
DIFFERENTIAL COHOMOLOGY AND GERBES: AN INTRODUCTION TO
HIGHER DIFFERENTIAL GEOMETRY

BYUNGDO PARK

Abstract. This is a lecture note for a minicourse given at the IUT Mathematics and Statistics

Research Seminar. This version contains the notes for the lecture given on December 11th, 18th,

and 25th, 2023.

1. Čech cohomology and characteristic classes

Definition 1.1. Let G be a Lie group. A principal G-bundle over a smooth manifold M is a
smooth map π : P →M and a right G-action on P satisfying

(1) π is G-invariant; i.e., π(p · g) = π(p) for all p ∈ P and g ∈ G.
(2) On each fiber G acts freely and transitively from the right.
(3) P is locally trivial via G-equivariant trivialization; i.e., at every m ∈ M there exists an

open subset U ⊂M and a diffeomorphism ϕ : π−1(m)→ U ×G such that p 7→ (π(p), φ(p))

satisfying p · g 7→ (π(p), φ(p) · g).

The conditions (1) and (2) mean that the G-orbits are fibers of π. This is equivalent to saying
P ×G→ P ×M P , (p, g) 7→ (p, p · g) is a diffeomorphism; i.e., P is a G-torsor.

Definition 1.2. A bundle map of principal G-bundles from π1 : P1 → M to π2 : P2 → M is a
diffeomorphism f : P1 → P2 that preserves the fiber and G-equivariant; i.e., f(p · g) = f(p) · g and
π2 ◦ f = π1.

Principal G-bundles over M with maps form a groupoid (a category whose morphisms are in-
vertible) and it is denoted by PrinG(M). We will also use the notation BunCn(M) to denote the
groupoid of rank n complex vector bundles over M .

Example 1.3. Let G = GLn(C). Consider π : P → M and take an associated fiber bundle
E(P ) → M with a fiber Cn defined by E(P ) := (P × Cn)/G with a diagonal G-action: (p, v) 7→
(pg, g−1v). The bundle E(P ) is a complex vector bundle over M of rank n. On the other hand,
let E ∈ BunCn(M). At each x ∈ M , consider the set Fr(E)x of all bases of the vector space Ex;
equivalently the set of all C-linear maps p : Cn → Ex. Then the smooth map π : Fr(E) → M with

Date: December 26, 2023.

2020 Mathematics Subject Classification. Primary 53C08; Secondary 55R65, 14F03, 55N05.
Key words and phrases. Čech cohomology, nonabelian cohomology, characteristic classes, differential characters,

differential cohomology, bundle gerbes, Deligne cohomology.
1



2 BYUNGDO PARK

π−1(x) = P (E)x and a right G-action on Fr(E) defined by p 7→ p ◦ g is a principal G-bundle over
M . It leads to the following equivalence of categories.

PrinGLn(C)(M)
E // BunCn(M)
Fr
oo

For this reason, in what follows, we don’t distinguish a C×-, S1-, or a U1-bundle and a complex line
bundle.

Notation 1.4. We shall use the notation Ui1···in to denote the n-fold intersection Ui1 ∩ · · · ∩ Uin .

Definition 1.5. Let G be an abelian group, M a topological space, and U = {Ui}i∈Λ an open
cover of M . The set Čp(U ;G) = {fi0···ip : Ui0···ip → G}i0,··· ,ip∈Λ inherited the operation of the
group G is degree p Čech cochain group. Together with the map δp : Čp(U ;G) → Čp+1(U ;G),
(f)i0···ip 7→ (δf)i0···ip+1 := fî0i1···ip+1

− fi0 î1···ip+1
+ · · · + (−1)p+1

i0i1···ip îp+1
, the sequence of groups

(Č•(U ;G), δ•) is the Čech cochain complex. (It is easy to verify that δ2 = 0. Here the hat
means an omission). The cohomology of this complex Ȟ•(U ;G) := ker(δ•)/Im(δ•−1) is the Čech
cohomology of M defined on an open cover U .

Now if the group G in the definition above is not abelian, in general, the coboundary maps δ are
not group homomorphisms, neither ker δ nor Imδ form a group, and if we apply δ to a cocycle, we
do not get δ2 = 1. We shall see below what goes on starting from the lowest degree.

• p = 0: There is no problem. Ȟ0(U ;G) = {f ∈ Č0(U ;G) : δ(f)ij = 0} = Map(M,G). This
is a group under a pointwise group multiplication.
• p = 1: Neither ker δ1 nor Imδ0 form a group. On the set ker δ1, we may impose an equivalence
relation defined by the action of 0-cochains

gij ∼ g′ij if and only if g′ij = f−1
i gijfj .

So we may define Ȟ1(U ;G) as the pointed set ker δ1/ ∼ with a distinguished element the
constant map gij ≡ 1. Notice where set Ȟ1(U ;G) is precisely the set of isomorphism classes
of principal G-bundles over M defined on the open cover U (see Remark below). For this
reason, principal G-bundles are geometric models of a degree 1 nonabelian cohomology of
M with coefficients in a group G.
• p ≥ 2: There is no reasonable way to make sense of Ȟp(U ;G).

