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Warm up: geometry

Setting: M a smooth manifold
~~ consider geometric objects on M.
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Warm up: geometry

Setting: M a smooth manifold
~~ consider geometric objects on M.

@ metrics on M
— holonomy groups, curvature
— general relativity

@ bundles over M (vector- or principal G-bundles, connection)
— invariants of M KO(M), HI(M, G)
— electrodynamics, Yang-Mills

Structural ladder:
metrics on M form set

bundles over M form category
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Warm up: geometry

Setting: M a smooth manifold
~~ consider geometric objects on M.

@ metrics on M
— holonomy groups, curvature
— general relativity

@ bundles over M (vector- or principal G-bundles, connection)
— invariants of M KO(M), HI(M, G)
— electrodynamics, Yang-Mills

Structural ladder:

metrics on M form set
bundles over M form category
bundle gerbes

> bundles . Over M form 2-category
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A set consists of

@ elements: o (metrics over M)
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2-categories

A set consists of

@ elements: o (metrics over M)
A category consists of

@ objects: o (bundles over M)

@ morphisms: e — e (gauge transformations)
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2-categories

A set consists of
@ elements: o
A category consists of
@ objects: o
@ morphisms: ¢ — e
A 2-category consists of
@ objects: o
@ morphisms: ¢ — e

. 2
@ 2-morphisms: e | e
\/
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(metrics over M)

(bundles over M)

(gauge transformations)

(higher gauge transformations)
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2-categories

A set consists of

@ elements: o (metrics over M)
A category consists of

@ objects: o (bundles over M)

@ morphisms: ¢ — e (gauge transformations)
A 2-category consists of

@ objects: o

@ morphisms: ¢ — e

2 hi /{F (high transf tions)
@ 2-morphisms: e ° igher gauge transformations
N A

Examples: homotopies, natural transformations,...
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Example: Bundle gerbes

Murray '94: def. of bundle gerbes G = (Y, B, L, u)
Stevenson '00, Waldorf '07:  2-category of bundle gerbes Grb¥( M)
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Example: Bundle gerbes

Murray '94: def. of bundle gerbes G = (Y, B, L, u)
Stevenson '00, Waldorf '07:  2-category of bundle gerbes Grb¥( M)

@ Dixmier-Douady class DD(§) € H3(M, Z)
@ locally determined by 2-form B

@ exact sequence Q2(M) —— Iso(Srt¥(M)) 22 H3(M, Z)
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Example: Bundle gerbes

Murray '94: def. of bundle gerbes G = (Y, B, L, u)
Stevenson '00, Waldorf '07:  2-category of bundle gerbes Grb¥( M)

@ Dixmier-Douady class DD(§) € H3(M, Z)
@ locally determined by 2-form B
@ exact sequence Q2(M) ——= lIso(Grb¥(M))

String theory
> : Riemannian surface, M: manifold, g metric, G bundle gerbe

2B H3(M, Z)

moving string ¢ : X — M
Feynman amplitude (Witten '84, Gawedzki '88):
Al] = exp(2miSH"[g]) - exp(2miS V4 [¢]) € C

Wess-Zumino term exp(27iSW4[¢]): surface holonomy of G
(defined by local integration)
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Example: Bundle gerbes |l

Desired surface holonomy ~ 2-category of 2-forms SrbtrivV(M):
@ objects: B € Q2(M)
o morphisms B — B": A€ Q'(M)st. dA=B —-B
e 2-morphisms A— A" g: M — U(1l) st dlogf = A — A
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Example: Bundle gerbes |l

Desired surface holonomy ~ 2-category of 2-forms SrbtrivV(M):
@ objects: B € Q2(M)
o morphisms B — B": A€ Q'(M)st. dA=B —-B
e 2-morphisms A— A" g: M — U(1l) st dlogf = A — A

But: Cannot be glued (descent)!
@ (U;)ies open cover of M

Q 5; objects over U;
Q@ Aj:B — B morphisms over U; N U;
AjkOAij
TN
Q gjik: B | B 2-morphisms over U; N U; N Uy.
ST
Aik

No global 2-form ~~ bundle gerbes!
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General results

Precise statement:
@ assignment M +— GrbtriV(M) is pre-2-stack.

@ pre-2-stack X is 2-stack if locally defined objects can be glued
to global objects (Duskin '89, Breen '94).

