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1. Linear algebra

The super math is the mathematics that obeys certain sign rule. One can introduce
super versions of standard objects by writing formulas enriched with some signs and then
claiming that these formulas work well. A more systematic approach is the description of
the sign rule as an additional structure – a braiding – on the tensor category of Z2-graded
vector spaces. A braiding on a tensor category T provides a notion of commutative algebras
in the setting of T , as a consequence one obtains notions of T -versions of geometric
objects, Lie groups etc., i.e., the standard bag of mathematical ideas. The above braiding
(the super braiding) gives the super math. We will survey the effect of the super braiding on
linear algebra, geometry (super manifolds) and analysis (integration on super manifolds).

Some unusual aspects. Some concepts develop unexpected subtleties. For instance on
super manifolds there are three objects that generalize various aspects of differential
forms: (super) differential forms, densities, integral forms.

The odd part contributes in the direction opposite from what one expects. This is familiar
in the case of super dimension which is just the Euler characteristic: even−odd. However
as this principle propagates through more complicated objects it gets more surprising.
We will see this when we study integration on super manifolds.

Applications.

(1) Some non-commutative situations are commutative from the super point of view.
(2) Some standard constructions have a more “set-theoretic” interpretation in the

super setting :
(a) The differential forms on a manifold M can be viewed as functions on a super

manifold which is the moduli of maps from the super point A0|1 to M .
(b) The differential forms on the loop space Λ(M) are functions on the super

manifold which is the moduli of maps from the super circle S1|1 to M . This
explains the non-trivial structure of a vertex algebra on these differential
forms, for instance the vector fields on S1|1 give the (a priori sophisticated)
structure of N = 2 topological vertex algebra.

(c) Complexes in homological algebra are representations of a certain super group
with the underlying manifold S1|1.

(3) Supersymmetry: this is a symmetry of a mathematical object which mixes even
and odd components. These are more difficult to spot without the super point
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of view. For instance integrals with supersymmetry of will be easier to calculate.
(Our example will be the baby case of Witten’s approach to Morse theory.)

(4) Fermions: elementary particles break into bosons and fermions depending on
whether they obey usual mathematics or require super-mathematics.

Development. The underlying structure of this theory is the category sVectk of super
vector spaces over a basic field(1) (or ring) k, with a structure of a tensor category with
a super braiding. The next level is the linear algebra in sVectk, it has two notions of
liner operators: (i) the inner Hom, i.e., Hom(U, V ) is a super vector space, it consists of
all k-liner operators, (i) the categorical Hom, i.e., Hom(U, V ) = HomsVectk(U, V ) is an
ordinary vector space, it consists of all k-liner operators that preserve parity,

1.1. Super-math as the math in the braided tensor category of super vector
spaces. A super vector space is simply a vector space graded by Z2 = {0, 1}: V =
V0⊕V1, i.e., a representation of the group(2) {±1}. Therefore, µ2 acts on any category of
super objects.3

1.1.1. Parity. We will say that vectors v ∈ Vp are homogeneous of parity p and we will
denote the parity of v by pv or v. Another way to keep track of parity is the “fermionic
sign” (−1)F . On each super vector space this is the linear operator which is +1 on V0 and
−1 on V1. Here, “F” for fermionic, will sometimes be used to indicate the super versions
of standard constructions.

1.1.2. Sign Rule and super braiding. The meaning of “super” is that all calculations with
super vector spaces have to obey the

“Sign Rule: when a passes b, the sign (−1)papb appears.

More precisely (and more formally) the calculations are done in the tensor category Vects
k

of super vector spaces over k, enriched by a certain structure called “braiding”. The
braiding on a tensor category is a (consistent) prescription of what we mean by a natural
identification of V⊗W and W⊗V , i.e., a commutativity isomorphism (“commutativity
constraint) cVW : V⊗W→ W⊗V , functorial in V and W .

The braiding in the “ordinary” math is cV,W (v⊗w) = w⊗v on V V ectk. The super math
is based on the braiding in (Vects

k
,⊗

k

) given by the sign rule

cVW : V⊗W→ W⊗V, v⊗w 7→ (−1)pvpww⊗v,
which is the formalization of the above Sign Rule.

1Here k is even, i.e., there is no parity grading in “numbers”.
2To cover the case of the arbitrary ground ring k, the correct group is the group scheme µ2 of second

roots of unity, defined over integers. The difference matters only when 2 is not invertible in k.
3Moreover, µ2 acts identically on objects, so it lies in the center of that category.
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1.1.3. Braiding gives geometry. While one can define associative algebras in any tensor
category, in order to have a notion of commutative algebras the tensor category needs
a braiding. In this way, each braiding gives one version of the notion of commutative
algebras, hence one version of standard mathematics.

1.1.4. General arguments and calculations in coordinates. While the calculations in a
braided tensor category Vects

k
are “natural”, and of a general nature (arguments valid for

any braiding), working in coordinates will involve applications of this specific commuta-
tivity constraint and also careful sign conventions.

1.1.5. Unordered tensor products in braided tensor categories. (i) In any tensor category

a tensor product of a finite ordered family ⊗n1 Vik
def
= Vi1⊗· · ·⊗Vin is defined canonically,

and the associativity constraint can be viewed as identity.

(ii) In a braided tensor category, the tensor product is also defined for unordered families,
here ⊗i∈I Vi is defined as the projective limit of all tensor products given by a choice
of order (the consistency property of commutativity constraints ensures that this is a
projective system).

1.1.6. Special property of the super braiding. The super braiding is very special – it is
self-inverse, i.e., cVW = cWV

−1. In particular, c2V V = 1.

1.2. The effect of the sign rule on linear algebra over the base ring k. Some
mathematical constructions extend to any tensor category, for instance the notion of an
algebra. In our case it gives the following notion: a super k-algebra is a k-algebra A with
a compatible super structure, i.e., Ap·Aq⊆ Ap+q.

1.2.1. Commutativity. Mathematical constructions related to commutativity require the
tensor category to have a braiding.

The commutator in an algebra A in a braided category is obtained by applying the mul-
tiplication to a⊗b− cA,A(b⊗a). So, the (super)commutator in a super-algebra A is

[a, b]F
def
= ab− (−1)papb ba.

So we say that elements a and b of a super-algebra A super-commute if

ab = (−1)papb ba.

An abstract reason for usefulness of the notion of super-commutativity is that it allows
one to think of some non-commutative situations as if they were commutative, and this in
particular gives notions of a super-commutative algebra A, i.e., of a super-space X with
the super-commutative algebra of functions O(X) = A.
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1.2.2. Functors between vector spaces, super vector spaces and graded vector spaces.

• Inclusion Vectk⊆Vectsk. This is an inclusion of a full braided tensor subcategory.

• Forgetful functor Vects
k

F−→ Vectk. It forgets the super structure, i.e., the Z2-
grading. It is a functor between tensor categories but not the braided tensor
categories.

• Projection to the even part Vects
k

−0−→ Vectk. This is an exact functor but it does
not preserve the tensor category structure.

