
q(OX(k)) for d = 2

(ki, kikj , kikjkl)ijl �! h
q(OX(k)) for d = 3 .

(2.16)

By providing all monomials up to degree d in ki as an input the problem is e↵ectively converted into
a piecewise linear one.

A common measure for how successfully a trained network performs is the mean square loss
on the validation set. In the case of function approximation, a mean square loss translates into a
typical accuracy with which the function in question is approximated. For our application to bundle
cohomology it makes sense to introduce a di↵erent and often more stringent measure of success. In
practice, we are not necessarily satisfied with cohomology dimensions approximated by the network
within, say, a few percent. We would like the network to predict the exact cohomology dimensions,
after rounding to the nearest integer. We will, therefore, measure the success of training by the
percentage of cohomology dimensions within the training box which are correctly reproduced after
rounding.

Our networks have been realised with the Mathematica machine learning suite, and the fully-
connected networks in the next section as well as the networks that learn cohomology formulae have

7

Example: for bi-cubich1(OX(k1, k2))

Example: for bi-cubich1(OX(k1, k2))

1) Train and identify regions:

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

k1

k2

Example: for bi-cubich1(OX(k1, k2))

1) Train and identify regions:

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

k1

k2

2) Find correct cubic polynomial for each region by a fit:

Example: for bi-cubich1(OX(k1, k2))

1) Train and identify regions:

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

k1

k2

2) Find correct cubic polynomial for each region by a fit:

blue: h1(OX(k1, k2)) = 0

Example: for bi-cubich1(OX(k1, k2))

1) Train and identify regions:

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

k1

k2

2) Find correct cubic polynomial for each region by a fit:

yellow/green: h1(OX(k1, k2)) = �
3

2
(k1 + k2)(2 + k1k2)

blue: h1(OX(k1, k2)) = 0

3) Use these equations to find the exact regions:

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

k1

k2

3) Use these equations to find the exact regions:

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

k1

k2

4) Find equations for boundaries of regions

3) Use these equations to find the exact regions:

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

k1

k2

4) Find equations for boundaries of regions

5) Deal with lower-dimensional regions

3) Use these equations to find the exact regions:

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

k1

k2

4) Find equations for boundaries of regions

5) Deal with lower-dimensional regions

In this way, we find the earlier formula.

3) Use these equations to find the exact regions:

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

k1

k2

4) Find equations for boundaries of regions

5) Deal with lower-dimensional regions

This also works for surfaces and other CY three-folds.

In this way, we find the earlier formula.

Example: dP2

-10

0

10

k0 -10

0

10

k1

-10

0

10

k2

region 1

region 2

region 3

region 4

region 5

region 6

not identified -10

0

10
k0 -10

0

10

k1

-10

0

10

k2

Figure 6: Regions in the Picard lattice for the zeroth cohomology of dP2, determined from the trained network in

Fig. 4 for (n1, n2) = (8, 8) and a training box of size kmax = 15. The figure on the left shows the regions obtained

after step (2) of the algorithm. The figure on the right shows the “cleaned-up” regions obtained after step (4) of

the algorithm. The legend labels the regions as in Eqs. (4.3), (4.4)

polynomial fit to each of the six regions (step (3) of the algorithm) leads to

h
0(OdP2(k)) =

8
>>>>>>>>><

>>>>>>>>>:

1 + 3
2k0 + 1

2k
2
0 + 1

2k1 �
1
2k

2
1 + 1

2k2 �
1
2k

2
2 in region 1 ,

1 + 2k0 + k
2
0 + k1 + k0k1 + k2 + k0k2 + k1k2 in region 2 ,

1 + 3
2k0 + 1

2k
2
0 + 1

2k2 �
1
2k

2
2 in region 3 ,

1 + 3
2k0 + 1

2k
2
0 + 1

2k1 �
1
2k

2
1 in region 4 ,

1 + 3
2k0 + 1

2k
2
0 in region 5 .

