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Overview

In this talk, I discuss a how a special case of the Instanton Moduli space on R4

can be described as a Hilbert Scheme of points on C2. First, I will (very briefly)
review the ADHM construction of instantons on R4. The next topic will be to
define Hilbert Schemes of points and look at the particular case of (A2)[n]. After
going through some examples for small n, I will introduce the framed moduli space
of torsion free sheaves on P2

C and show that in a specific case it is isomorphic to

(C2)[n]. Almost all the material follows Hiraku Nakajima’s book Lectures on Hilbert
Schemes of Points on Surfaces.

0. Instantons on R4 and the ADHM Construction

This section will serve as motivation for the remainder of the talk. We would
like to consider the ADHM moduli space, so we begin by considering the space

M = {(B1, B2, i, j) |B1, B2 ∈ Hom(V, V ) i ∈ Hom(W,V ) j ∈ Hom(V,W )}
where V is a rank r C-vector space and W is a rank n C-vector space. In order to
form the ADHM moduli space beginning with the space M, we would like to impose
certain compatibility conditions on the linear maps (B1, B2, i, j). In particular, we
define

µ1(B1, B2, i, j) =
i

2
([B1, B

†
1] + [B2, B

†
2] + ii† − j†j)

and

µC(B1, B2, i, j) = [B1, B2] + ij.

We can further consider the U(V )-action on M given by

(B1, B2, i, j) 7→ (gB1g
−1, gB2g

−1, gi, jg−1).

Then, we consider the quotient µ−1
1 (0) ∩ µ−1

C (0)/U(V ), which we will denote by
M0(r, n). This quotient will be singular along the locus where the U(V ) action
fails to be free, we denote the non-singular locus Mreg

0 (r, n). This is called the
ADHM moduli space. It is of interest because of the following theorem

Theorem 0.0.1 (A.D.H.M.). There is a bijective correspondence between the framed
moduli space of anti-self-dual connections on a 4-dimensional Hyper Kähler mani-
fold X with unitary vector bundle E and Mreg

0 (r,m) where r is the rank of E and
n = c2(E).

We won’t discuss this theorem here (hopefully the construction of anti-self-dual
connections from ADHM data will be covered next time). However, this theorem
gives some context for the remaining discussion of Hilbert Schemes of points.
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1. Hilbert Schemes of Points

1.1. General Definition. The idea of the Hilbert Scheme of points comes from
configuration space. Specifically, we may have the goal of describing the space of
configurations of n points on X, (for the purposes of this talk, we will always take
X to be a smooth variety over k = k̄, though these topics can be discussed in a
more general setting). A first attempt to write down what this space is could be
the product

PnX = X × · · · ×X︸ ︷︷ ︸
n times

.

It usually makes sense to take the quotient by the natural action of the symmet-
ric group, since we do not distinguish between points. This gives the symmetric
product

SnX = X × · · · ×X︸ ︷︷ ︸
n times

/Σn.

We write points in SnX as formal sums
∑
ni[xi] for nom-negative integers ni and

xi ∈ X. This quotient will not always produce a non-singular variety. For example,
when n = 2, the group action is not free along the diagonal ∆ ⊂ X ×X, and this
results in a singular locus along the diagonal in S2X. In terms of our initial goal
of parameterizing configurations of points in X, it is not surprising that something
bad happens along the diagonal. Approaching the diagonal corresponds to the two
points approaching each other and eventually overlapping. At the point where they
overlap, the system has somehow lost one degree of freedom. From this point of
view, a possible solution would be to keep track of the direction the two points
approach each other along, i.e. gluing in a copy of PdimX−1 along the diagonal
in S2X. In other words, we can consider the blow up Bl∆S

2X of S2X along the
diagonal.

This blow up actually goes by a name, the Hilbert Scheme of 2 points on X,
denoted X [2]. We now turn to describing this for a general number of points,
e.g. defining the Hilbert Scheme of n points, X [n]. While there is a more general
definition of this object as a scheme, we settle here for just defining its closed
points (the real definition in terms of representable functors will not be needed in
our discussion here).

Definition 1.1.1. The Hilbert Scheme of n points on X has closed points given by
zero-dimensional closed subschemes Z ⊂ X which satisfy dimkOX/J = n where
J is the ideal sheaf of Z.