• Forgetful functors Vect•
k

s−→Vects
k

F−→ Vectk Let Vect•
k

be the graded vector spaces,
i.e., vector spaces V with a Z-decomposition V = ⊕n∈Z Vn. Any graded vector
space V = ⊕n∈Z V

n defines a super vector space

s(V )
def
= V with the decomposition V = V0⊕V1 for V0

def
= ⊕n even V

n and

V1
def
= ⊕n odd V

n.

The standard braiding on Vect•
k

is the super grading!

We denote by 1 the unit object k in Vects
k
.

1.2.3. Some notions in a braided tensor category. In a braided tensor category we auto-
matically have the notions of

• standard classes of algebras: (associative, commutative, unital, Lie),
• standard operations on algebras (tensor product of algebras, opposite algebra),
• modules over algebras,
• linear algebra of such modules,
• symmetric and exterior algebras of modules over commutative algebras
• etc.

1.2.4. Parity change of super vector spaces. Operation Π : Vects
k
→ Vects

k
is defined by

(ΠV )p
def
= V1−p. So, Π(V ) can be canonically identified with V as a vector space but the

parities have changed.

We will also denote by Π the one dimensional odd vector space kπ with a chosen basis π,
then the functor Π is canonically identified with the left tensoring functor

ΠV ∼= Π⊗V.
Observe that we have made a choice of tensoring with Π on the left.

1.2.5. The inner Hom and duality in super vector spaces. There are two related and easily
confused concepts.

(1) Hom for the category of super vector spaces. For two super vector spaces V and
W ,

Homk(V,W )
def
= Homsuper k−modules(V, V )
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denotes all maps of super vector spaces, i.e., k-linear maps which preserve the
super structure (i.e., the parity). So this is an ordinaryvector space, i.e., an even
vector space.

(2) Inner Hom in the category of super vector spaces. The vector space of all k-linear
maps Homk[F(V ),F(W )] has a canonical structure of a super vector space which
we denote Hom

k
(V,W ).

The relation is given by composing with the projection to the even part: Hom = −0◦Hom,
i.e., the even part of the inner Hom consists of maps that preserve parity

Hom
k
(V,W )0 = Homk[V,W ],

and the odd part is the maps that reverse the parity.

The dual super vector space is defined in terms of inner Hom

V̌
def
= Hom

k
(V, k).

1.2.6. Some canonical maps. The convention we use is that linear operators act on the
left , i.e.,

there is a canonical evaluation map of super vector spaces
Hom(U, V )⊗U −→V, A⊗u7→ Au.

(1) The pairing with linear functionals. Applying this to linear functionals yields for
each super vector space V , its evaluation map (or its canonical pairing), which is
a map of super vector spaces

evV : V̌⊗V→ 1, 〈ω, v〉 def
= evV (ω⊗v) def

= ω(v).

(2) The map (V⊗V̌ )⊗V = V⊗(V̌⊗V ) −→V⊗1 ∼= V gives a map

V̌⊗V −→End(V ).

(3) The map V⊗V̌
cV,V̌−−→ V̌⊗V evV−−→ V⊗1 ∼= V gives the biduality map for V

ι : V→ ˇ̌V , 〈ιv, ω〉 def
= 〈v, ω〉 = (−1)pωpv 〈ω, v〉, v ∈ V, ω ∈ V̌ .

Remarks. (1) If V⊗V̌→ Hom
k
(V, V ) is an isomorphism the coevaluation map can be

interpreted as a diagonal δV : 1→ V⊗V̌ .

(2) We can define the canonical wrong way maps such as V̌⊗kV→ Hom
k
(V, V ), by insert-

ing braiding in appropriate places.
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1.2.7. The trace and the dimension. We will see in 1.6.1 that the super-trace of a linear
operator T : V→V can be calculated defined using its block decomposition

strF (T ) = tr(T00)− tr(T11).

In particular, the super-dimension (fermionic dimension) is s dimF (V ) = dim(V0) −
dim(V1).

1.2.8. Tensor category of graded super vector spaces. A graded super vector space is a
graded vector space V = ⊕Z Vp with a super structure on each Vp. There seem to be two
(equivalent) ways to choose the braiding on the tensor category of super graded vector
spaces.

• Bernstein’s convention uses the sign given by the total parity deg(v) + pv

cVW (v⊗w) = (−1)(deg(v)+pv)(deg(w)+pw)w⊗v.
Then, taking the total parity (deg(v) + pv is a functor s into the tensor category
of super-vector spaces.
• Deligne‘s convention is that commutativity constraint given by the sign which is

the product of the signs for the degree and for the parity

cVW (v⊗w)
def
= (−1)deg(v)deg(w)·(−1)pvpw w⊗v = (−1)deg(v)deg(w)+pvpw w⊗v,

this means that we combine (multiply) the commutativity constraints due to the
Z-grading and the Z2-grading.

Remark. The above two choices of braidings on the same tensor category are equivalent
by an involution ι on the tensor category of graded super vector spaces. ι is given by
changing the Z2-degree by adding the Z-degree. (The tensoring constraint for ι is ιV,W =

(−1)deg(v)·pq : ι(V⊗W )
∼=−→ ι(V )⊗ι(W ).)

1.2.9. Symmetric algebras S(V ). For a super vector space V , S(V ) is defined as the super
commutative algebra freely generated by V . If V is even we are imposing the ordinary
commutativity uv = vu and S(V ) = k[v1, ..., vn] for any basis of V . If V is odd, we are

imposing the anti-commutativity uv = −vu and therefore F [S(V )] =
•∧F(V ), i.e., if we

forget parity this is an ordinary exterior algebra. A more precise formulation is in the
odd case is

S(V ) = s[
•∧F(V )].

1.3. Super algebras. Let A be a super algebra. The constructions bellow are not ad
hoc, there is no smart choice. On one hand these are special case of definitions in gen-
eral braided categories, and on the other hand they are also forced on us by desire of
compatibility of super vector spaces with ordinary vector spaces (see 1.7).
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1.3.1. The opposite algebra Ao. Ao is given by the following multiplication structure on
the super vector spaces A

a ·
Ao
b

def
= (−1)papb b·a, a, b ∈ Ao = A.

There is an equivalence of categories M 7→M o of left A-modules and right Ao-modules by
M0 = m as a super vector space and

m·a def
= (−1)papm a·m.

A is super commutative iff Ao = A. In particular, for super-commutative A left and
right modules are the same in the sense that one has an equivalence as above m

l(A) 3
M 7→Mo ∈ m

r(Ao) = m
r(A).

1.3.2. Tensor product of algebras. The algebra structure on A⊗B is

(a′⊗b)(a′′⊗b′′)def
= (−1)pb′pa′′ a′a′′⊗b′b′′.

Algebra structure on a tensor product of algebra requires braiding so that multiplication
can be defined by

(A⊗B)⊗(A⊗B) = A⊗B⊗A⊗B 1⊗cB,A⊗1−−−−−→
∼=

A⊗A⊗B⊗B mA⊗mB−−−−−→
∼=

A⊗B.