0 in region 6 .

(4.3)

Using these equations to determine the exact regions (step (4)) leads to the plot on the right-hand-
side of Fig. 6. In step (5), we then determine the inequalities which describe those regions. They are
given by

Region 1: �k1 � 0 �k2 � 0 k0 + k1 + k2 � 0
Region 2: k0 + k1 + k2 < 0 k0 + k1 � 0 k0 + k2 � 0
Region 3: �k1 < 0 �k2 � 0 k0 + k2 � 0
Region 4: �k1 � 0 �k2 < 0 k0 + k2 � 0
Region 5: �k1 < 0 �k2 < 0 k0 � 0
Region 6: otherwise

(4.4)

In summary, the network has learned the formula for the dimensions of the zeroth line bundle coho-
mology on dP2. By applying the master formula (2.4) to dP2, it can be shown that the above result
is indeed correct on the entire Picard lattice. The explicit proof can be found in Ref. [15].

We would like to analyse two further surface examples for which cohomology formulae are not yet
known. They are CI manifolds defined by the configuration matrices

X 2


P1 2
P2 3

�
, Y 2


P1 3
P2 4

�
. (4.5)

The first of these, X, is a K3 surface, while Y is a surface of general type with an ample canonical
bundle. For both cases, the rank of the Picard lattice is two and line bundles are denoted by O(k),
where k = (k1, k2). The results for the K3 example are shown in Fig. 7. As is evident, the network
identifies two large regions. We can also see a new phenomenon emerging which does not arise for
manifolds with an ample anti-canonical bundle. There are lower-dimensional regions, in the present

15

1 - 3) Train, identify regions and polynomials

Example: dP2

-10

0

10

k0 -10

0

10

k1

-10

0

10

k2

region 1

region 2

region 3

region 4

region 5

region 6

not identified -10

0

10
k0 -10

0

10

k1

-10

0

10

k2

Figure 6: Regions in the Picard lattice for the zeroth cohomology of dP2, determined from the trained network in

Fig. 4 for (n1, n2) = (8, 8) and a training box of size kmax = 15. The figure on the left shows the regions obtained

after step (2) of the algorithm. The figure on the right shows the “cleaned-up” regions obtained after step (4) of

the algorithm. The legend labels the regions as in Eqs. (4.3), (4.4)

polynomial fit to each of the six regions (step (3) of the algorithm) leads to

h
0(OdP2(k)) =

8
>>>>>>>>><

>>>>>>>>>:

1 + 3
2k0 + 1

2k
2
0 + 1

2k1 �
1
2k

2
1 + 1

2k2 �
1
2k

2
2 in region 1 ,

1 + 2k0 + k
2
0 + k1 + k0k1 + k2 + k0k2 + k1k2 in region 2 ,

1 + 3
2k0 + 1

2k
2
0 + 1

2k2 �
1
2k

2
2 in region 3 ,

1 + 3
2k0 + 1

2k
2
0 + 1

2k1 �
1
2k

2
1 in region 4 ,

1 + 3
2k0 + 1

2k
2
0 in region 5 .

0 in region 6 .

(4.3)

Using these equations to determine the exact regions (step (4)) leads to the plot on the right-hand-
side of Fig. 6. In step (5), we then determine the inequalities which describe those regions. They are
given by

Region 1: �k1 � 0 �k2 � 0 k0 + k1 + k2 � 0
Region 2: k0 + k1 + k2 < 0 k0 + k1 � 0 k0 + k2 � 0
Region 3: �k1 < 0 �k2 � 0 k0 + k2 � 0
Region 4: �k1 � 0 �k2 < 0 k0 + k2 � 0
Region 5: �k1 < 0 �k2 < 0 k0 � 0
Region 6: otherwise

(4.4)

In summary, the network has learned the formula for the dimensions of the zeroth line bundle coho-
mology on dP2. By applying the master formula (2.4) to dP2, it can be shown that the above result
is indeed correct on the entire Picard lattice. The explicit proof can be found in Ref. [15].