Remark 1.6. We shall closely look into how the set Ȟ1(M ;G) classifies principal G-bundle over
M up to isomorphism. Recall that every principal G-bundle is locally trivial and diffeomorphic to
U ×G for some open U ⊂M . That means if we are given a family of transition functions on every
double overlap Uij ∈ U = {Uij}i,j∈Λ, i.e., {gij : Uij → G : i, j ∈ Λ}, we can rebuild the principal
G-bundle. Since the transition functions satisfy

(1.1) gij(x) · gjk(x) · gki(x) = 1, for all x ∈ Uijk
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The equation (1.1) is called the cocycle condition of a principal G-bundle. So if we have a principal
bundle P over M , we have a family of transition functions {gij}i,j∈Λ satisfying the condition (1.1)
and vice versa (under a mild condition). Likewise, if we have a bundle map f : P → P ′ covering M ,
we have a family of functions on open sets in the cover {fi}i∈Λ satisfying that g′ij(x) = f−1

j (x)gij(x)

for all x ∈ Uij and vice versa (under the same mild condition). Here the mild condition is that the
open cover U has to be a good cover. A good cover (a.k.a. Leray’s covering) is an open cover
of M if all open sets and their intersections are contractible. Such a covering always exists (see
[9, Prop. A.1] and references therein). An open cover (V, ı) is a refinement of U if ı : V → U such
that V ⊆ ı(V ) for all V ∈ V. A refinement induces a map resV,U : Ȟ1(U ;G) → Ȟ1(V;G), and it
satisfies resW,U = resW,V ◦ resV,U . So we can define the set Ȟ1(M ;G) a direct limit over refinements
of open cover; i.e.,

Ȟ1(M ;G) = lim−→
U
Ȟ1(U ;G).

If the cover U is good, the restriction map Ȟ1(U ;G)
∼=→ Ȟ1(M ;G) is an isomorphism. Therefore,

we conclude that

(1.2)
π0PrinG(U)→ Ȟ1(U ;G)

[P ] 7→ (gij).

If we remove the abelian assumption of groups, the long exact sequence induced by a short exact
sequence of groups cannot go any further than the degree p = 1.

Proposition 1.7. Let

(1.3) 1 // K
i // G̃

j
// G // 1

be a short exact sequence of groups. We have the following long exact sequence of groups and
pointed sets

1 Ȟ0(U ;K) Ȟ0(U ; G̃) Ȟ0(U ;G)

Ȟ1(U ;K) Ȟ1(U ; G̃) Ȟ1(U ;G)

i∗ j∗

i∗ j∗

However, in a special case that the second term in the sequence is an abelian group whose image
is in the center of the third, we can extend the long exact sequence just one term further. We have
the following propositions.

Proposition 1.8. If the group K in the short exact sequence (1.3) is abelian and i(K) belongs to
the center of G̃, then the long exact sequence in the Proposition 1.7 extends to Ȟ2(U ;K):

1 Ȟ0(U ;K) Ȟ0(U ; G̃) Ȟ0(U ;G)

Ȟ1(U ;K) Ȟ1(U ; G̃) Ȟ1(U ;G)

Ȟ2(U ;K)

i∗ j∗

i∗ j∗

α



4 BYUNGDO PARK

Proposition 1.9 (Dixmier–Douady). If the sheaf G̃M is soft, then

α : Ȟ1(U ;G)→ Ȟ2(U ;K)

is a bijection.

Proof. See Dixmier–Douady [7, Lemme 22, p.278] or Brylinski [3, Prop. 4.1.8, p.162] �

In the above, GM is a sheaf such that GM (U) is a group of smooth functions f : U → G for each
open U ⊆ M . A sheaf GM is soft if GM (M)→ GM (C) is onto for every closed C ⊂ M . Here, we
can think of GM (C) = limU GM (U) (since M is paracompact) where the direct limit is taken over
all open neighborhoods of C.

Example 1.10. (1) Consider a short exact sequence

1 // SOn
i // On

det // Z2
// 1.

The induced map w1 : Ȟ1(M ;On)→ Ȟ1(M ;Z2) is a correspondence [P ] ∈ π0PrinOn(M) 7→ w1([P ])

which is the first Stifel–Whitney class. So w1([P ]) = 0 if and only if P comes from an SOn-bundle;
i.e., P is orientable. Equivalently the obstruction for transition maps of a Euclidean vector bundle
lift to SOn is the first Stifel–Whitney class.

(2) Consider a short exact sequence

1 // Z2
// Spinn // SOn // 1.

The induced map w2 : Ȟ1(M ;SOn) → Ȟ2(M ;Z2) is a correspondence [P ] ∈ π0PrinSOn(M) 7→
w2([P ]) which is the second Stifel–Whitney class. So w2([P ]) = 0 if and only if P comes from
a Spinn-bundle. Equivalently the obstruction for transition maps of an oriented Euclidean vector
bundle lift to Spinn is the second Stifel–Whitney class. Here one can think of Spinn as a double
cover of SOn, which is also a universal cover. For a construction of Spinn in terms of Clifford
algebras, see [14, Section 1.2].

Remark 1.11. The Whitehead tower of On is of particular interest. The Whitehead tower of a
space X is a factorization of the point inclusion pt→ X

pt ' limn→∞Xn
// · · · // X2

// X1
// X0 ' X

such that each Xn is (n− 1)-connected (i.e., all homotopy groups πk vanish for k ≤ n− 1) and each
map Xn → Xn−1 is a fibration which is an isomorphism on all πk for k ≥ n. For the space On, we
have a Whitehead tower as follows:

pt // · · · // FiveBranen // Stringn // Spinn // SOn // On

Here Stringn is a 6-connected cover of Spinn

1 // K(Z, 2) // Stringn // Spinn // 1.
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and FiveBranen is a 7-connected cover of Stringn

1 // K(Z, 6) // FiveBranen // Stringn // 1.