1.3.3. Derivatives. A linear map ∂ : A→A is said to be a (left) derivative of A of parity
p if

∂(ab) = (∂a)b + (−1)p·pa a(∂b).

There is also an (equivalent) notion of right derivatives, but we follow the convention that
operators act on the left of vectors.

A consequence of this convention, we will (later) write the pairing of a vector field ξ and a
1-form ω (a differential), in the form 〈ξ, ω〉, so that it agrees with the left action of vector
fields on functions: 〈ξ, df〉 = ξ(f).

1.3.4. Parity change on modules for a super algebra A. For a left A-module M , super
vector space ΠM has a canonical A-action

a ·
ΠM

m = (−1)pa am.

For a right A-module M , the actions on M and ΠM are the same. The reason seems to
be that the parity change is viewed as a left tensoring Π(M) = Π⊗

k

M .

1.4. Lie algebras and their enveloping algebras.

1.4.1. Lie algebras.
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Remark. Non-triviality of [x, x] = 0 In a super Lie algebra g let us specialize the relation
[x, y] + (−1)pxpy [y, x] = 0 to x = y. If x is even, it says that [x, x] = 0, however if x is odd
it does not say anything. So, condition [x, x] = 0 (i.e., k·x is an abelian subalgebra), is
non-trivial for odd x.

1.4.2. Enveloping algebras of Lie algebras.

Theorem. [Poincare-Birkhoff-Witt]

Proof. The Poincare-Birkhoff-Witt theorem is proved in any tensor category with a Q-
structure, by constructing explicitly the enveloping algebra multiplication ∗ on the sym-
metric algebra S•(g) of a Lie algebra g. Its relation to the standard product in S•(g)
is

x1· · ·xn =

∫

Sn

dσ xσ1 ∗ · · · ∗ xσn =
1

|Sn|
∑

σ∈Sn

xσ1 ∗ · · · ∗ xσn.

One defines multiplication ∗ inductively, for xi, yj ∈ g

(x1· · ·xp) ∗ (y1· · ·yq)def
= x1 ∗ (x2 ∗ (· · ·(xp ∗ (y1· · ·yq))· · ·)

and

x ∗ (y1· · ·yq)def
= xy1· · ·yq +

∫

Sq+1

q
∑

i=1

(q − i + 1) yσ1 ∗ · · · ∗ [x, yσi] ∗ · ∗ yσq.

1.5. Linear algebra on free modules over super-algebras (inner Hom, free mod-
ules and matrices). Here A is a super-algebra. The subtle parts are only done when A
is super-commutative.

1.5.1. The inner Hom for A-modules. Let F denote forgetting the super structure. For A-
modules M,N , the vector space of F(A)-linear maps HomF(A)[FM,FN ] has a canonical
super-structure HomA(M,N), such that the even part HomA(M,N)0 is the space of maps
of A-modules HomA(M,N) (i.e., the even maps in HomA(M,N) are those that preserve
the super structure). In particular, one has the duality operation on A-modules

M̌
def
= HomA(M,A) hence F(M̌) = HomF(A)[FM,FA].

1.5.2. Free modules. By a basis of a module over a super-algebra A one means a homo-
geneous basis. Then a free module M over a super-algebra A means a module that has a
basis. The standard free left A-modules are

Ap|q
def
= ⊕p+q1 Aei,

with ei even precisely for i ≤ p.

One has Ap|q ∼= Ap⊕Π(Aq), etc.
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1.5.3. Linear operators. We will be only interested in supercommutative A, but we take
a moment for the general case. In the general case we view A as a right A-module so that

Ap|q
def
= ⊕p+q1 Aei is a right A-module (and therefore a left Ao-module). This is convenient

because the inner Hom super algebra EndA(Ap|q), acts on Ap|q on the left.

If A happens to be super-commutative, then the above left action of Ao on Ap|q can be
viewed as a n action of A = Ao, and this is the original action of A on Ap|q viewed as a
left A-module. So, the above convention using right action gives in this case the standard
construction of EndA(Ap|q) for commutative algebras A.

1.5.4. Coordinatization and matrices. In general the Coordinatization of vectors in Ap|q

is by

x = xiei with xi ∈ Ao.
If A is super commutative this is the ordinary A-Coordinatization.

The Coordinatization of operators uses the right A-action

Tej = eiT
i
j , T ij ∈ A.

Bloc form of matrices. Since each row and column in a matrix has a parity, the positions
in a matrix come with a pair of signs(4)

(T ij ) =

(

T++ T+−

T−+ T−−

)

.

1.6. Berezinian (super determinant) of free modules and automorphisms of
free modules. Let A be a super-commutative algebra. We consider the notions of trace
and its nonlinear analogue, the determinant.

Super trace The notion of trace in the super setting is given by general principles (the
braiding of the tensor structure). It applies to the inner endomorphisms of a free A-
module M of finite rank, and yields an even map of A-modules

Tr : HomA(M,M) −→A.

In particular it applies to endomorphisms HomA(M,M) = HomA(M,M)0 and gives a
map of A0-modules

HomA(M,M) = HomA(M,M)0 −→A0.

Super determinant General principles also determine what the notion of super determi-
nant (called Berezinian) should be. One requires that

• (?1) det(eT ) = eTr(T ) when eT makes sense,
• (?2) det is in some sense algebraic (map of algebraic groups).

4This should not be confused with parity of matrix coefficients – all of them can be arbitrary elements
of A.
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We will construct super determinant using its linear algebra characterization as the action
of the operator on the top exterior power. The requisite notion of the “super top exterior
power” will be constructed in a somewhat ad hoc way. Among all formulas that yield the
top exterior power in classical mathematics we observe that one of these produces a rank
one module even in the super case.(5)

One should notice that super-determinant is defined in a very restrictive situation – on
automorphisms of free modules. So, there are two step restrictions (i) to HomA(M,M)
(= HomA(M,M) rather then all of HomA(M,M), and (ii) to only the invertible part
AutA(M,M) of HomA(M,M). For instance if A is even then a matrix of T ∈ AutA(M,M)
has T+− = 0 = T−+ while T++, T−− are some ordinary matrices with coefficients in A.
Then the Berezian is given by

Ber(T ) = det(T++)·det(T−−)−1.

Here, M will be a free A-module, hence isomorphic to one of Ap|q.

1.6.1. Super trace. If M̌⊗
A
M→ HomA(M,M) is an isomorphism, one has a categorical

notion of the trace

Tr
def
= [HomA(M,M)

∼=←−M̌⊗
A
M

evM−−→ 1 = A].

Lemma. (a) In terms of dual bases ei, e
i of M and M̌ , this reduces to

Tr(T ) = (−1)pi 〈ei, T ei〉.

(b) In terms of the matrix (T ij )

?
def
= 〈ei, T ei〉 that we defined above using the right action of

A, this is

Tr(T ) = (−1)piT ii = Tr(T++)− Tr(T−−).

(c) The trace of a commutator is still zero: Tr[A,B] = 0, i.e., Tr(AB) =
(−1)pApB Tr(BA).

Proof. (a) and (b) follow from

Tr[evM,M(mω̌)] = (−1)ω·m·〈ω,m〉.