@ otherwise ‘add’ descent objects to X ~~ new pre-2-stack XT.
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General results

Precise statement:
@ assignment M +— GrbtriV(M) is pre-2-stack.

@ pre-2-stack X is 2-stack if locally defined objects can be glued
to global objects (Duskin '89, Breen '94).

@ otherwise ‘add’ descent objects to X ~~ new pre-2-stack XT.

Theorem (2.3.3)

Xt is a 2-stack (stackification).

Q GrbY(M) is stackification (GrberiY) ™

Thomas Nikolaus Higher Categorical Structures in Geometry



General results

Precise statement:
@ assignment M +— GrbtriV(M) is pre-2-stack.

@ pre-2-stack X is 2-stack if locally defined objects can be glued
to global objects (Duskin '89, Breen '94).

@ otherwise ‘add’ descent objects to X ~~ new pre-2-stack XT.

Theorem (2.3.3)

Xt is a 2-stack (stackification).

Q GrbY(M) is stackification (GrberiY) ™

Ingredients for proof:
e extend X to Lie groupoids A (equivariant extension).

@ show that X(A) is invariant under Morita equivalence in A
(Theorem 2.2.16)

@ prove equivariant descent — Theorem 2.3.3. as special case.
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Jandl gerbes

Adapt to different situations:
@ unoriented surface holonomy (type | String theories)
@ X non-oriented surface, ¢ : X — M
@ want: target space data to define ‘holonomy’ around ¢
o

replace 2-forms B by 2-densities
— local categories JSrbtriv(M).

global objects Jand| gerbes JGrb” = (HSrbt“rivv)+
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Jandl gerbes

Adapt to different situations:
@ unoriented surface holonomy (type | String theories)
@ X non-oriented surface, ¢ : X — M
@ want: target space data to define ‘holonomy’ around ¢
o replace 2-forms B by 2-densities
— local categories JSrbtriv(M).
o global objects Jandl gerbes JGrb” = (HSrbt“rivv>+
Unoriented surface holonomy

@ Each Jandl gerbe G has an associated Z/2-cover O(G) — M
(orientation cover)

. b
s —0(9) ,
Q@ ¢: X — Mand J, J/ = holonomy Holg(¢, ¢) € U(1).
Y
© Generalizes orientifold backgrounds of Schreiber-Schweigert-
Waldorf '07, Distler-Freed-Moore '09 (Prop. 2.4.12)
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Supersymmetric sigma models

Remember: > world sheet, M target space

e —>M (“worldsheet Boson")

o Y el(SE®¢*TM) (“worldsheet Fermion™)
where S¥ — ¥ spinor bundle, in particular X spin.
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Supersymmetric sigma models

Remember: > world sheet, M target space

e —>M (“worldsheet Boson")

o Y el(SE®¢*TM) (“worldsheet Fermion™)
where S¥ — ¥ spinor bundle, in particular X spin.

Idea: Fix ¢, integrate over fermionic degrees of freedom
~ effective amplitude A(¢)
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Supersymmetric sigma models

Remember: > world sheet, M target space

e —>M (“worldsheet Boson")

o Y el(SE®¢*TM) (“worldsheet Fermion™)
where S¥ — ¥ spinor bundle, in particular X spin.

Idea: Fix ¢, integrate over fermionic degrees of freedom
~~ effective amplitude A(¢)€ Pfaffe (Freed-Moore '06)
where Pfaff — C*°(X, M) Pfaffian line bundle

Need: trivialisation of Pfaff to get A(¢) € C.
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Supersymmetric sigma models

Remember: > world sheet, M target space

e —>M (“worldsheet Boson")

o Y el(SE®¢*TM) (“worldsheet Fermion™)
where S¥ — ¥ spinor bundle, in particular X spin.

Idea: Fix ¢, integrate over fermionic degrees of freedom
~ effective amplitude A(¢)€ Pfaffe (Freed-Moore '06)
where Pfaff — C*°(X, M) Pfaffian line bundle

Need: trivialisation of Pfaff to get A(¢) € C.
Theorem (Bunke '09)

Geometric string structure over M — trivialization of Pfaff.
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String group as Lie-group

Whithead tower of O(n):
- — String(n) —— Spin(n) —— SO(n) —— O(n)

Models:
@ Whitehead '52: abstract homotopy theoretic

@ Stolz '96, Stolz-Teichner '04: concrete models as top. groups
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String group as Lie-group

Whithead tower of O(n):
- — String(n) —— Spin(n) —— SO(n) —— O(n)

Models:
@ Whitehead '52: abstract homotopy theoretic
@ Stolz '96, Stolz-Teichner '04: concrete models as top. groups

Question: Is there a Lie group model of String(n)?
Fact: Cannot be finite dimensional.