It is known that the obstruction to lift a Spinn-bundle to a Stringn-bundle is the first fractional
Pontryagin class 1

2p1 and a Stringn-bundle to a FiveBranen-bundle the second fractional Pontryagin
class 1

6p2 and so on. See [8] for more details.

Example 1.12. (3) Consider a short exact sequence

1 // Z // R // S1 // 1.

Note that RM is a soft sheaf (recall Tietze extension theorem). The induced map c1 : Ȟ1(M ;S1)
∼=→

Ȟ2(M ;Z) is a correspondence [L] ∈ π0PrinS1(M) 7→ c1([L]) which is the first Chern class. Note
that if the group G is abelian and G is a sheaf of locally constant functions in G, Ȟp(M ;G) and
Hp(M ;G) the degree p singular cohomology with coefficients in G is the same. Since the group Z
is discrete, we can identify Ȟp(M ;Z) and Hp(M ;Z) for any degree p.

Proposition 1.13. (Dixmier–Douady) Let H be a complex separable Hilbert space. The sheaf
U(H)

M
is soft.

Proof. See Dixmier–Douady [7, Lemme 4, p.252] or Brylinski [3, Cor. 4.1.6, p.162] �

Example 1.14. (4) Consider a short exact sequence

1 // U1
// U(H) // PU(H) // 1.

Since U(H) is a soft sheaf, the induced map DD : Ȟ1(M ;PU(H))
∼=→ Ȟ2(M ;S1)

∼=→ H3(M ;Z) is a
correspondence [P ] ∈ π0PrinPU(H)(M) 7→ DD([P ]) which is the Dixmier–Douady class of a gerbe.

Definition 1.15. A characteristic class of a principal G-bundle P over M is an assignment

c : π0PrinG(M)→ H•(M ;A)

[P ] 7→ c(P )

that is natural; i.e. f∗c(P ) = c(f
∗
P ) for

P ′
f
//

π′

��
�

P

π
��

M ′
f
// M

Here A is an abelian group.

Since PrinG(−) : Manop → Sets is representable by BG, by Yoneda Lemma (See MacLane [15])
we have the following proposition
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Proposition 1.16. An assignment

{Characteristic class of principal G-bundles} −→ H•(BG;A)

is one-to-one and onto.

Remark 1.17. There is an alternative way to define characteristic classes using a “geometric datum
,” i.e. a connection ∇ on P ∈ PrinG(M). This is the Chern–Weil theory. For example, given a
line bundle with connection (L,∇), the first Chern class of ∇ is defined by a Chern–Weil form
i

2π curv(∇). Here curv(∇) is the curvature 2-form of the connection ∇. Chern–Weil theorem shows
that the cohomology class of a Chern–Weil form does not depend on the choice of connection. So[
i

2π curv(∇)
]
∈ H2(M ;R) is a topological invariant of a line bundle. A priori the class

[
i

2π curv(∇)
]

is a class in H2(M ;C), but it can be shown that it is actually a class in H2(M ;R). The realification
of the first Chern class Example 1.12 above is equal to the first Chern class

[
i

2π curv(∇)
]
from

the Chern–Weil theory. See Morita [17, Chapter 5] to learn more about Chern–Weil theory of
characteristic classes.

We have seen that, up to isomorphism, complex line bundles are classified by H2(M ;Z) via the
first Chern class (Example 1.12) and principal PU(H)-bundles are by H3(M ;Z) via the Dixmier–
Douady class (Example 1.14). We can ask the following question: What classifies (higher) line
bundles with connection? For example, if we consider a groupoid Bun∇C (M) whose objects are line
bundles with connection (L,∇) and morphisms are bundle isomorphism preserving the connection,
what classifies the isomorphism classes of Bun∇C (M)? This question leads us to “differential coho-
mology.” Up to isomorphism, line bundles with connection are classified by the degree 2 differential
cohomology Ĥ2(M), gerbes with connection by Ĥ3(M), 2-gerbes with connection by Ĥ4(M), and
so on.

2. Cheeger–Simons differential characters

In this section, we introduce a differential extension of singular cohomology theory H∗(−;Z)

on the site of smooth manifolds. Among various known models, we shall introduce the model by
Cheeger and Simons [6] which is one of the historical landmarks. Interested readers are referred
to the homotopy theoretic model by Hopkins and Singer [13], a spark complex model by Harvey,
Lawson, and Zweck [11], and a novel construction using ∞-sheaves of spectra by Bunke, Nikolaus,
and Völkl [4].

Notation 2.1. We shall define some notations which will be used throughout this section. Let M
be a smooth manifold and R a commutative ring with unity.

• Ck(M ;R): smooth singular k-cochains in M with coefficients in R.
• Zk(M ;R): smooth singular k-cocycles in M with coefficients in R.
• Ωk(M): differential k-forms on M .
•
∫

: Ωk(M)→ Ck(M ;R) is a R-linear map ω 7→
∫
ω, where

∫
ω : Ck(M ;R)→ R is a pairing

of a singular k-chain and a differential k-form.
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• Ωk
cl(M)Z: closed differential k-forms with integral periods; i.e., ω ∈ Ωk

cl(M)Z if and only if
dω = 0 and

∫
ω
∣∣
Zk(M)

∈ Z.
• ∼ is the natural map R→ R/Z.