For this one recalls that the map M̌⊗M −→ EndA(M) is a composition M̌⊗M
cM̌,M−−−→

M⊗M̌ evM,M−−−→ EndA(M) (remark 1.2.6). So, the operator corresponding to ω⊗m ∈ M̌⊗M
is evM,M [cM̌,M ω⊗m] = (−1)ω·m·evM,M(ω⊗m), and according to the above definition, its
trace is 〈ω,m〉.

5In the end we get a computable formula and we can check the characterizing property (?).
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1.6.2. Berezinian of a free module (= “top exterior power”). Classically, the determinant
of a linear operator is its action on the top exterior power. However, for an odd line

L = kθ, exterior algebra
•∧L = ⊕∞0 kθn has no top power. Instead we will use another

classical formula for the top exterior power of a free A-module L. Let V be a vector space
over k, then(6)

(0↪→V )!OV def
= Ext•O(V )[O0, O(V )] =

top
∧V [− dim(V )].

LHS is In the super setting this will be the definition of the RHS. So the LHS is the correct
super analogue of the top exterior power, that gives the super version of the determinant.

Lemma. Let A be a commutative super-algebra and let L = Ap|q be a free A-module.

(a) The graded object

Ber(L)
def
= Ext•S•

A(Ľ)[A, S
•
A(Ľ)] = Ext•O(L)[O(0), O(L)]

is concentrated in the degree p where it is a free A-module of rank 1, and of parity the
same as q.

(b) Berezian is canonically isomorphic to a line bundle

Ber(L) ∼= ΛtopL0 ⊗ Stop(L1)
∗.

(c) To any ordered basis e1, ..., en one canonically associates a basis [e1, ..., en] of Ber(L).(7)

Proof. (a) (0) Any ordered decomposition L = L1⊕L2 induces S(L∗1)⊗AS(L∗2)
∼=−→S(L∗),

and then Ber(L1)
L
⊗ABer(L2)

∼=−→Ber(L).

(1) The case p|q = 1|0. If L = Ae then the S•A(Ľ)-module A (via the augmentation),

has a free Koszul resolution(8) SA(Ľ)⊗
A
L∗

s⊗e∗ 7→ se∗−−−−−−→ SA(Ľ) −→A→0, hence

Ext•S•
A(Ľ)[A, S

•
A(Ľ)] = H• Hom[SA(Ľ)⊗

A
Ae∗

s⊗e∗ 7→ se∗−−−−−−→ SA(Ľ), SA(Ľ)]

6From the point of view of algebraic geometry, Berezian is by definition the “relative dualizing sheaf” for

0↪→V . Its computation above is essentially the computation of the dualizing sheaf on V since ωV
def
= (V −→

pt)!k has form ωV = OV⊗kΩ and k = ω0 = (0↪→V )!ωV = (0↪→V )!(OV⊗kΩ) = Ω⊗k

top

∧ V [− dim(V )]

gives Ω =
top
∧ V ∗ [dim(V )].

7The coming calculation of the Berezian determinant can be bi viewed as a description of the functo-
riality of [e1, ..., en] in e1, ..., en. Roughly, even ones are covariant and odd ones contravariant, so we may
write [e1, ..., ep; ep+1, ..., ep+q ]

8More generally, in the case p|q = p|0, the resolution is

S•A(Ľ)⊗
A

p
∧
A
Ľ → S•A(Ľ)⊗

A

p−1

∧
A
Ľ → · · · → S•A(Ľ)⊗

A

1∧
A
Ľ → A→ 0.
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= H•[ S•A(Ľ)
s7→ se∗⊗e−−−−−→ S•A(Ľ)⊗

A
Ae] = Ae [−1] =

top
∧
A
L [−1].

(2) The case p|q = 0|q. If L = A0|q = ⊕q1Aθi for odd θi’s, then S•A(Ľ) = A[θ∗1, ..., θ
∗
q ]

is a Frobenius algebra, hence it is an injective module over itself. So,

Ext•S•
A(Ľ)[A, S

•
A(Ľ)] = HomS•

A(Ľ)[A, S
•
A(Ľ)] = HomA[θ∗1 ,...,θ

∗
q ](A, A[θ∗1, ..., θ

∗
q ])

= ∩ Ker(θ∗i : A[θ∗1, ..., θ
∗
q ] −→A[θ∗1, ..., θ

∗
q ]) = Aθ∗1· · ·θ∗q .

�

Now (b) and (c) follow. Let L = ⊕ Aei⊕ ⊕Aθj with ei even and θj odd. The factorization
from (0),

Ber(L) ∼= ⊗i Ber(Aei) ⊗ Ber(⊕ Aθj)

is canonical since Aei’s are even. According to (1) and (2) it provides a basis of Ber(L)
of the form e1⊗· · ·⊗ep⊗θ1· · ·θ∗q which depends on the choice of order of ei and θj’s.

More precisely, it is a tensor product of basis e1∧· · ·∧ep of Λ
top

L0 (if one calculates
Ber(L0) in one step, using the Koszul resolution of the SA(L∗0)-module A), and θ1· · ·θ∗q
of Aθ1· · ·θ∗q⊆ S

top

(Aθ∗1⊕· · ·⊕Aθ∗q).

1.6.3. Remarks. (1) A basis e1, ..., ep, θ1, ..., θq of L gives a basis [e1· · ·epθ∗1· · ·θ∗q ] of Ber(L).
This gives a more elementary approach to Berezinians – a free module with a basis
[e1· · ·epθ∗1· · ·θ∗q ], with a given rule on how this basis element transforms under a change
of basis of L.

(2) We will remember that Ber(L) is in degree p, i.e., we will consider it as an object of
the category of graded A-modules.

Corollary. A short exact sequence of free modules 0→ L′→ L→ L′′→ 0, gives a canonical
isomorphism

Ber(L) ∼= Ber(L′)⊗Ber(L′′).

1.6.4. Berezinian of a map (= “determinant”). For an isomorphism T : L −→M of free
A-modules,

Ber(T ) ∈ Hom[Ber(L), Ber(M)]
def
= the induced isomorphism of Berezinians.

In particular, for an automorphism T of a free A-module L,

Ber(T ) ∈ (A0)
∗ is the action of T on Ber(L).

Observe that in order for T : L→ L to act on Ber(L) = Ext•S•
A(Ľ)[A, S

•
A(Ľ)],

• T needs to be even and
• T needs to be invertible.
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Lemma. (a) (Berezinian in matrix terms.) If T : L → M is invertible, then so are the

diagonal componentsT++ and T−− of T =

(

T++ T+−

T−+ T−−

)

. Then

T =

(

T++ T+−

T−+ T−−

)

=

(

1 T+−T−−
−1

0 1

)

·
(

T++ − T+−·(T−−)−1·T−+ 0
T−+ T−−

)

,

and
Ber(T ) = det(T++ − T+−·(T−−)−1)· det(T−−)−1.

(b) (Berezinian in terms of algebraic super groups.) Berezinian is characterized as a map
of groups GL(p|q, A)→ GL(1|0, A) which satisfies

Ber(1 + εT ) = 1 + εT

when ε is even of square zero.