Thomas Nikolaus Higher Categorical Structures in Geometry



String group as Lie-group

Whithead tower of O(n):
- — String(n) —— Spin(n) —— SO(n) —— O(n)

Models:
@ Whitehead '52: abstract homotopy theoretic
@ Stolz '96, Stolz-Teichner '04: concrete models as top. groups

Question: Is there a Lie group model of String(n)?
Fact: Cannot be finite dimensional.

Theorem (4.3.6)

There is a model of String(n) as a metrizable Fréchet Lie group.

string structure on (M, g) = lift of structure group to String(n)
geometric string structure = lift of Levi-Civita connection
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String group as Lie-2-group

String group models as Lie 2-groups:
e BCSS '07, Henriques '08, Schommer-Pries '10.

Lie 2-group I' = higher categorical analogue of Lie group
Geometric realization |[|: nice topological group (chapter 4.4)
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String group as Lie-2-group

String group models as Lie 2-groups:

e BCSS '07, Henriques '08, Schommer-Pries '10.
Lie 2-group I' = higher categorical analogue of Lie group
Geometric realization |['|: nice topological group (chapter 4.4)
Theorem (4.5.6)
There is a 2-group STRING(n) such that |STRING(n)| ~ String(n).
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String group as Lie-2-group

String group models as Lie 2-groups:
e BCSS '07, Henriques '08, Schommer-Pries '10.

Lie 2-group I' = higher categorical analogue of Lie group
Geometric realization |[|: nice topological group (chapter 4.4)

Theorem (4.5.6)
There is a 2-group STRING(n) such that |STRING(n)| ~ String(n).

principal bundles for Lie groups = 777 for Lie 2-groups
Candidates:
@ 2-bundles  (Bartels '04, Baas-Bokstedt-Kro '06, Wockel '08)
@ Non-abelian bundle gerbes (Breen-Messing '01, Aschieri-
Cantini-Jurco '05)
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String group as Lie-2-group

String group models as Lie 2-groups:
e BCSS '07, Henriques '08, Schommer-Pries '10.

Lie 2-group I' = higher categorical analogue of Lie group
Geometric realization |[|: nice topological group (chapter 4.4)

Theorem (4.5.6)
There is a 2-group STRING(n) such that |STRING(n)| ~ String(n).

principal bundles for Lie groups = 777 for Lie 2-groups
Candidates:
@ 2-bundles  (Bartels '04, Baas-Bokstedt-Kro '06, Wockel '08)
@ Non-abelian bundle gerbes (Breen-Messing '01, Aschieri-
Cantini-Jurco '05)

Theorem (3.7.1)

I a Lie-2-group — [-2-bundles and non-abelian bundle I'-gerbes
form equivalent 2-categories (denoted 2-Bunp(M))
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2-Bundles

2-group STRING(n) ~~ define STRING(n)-2-structure

Properties of 2-bundles:
o M— 2-Buny(M) is 2-stack Theorem 3.6.8

° Iso(Q—Bunr(I\/l)) <L Fll(M, M LN Iso(Bunm(M))

Theorem 3.5.19 & 3.4.6
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2-Bundles

2-group STRING(n) ~~ define STRING(n)-2-structure

Properties of 2-bundles:
o M— 2-Buny(M) is 2-stack Theorem 3.6.8

o lIso(2-Bung(M)) Ll i (m, 1) PLLIG Iso(Bunr|(M))
Theorem 3.5.19 & 3.4.6

Corollary (4.6.1)
String(n)-structures = STRING(n)-2-structures

More precisely:
natural functor Bunsgring(n) (M) — 2-BunSTRING(n)(I\/I)
~ bijection F' (M, String(n)) = H*(M, STRING(n)).

Thomas Nikolaus Higher Categorical Structures in Geometry



Summary

Framework for higher geometry Based on:

@ bundle gerbes as 2-stackification B
— equivariance, Jandl gerbes

@ structure theory for 2-bundles
(resp. non-abelian gerbes) 3

@ new models for the string group
and (geometric) string structures

= describe and classify sigma models

Outlook B
e relation to quantum theory (CFT)
@ equivariant DW-theory B

o full comparison of geometric string
structures
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