A nonvanishing differential form does not take its values in a proper subring Λ ⊂ R. Hence we
have the following:

Proposition 2.2. The map

∫
: Ωk(M)→ Ck(M ;R/Z)

ω 7→
∫̃
ω

is one-to-one.

Definition 2.3 (Cheeger and Simons [6]). Let M be a smooth manifold. The group Ĥk(M) of
differential characters of degree k consists of pairs (χ, ω) where χ ∈ HomZ(Zk−1(M),R/Z) and
ω ∈ Ωk(M) satisfying that

χ ◦ ∂D =

∫
D
ω mod Z, for all D ∈ Ck(M ;Z),

where the group structure is the componentwise addition.

Remark 2.4. The degree of the Ĥk(M) in the above definition is different from the one that appears
in Cheeger and Simons [6] which defines the same group as degree k+1. A consequence of adopting
their convention would be a mismatch of degree in the group of differential characters and real
cohomology, so the forgetful map (see below for a definition) would be I : Ĥk(M) → Hk+1(M ;R).
We stick to our convention for the sake of consistency with literature in recent years.

The main goal of this section is to understand the following diagram known as the differential
cohomology hexagon diagram.

Proposition 2.5. The group of differential characters Ĥk(M) satisfies the following diagram; i.e.
all squares and triangles are commutative and the diagonal, upper, and lower sequences of arrows
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are exact sequences.

0

Hk−1(M ;R)

Hk−1(M ;R/Z)

0

Ωk−1(M)

Ωk−1
cl (M)Z

Ĥk(M)

Hk(M ;Z)

0

Ωk
cl(M)Z

Hk(M ;R)

0

	

	

�

	

!!

∼
==

−B //
� p

e

!!

I
==

==

r

!!

rep !!

==

a
==

d
//

== ==

!!

R

!!
∫
◦dR

==

Proof. We shall divide the proof into several parts and enumerate them.
(1) I and R maps: We begin with some algebra facts.

A1. A subgroup of a free abelian group is free.
A2. An abelian group G is divisible if, for any x ∈ G and any n ∈ Z+, there exists y ∈ G such

that x = ny.
A3. An abelian group G is divisible if and only if the group G is an injective object in the

category of abelian groups; If f : A → G and A ⊂ B, there exists a map f̃ : B → G that
satisfies f̃ |A = f .

Take (χ, ω) ∈ Ĥk(M) and consider χ : Zk−1(M) → R/Z. Since Zk−1(M) is a subgroup of a
free abelian group Ck−1(M ;Z), it is a free (A1), and hence projective. We have the following
commutative diagram:

�

R

��
Zk−1(M)

χ
//

χ
99

R/Z

��
0

Now since R is divisible (A2), it is injective (A3). Hence χ : Zk−1(M) → R lifts to the map T

satisfying the following commutative diagram:

0

��
Zk−1(M)

�

� _

��

χ
// R

Ck−1(M)

T

;;
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So ˜T |Zk−1(M) = χ. It follows that δ̃T = δT̃ = T̃ ◦ ∂ =
∫
ω mod Z Here the first equality is simply

∼ ◦(T ◦ ∂k) = (∼ ◦T ) ◦ ∂k. Thus, there exists c ∈ Ck(M ;Z) such that

(2.1) δT =

∫
ω − c.

Note that 0 = δ2 =
∫
dω− δc, so

∫
dω = δc. Since a real differential form cannot take its value in a

proper subring of R, this means dω ≡ 0 = δc. It is readily seen that ω has an integral period. We
define the maps I and R as follows:

I : Ĥk(M)→ Hk(M ;R) R : Ĥk(M)→ Ωk
cl(M)Z

(χ, ω) 7→ [c] (χ, ω) 7→ ω

Let’s verify that these maps are well-defined. Since the choice of lifts is not unique, we have to
verify that the above definition does not depend on the choices we made. Suppose T ′ is another lift
satisfying δT ′ =

∫
ω′ − c′. Then ˜T ′ − T |Zk−1(M) = 0, so T ′ = T + δs+ d for some d ∈ Ck−1(M ;Z)

and s ∈ Ck−2(M ;R). So δT ′ = δT + 0 + δd if and only if
∫
ω′ − c′ =

∫
ω − c + δd if and only if∫

(ω′ − ω) = c′ − c + δd. Again, since the real differential form cannot take its value in a proper
subring of R, this means ω ≡ ω′ and [c′] = [c].

We show that R is surjective. Let r : Hk(M ;Z) → Hk(M ;R) be the realification map (which
is from the universal coefficient theorem for cohomology; see [12, Section 3.1]). Notice that, given
ω ∈ Ωk

cl(M)Z, there exists u ∈ Hk(M ;Z) such that r(u) = [
∫
ω]. Since ω has integral periods,

δ
∫
ω =

∫
ω ◦∂ ∈ Z is an integral cochain and since ω is closed, δ

∫
ω =

∫
dω = 0 (Stokes’ theorem).