Remarks. (0) Clearly the appearance of inversion in Ber

(

T++ 0
0 T−−

)

=

det(T++)· det(T−−)−1 corresponds to subtraction in the trace formula.

(1) If A = k is even then the automorphism group of kp|q is GLp(k)×GLq(k), and Ber =
detp/detq : Aut(kp|q) −→k∗.

(2) As usual, one important application of super determinants (over non-trivial super
commutative algebras) comes from (local) isomorphisms of super manifolds F : M → N .
Then dF : TM −→ F∗TN is an isomorphism of locally free OM -modules, hence one has
Ber(dF ) : Ber(TM) −→F ∗Ber(TN). We will use this for change of variables in integrals.

1.7. The automatic extension of algebraic concepts to the super setting (“Even
rules”). This is Bernstein’s? idea to reduce the sign calculations to super-commutative
algebras. A super vector space V defines a functor from super-commutative algebras to

ordinary vector spaces, B 7→ V (B)
def
= (VB)0 for VB

def
= B⊗V .

For instance, a super Lie algebra structure on V is the same as an ordinary Lie algebra
structure on the functor B 7→V (B). What this means is that for any super commutative
algebra B, on V (B) one is given a Lie algebra structure over B0, which is functorial
(natural) in B. This principle allows one to calculate the defining relations for super Lie
algebras (instead of inventing the signs in these relations).

The same works if we replace the Lie algebra by any other algebraic structure.
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2. Manifolds

2.0.1. Definition of super manifolds as ringed spaces. By definition a super manifold is a
topological space |M | with the sheafOM of supercommutative algebras which is locally the
same as some (Rp,q, C∞

Rp⊗∧∗Rq). This is analogous to one of characterizations of smooth
manifolds N as a topological space |N | with the sheaf ON of commutative algebras which
is locally the same as some (Rp, C∞

Rp). A way to make this less abstract is provided by

2.0.2. The set theoretical view on a supermanifold M as the functor Hom(−,M) of points
of M . In differential geometry we visualize a manifold N as a set of points and we would
like to do the same in super geometry. The categorical way of thinking of a set of points
of N is Hommanifolds(R

0, N). The same construction in super manifolds does not notice
enough information as Homsuper manifolds(R

0,M) = |M | is the same as the set of points of
the underlying ordinary manifold. The problem is that it is not at all sufficient to probe a
super manifold with an even object R0. It works better if one probes with all super points,
the collection of sets Homsuper manifolds(R

0|q,M), q ≥ 0, contains more information. In
the end, as emphasized by Grothendieck, to restore the set theoretic point of view on M
one should look not at a single set but at the functor

Hom(−,M) : SuperManifoldso −→Sets.

One says that Hom(X.M) is the set of X-points of M .

2.0.3. Example. As an example, the super manifold GL(p|q) has underlying ordinary
manifold GLp×GLq, and the two are the same on the level of ordinary points. However
for a super manifold X with a supercommutative algebra of functions A = O(X), the set
of X-points of GL(p|q) is more interesting – this is the set of automorphisms of the free
A-module Ap|q.

2.1. Super manifolds – definitions. A super manifold M is a ringed topological space
(|M |,OM) locally isomorphic to some

Rp|qdef
= (Rp, C∞

Rp[ψ1, ..., ψq]),

where

C∞
Rp [ψ1, ..., ψq])

def
= ⊕I={I1<·<Ik} C∞Rp·ψI1 · · ·ψIk

is a super-commutative algebra freely generated over the smooth functions C∞
Rp , by odd

generators ψ1, ..., ψq.

So, the functions on Rp|q are C∞
Rp⊗

k

S(W ) for a q-dimensional odd vector space W .

2.1.1. Maps. A map of ringed spaces f : (|M |,OM ) −→(|N |,ON) is by definition a pair of a
map |f | : |M | −→|N | of topological spaces and a map of sheaves of rings f ! : OM −→|f |∗ON .
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2.1.2. The associated ordinary manifold Mred. The reduced manifold of M is the ringed

space Mred
def
= (|M |,OM/JM) where JM is the ideal generated by odd functions. This is a

C∞-manifold since R
p|q
red is clearly Rp. Notice that

(1) OM�OMred
corresponds to the canonical closed inclusion of super manifolds

Mred↪→M .
(2) M is not a fiber bundle over Mred since there is no canonical map M →Mred.

Let me mention another (less useful) passage to ordinary world – where one simply keeps

the even functions. This gives a (usually nonreduced) scheme Meven
def
= Spec(OM,0), which

fits into

OMeven = (OM)0 ⊆ OM � OM/JM , hence Meven�M←↩Mred.

The composition Mred −→Meven makes Meven into an infinitesimal extension of Mred.

2.1.3. ∞ dimensional super manifolds. Douady noticed that in ∞ dimension one needs
local charts – the approach through the sheaf of functions is not enough to define mani-
folds.

∞-dimensional super manifolds appear as various spaces of fields F in QFT, for instance
the map spaces such as Map(S1|1,M). Deligne-Freed treat such spaces only as functors.
So they do not spell the structure of a super manifold on F , but only the functor of points
Map(−,F) defined on finite dimensional super manifolds.

2.1.4. Lemma. (a) Any super manifold M is locally a product of the underlying even
manifold |M | and a super point R0|q.

(b) All super manifolds are of the form OM = s(
•∧V∗) for a vector bundle V over a smooth

manifold |M |, however non-canonically.

Proof. (a) is just the definition of super-manifolds. (b) Part (a) shows that locally

OM = s(
•∧V) for a trivial vector bundle V = |M |×Rq of rank q.

2.1.5. Remarks. (a) Operation V7→ Spec[s(
•∧V∗)] will later be called the parity change of

a vector bundle V and denoted Π(V).

(b) For a super manifold M , the choice V is an additional rigidification of M , observe
that it lifts a super-manifold M to graded manifold. The functor from “manifolds with
a vector bundle” to super manifolds: (|M |,V)7→ M , is surjective on objects but not an
equivalence.

2.1.6. Remark. Super Cr-manifolds do not make sense.



18

2.1.7. Super-schemes. A super space M = (|M |,OM ) is a ringed space (topological space
|M | with a sheaf of super-rings OM), such that

• the structure sheaf OM is super-commutative and
• the stalks are local rings.

A super scheme is a super space M such that the even part M0
def
= (|M |,OM,0) is a scheme,

and that the odd part OM,1 is a coherent module for the even part OM,0. Some examples:

(1) The algebraic versions of Rp|q’s are affine (super) schemes An|m over a ground
ring k, given by the super-commutative algebras of polynomial functions on these
spaces

O(An|m) = k[x1, ..., xn, ψ1, ..., ψm] = S•(kx1⊕· · ·⊕Rxn) ⊗ ∗∧ F(kψ1⊕· · ·⊕kψm),

with xµ’s even and ψk’s odd. It is a product of the affine space An = An|0 and a
super point A0|m. The functions on a super point O(A0|m) have a finite basis of

monomials ψi1<···<ik
def
=ψi1 · · ·ψik .