Going back to the n = 2 case, we can describe how this definition of X [2] agrees
with the previous one. There are two cases to consider. In the first case, we take
two distinct points x 6= y ∈ X and set J = {f ∈ OX | f(x) = f(y) = 0}. We see
that dimkOX/J = 2, in fact, we can describe the structure sheaf of Z in this case:
OZ = OX,x ⊕ OX,y where OX,x denotes the skyscraper sheaf at x. In the second
case, we may consider an ideal of the form J = {f ∈ OX | f(x) = 0, df(v) = 0}
for x ∈ X and v ∈ TxX. This case represents two points coincident at x ∈ X with
“infinitesimal vector of separation” v. We will see both of these explicitly when we
consider the example of X = A2.

SinceX [2] is a resolution of the singular locus of S2X, there is a natural morphism
X [2] → S2X. In general, there is always a morphism π : X [n] → SnX called the
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Hilbert-Chow morphism. It is defined by

π(Z) =
∑
x∈X

(dimk (OX/J )x) [x] =
∑
x∈X

(dimkOX,x/Jx) [x].

Note that since dimZ = 0 the sum in the above definition is finite. As an example,
the two ideals given above have images under the Hilbert Chow morphism [x] + [y]
and 2[x] respectively.

1.2. Main Example. We now look at the specific case of X = A2. Here we have
a nice explicit description of (A2)[n] as a smooth variety. The construction is as

follows. Denote by H̃ the set of “stable triples”

{(B1, B2, i) | [B1, B2] = 0}

where B1, B2 ∈ Hom(kn, kn), i ∈ Hom(k, kn), and by stable we mean that there
is no proper subset k ⊂ kn such that Bi(S) ⊂ S and im(i) ⊂ S. This set admits
an action of GLn(k) given by (B1, B2, i) 7→ (gB1g

−1, gB2g
−1, gi). We denote the

quotient of H̃ by this action by H.

Theorem 1.2.1. H is a non-singular scheme and is isomorphic to (A2)[n] as a
scheme.

We will give the idea behind the bijection of closed points and how to show
smoothness here. In this case, we have OA2 ∼= k[z1, z2] and closed points in (A2)[n]

correspond to ideals I ⊂ k[z1, z2] such that dimk k[z1, z2]/I = n. We let V denote
the n-dimensional vector space k[z1, z2]/I and see that there are two endomorphisms
of V given by multiplication by z1 and z2. We let Bi be multiplication by zi and i
be defined by sending 1 ∈ k ⊂ k[z1, z2] to the image of 1 ∈ V . We can then see that
[B1, B2] = 0 and the stability condition holds since Bm1

1 Bm2
2 i(1) for m1,m2 ≥ 0

spans all of k[z1, z2]. Conversely, given (B1, B2, i) ∈ H, we can consider the map
ϕ : k[z1, z2] → kn given by ϕ(f) = f(B1, B2)i(1). We then see that the image of
this map is invariant under Bi and contains the image of i, so it must be all of kn.
We then define k[z1, z2] ⊃ I = kerϕ. It is clear that dimk(k[z1, z2]/I) = n, so this
reppresents a closed point in (A2)[n]. Moreover, these maps are mutually inverse.

To see that H is smooth, we first show that H̃ is smooth, then smoothness of

H follows from the freeness of the GLn(k) action. We first note that the space H̃
is defined by the equation [B1, B2] = 0. The derivative of this map at the point
(B1, B2, i) is given by [B1, C2] + [C1, B2] for C1, C2 ∈ Hom(kn, kn), thought of as

the tangent space to H̃ at (B1, B2, i). Thus, the cokernel of this map is given by
ξ ∈ Hom(kn, kn) such that tr(ξ([B1, C2] + [C1, B2])) = 0 for all C1, C2. This is
just the set {ξ | [B1, ξ] = [B2, ξ] = 0}. We then define the maps from the cokernel
to kn and from kn to the cokernel by ξ 7→ ξ(i(1)) and kn 3 v 7→ ξ defined by
ξ(Bn1B

m
2 i(1)) = Bn1B

m
2 v. The stability condition implies that this defines ξ on all

of kn. Moreover, these are mutually inverse since ξ commutes with Bi. This shows

that the cokernel of derivative map has constant rank, hence H̃ is non-singular.
Similarly, the stabilizer of the GLn(k) action is trivial by the stability condition.