Now let u = [c] for some c ∈ Ck(M ;Z). Then
∫
ω − c = δλ for some λ ∈ Ck+1(M ;R). Define

χ := ˜λ|Zk−1(M). So R is surjective.
The map I is also surjective. Given any [c] ∈ Hk(M ;Z), δc = 0 as real cochains. By the de

Rham theorem, there exists a ω ∈ Ωk
cl(M) such that

∫
ω− c = δµ for some µ ∈ Ck−1(M ;R). Define

χ := ˜µ|Zk−1(M). So the map I is surjective.
(2) The e map: We define the e map as follows:

e : Hk−1(M ;R/Z)→ Ĥk(M)

[x] 7→ (x|Zk−1(M), 0)

The map e is well-defined. If we take a different representative x + δy, the restriction of δy to
Zk−1(M) vanishes. The map e is one-to-one: Let Λ ⊂ R a proper subring. From the universal
coefficient theorem we have Hk(X;R/Λ) ∼= HomZ(Hk(X),R/Λ), since Ext(Hn−1(X),R/Λ) = 0,
from n(R/Λ) = (nR)/Λ = R/Λ, for any n ∈ Z. Since Bk → Zk → Hk → 0 is exact if and only if
B∗k ← Z∗k ← H∗k ← 0 is exact, HomZ(Hk(X),R/Λ) ↪→ HomZ(Zk(X),R/Λ) is an injection.

(3) The a map: We define the a map as follows:

a :
Ωk−1(M)

Ωk−1
cl (M)Z

→ Ĥk(M)

[α] 7→ (
˜∫
α|Zk−1(M), dα)
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It is obvious that the map a is well-defined and the subgroup Ωk−1
cl (M)Z is the kernel of the map

Ωk−1(M)→ Ĥk(M), α 7→ ( ˜∫
α|Zk−1(M), dα).

(4) Diagonals are exact: First Ime = kerR. The inclusion ⊆ is clear. To see ⊇, take (χ, ω) such
that ω = 0. Then χ = ˜T |Zk−1(M) satisfying that δT = c, so T is a R/Z-valued cocycle, representing
a class in Hk−1(M ;R/Z), and T |Zk−1(M ;R/Z) = χ.

Now Ima = ker I. Again the inclusion ⊆ is clear. To see ⊇, take (χ, ω) such that χ = ˜T |Zk−1(M)

satisfying δT =
∫
ω − c. By assumption, c = δd for some d ∈ Ck−1(M ;Z). From

∫
ω = δ(T + d),

we have ω = dα for some α ∈ Ωk−1(M), and
∫
α = T + d+ δf for some f ∈ Ck−2(M ;R). Then δf

vanishes when we restrict it to Zk−1(M) and d also vanishes modulo Z. Thus, the preimage of I is

( ˜∫
α|Zk−1(M), dα).
(5) Squares commute: The map rep is defined as follows.

rep : Hk−1(M ;R)→ Ωk−1(M)

Ωk−1
cl (M)Z

[β] 7→ β + Ωk−1
cl (M)Z

which does not depend on the choice of representatives since all exact forms are closed forms with
integral periods. From this, it is clear that the square on the left is commutative. Notice that the
Equation (2.1) shows the commutativity of the square on the right.

(6) Triangles commute: Two triangle diagrams below commute.

Hk−1(M ;R/Z)

	

−B //
� t

e

''

Hk(M ;Z)

Ĥk(M)

I
99

R

$$
Ωk−1(M)

Ωk−1
cl (M)Z

a

88

d //

�

Ωk
cl(M)Z

The commutativity of the lower triangle is obvious. Take a R/Z-valued cocycle x and consider
(x|Zk−1(M), 0) ∈ Ĥk(M). There exists T ∈ Ck−1(M ;R) such that x|Zk−1(M) = ˜T |Zk−1(M) satisfying
δT = −c for some c ∈ Ck(M ;Z), so I(x|Zk−1(M), 0) = c = −δT = −B([x]). �

(7) Upper and lower sequences are exact: It is readily seen that the following are exact sequences.

Hk−1(M ;R)
∼−→ Hk−1(M ;R/Z)

−B−→ Hk(M ;Z)
r−→ Hk(M ;R)

Hk−1(M ;R)
rep−→ Ωk−1(M)

Ωk−1
cl (M)Z

d−→ Ωk
cl(M)Z

∫
◦dR
−→ Hk(M ;R)

Immediately from the definition, Ĥ0(M) = 0 and Ĥ1(M) = C∞(M,R/Z). Also note that
Ĥk(M) = 0 if k > dim(M). When k = 2, we have the following proposition:
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Proposition 2.6. The following assignment is a one-to-one correspondence:

π0PrinS1,∇(M) −→ Ĥ2(M)

[(P, θ)] 7→ (χ,
1

2π
dθ)

where, for any loop γ in M, χ is defined by the holonomy of the loop γ; i.e.,

χ(γ) := Hol(γ)

and for any D ∈ C2(M ;Z) bounding γ,

χ(∂D) =
1

2π

∫
D
dθ mod Z

which is extended to all Z1(M) by setting χ(x) = χ(γ) + 1
2π

∫
dθ(y) for any x = γ + ∂y.