We would like to analyse two further surface examples for which cohomology formulae are not yet
known. They are CI manifolds defined by the configuration matrices

X 2


P1 2
P2 3

�
, Y 2


P1 3
P2 4

�
. (4.5)

The first of these, X, is a K3 surface, while Y is a surface of general type with an ample canonical
bundle. For both cases, the rank of the Picard lattice is two and line bundles are denoted by O(k),
where k = (k1, k2). The results for the K3 example are shown in Fig. 7. As is evident, the network
identifies two large regions. We can also see a new phenomenon emerging which does not arise for
manifolds with an ample anti-canonical bundle. There are lower-dimensional regions, in the present

15

-10

0

10

k0 -10

0

10

k1

-10

0

10

k2

region 1

region 2

region 3

region 4

region 5

region 6

not identified -10

0

10
k0 -10

0

10

k1

-10

0

10

k2

Figure 6: Regions in the Picard lattice for the zeroth cohomology of dP2, determined from the trained network in

Fig. 4 for (n1, n2) = (8, 8) and a training box of size kmax = 15. The figure on the left shows the regions obtained

after step (2) of the algorithm. The figure on the right shows the “cleaned-up” regions obtained after step (4) of

the algorithm. The legend labels the regions as in Eqs. (4.3), (4.4)

polynomial fit to each of the six regions (step (3) of the algorithm) leads to

h
0(OdP2(k)) =

8
>>>>>>>>><

>>>>>>>>>:

1 + 3
2k0 + 1

2k
2
0 + 1

2k1 �
1
2k

2
1 + 1

2k2 �
1
2k

2
2 in region 1 ,

1 + 2k0 + k
2
0 + k1 + k0k1 + k2 + k0k2 + k1k2 in region 2 ,

1 + 3
2k0 + 1

2k
2
0 + 1

2k2 �
1
2k

2
2 in region 3 ,

1 + 3
2k0 + 1

2k
2
0 + 1

2k1 �
1
2k

2
1 in region 4 ,

1 + 3
2k0 + 1

2k
2
0 in region 5 .

0 in region 6 .

(4.3)

Using these equations to determine the exact regions (step (4)) leads to the plot on the right-hand-
side of Fig. 6. In step (5), we then determine the inequalities which describe those regions. They are
given by

Region 1: �k1 � 0 �k2 � 0 k0 + k1 + k2 � 0
Region 2: k0 + k1 + k2 < 0 k0 + k1 � 0 k0 + k2 � 0
Region 3: �k1 < 0 �k2 � 0 k0 + k2 � 0
Region 4: �k1 � 0 �k2 < 0 k0 + k2 � 0
Region 5: �k1 < 0 �k2 < 0 k0 � 0
Region 6: otherwise

(4.4)

In summary, the network has learned the formula for the dimensions of the zeroth line bundle coho-
mology on dP2. By applying the master formula (2.4) to dP2, it can be shown that the above result
is indeed correct on the entire Picard lattice. The explicit proof can be found in Ref. [15].

We would like to analyse two further surface examples for which cohomology formulae are not yet
known. They are CI manifolds defined by the configuration matrices

X 2


P1 2
P2 3

�
, Y 2


P1 3
P2 4

�
. (4.5)

The first of these, X, is a K3 surface, while Y is a surface of general type with an ample canonical
bundle. For both cases, the rank of the Picard lattice is two and line bundles are denoted by O(k),
where k = (k1, k2). The results for the K3 example are shown in Fig. 7. As is evident, the network
identifies two large regions. We can also see a new phenomenon emerging which does not arise for
manifolds with an ample anti-canonical bundle. There are lower-dimensional regions, in the present