(2) A vector bundle V over an ordinary scheme X. defines a super scheme

Π(V)
def
= (|X|, •∧OX

V∗). The first infinitesimal neighborhood of X in Π(V) is

N def
= (|X|,OX⊕V∗), given by imposing V∗∧V∗ = 0. If X is smooth so is Π(V),

but N is not smooth.

2.1.8. The value of a function f ∈ OM at a point x ∈ |M |. This is defined as the unique
number c such that f − c is not invertible in any neighborhood of x.

This leads to the observation that OM is a sheaf of local rings, the maximal ideal in the
stalk at x is mx = {f ; f(x) = 0}.

2.1.9. Coordinates. On Rp|q one has xµ’s and ψi’s.

A map M→Rp|q is the same as p even and q odd functions on M .

2.1.10. M can be thought of as |M | plus fuzz.

2.2. Super-manifold as a functor. We consider a super-manifold M as a functor
S 7→ M(S) from super manifolds to sets. For instance,

• (0) Map(R0|0,M) = |M |.
• (1) Map(R0|1,M) is the moduli of pairs of a point x ∈ M and an odd derivation

of the local ring at x, i.e., these are the odd tangent vectors.
• (2) Map(S,R1|0) = ΓOM,0 and Map(S,R0|1) = Γ(OM)1.

• The universal point of M is the M -point M
1M−→M .
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The idea is that A0|1 has only one k-point so in this respect it looks like A0|0; however,
S-points of A0|1 are numerous – the same as odd functions on S.

2.2.1. Fiber products. Fiber products S ′×
S
M exist for maps S ′→S that are locally pro-

jections of the form S ′ = Rp|q×S→ S.

2.2.2. The use of a base S. A super space M/S (also called an S-super space M , or a
super space M with a base S), means simply a map of super spaces M −→S. The basic
idea is that one studies such relative super space M/S using all super spaces T/ with base

S – one studies the the set of T/S-points of M/S, defined by (M/S)(T/S)
def
=HomS(T,M).

In order to be able to construct maps M
φ−→ N in terms of the corresponding maps of

functors, one has to systematically use families of manifolds M→S (?). In particular, it
means that one should with each family M→S also consider all families obtained by the
base changes M ′ = M×

S
S ′ (under projection-like maps S ′→S).

2.2.3. “Functions are determined by their values on S-points”. A function f on M gives
for any S-point S

σ−→M a function fσ on S, which we can think of as the value of f on

the S-point σ. So,tautologically, f is the same as its value on the M -point M
id−→M .

2.3. The functor of maps between two super spaces. It is defined by

Hom(M,N) (S)
def
= MapS(M×S,N×S) = Map(M×S,N),

i.e., the S-points of this functor are simply the S-families of maps form M to N . We leave
out the question of what kind of a space would represent this functor (in nice cases it is
give by a super manifold, possibly infinite dimensional).

2.4. Lie groups and algebraic groups.

2.4.1. Super Lie groups. Rp|q is a group (contrary to the intuition from commutative
schemes where: group ⇒ smooth ⇒ reduced).

2.5. Sheaves. The sheaves on M are by definition sheaves on the topological space |M |
(this is the only topological space around). The sheaves on |M | that are related to its
structure of a super manifold are the sheaves of OM -modules. Two notions of Hom give
two relevant notions of global sections of an OM -module A:

• The inner notion Γ gives a super module Γ(A) over the super-commutative algebra
Γ(OM), by

Γ(M,A)
def
= HomOM

(OM ,A) = Γ(|M |,A) = Γ(|M |,A0)⊕ Γ(|M |,A1) .
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• The notion given by the category of OM -modules is Γ(A)
def
= HomOM

(OM ,A),

Γ(M,A)
def
= HomOM

(OM ,A) = Γ(|M |,A0).

So, Γ(A) = [Γ(A)]0 = Γ(|M |,A0) and one can recover the odd part of the functor Γ
from the even part by

Γ(M,A)1 = Γ(|M |,A1) = Π Γ(M,ΠA).

3. Differential Geometry

As usual, on a super manifold M one can identify vector bundles with locally free sheaves.
One consequence is that the operation of change of parity which is defined obviously for
locally free sheaves is quite unexpected for vector bundles.

3.1. Vector bundles. A vector bundle V over M is a fiber bundle V→M which is (i)
locally Ap|q×M→ M , (ii) has a structure group GL(p|q) (i.e.the transition functions lie
in that group).

On the other hand, one can consider locally free OM -modules V of dimension p|q.

3.1.1. Super-vector space V gives a “super-vector space V in the category of super-
manifolds”. One has |V | = V0 and OV = C∞(V0)⊗ S•(V ∗

1 ), or in algebraic geometry
simply, O(V ) = S•(V ∗). The structure of a “super-vector space in the category of
super-manifolds” is clear. This is the way we have obtained our basic manifolds Ap|q.

In the opposite direction, a “super-vector space in the category of super-manifolds” V ,
defines a super-vector space V = [Olin(V )]∗, the dual of linear functions. In the infini-
tesimal language, V = T0(V ). Similarly, V = Map(A0|1,V ) with V0 = Map(A0|0,V )
(the maps that factor thru the point A0|0) and V1 = Map[(A0|1, 0), (V , 0)] (maps that

send the point A0|0 = A
0|1
red⊆A0|1 to 0 ∈ V ).

3.1.2. Sheaf of sections. For the equivalence of the two notions, a vector bundle V gives
a a sheaf

Vdef
= O∗

V,lin = HomOM
(OV,lin, OM ) = MapM(M×A0|1, V ) = TV→M .

The last interpretation is as vertical vector fields, the one with A0|1 is the closest to the
idea of a “sheaf of sections”.

3.1.3. The underlying vector bundle. In the opposite direction, V defines a functor

S 7→ {(f, v), f : S→M is an S-point of M and v ∈ Γ(S, [f ∗V]0) is an even section of V over f },

which is represented by V
def
= Spec[S•OM

(V∗)].
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3.1.4. The underlying topological space |V |. The restriction of V to Mred, V|Mred =
OMred

⊗
OM

V = V/JM ·V, is a super vector bundle over the even manifold Mred. Say, if

V = Op|qM = ⊕i OMei⊕⊕j OMθj, then V|Mred = Op|qMred
= ⊕i OMred

ei⊕⊕j OMred
θj.

The underlying topological space |V | is the vector bundle |V |→|M |, corresponding to the

sheaf (V|Mred)0. For instance if V = M× Ap|q, then |V | = |M |× Ap , while V = Op|qM
gives (V|Mred)0 = ⊕i OMred

ei = OpMred
.

3.1.5. Change of parity of a vector bundle. It is defined on locally free sheaves, hence
also on vector bundles. From the point of view of locally free sheaves the change seems
simple and formal, but on vector bundles it is drastic. Locally, V ∼= M×Ap|q and
Π(V ) ∼= M×Π(Ap|q) ∼= M×Aq|p. Observe, that the parity change on vector bundles
changes the underlying topological space: while locally |V | ∼= |M |× Ap corresponds
to the sheaf (V|Mred)0

∼= ⊕i OMred
ei = OpMred

, |Π(V )| ∼= |M |× Aq corresponds to
(V|Mred)1

∼= ⊕i OMred
πθi ∼= OqMred

.