It is also worth noting that we can describe the tangent space of H at (B1, B2, i)
can be written down as follows. Consider the complex

Hom(kn, kn)
d1−→ Hom(kn, kn)⊕Hom(kn, kn)⊕ kn d2−→ Hom(kn, kn)
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where d1 is the differential of the GLn(k) action which sends ξ 7→ ([ξ,B1], [ξ,B2], ξi)
and d2 is the differential of the map (B1, B2, i) 7→ [B1, B2] described earlier. Then d1

is injective, the cokernel of d2 has dimension n, and the tangent space at (B1, B2, i)
is given by the middle homology of this complex.

Now we can look at some explicit examples. For n = 1, we should have (A2)[1] ∼=
A2. Indeed, B1 and B2 will just act by scalar multiplication and we may use the
GL1(k) action to set i = 1. Then we see that (λ, µ, 1) corresponds to

I = {f ∈ k[z1, z2] | f(λ, µ) = 0}
which defines that point (λ, µ) ∈ A2.

The story for n = 2 is more interesting. There are two cases. If one of B1 or B2

has distinct eigenvalues then we may write B1 =

(
λ1 0
0 λ2

)
and B2 =

(
µ1 0
0 µ2

)
with (λ1, µ1) 6= (λ2, µ2) since B1 and B2 may be simultaneously diagonalized by
some g ∈ GL2(k). The stability condition implies that i(1) must be of the form(
a
b

)
and so we may choose g ∈ GL2(k) so that i(1) =

(
1
1

)
. Then we see that

I = {f ∈ k[z1, z2] | f(λ1, µ1) = f(λ2, µ2) = 0}
which corresponds to the distinct points (λ1, µ1) and (λ2, µ2).

On the other hand, if both B1 and B2 have only one eigenvalue, then we can at

least put both into upper-triangular form so that B1 =

(
λ a
0 λ

)
and B2 =

(
µ b
0 µ

)
.

The stability condition here tells us that we can’t have a = b = 0. Furthermore,

we can choose i(1) to be of the form

(
0
1

)
. Calculating Bni we see that

Bn1 =

(
λn a ∂

∂λλ
n

0 λn

)
and similarly for B2. This shows that

f(B1, B2)i(1) =

(
a ∂f∂z1 (λ, µ) + b ∂f∂z2 (λ, µ)

f(λ, µ)

)
and so we see that

I =

{
f ∈ k[z1, z2]

∣∣∣∣ f(λ, µ) =

(
a
∂f

∂z1
+ b

∂f

∂z2

)
(λ, µ) = 0

}
.

Here, we see that (λ, µ) corresponds to two overlapping points in A2 and the vector
(a, b) is the direction of infinitesimal separation between the points. This vector
lives in P1, so this description of (A2)[2] agrees with the previous statement that
X [2] ∼= Bl∆S

2X.
Finally, we can give a description of the Hilbert Chow morphism in this case.

For any n and (B1, B2, i) ∈ (A2)[n] we can simultaneously put B1, B2 in upper-
triangular form with diagonal entries λ1, ..., λn and µ1, ..., µn respectively. When
all the points (λi, µi) are distinct π is given by

π(B1, B2, i) = {[(λ1, µ1)], ..., [(λn, µn)]}.
When this is not the case (as in the example above) we will have

π(B1, B2, i) = {m1[(λ1, µ1)], ...,mr[(λr, µr)]}
where (λ1, µ1), ..., (λr, µr) are the distinct pairs of eigenvalues of B1 and B2.



HILBERT SCHEMES OF POINTS AND THE ADHM CONSTRUCTION 5

2. Framed Moduli Space of Torsion Free Sheaves

2.1. General Case. We now consider a different kind of moduli space. We will see
that this space has connections to both the ADHM moduli space and the Hilbert
Scheme of n points on C2.

In this setting, k = C and M(r, n) denotes the framed moduli space of torsion-
free sheaves on P2 with rank r and second Chern class n up to isomorphism (the
framing implies that the first Chern class is trivial, so c2 carries all of the topological
information about this sheaf). Unpacking this, elements ofM(r, n) are equivalence
classes of pairs (E,Φ) with E a torsion-free sheaf on P2 with c2(E) = n, rank(E) =

n, and Φ : El∞
∼−→ O⊕rP is the framing of E at the line at infinity l∞ = {[0 : z1 :

z2]} ∼= P ⊂ P2. We would like to show that there is another description of M(r, n)
which allows us to relate it to the other moduli spaces we have talked about so far.