15

1 - 3) Train, identify regions and polynomials

-10

0

10

k0 -10

0

10

k1

-10

0

10

k2

region 1

region 2

region 3

region 4

region 5

region 6

not identified -10

0

10
k0 -10

0

10

k1

-10

0

10

k2

Figure 6: Regions in the Picard lattice for the zeroth cohomology of dP2, determined from the trained network in

Fig. 4 for (n1, n2) = (8, 8) and a training box of size kmax = 15. The figure on the left shows the regions obtained

after step (2) of the algorithm. The figure on the right shows the “cleaned-up” regions obtained after step (4) of

the algorithm. The legend labels the regions as in Eqs. (4.3), (4.4)

polynomial fit to each of the six regions (step (3) of the algorithm) leads to

h
0(OdP2(k)) =

8
>>>>>>>>><

>>>>>>>>>:

1 + 3
2k0 + 1

2k
2
0 + 1

2k1 �
1
2k

2
1 + 1

2k2 �
1
2k

2
2 in region 1 ,

1 + 2k0 + k
2
0 + k1 + k0k1 + k2 + k0k2 + k1k2 in region 2 ,

1 + 3
2k0 + 1

2k
2
0 + 1

2k2 �
1
2k

2
2 in region 3 ,

1 + 3
2k0 + 1

2k
2
0 + 1

2k1 �
1
2k

2
1 in region 4 ,

1 + 3
2k0 + 1

2k
2
0 in region 5 .

0 in region 6 .

(4.3)

Using these equations to determine the exact regions (step (4)) leads to the plot on the right-hand-
side of Fig. 6. In step (5), we then determine the inequalities which describe those regions. They are
given by

Region 1: �k1 � 0 �k2 � 0 k0 + k1 + k2 � 0
Region 2: k0 + k1 + k2 < 0 k0 + k1 � 0 k0 + k2 � 0
Region 3: �k1 < 0 �k2 � 0 k0 + k2 � 0
Region 4: �k1 � 0 �k2 < 0 k0 + k2 � 0
Region 5: �k1 < 0 �k2 < 0 k0 � 0
Region 6: otherwise

(4.4)

In summary, the network has learned the formula for the dimensions of the zeroth line bundle coho-
mology on dP2. By applying the master formula (2.4) to dP2, it can be shown that the above result
is indeed correct on the entire Picard lattice. The explicit proof can be found in Ref. [15].

We would like to analyse two further surface examples for which cohomology formulae are not yet
known. They are CI manifolds defined by the configuration matrices

X 2


P1 2
P2 3

�
, Y 2


P1 3
P2 4

�
. (4.5)

The first of these, X, is a K3 surface, while Y is a surface of general type with an ample canonical
bundle. For both cases, the rank of the Picard lattice is two and line bundles are denoted by O(k),
where k = (k1, k2). The results for the K3 example are shown in Fig. 7. As is evident, the network
identifies two large regions. We can also see a new phenomenon emerging which does not arise for
manifolds with an ample anti-canonical bundle. There are lower-dimensional regions, in the present

15

4) Find equations for boundaries of regions

-10

0

10

k0 -10

0

10

k1

-10

0

10

k2

region 1

region 2

region 3

region 4

region 5

region 6

not identified -10

0

10
k0 -10

0

10

k1

-10

0

10

k2

Figure 6: Regions in the Picard lattice for the zeroth cohomology of dP2, determined from the trained network in

Fig. 4 for (n1, n2) = (8, 8) and a training box of size kmax = 15. The figure on the left shows the regions obtained

after step (2) of the algorithm. The figure on the right shows the “cleaned-up” regions obtained after step (4) of

the algorithm. The legend labels the regions as in Eqs. (4.3), (4.4)

polynomial fit to each of the six regions (step (3) of the algorithm) leads to

h
0(OdP2(k)) =

8
>>>>>>>>><

>>>>>>>>>:

1 + 3
2k0 + 1

2k
2
0 + 1

2k1 �
1
2k

2
1 + 1

2k2 �
1
2k

2
2 in region 1 ,

1 + 2k0 + k
2
0 + k1 + k0k1 + k2 + k0k2 + k1k2 in region 2 ,

1 + 3
2k0 + 1

2k
2
0 + 1

2k2 �
1
2k

2
2 in region 3 ,

1 + 3
2k0 + 1

2k
2
0 + 1

2k1 �
1
2k

2
1 in region 4 ,

1 + 3
2k0 + 1

2k
2
0 in region 5 .