However, this operation is still elementary. For instance, suppose that V is an ordinary
vector bundle over an ordinary manifold M . One can describe the super manifold Π(V )
as a pair (M,OΠ(V )), i.e., the underlying manifold is the base M of the vector bundle V

and the algebra of functions is OΠ(V ))
def
=

∗

∧ V∗.

3.2. (Co)tangent bundles. A vector field means a derivative of the algebra of functions,
so the vector fields on An|m are all ξ = ξµ ∂

∂xµ + ξk ∂
∂ψk , where ∂

∂ψk has the usual properties

that it kills xµ’s and ∂
∂ψk p

j = δjk, but

∂

∂ψk
(fg) = (

∂

∂ψk
f) g + (−1)pf f(

∂

∂ψk
g).

A possible confusion regarding the Z2-grading: one could say that T (0)
M = ⊕ OM∂xµ

are “even” vector fields and T (1)
M = ⊕ OM∂ψi are “odd”, while the correct parity is

(TM)0 = ⊕ OM,0∂xµ ⊕ ⊕ ⊕ OM,1∂ψi .

The differential df = ∂f
∂xµdx

µ + ∂f
∂ψk dψ

k is of parity 0, so it satisfies d(fg) = df ·g+ f ·dg.

3.2.1. Differential forms. Define Ω1
M as the dual of TM and Ω•

M
def
=

•∧ Ω1
M . Then Ω•

M is a
graded object in the category of (sheaves of) super vector spaces, the associated super
vector space sΩ•

M combines the parity of the grading and the parity of Ω1
M . Say, if M

were even then Ω1
M would be even, but (sΩ•

M)1 would be odd.

Observe that if M is not even, there are no highest degree forms: Ωn
Ap|q =

⊕r+s=n Ωr
Ap⊗

s∧(⊕ kψi).
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Lemma. (a) Differential d : OM→ Ω1
M extends to the De Rham differential on Ω•

M .

(b) (Poincare lemma) (Ω•
M , d) is a resolution of R|M |.

(c) H•(Ω•
M , d) = H•(|M |,R).

Proof. (b) reduces to the local setting M = Rp|q× Rp× R0|q and then to factors Rp

(standard Poincare lemma) and R0|q, or even R0|1 (Koszul complex).

3.3. Parity change of the tangent bundle. The most natural appearance of super
commutative algebras are the algebras of differential forms Ω∗

M on an ordinary manifold
M . This is the algebra of functions on a super manifold which has two natural interpre-
tations as either (1) the moduli of maps of the super point A0|1 into M , or (2) the super
manifold obtained from the tangent vector bundle TM by parity change.

3.3.1. Lemma. (a) Spec(sΩ•
M ) = Π(TM).

(b) Π(TM) represents the functor Hom(A0|1,M) defined by

Hom(A0|1,M) (S)
def
= MapS(A

0|1× S, M× S) = Map(A0|1× S, M),

i.e., S-points are “S-families of odd tangent vectors on M”.

Proof. In (a)

OΠ TM/M = S•OM
([Π⊗ TM ]∗) = S•OM

(Π⊗ T ∗M) = ⊕k Π⊗k⊗ k∧
OM

( Ω1
M ) = s(Ω•

M ).

In (b), let S be the spectrum of a commutative super algebra A. Then

Hom(A0|1,M) (S) = Map(A0|1× S, M) = Homk−alg[O(M), (k⊕ψk)⊗
k

A] = Homk−alg(O(M), A⊕ ψA).

An element is a map φ = α + ψβ : O(M)→ A⊕ ψA with

α(fg)+ψβ(fg) = (α(f)+ψβ(f))·(α(g)+ψβ(g)) = α(f)α(g)+ ψβ(f)α(g)+ α(f)ψβ(g)) =

α(f)α(g) + ψ[β(f)α(g) + (−1)pfα(f)β(g))].

So α : O(M)→A is a morphism of algebras and β : O(M)→A is an odd α-derivative.
So φ consists of a map α : S→M and β ∈ Γ[S, (α∗TM)]1.

On the other hand, an element φ of Hom(S,Π⊗ TM) = Homk−alg[O(Π⊗ TM), A] =
Homk−alg[s(S•O(M)Ω

1
M), A], consists of a map of algebras α : O(M)→A (the restriction of

φ to O(M)), and a map of O(M)-modules β : [s(S•O(M)Ω
1
M)]1→ A, i.e., β : Π⊗ Ω1

M→ A.

Now, a map of O(M)-modules Ω1
M→ O(M) is the same as a section of (TM)0 (an even

vector field on M), a map of O(M)-modules Ω1
M→ O(S) is a section of (α∗TM)0, and so

β : Π⊗ Ω1
M→ A is a section of (α∗TM)1.
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Remarks. (1) The underlying topological space |Π(TM)| is just |M |. If M and S were
even then Hom(A0|1,M)(S) are just the maps from S to M .

(2) The statement (b) is just the odd version of the standard description of TM as the
moduli of all maps from a “double point” (or a “point with a tangent vector”) to M ,
i.e., description of TM as the space that represents the functor Hom(Spec(D),M) for the
algebra of dual numbers D = k[ε]/ε2.

4. Integration on super affine spaces

Integrals of functions on super manifolds will be (ordinary) numbers. Integrals on affine
spaces will be defined “by hand”. In general the objects one can integrate are called
densities, the correct replacements of top differential forms.

Our basic example of an integral is the fermionic Gaussian integral. We motivate Gaussian
integrals as the simplest case of path integrals. Gaussian integral on a super point R0|q

turns out to be the Pffafian of the quadratic form on an odd vector space (if q is even,
otherwise it is zero).

4.0.2. SUSY (supersymmetry). Supersymmetry of a function f on a super manifold is a
vector field δ that kills it (i.e., f is constant on the flow lines). The interesting case is
when δ is odd, i.e., so it mixes even and odd stuff. If such δ can be interpreted as one of
the coordinate vector fields then the integral of f is zero. If this can be done generically
– say everywhere except on some submanifolds Ci of |M | – then the integral will be given
by contributions from submanifolds Ci.

Example. Our example will be the integral
∫

R
Dx P ′(x)e−

1
2
P (x)2 which has a super inter-

pretation
∫

R1|2

Dx dψ2 dψ1 e−
1
2
P (x)2+P ′(x)ψ1ψ2

.

It has a super-symmetry δ which is a part of a coordinate system as long as one stays
away from zeros of P . So the integral is a sum of contributions from zeros b of P (x). The
contributions are sign(P ′(b)), and then the integral is the degree of P as a map from S1

to itself. Actually this integral can be easily calculated by a substitution – what we got
from the super picture is a localization of the integral around few critical points.

