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Rational Valued Characters

Kay Yang

I. INTRODUCTION

In this note, G always denotes a finite group. A representation of G is said to be rational if

it is afforded by a vector space V over Q. The purpose of this article is to investigate several

relationships between the characters of rational representations of G and some induced

characters of G. Let H be a subgroup of G and π be a linear representation of H. Recall

that the we defined the induced representaion iGHπ on the vector space

V = {f : G → V |f(hg) = π(h)f(g), h ∈ H, g ∈ G}.

If π = 1 is trivial, then f(hg) = f(g) for all f ∈ V . Therefore, V is the space of left

H-invariant functions on G, i.e., functions on the set of right cosets H\G. The induced

representation iGH1 is said to be a permutation representation of G. In particular, it is the

right regular representation when H = {1}. By the Frobenius character formula,

χiGH1(g) = [G : H] · Number of conjugates of g lying in H

Total number of conjugates of g in G

for g ∈ G. These permutation characters χiGH1 induced by subgroups H of G actually span

all permutation characters of G. In other words, if χ is a permutation character of G, then

there exist subgroups H1, H2, · · · , Hr and integers c1, c2, · · · , cr such that χ =
∑r

k=1 ckχiGHk
1.

Moreover, the subgroups Hk that occur in the decomposition are precisely the stablizers of

the orbits of the permutation representation ([3]). On the other hand, characters of rational

representations of G can also be expressed as Q-linear combinations of induced characters

from subgroups of G. This famous result is the essence of the next section.

II. ARTIN INDUCTION THEOREM

In this section, we will state the Artin induction theorem and present its proof, partly

due to Brauer. Roughly speaking, the theorem tells us that the character of any rational

representation of G is a Q-linear combination of induced characters from cyclic subgroups
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of G. Its proof utilizes a result of algebraic number theory, namely that the cyclotomic

polynomials are irreducible over Q. This is equivalent to saying that for each n ∈ Z, all of

the primitive nth roots of unity are conjugate over Q.

Lemma 1. Let χ be a rational valued character of G and let x, y ∈ G with 〈x〉 = 〈y〉. Then,

χ(x) = χ(y).

Proof. Let n = |〈x〉| = |〈y〉| and let ζ be a primitive nth root of unity. Then, y = xm

where (m,n) = 1 and ζm is also a primitive nth root of unity. Consider the Galois extension

Q(ζ)/Q. By our remark preceding the lemma, there exists σ ∈ Aut(Q(ζ)/Q) such that

ζm = σ(ζ). Now χ(x) =
∑χ(1)

i=1 ζi, where each ζi is an nth root of unity and hence a power

of ζ. So,

χ(y) = χ(xm) =

χ(1)∑
i=1

ζm
i =

χ(1)∑
i=1

σ(ζi) = σ(

χ(1)∑
i=1

ζi) = σ(χ(x)).

Since χ(x) is rational, it is fixed by σ and we have χ(y) = σ(χ(x)) = χ(x).

Lemma 2. Let χ be a rational valued character of G. For all g ∈ G, χ(g) ∈ Z.

Proof. Every algebraic integer in Q is an integer.

Before we proceed further, we shall set up the following notations and definitions for later

work. Let φ denote the Euler function. Define an equivalence relation ≡ on G by x ≡ y

iff 〈x〉 and 〈y〉 are conjugate in G. Let C1, C2, · · · , Ck be the distinct equivalence classes

of G and let Φi be the characteristic function for Ci such that Φi(x) = 1 if x ∈ Ci and

Φi(x) = 0 otherwise. Let xi be a representative for Ci and let Hi = 〈xi〉 and ni = |Hi|. We

write xi ≤G xj if there exists g ∈ G such that g−1Hig ≤ Hj. Clearly the relation ≤G is

a partial ordering on G/ ≡. At last, let 1G and 1Hi
be the characters of the trivial linear

representations of G and Hi, respectively.

Theorem 3. (E. Artin) Let χ be a rational valued character of G. Then,

χ =
k∑

i=1

ai

[N(Hi) : Hi]
χiGHi

1, (1)

where ai ∈ Z.
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Proof. For x, y ∈ G, if x ≡ y, then there exists g ∈ G such that 〈x〉 = g−1〈y〉g = 〈g−1yg〉.
It follows from Lemma 1 that χ(y) = χ(g−1yg) = χ(x). Thus, by Lemma 2, χ is a Z-linear

combination of the Φi’s, i.e.,

χ =
k∑

i=1

ciΦi, ci ∈ Z. (2)

Since Hi has φ(ni) generators and there are [G : N(Hi)] distinct conjugates of Hi, we have

|Ci| = [G : N(Hi)] · φ(ni). (3)

Next, we prove by induction on ni that

|N(Hi)| · Φi =
∑

j

ajnjχiGHj
1 (4)

for aj ∈ Z, where j runs over the set of subscripts for which xj ≤G xi.