0 in region 6 .

(4.3)

Using these equations to determine the exact regions (step (4)) leads to the plot on the right-hand-
side of Fig. 6. In step (5), we then determine the inequalities which describe those regions. They are
given by

Region 1: �k1 � 0 �k2 � 0 k0 + k1 + k2 � 0
Region 2: k0 + k1 + k2 < 0 k0 + k1 � 0 k0 + k2 � 0
Region 3: �k1 < 0 �k2 � 0 k0 + k2 � 0
Region 4: �k1 � 0 �k2 < 0 k0 + k2 � 0
Region 5: �k1 < 0 �k2 < 0 k0 � 0
Region 6: otherwise

(4.4)

In summary, the network has learned the formula for the dimensions of the zeroth line bundle coho-
mology on dP2. By applying the master formula (2.4) to dP2, it can be shown that the above result
is indeed correct on the entire Picard lattice. The explicit proof can be found in Ref. [15].

We would like to analyse two further surface examples for which cohomology formulae are not yet
known. They are CI manifolds defined by the configuration matrices

X 2


P1 2
P2 3

�
, Y 2


P1 3
P2 4

�
. (4.5)

The first of these, X, is a K3 surface, while Y is a surface of general type with an ample canonical
bundle. For both cases, the rank of the Picard lattice is two and line bundles are denoted by O(k),
where k = (k1, k2). The results for the K3 example are shown in Fig. 7. As is evident, the network
identifies two large regions. We can also see a new phenomenon emerging which does not arise for
manifolds with an ample anti-canonical bundle. There are lower-dimensional regions, in the present

15

4) Find equations for boundaries of regions

This is indeed the formula which follows from the theorems

for surfaces.

An alternative approach for complex surfaces

An alternative approach for complex surfaces

Q: Can we learn the irreducible, negative self-intersection divisors?

An alternative approach for complex surfaces

Q: Can we learn the irreducible, negative self-intersection divisors?

Recall:

h0(S,OS(D)) = ind(D̃)

Based on these empirical results, we write down a general form of the map D ! D̃ which applies to
all smooth compact complex projective surfaces and we prove that it preserves the zeroth cohomology
dimensions, that is, h0(S,OS(D̃)) = h

0(S,OS(D)). Moreover, it follows that iterating the map D ! D̃

leads, after a finite number of steps, to a divisor D̃ in the nef cone. Provided there is a vanishing
theorem which asserts that hq(S,OS(D̃)) = 0 for q = 1, 2, it follows that

h
0(S,OS(D)) = h

0(S,OS(D̃)) = ind(OS(D̃)) . (1.2)

For such cases, which we show include Hirzebruch and del Pezzo surfaces as well as all compact toric
surfaces we have, therefore, a mathematical proof for the existence of index formulae for h

0 and a
practical way of deriving them.

In fact, for Hirzebruch and del Pezzo surfaces we prove that already a single application of the map
D ! D̃ projects into the nef cone and that a suitable vanishing theorem is available in either case.
This leads to a mathematical proof for the empirical formula (1.1).

We will presently provide a summary of our main results. Subsequently, the plan for the remainder of
the paper is as follows. In the next section, we explain how cohomology formulae can be extracted from
cohomology data, computed by algorithmic methods, focusing on Hirzebruch and del Pezzo surfaces. In
a first instance, we extract piecewise quadratic formulae from the data which are subsequently refined
to index formulae. The reader less interested in this “empirical” aspect of the work can skip to Section 3
which contains our main mathematical statements. Section 4 illustrates these mathematical results in
the context of simple examples. We conclude in Section 5.