4.1. Integration on affine spaces.

4.1.1. Integration on super points. Integration of functions on a super point A0|m is defined
by using successively the formula

∫

dψ a+ bψ
def
= b.
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So, in general the integral just takes the highest degree coefficient (with a correct sign)
∫

dψn· · ·dψ1
∑

I= {i1<···<ik}

cI ·ψIdef
= c12···m.

We also denote it
∫

dψn· · ·dψ1 f
def
= [f : ψ1· · ·ψm].

4.1.2. Covariance. (1) Formula
∫

dψ a0 +a1ψ = a1 is somewhat reminiscent of integrals
of holomorphic functions over a circle. There,

∫

S1

∑

n bnz
n dz = b−1 is the coefficient of

z−1 in the Laurent series expansion.

(2) However, only one of these formulas can work: a change z = cu does not affect
∫

S1 z−1 dz, but ψ = cφ seems to give nonsense:
∫

dψ ψ = c2·
∫

dφ φ. The reason is
that dψ is really contravariant

d(cψ) = c−1 dψ.

We will deal with this in the next section when we tackle change of variable.(9)

4.1.3. Integration on super affine spaces. Integrals on An|m are evaluated so that one first
integrates over the fermionic variables and then we are left with an ordinary integral. For
example if S[x, ψ1, ψ2] = U(x) + V (x)ψ1ψ2 then

∫

A1|2

dx dψ2 dψ1 e−S[x,ψ1,ψ2] =

∫

A1|2

dx dψ2 dψ1 e−U(x)
∑

k

(−1)k

k!
V (x)k(ψ1ψ2)k

= −
∫

A1|0

dx e−U(x)

∫

A0|2

dψ2 dψ1 V (x)ψ1ψ2 = −
∫

A1|0

dx V (x)e−U(x).

4.2. Gaussian integrals.

4.2.1. Even Gaussian integrals. On an ordinary real vector space M we consider a qua-
dratic form S[x] and a choice of coordinates xi.

We normalize the Lebesgue measure on M with respect to coordinates xi

Dx
def
=

∏ dxi√
2π
,

and we consider the Gaussian integral
∫

M

Dx e−
1
2
S(x).

9We will denote dψ = (dψ)−1, where quantity with dψ is covariant.
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Lemma. When we write S in terms of the coordinates S(x) = xiAijx
j, the integral is

∫

M

Dx e−
1

2
(xiAijx

j) = (detA)−
1

2 .

4.2.2. σ-model interpretation. Consider a Σ-model, i.e., the moduli of maps from Σ to M .
In the simplest case when Σ is just a point (hence a 0-dimensional manifold), the moduli
of maps from Σ to M is just M . A positive definite quadratic form S(x) on M gives a
path integral which is the above Gaussian integral.

4.2.3. Fermionic Gaussian integrals give Pffafian. Now let M be a super point (0, m).
Quadratic functions on M are function of the form S[x] = ψiBijψ

j for an anti-symmetric
B (so 1

2
S[x] =

∑

i<j ψ
iBijψ

j). A fermionic Gaussian integral is
∫

M

dψm· · ·dψ1 e
1
2
S[x] =

∫

M

dψm· · ·dψ1 e
P

i<j ψiBijψj

.

4.2.4. Odd Feynman amplitudes. Let P(m) be the set of all pairings of the set {1, ..., m},
i.e., all partitions γ of A into 2-element subsets. To a pairing γ one assigns the sign σγ
as the sign of any permutation i1, j1, ..., iq, jq that one obtains by choosing an ordering
{i1 < j1}, ..., {iq < jq} on γ.

The γ-amplitude of a quadratic form B(x) = ψiBijψ
j is

Fγ(B)
def
= σγ ·

∏

{i<j}∈γ

Bij.

Notice that the difference from the even case is that there is a sign σγ attached to a
Feynman graph γ.

4.2.5. Fermionic Gaussian integrals give Pffafian.

Lemma. The odd Gaussian integral on R0|m is a sum over all pairings
∫

M

dψm· · ·dψ1 e
1
2

P

ψiBijψj

=
∑

γ∈P({1,...,m}

σγ
∏

{i<j}∈γ

Bij =
∑

γ∈P({m}

Fγ(B).

Proof. The exponential power series is a finite sum
∫

M

dψm· · ·dψ1
∑

k

1

k!
(
∑

i<j

Bijψ
iψj)k.

Since we get only the even degree terms, this is zero if m is odd. If m = 2q is even, this is
∫

M

dψm· · ·dψ1 1

q!
(
∑

i<j

Bijψ
iψj)q,
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and we get a contribution 1
q!
σi1j1...iqjqBi1j1· · ·Biqjq , whenever i1, j1, ..., iq, jq is a permuta-

tion of 1, ..., m, such that ik < jk. Therefore, the fermionic Gaussian integral is a sum
over all such permutations

∫

M

dψm· · ·dψ1 e−
1
2
ψiBijψ

j

=
1

q!

∑

(i1j1...injn)∈ Sm, ik<jk

σi1j1...injn ·Bi1j1· · ·Binjn.

However, σi1j1...injn and Bi1j1 · · ·Binjn only depend on the associated pairing γ = {{i1 <
j1}, ..., {iq < jq}}. Moreover, all permutations (i1, j1, ..., in, jn) over one pairing γ form a
Sq-torsor. so the RHS simplifies to the claim of the lemma.

Remarks. (0) The sum
∑

γ∈P({1,...,m} σγ
∏

{i<j}∈γ Bij is called the Pffafian Pf(B) of the

anti-symmetric matrix B.(10)

(1) The integral is a Feynman sum. So, Pffafian may be the first appearance of Feynman
sums.(11)

(2) The Pffafian of an antisymmetric matrix of even size is a square root of its determinant:

Pf(B)2 = det(B).

This square root is normalized by Pf = 1 on ( 0 1
−1 0 ) (and on block diagonal matrices with

such blocks on the diagonal).

(3) Again we find that the odd part gives a contribution in the opposite direction since

(det(A)−
1
2 is replaced by (det(B)

1
2 = Pf(B).

4.2.6. Question. Use integrals to prove (i) Pf 2 = det and (ii) Pf(ABA−1) = Pf(B) for
orthogonal A.

A linear operator A on an ordinary vector space V gives a symmetric bilinear form A on
the odd vector space T ∗(ΠV ) = Π[V⊕V ∗] by

A(u⊕λ, v⊕µ)
def
= .

Notice that the space T ∗(ΠV ) = Π[V⊕V ∗] comes with a canonical volume element (5.1.2).

Corollary. The determinant of a linear operator A on an even vector space V can be
calculated as the Gaussian integral for the form A (using the canonical volume element).

4.3. Wick’s theorem.

10Here Pf(B) is attached to a symmetric form B on an odd vector spaceM and a system of coordinates
ψ1, ..., ψm on M , i.e., precisely to the associated matrix (Bij). However, one needs less – a volume form
dv = dψ1· · ·dψm on M rather then a system of coordinates.

11This raises a question of whether the even Gaussian (det(A)−
1

2 is a Feynman sum in some way. This
could be interesting for infinite dimensional spaces.