Given dθ ∈ Ω2
cl(M)Z, as we have seen in the surjectivity of R, there exists [c] ∈ H2(M ;Z) such

that [
∫
dθ] = r([c]). The class [c] is the characteristic class that classifies P ; i.e., the first Chern

class.
The above proposition addresses the question at the end of Section 1 at least for degree 2. What

is a higher analogue of Proposition 2.6? How can one define a map? In the following section, we
shall see that the isomorphism classes of gerbes with connection are in one-to-one correspondence
with Ĥ3(M), and To establish the correspondence one has to construct χ; i.e., a holonomy of gerbe.

Remark 2.7. Although we do not go into details, the differential cohomology group Ĥ•(M) has a
ring structure (See Cheeger and Simons [6, p.56, Theorem 1.11]).

In differential cohomology, the hexagon diagram plays an important role. One uses the hexagon
diagram in Proposition 2.5 to compute differential cohomology groups. Furthermore, it is known
that the hexagon diagram uniquely characterizes the differential cohomology. Phrasing slightly
differently, If there are two Ĥk(M) fitting into the middle of the hexagon diagram, then they
are naturally isomorphic. This is a theorem of Simons and Sullivan [20] which is generalized by
Bunke and Schick [5] and Stimpson [22] to the uniqueness of the differential extension of all exotic
cohomology theories under some mild assumptions.

3. S1-banded gerbes with connection

Throughout this section, M is a smooth manifold. In Section 1 we have seen that elements of
H2(M ;Z) are represented by complex line bundles, and in Section 2 differential cohomology classes
in Ĥ2(M ;Z) are represented by complex line bundles with connection. What are corresponding
geometric objects representing Hn(M ;Z) and Ĥn(M ;Z)? The answer is (n − 2)-gerbes with con-
nection.

Remark 3.1. For a generalized cohomology theory E• and its differential extension Ê•, investigat-
ing geometric cocycles representing (differential) cohomology classes is a very interesting research
topic that is not fully understood yet to this date. For example, elements of even complex K-group
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K0(M) are represented by vector bundles over M and odd complex K-group K−1(M) by Ω-vector
bundles, but other interesting generalized cohomology theories such as elliptic cohomology and
topological modular forms it is largely unknown which geometric objects in the space M represent
cohomology classes. Also, note that this question is closely related to the Stolz–Teichner program
[23] wherein they have conjectured a hypothetical equivalence between the totality of supersym-
metric field theories of degree n over M modulo concordance and the group En(M). There are
differential and twisted refinements of this conjecture as well (See for example Stoffel [24, 25] and
references therein).

Let us observe how a gerbe arises. Consider the short exact sequence of groups

1 // U1
// G̃ // G // 1.

In Example 1.14 above, we considered the map DD : Ȟ1(U ;G)→ Ȟ2(U ;U1) when G = PU(H). In
the proposition below we shall closely look at how this map is defined.

Proposition 3.2. A principal G-bundle P over M lifts to a principal G̃-bundle if and only if the
cocycle representing DD(P ) is trivializable.

Proof. We look at how the map DD : Ȟ1(U ;G)→ Ȟ2(U ;U1) is defined. Choose a good cover U on
M . Over each Uij , consider the transition map gij : Uij → G of P . Since U is a good cover, Uij is
contractible. Hence there is a homotopy between the map gij and a constant map, which lifts by
the homotopy lifting property, since the map G̃

r→ G is a fibration. Let g̃ : Uij → G̃ be a lift of
gij . The cocycle condition gijgjkgki = λijk · 1G̃, for some λijk ∈ Č2(U ;U1). It is an easy exercise to
verify that λ = {λijk}Λ is a degree 2 Čech cocycle on U and the class [λ] does not depend on the
choice of lifting g̃ij . So the map DD is a correspondence [P ] 7→ [λ] and using the isomorphism (due
to softness of R), it is valued in H3(M ;Z). �

There are several models representing gerbes. The degree 2 U1-valued Čech cocycle λ considered
above as an obstruction to lift a principal G-bundle to G̃-bundle is one model, and there are other
ways to represent it as a stack. We refer the reader to Giraud [10], Brylinski [3], Behrend and Xu
[1], and Moerdijk [16]. In this section, we will specialize on a model called bundle gerbe of Murray
[18] which is presumably the most widely used model in literature.

Let π : Y →M be a surjective submersion. The p-fold fiber product of π : Y →M is

Y [p] := {(y1, · · · , yn) ∈ Y p : π(y1) = · · · = π(yp) for yi ∈ Y }.

The projection of Y [p] onto the (i1, · · · , ik)th copy of Y [k] is πi1···ik : Y [p] → Y [k]. For example, let
U = {Ui}i∈Λ be an open cover of M . Then consider

YU := {(x, i) ∈M × Λ : x ∈ Ui} ⊂M × Λ.

The map π : YU →M is a surjective submersion which is an open cover.



DIFFERENTIAL COHOMOLOGY AND GERBES 13

Remark 3.3. Recall that a fiber product X ×M Y of X φ→ M
π← Y is in general not a smooth

manifold. If φ, π are submersions, then the fiber product is a smooth manifold. So a surjective
submersion is not only a generalization of an open cover, it lets us stay within the category of
smooth manifolds.