The present paper has two companion papers. Ref. [3] is more mathematical in style and provides
rigorous proofs for the various mathematical statements. In Ref. [4], we explore how techniques from
machine learning can help to uncover the structure of line bundle cohomology.

Summary of results

For the reader interested in applying these index formulae to specific surfaces - but who is not necessarily
patient enough to work through the entire paper - we will now summarise the main results concisely.
For a smooth compact complex projective surface S we first require knowledge of the e↵ective (Mori)
cone, M(S). In practice this amounts to providing the set of Mori cone generators M̂(S) or the set
of generators N̂ (S) of the nef cone N (S), which is dual to the Mori cone. We also need to know the
intersection form (D,D

0) ! D · D
0 on S. For all divisors not in the Mori cone, that is D /2 M(S),

we have h
0(S,OS(D)) = 0. On the other hand, all divisors D 2 M(S) have strictly positive zeroth

cohomology dimension. For such e↵ective divisors we define the map D ! D̃ by

D̃ = D �

X

C2I
✓(�D · C) ceil

✓
D · C

C2

◆
C , (1.3)

where the sum runs over the set I of all irreducible curves with negative self-intersection. The Heaviside
function ✓ ensures that only curves C withD·C < 0 contribute to the sum and ceil is the ceiling function.
Hence, to write down this map explicitly, we need to know the irreducible, negative self-intersection
curves on the surface S - information that can be obtained for many cases of interest.

The key statement about the map (1.3) is that it leaves the zeroth cohomology dimension unchanged,
that is, h0(S,OS(D̃)) = h

0(S,OS(D)). Since the nef cone N (S) is the cone of divisors D which intersect
all algebraic curves non-negatively, it is clear that repeated application of the map (1.3) eventually leads
to a divisor D̃ in the nef cone. If there is a vanishing theorem, typically Kodaira vanishing or one of its
refinements, which asserts that hq(S,OS(D̃)) = 0 for q = 1, 2 then the zeroth cohomology can be written
as an index, using Eq. (1.2). It turns out that this is the case for many surfaces of interest, including
Hirzebruch surfaces, del Pezzo surfaces, and compact toric surfaces, and, hence, index formulae for
the zeroth cohomology dimensions exist for all these cases. The relevant vanishing theorems will be
reviewed in the main text.

Let us first summarise how this general result applies to Hirzebruch surfaces Fn. The Picard lattice
of all Hirzebruch surfaces is two-dimensional and we can introduce a basis (D1, D2) of divisor classes,
such that the intersection form is defined by D

2
1 = �n, D1 · D2 = 1 and D

2
2 = 0 (see Appendix A

4

D !

An alternative approach for complex surfaces

Q: Can we learn the irreducible, negative self-intersection divisors?

Recall:

h0(S,OS(D)) = ind(D̃)

Based on these empirical results, we write down a general form of the map D ! D̃ which applies to
all smooth compact complex projective surfaces and we prove that it preserves the zeroth cohomology
dimensions, that is, h0(S,OS(D̃)) = h

0(S,OS(D)). Moreover, it follows that iterating the map D ! D̃

leads, after a finite number of steps, to a divisor D̃ in the nef cone. Provided there is a vanishing
theorem which asserts that hq(S,OS(D̃)) = 0 for q = 1, 2, it follows that

h
0(S,OS(D)) = h

0(S,OS(D̃)) = ind(OS(D̃)) . (1.2)

For such cases, which we show include Hirzebruch and del Pezzo surfaces as well as all compact toric
surfaces we have, therefore, a mathematical proof for the existence of index formulae for h

0 and a
practical way of deriving them.

