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To define a heterotic line bundle model we need:

- A Calabi-Yau 3-fold X

- A line bundle sumV =L, ¢ ---® Ls on X,
c1(V) =0, so structure group is S(U(1)).
V) ° N=1, D=4 GUT with
' gauge group
- vanishing slopes ji(Ly) = ¢1(Ly) A J? =0 SU(5) x S(U(1)?)
and matter in
) 10,10.5,5,1
- Anomaly: ¢ (TX) —co(V) — (V) = [C]
in practice: c3(V) < co(TX)
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- freely acting symmetry I'on X, so X = X/T
IS smooth and non simply-connected

- bundle ' needs to be equivariant so it standard-like model

descends to a bundle VV on X (hopefully) with

gauge group

GSM X S(U(1)5)

- complete bundle V & W with Wilson line TV
to break GUT group
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How many standard models*does string theory contain (at least)?

* At this level: String models with the exact (MS)SM spectrum plus modes uncharged
under the standard model group.
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Basic data specifying a model:

X ~ [.A | Q] » h= hl’l(X) , ci=c(TX), dijk
\i=1,...,h . i

V ~ (kZ);:l 5 > (kaax + 1)4h choices for |ka‘ < kmaX

symmetry [ » |'= 75 most common

Consistency and standard model constraints: (essentially) diophantine egs.

Q: For a given CY manifold, what is the number of consistent line
bundle models N = N (h, ¢;,d;;i) with chiral asymmetry six?
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Consider average number of models per CY, N = N(h), as a function of
h only (neglect dependence on c;, d;;; for now):

log(N) versus h'-!
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log(N(h)) ~ —4.1+1.4h

For CICYs:  hmax = 19 N (hmax) ~ 10%?

All known CYs: Rnax = 491 N (hmax) ™ 10662
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A refined count

Want to include dependence of N on ¢; and d;;i .

Problem: ¢; and d; i, are not basis invariant.

Invariants from c¢; and dijk: : (Huebsch, “Calabi-Yau Manifolds”, p. 174)

dl — gC(f.{)\(LC,y,Z)|QZ,y,ZEHQ(X,Z)}

do = ged{\(z,y,y)|x,y € HQ(X, 7))} )\(:1:', U, Z) — / rTANYNz
ds = ged{\(z,z,2)|2 € H*(X,Z)} X

dy = ged{A(z,y,2,t)|z,y, 2t H(X,7)}

ds = ged{A(z,y, 2 2)|x,y,2€ H(X,Z)}

ds = ged{A(z,y,y,y)|z,y € HX(X,Z)} Az, y,2,t) = Mz, y, 2)ca(t) + perm
d7 = ged{A(z,z,z,2) |z € H*(X,Z)}

7
Ansatz for 10g(N) = X r=Ag+ Bogh + Z(AZ + B; h) log d;
1=1
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Fixing A; and B; by a fit to the data leads to:

log(N) versus x for each CY

log(N)
3
| ,
1
A
For CICYs:  hmax = 19 N (hmax) =~ 1023
All known CYs: Rinax = 491 N (hypax) ~ 1069

“a mole of
models”
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Line bundle cohomology is required for many types of string models.

Computation is usually algorithmic:

(based on Cech cohomology, spectral sequences, Bott-Borel-Well,.... )

e Line bundles on complete intersection manifolds
(Anderson, Gray, He, Lukas, hep-th/0702210, 0805.2875)

® Line bundles on toric spaces
(Blumenhagen, Jurke, Rahn, Roschy, 1003.5217)

e Line bundles on del Pezzo surfaces
(Blumenhagen, Braun, Grimm, Weigand, 0811.2936)

® Macaulay 2
(Grayson, Stillman)

However . . .
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Line bundle cohomology dimensions can be described by

relatively simply, piecewise polynomial formulae.
(Degree of polynomials equals complex dimension of manifold.)

This has been found heuristically by analysing cohomology
data computed algorithmically.

Evidence so far:

e Formula for tetra-quadric
(Constantin, Lukas, 1311.1941)

e Formula for a number of CY three-folds
(Constantin, Lukas, 1808.09992)

¢ Various complex manifolds
(Klaewer, Schlechter, 1809.02547)

e Class of CY 3-folds
(Larfors, Schneider, 1906.00392)

e Proofs and systematic derivation for complex surfaces
(Brodie, Constantin, Deen, Lukas, 1906.08363, 1906.08769)

For example . . .
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Figure 2: Regions in k-space where h®(X, L) (left) and h*(X, L) (right) take different polynomial
forms. In the blue regions h%(X, L) = ind(L) and h'(X, L) = —ind(L). By Serre duality, the plots
for h*(X,L) and h3(X, L) are obtained from the plots for h'(X, L) and, respectively, h°(X, L) by
reflection about the origin.
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del Pezzo surface dPl : OdPl (k(), ]{1) — Odpl (kol -+ klel)

1
§(k0—|—1)(k’0—|—2) ko >0, k1 >0

1 1
12 (Oap, (ko, k1)) = ¢ 5 (ko + 1) (ko +2) + Ski(L—ki) k1 <0, ko >0, ko+ki >0

L 0 otherwise

No deeper mathematical understanding yet for three-folds.