Let H̃r be the space of stable quadruples (B1, B2, i, j) where Bi ∈ Hom(Cn,Cn),
i ∈ Hom(Cr,Cn) and j ∈ Hom(Cn,Cr) which satisfy [B1, B2] + ij = 0 (here, stable
is exactly the same definition given above). Then, we may take the quotient of this
space by the GLn(C) action given by (B1, B2, i, j) 7→ (gB1g

−1, gB2g
−1, gi, jg−1),

which we will call Hr.

Theorem 2.1.1 (Barth). There is a bijectionM(r, n) ∼= Hr.

The proof of this theorem is somewhat technical, so we only recall some of the
main themes here. The main object of importance is the monad description of
torsion free sheaves on P2. A monad is a complex of sheaves (in our case, on P2)

G → F → G′

such that the first map is injective and the second map is surjective, i.e. the outer
homology vanishes. The middle homology, however, can (and in our case will) be
non-trivial. In fact, it defines a new sheaf on P2. Calling the first map a and the
second map b, the idea behind this construction is that we can fix G, F , and G′ and
still construct a wide variety of sheaves as ker(a)/coker(b) by varying a and b.

In our case, the monad we will want to consider is of the form

V ⊗OP2(−1)→ (V ⊗OP2)⊕2 ⊕W ⊗OP2 → V ⊗OP2(1).

The result we need is that we can exhibit E as ker(a)/coker(b) for certain a and
b in the above monad. Here, the vector spaces V,W arise as the cohomology of
E(a) (possibly tensored with the cotangent bundle over P2). The important fact
we will need is that dimV = n and dimW = r. The point is that, given the data
(B1, B2, i, j), we can construct a sheaf E on P2, provided we choose a framing Φ
of E at l∞. The condition on B1, B2, i, and j will correspond to the map a being
injective and the stability condition will correspond to b being surjective.

The description of Hr is reminiscent of the ADHM data we wrote down earlier.
There are two slight differences, which turn out not to be differences at all. In
particular, in the ADHM data, we required the quadruples satisfy an additional

constraint, [B1, B
†
1] + [B2, B

†
2] + ii† − j†j = 0 and the quotient was only taken

over the unitary group U(n) ∼= U(V ) instead of the general linear group GLn(C).
However, we may decompose a general linear matrix into its unitary and non-
unitary pieces (there are many decompositions of this sort) and it turns out that
quotienting out the non-unitary part will be equivalent to requiring the additional
condition from the ADHM data.
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2.2. Rank 1 Case. Now we would like to show how M(r, n) is equivalent to
(C2)[n] when r = 1. The descriptions H and H1 already look similar, save for the
appearance of j in H1. Before we show that these spaces are in bijection, we may
already see that points inM(1, n) can be associated with points in (C2)[n]. This is
true because we have the inclusion E ↪→ E∨∨ and E∨∨ ∼= OP2 since E∨∨ is locally
free of rank 1 with vanishing first Chern class. Then, since E is locally trivial on
l∞ we can consider the quotient sheaf OP2/E defined on C2 and we see that this is
n dimensional as a C vector space (since c2(E) = n) and so it represents a point in
(C2)[n].

In order to align the descriptions of H and H1, we must deal with the existence
of j. It turns out that the stability condition will imply that this term vanishes.
To see this, we will define a subspace S ⊂ Cn and show that j|S = 0 and that S
contains the image of i and is mapped to itself by Bi. Namely, we take S to be
the subspace spanned by

∑
Bi1Bi2 · · ·Bik i(C), i.e. sums of products of the Bi’s

acting on the image of i. We can show, using identities of the trace of products and

commutators of matrices, that jB̂i = 0 where B̂ is some product of Bi’s, which
implies that j|S = 0. It is clear that the image of i is contained in S and that S is
invariant under B1, B2.

Furthermore, the above description of E shows that the sheaf realized as the
middle homology of the monad description corresponds to the ideal I ⊂ C[z1, z2]
from the discussion of the correspondence between H and (C2)[n]. This can also be
shown explicitly using the concrete descriptions of a and b in the monad description.