In fact, for Hirzebruch and del Pezzo surfaces we prove that already a single application of the map
D ! D̃ projects into the nef cone and that a suitable vanishing theorem is available in either case.
This leads to a mathematical proof for the empirical formula (1.1).

We will presently provide a summary of our main results. Subsequently, the plan for the remainder of
the paper is as follows. In the next section, we explain how cohomology formulae can be extracted from
cohomology data, computed by algorithmic methods, focusing on Hirzebruch and del Pezzo surfaces. In
a first instance, we extract piecewise quadratic formulae from the data which are subsequently refined
to index formulae. The reader less interested in this “empirical” aspect of the work can skip to Section 3
which contains our main mathematical statements. Section 4 illustrates these mathematical results in
the context of simple examples. We conclude in Section 5.

The present paper has two companion papers. Ref. [3] is more mathematical in style and provides
rigorous proofs for the various mathematical statements. In Ref. [4], we explore how techniques from
machine learning can help to uncover the structure of line bundle cohomology.

Summary of results

For the reader interested in applying these index formulae to specific surfaces - but who is not necessarily
patient enough to work through the entire paper - we will now summarise the main results concisely.
For a smooth compact complex projective surface S we first require knowledge of the e↵ective (Mori)
cone, M(S). In practice this amounts to providing the set of Mori cone generators M̂(S) or the set
of generators N̂ (S) of the nef cone N (S), which is dual to the Mori cone. We also need to know the
intersection form (D,D

0) ! D · D
0 on S. For all divisors not in the Mori cone, that is D /2 M(S),

we have h
0(S,OS(D)) = 0. On the other hand, all divisors D 2 M(S) have strictly positive zeroth

cohomology dimension. For such e↵ective divisors we define the map D ! D̃ by

D̃ = D �

X

C2I
✓(�D · C) ceil

✓
D · C

C2

◆
C , (1.3)

where the sum runs over the set I of all irreducible curves with negative self-intersection. The Heaviside
function ✓ ensures that only curves C withD·C < 0 contribute to the sum and ceil is the ceiling function.
Hence, to write down this map explicitly, we need to know the irreducible, negative self-intersection
curves on the surface S - information that can be obtained for many cases of interest.

The key statement about the map (1.3) is that it leaves the zeroth cohomology dimension unchanged,
that is, h0(S,OS(D̃)) = h

0(S,OS(D)). Since the nef cone N (S) is the cone of divisors D which intersect
all algebraic curves non-negatively, it is clear that repeated application of the map (1.3) eventually leads
to a divisor D̃ in the nef cone. If there is a vanishing theorem, typically Kodaira vanishing or one of its
refinements, which asserts that hq(S,OS(D̃)) = 0 for q = 1, 2 then the zeroth cohomology can be written
as an index, using Eq. (1.2). It turns out that this is the case for many surfaces of interest, including
Hirzebruch surfaces, del Pezzo surfaces, and compact toric surfaces, and, hence, index formulae for
the zeroth cohomology dimensions exist for all these cases. The relevant vanishing theorems will be
reviewed in the main text.

Let us first summarise how this general result applies to Hirzebruch surfaces Fn. The Picard lattice
of all Hirzebruch surfaces is two-dimensional and we can introduce a basis (D1, D2) of divisor classes,
such that the intersection form is defined by D

2
1 = �n, D1 · D2 = 1 and D

2
2 = 0 (see Appendix A

4

D !

Zh
k dual

Rh
(W,b)
b = 0

�

ceil

⇥

transpose

· +

k Zh

ind

W

Rn

Rn Rh Rh R

g�

Figure 12: Structure of the network to learn divisors in master formula (2.4). The layers named dual and ind

take the dual with respect to the intersection form according to Eqs. (2.6) and compute the index from Eq. (2.8),

respectively.