For larger h''!' there are many regions and case distinctions, so
we need a better understanding and a "master formula”.

Such a master formula now exists for many complex surfaces.
(Brodie, Constantin, Deen, Lukas, 1906.08363, 1906.08769)
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On a complex surface S, there is a map of (effective) divisors

- (D-C
D — D:D-Z@(—D-C)cml( = )C
CeT
(where 7 are the irreducible, negative self-intersection curves)

such that r(S,05(D)) = h°(S, Os(D)).

If h9(S,O5(D)) =0 for ¢ = 1,2 (Kodaira vanishing or similar) then

ho(S,0g(D)) = ind(D)

This happens for all del Pezzo and Hirzebruch surfaces.

Example dP;: 7 = {e1} gives previous formula

Example dPy : 7T = {61, 62,l — €1 — 62} gives dPs formula

(For more details see talks by Callum Brodie and Andrei Constantin)
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Machine learning line bundle cohomology

Regular “function learning” of line bundle cohomology with
neural networks is possible. (Fabian Ruehle 1706.07024)

Q: Can we use machine learning to conjecture piecewise
polynomial formulae for line bundle cohomology?
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Training data: (ki, kikj)icj — h%U(Ox(k)) for d=2
(ki,kikj,kikjkl)igjgl — hq(OX(k)) for d=3

Assume net has been trained: — g5, W5, by

a(k) := (g5(k) - b3, g5(k) - V)

k, k' in the same region <+ J|a(k) —a(k')| <e
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Example: h' (Ox (k1, k2)) for bi-cubic

1) Train and identify regions:
ks

15|

10

-10

-15]

Dk

2) Find correct cubic polynomial for each region by a fit:

blue: h*(Ox (k1,k2)) =0

W' (Ox (K1, ko)) = —g(lﬁ + k2)(2 + k1k2)
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3) Use these equations to find the exact regions:

k2

15 |

10

-10

15}

4) Find equations for boundaries of regions
5) Deal with lower-dimensional regions
In this way, we find the earlier formula.

This also works for surfaces and other CY three-folds.
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Example: d P

1 - 3) Train, identify regions and polynomials

e region 1
region 2
e region 3
region 4
region 5
region 6

¢ not identified

1+ ko + 2h2 4+ Lky — 12 4 Lhy — LR2 in region 1,

1+ 2ko + ]Cg + k1 + kok1 + ko + koks + k1ko in region 2,

0 1+ 2ko + 3k& + 2o — k3 in region 3,
h (OdP2(k)) = 4 3 172 . 1 1792 : :

1+ Sko + 5k + 5k1 — 5k in region 4,

1+ %k() -+ %k% in region 5.

\O in region 6.




4) Find equations for boundaries of regions

Region 1:
Region 2:
Region 3:
Region 4:
Region 5:
Region 6:

—k1 >0

—k1 <0
—k1 >0
—k1 <0

otherwise

—k2 >0

—koy >0
—ko <0
—ko <0

ko + k1 + ke >0

ko+ ki +ko<0 ko+k1 >0 kot+ko>0
ko + ko > 0
Ko+ ko >0



4) Find equations for boundaries of regions

Region 1: —k1 >0 —ko >0 ko+ki+ky>0

Region 2: ko+ ki +ko<0 ko+k1 >0 kot+ko>0
Region 3: —k1 <0 —ko >0 ko + ko > 0
Region 4: —k1 >0 —ko <0 ko + ko > 0
Region 5: —k1 <0 —koy <O ko >0

Region 6: otherwise

This is indeed the formula which follows from the theorems
for surfaces.
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An alternative approach for complex surfaces

Q: Can we learn the irreducible, negative self-intersection divisors?

Recal: D— D=D— Z 0(—D - C) ceil (D . C) C
Cez

CQ

ho(S, Og(D)) = ind(D)

Design network accordingly:

N

ceil

L=, ind F—»

y |
» transpose / h [/
y

gQZD%D
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Training data: k — h”(Os(k)) with Og(k) effective

Weights W of trained network: desired irreducible, negative
self-intersection divisors

This network finds the correct divisors for dP,, n=1,2,3,4.
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Conclusion

® There is strong evidence that the number of string standard
models is exponentially large. We need to use more selection
criteria (phenomenological and theoretical).

® There exist analytic formulae for the dimensions of line bundle
cohomology on surfaces and (CY) three-folds. This may help with
bottum-up string model building.

® For complex surfaces, these results can be understood from
index formulae for cohomology.

® We can devise neural networks which generate conjectures
for line bundle cohomology formulae. This may help uncover
the underlying mathematical structure.

Thanks