Definition 3.4 (Murray [18]). A bundle gerbe is a triple L = (L, π, µ) where

(1) π : Y →M is a surjective submersion.
(2) L ∈ PrinS1(Y [2]).
(3) µ : π∗12L⊗ π∗23L→ π∗13L is an S1-bundle isomorphism.
(4) µ is associative over Y [4]: i.e.,

π∗12L⊗ π∗23L⊗ π∗34L
π∗123µ⊗1

//

1⊗π∗234µ
��

	

π∗13L⊗ π∗34L

π∗134µ

��
π∗12L⊗ π∗24L

π∗124µ // π∗14L

Let us construct the Dixmier–Douady class, the characteristic class of a bundle gerbe. Let
L = (L, π, µ) be a bundle gerbe overM . Take a good open cover (cf. Remark 1.6) U = {Ui}i∈Λ ofM .
Then local sections on each open set σi : Ui → Y and on each double intersection (σi, σj) : Uij → Y [2]

can be defined. We consider the pullback of L→ Y [2] along (σi, σj) : Uij → Y [2].

(σi, σj)
∗L //

��

L

��

Uij
(σi,σj)

//

sij

::

sij

FF

Y [2]

Take a section sij : Uij → (σi, σj)
∗L equivalently a map µ : sij : Uij → L. Over triple intersections

we have

sij(x)⊗ sjk(x) 7→ λijk(x)sik(x), x ∈ Uijk.

Here the associativity of µ implies that λijk is a degree 2 Čech cocycle in M defined on U .

Definition 3.5. Let L = (L, π, µ) be a bundle gerbe overM . TheDixmier–Douady classDD(L)

is the cohomology class [λ] ∈ Ȟ2(U ;U1).

It is not difficult to verify that DD(L) does not depend on the choices we made.
Let’s recall connections and curvatures on a principal G-bundle. A connection θ on a principal

G-bundle π : P →M is a differential 1-form on P valued in g satisfying that

(1) θ(X∗) = X where X ∈ g and X∗x := d
dt

∣∣
t=0x · etX for each x ∈ P .

(2) R∗gθ = Adg−1 ◦ θ

The curvature of (P.θ) is a g-valued 2-form Curv(θ) := dθ + 1
2 [θ, θ] on P .

Now we define connection and curving of a bundle gerbe.
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Definition 3.6. A connection on L = (L, π, µ) is a connection ∇ on L compatible with µ, i.e.,
π∗12(L,∇)⊗ π∗23(L,∇)

µ→ π∗13(L,∇) is a connection preserving isomorphism.

So a connection on L has to be a R-valued differential 1-form on Y [2].

Definition 3.7. A curving B of a bundle gerbe with connection (L, π, µ,∇) is a differential 2-form
on Y satisfying Curv(∇) = π2B − π1B.

A connection and a curving on a bundle gerbe are called the connective structure. By a bundle
gerbe with connection we mean a bundle gerbe with connective structure.

To work with curvatures and curvings we need the following proposition.

Proposition 3.8. Let π : Y → M be a surjective submersion. The following sequence is a long
exact sequence

0 // Ωk(M)
π∗ // Ωk(Y )

δ // Ωk(Y [2])
δ // · · ·

where δ =
∑p

k=1(−1)k−1π∗
i1···îk···ip

Proof. See Murray [18, Section 8]. Compare Bott and Tu [2, Prop. 8.5]. �

Note that 0 = dCurv(∇) = dδB = δdB so there exists a unique H ∈ Ω3(M ;R) such that
π∗H = dB. The differential form H is closed, so it represents a degree 3 real cohomology class in
M . The Proposition 3.8 shows that the cohomology class of M does not depend on the choices
involved.

Definition 3.9. Let L̂ = (L, π, µ,∇, B) be a bundle gerbe with connection. The 3-curvature
(also known as the 3-form flux or the Dixmier–Douady form) of L̂ is a real differential 3-form on
M satisfying that π∗H = dB.

Remark 3.10. In literature, H is defined as a real-valued differential form in some places and
iR-valued differential form in some other places. Recall that, in Definitions 3.6 and 3.7, connection
forms and curving forms are R-valued, as the Lie algebra of the Lie group S1 is R. If we consider
the Lie group U1, its Lie algebra is iR (here i =

√
−1) and we consider differential forms valued in

iR.

It turns out the 3-curvature of a gerbe represents the corresponding de Rham cohomology class
of the Dixmier–Douady class above.

Proposition 3.11. Let L̂ = (L, π, µ,∇, B) be a bundle gerbe with connection. The de Rham
cohomology class of its 3-curvature form H is equal to the realification of its Dixmier–Douady
class DD(L); i.e., r(DD(L)) = [H]dR, where r is the realification map r : H3(M ;Z) → H3(M ;R)

considered in the proof of Proposition 2.5.

Proof. See Murray [18, Section 11]. �
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Example 3.12. Consider the short exact sequence of groups

1 // U1
// G̃ // G // 1.

Let π : Y → M be a principal G-bundle. There is a natural map g : Y [2] → G̃ coming from the
transitivity of the right G-action. Pull back the fibration G̃ → G to obtain a U1-bundle L over
Y [2]. Note that the fiber of (y1, y2) ∈ Y [2] is the coset U1g(y1, y2) in G̃. So the multiplication map
µ : π∗12L⊗ π∗23L→ π∗13L is defined by the coset multiplication U1g(y1, y2) ·U1g(y2, y3) = U1g(y1, y3)

and is readily seen to be associative. So L = (L, π, µ) is a bundle gerbe over M called the lifting
bundle gerbe of the principal G-bundle π : Y →M . The Dixmier–Douady class DD(L) is precisely
the obstruction for the lifting the G-valued cocycle to G̃ considered in Proposition 3.2.