Recall from Eq. (2.5) that the zeroth cohomology dimension of the line bundle OX(D) can be
computed from the index of OX(D̃). For this reason we have added a further layer, called “ind’, at
the end of the network in Fig. 12 which simply computes the index. For del Pezzo surfaces this is
done using the right-hand-side of Eq. (2.8).

The logistic sigmoid layer in Fig. 12 consists of a logistic sigmoid function

�(x) =
1

1 + e�x/⌫
(5.1)

with adjustable width ⌫. A value ⌫ < 1 leads to a better approximation to the Heaviside theta
function which appears in the master formula (2.4), than ⌫ = 1. On the other hand, ⌫ should not be
too small or else training becomes ine�cient. It turns out that ⌫ = 1/4 is a good compromise choice
which we adopt in the following.

We can now train this network with data for the zeroth cohomology dimensions on del Pezzo
surfaces, provided in the standard form (2.15). As mentioned, we will do this for various values of the
width n and choose a configuration with a large success rate. For such a trained network, we then
read out the weights W which, rounded to the nearest integer, should correspond to the divisors C

which enter the master formula.

5.2 Examples

We will now train the above network for the cases of dPr, where r = 1, 2, 3. Line bundles O(k)
are labelled by (r + 1)-dimensional integer vectors k = (k0, k1, . . . , kr) and divisors are written as
D = k0l + k1e1 + · · · + krer, where l is the hyperplane class and ei are the classes of the exceptional
divisors.

For dP1, dP2 and dP3, we use training boxes of size kmax = 15, 10, 10 and find optimal fits for
network widths n = 1, 3, 6, respectively. After reading out the weights and rounding to the nearest

19

Design network accordingly:

g✓ : D ! D̃

Training data: with effective OS(k)k ! h0(OS(k))

Weights of trained network: desired irreducible, negative

self-intersection divisors

W

Training data: with effective OS(k)k ! h0(OS(k))

Weights of trained network: desired irreducible, negative

self-intersection divisors

W

This network finds the correct divisors for , . dPn n = 1, 2, 3, 4

Training data: with effective OS(k)k ! h0(OS(k))

Conclusion
• There is strong evidence that the number of string standard 
 models is exponentially large. We need to use more selection  
 criteria (phenomenological and theoretical).

Conclusion
• There is strong evidence that the number of string standard 
 models is exponentially large. We need to use more selection  
 criteria (phenomenological and theoretical).

• There exist analytic formulae for the dimensions of line bundle  
 cohomology on surfaces and (CY) three-folds. This may help with 
 bottum-up string model building.

Conclusion
• There is strong evidence that the number of string standard 
 models is exponentially large. We need to use more selection  
 criteria (phenomenological and theoretical).

• There exist analytic formulae for the dimensions of line bundle  
 cohomology on surfaces and (CY) three-folds. This may help with 
 bottum-up string model building.

• For complex surfaces, these results can be understood from  
 index formulae for cohomology.

Conclusion
• There is strong evidence that the number of string standard 
 models is exponentially large. We need to use more selection  
 criteria (phenomenological and theoretical).

• There exist analytic formulae for the dimensions of line bundle  
 cohomology on surfaces and (CY) three-folds. This may help with 
 bottum-up string model building.

• We can devise neural networks which generate conjectures 
 for line bundle cohomology formulae. This may help uncover 
 the underlying mathematical structure.

• For complex surfaces, these results can be understood from  
 index formulae for cohomology.

Conclusion

Thanks

• There is strong evidence that the number of string standard 
 models is exponentially large. We need to use more selection  
 criteria (phenomenological and theoretical).

• There exist analytic formulae for the dimensions of line bundle  
 cohomology on surfaces and (CY) three-folds. This may help with 
 bottum-up string model building.

• We can devise neural networks which generate conjectures 
 for line bundle cohomology formulae. This may help uncover 
 the underlying mathematical structure.

• For complex surfaces, these results can be understood from  
 index formulae for cohomology.