Definition 3.13. Let U = {Ui}i∈Λ be a good cover of M . The Deligne complex is the double
complex Č•(U ; Ω•) endowed with total differential D = d + (−1)qδ on Čp(U ; Ωq) where the Čech
differential δ and the exterior derivative d; i.e.,

...
...

...

Č2(U ;U1)

δ

OO

d log
// Č2(U ; Ω1)

−δ

OO

d // Č2(U ; Ω2)

δ

OO

d // · · ·

Č1(U ;U1)

δ

OO

d log
// Č1(U ; Ω1)

−δ

OO

d // Č1(U ; Ω2)

δ

OO

d // · · ·

Č0(U ;U1)

δ

OO

d log
// Č0(U ; Ω1)

−δ

OO

d // Č0(U ; Ω2)

δ

OO

d // · · ·

The cohomology of the total complex with the total degree n is the degree n Deligne cohomology
group Ȟn

D(U) of M defined on U .

Proposition 3.14. A bundle gerbe with connection L̂ = (L, π, µ,∇, B) determines a total degree
2 cocycle in the Deligne complex.

Proof. Recall notations in the paragraph between Definitions 3.4 and 3.5. In it, we have obtained
a Čech 2-cocycle {λijk}. Let us take Aij = σ∗ij∇ and Bi = σ∗iB. It is readily seen that the triple
λ̂ := (λijk, Aij , Bi) satisfies Dλ̂ = 0 and its cohomology class [λ̂]D ∈ H2

D(M) is independent of the
choice of local sections σi. �

It is natural to ask if the isomorphic bundle gerbes with connection have Deligne-cohomologous
cocycles in the Deligne complex. The answer is yes, but there is a subtlety in isomorphisms of
bundle gerbes. One might guess that it is a U1-bundle isomorphism compatible with the bundle
gerbe structure µ, but this is not a notion we want. We will then get non-isomorphic bundle gerbes
having the same Dixmier–Douady class. Stevenson [21] and Murray and Stevenson [19] have found
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that the correct notion of bundle gerbe isomorphism is the “stable isomorphism.” We will introduce
a version that Waldorf [26] came up with.

Definition 3.15 (Waldorf [26]). For L̂i = (Li, πi, µi,∇i, Bi), an isomorphism L̂1
K̂−→ L̂2 is a

quadruple (ζ,K,∇K , α) consists of the following.

(1) A surjective submersion ζ : Z → Y1 ×M Y2

(2) (K,∇K) ∈ Prin∇S1(Z) such that Curv(∇K) = ζ∗(B2 −B1) ∈ Ω2(Z).
(3) An isomorphism α : (L1,∇1) ⊗ ζ∗2 (K,∇K) → ζ∗1 (K,∇K) ⊗ (L2,∇2) of S1-bundles with

connection over Z ×M Z compatible with µ1 and µ2.

Remark 3.16. When ζ = 1, we recover the stable isomorphism of Murray and Stevenson [19].

Proposition 3.17 (Waldorf [26]). There is an equivalence of groupoids between the 1-groupoid of
1-morphisms of Grb(M) and the 1-groupoid of stable isomorphisms of Grbst(M).

Definition 3.18 (Waldorf [26]). A transformation Ĵ : K̂1 ⇒ K̂2, which is an isomorphism between
isomorphisms from L̂1 to L̂2 (i.e., a 2-morphism) is an equivalence class of triples (W,ω, βW )

consists of the following:

(1) A surjective submersion ω : W → Z1 ×Y1×MY2 Z2

(2) An isomorphism βW : (K1,∇1)→ (K2,∇2) over W compatible with α1 and α2.

L1 ⊗ ω∗2K1
α1 //

1⊗ω∗2βW
��

ω∗1K1 ⊗ L2

ω∗1βW⊗1
��

L1 ⊗ ω∗2K2
α2 // ω∗1K2 ⊗ L2

(W,ω, βW ) ∼ (W ′, ω′, βW ′) if there is a smooth manifold X with surjective submersions to W and
W ′ such that the following diagram commutes

X //

��

W

ω

��
W ′

ω′ // Z1 ×Y1×MY2 Z2

and βW and βW ′ coincides if pulled back to X.

Proposition 3.19. The category Grb∇(M) consisting of bundle gerbes with connection L̂ as ob-
jects, morphisms as defined in Definition 3.15, and 2-morphisms as defined in Definition 3.18 is a
2-groupoid (i.e. a category whose morphisms are invertible and whose morphism between morphisms
are invertible).

Now we go back to our discussion on Deligne cohomology. Since the cover U ofM is good, we can
define the Deligne cohomology group Hk

D(M) as a direct limit over refinements which is isomorphic
to the one defined on U . We have the following result.
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Proposition 3.20. Let L̂i ∈ Grb∇(M). If L̂1 and L̂2 are stably isomorphic if and only if they
define the same Deligne cohomology class in Ȟ2

D(M).

Proof. See Murray and Stevenson [19, Theorem 4.1]. �

Proposition 3.21. LetM be a smooth manifold. The following correspondence is an isomorphism:

Hk
D(M)→ Ĥk+1(M)

Proof. See Brylinski [3, Prop. 1.5.7] and references therein. �

Corollary 3.22. Let M be a smooth manifold. The following are isomorphic as groups

π0Grb∇(M) ∼= Ĥ3(M)
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