If ni = 1, then Ci = Hi = {1} and |G|Φi = χiGHi
1. So, (4) holds. Suppose ni > 1. Since

χiGHi
1 is a rational valued character of G, we can write χiGHi

1 =
∑k

j=1 bjΦj and compute the

coefficients bj as follows:

|G|−1bj|Cj| = 〈bjΦj, Φj〉 = 〈
k∑

j=1

bjΦj, Φj〉 = 〈χiGHi
1, Φj〉 = 〈1Hi

, rHi
G Φj〉,

where the last equality follows from the Frobenius reciprocity theorem. Now rHi
G Φj = 0

unless Hi contains a cyclic subgroup K conjugate to Hj, i.e., xj ≤G xi. In that case,

rHi
G Φj takes on the value 1 on each generator of K and vanishes elsewhere. Therefore,

〈1Hi
, rHi

G Φj〉 = φ(nj)/ni and we have

bj = |Cj|−1|G|φ(nj)/ni = |N(Hj)|/ni

using equation (3).

So,

niχiGHi
1 =

∑
j

|N(Hj)|Φj, (5)

where j runs over the set of subscripts for which xj ≤G xi. Notice that |nj| < |ni| for all

j 6= i. Rewrite (5) as

|N(Hi)|Φi = niχiGHi
1 −

∑

j 6=i

|N(Hj)|Φj

and applying the induction hypothesis on each j yields (4).
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Suppose xj ≤G xi and let g ∈ G such that g−1Hjg ≤ Hi. If g0 ∈ N(Hi), then gg0 ∈
N(Hj). Thus, we have gN(Hi) ≤ N(Hj) =⇒ |N(Hi)| divides |N(Hj)|. The result then

follows from (2) and (4).

Corollary 4. Let χ be any rational valued character of G. Then |G|χ =
∑k

i=1 ciχiGHi
1, where

ci ∈ Z.

Let Λ(G) = {∑k
i=1 ciχ

G
Hi

1 : ci ∈ Z}. Corollary 4 tells us that if χ is any rational valued

character of G, then |G|χ ∈ Λ(G). We define the Artin exponent of G to be the smallest

positive integer A(G) such that A(G)χ ∈ Λ(G) for all rational valued characters χ of G.

Clearly, A(G) is at most |G| and in particular, divides |G|. We will come back to this topic

in section IV and determine the Artin exponents of various types of groups.

III. SOME BASIC THEOREMS

In this section, we present two results that are related to rational valued characters. Let

ρG denote the character afforded by a right regular representation of G.

Lemma 5. Let G be a cyclic group. For g ∈ G define

χG(g) =




|G| if G = 〈g〉,
0 if G 6= 〈g〉.

(6)

Then χG ∈ Λ(G).

Proof. We proceed by induction on |G|. If |G| = 1 then χG = 1G and (6) holds. Suppose

that |G| > 1. Let H ≤ G such that H 6= G. For h ∈ H,

iGHχH(h) =





[G : H]χH(h) = |G| if H = 〈h〉,
0 if H 6= 〈h〉.

So if τ =
∑

iGHχH where H ranges over all cyclic subgroups of G with H 6= G, then

τ(g) = |G| if 〈g〉 = H for some H ≤ G and τ(g) = 0 if 〈g〉 = G. Hence χG = |G|1G − τ and

the result follows by induction.

Theorem 6. There exist cyclic subgroups Hj of G and nontrivial linear characters χj of Hj

such that

ρG = 1G +
∑

aji
G
Hj

χj,
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where aj ∈ Q.

Proof. For a cyclic subgroup Hj of G, let χHj
be defined as in Lemma 5 and let χj =

φ(|Hj|)ρHj
− χHj

. Clearly χj is a nontrivial character of Hj. We now show that ρG − 1G =

|G|−1
∑

iGHj
χj, where Hj ranges over all cyclic subgroups of G.

Let χ be an irreducible character of G. Then 〈χ, ρG−1G〉 = χ(1)−〈χ, 1G〉 by the linearity

of the inner product. On the other hand,

〈χ, |G|−1
∑

iGHj
χj〉 = |G|−1

∑〈χ, iGHj
χj〉G (By the linearity of the inner product)

= |G|−1
∑〈rHj

G χ, χj〉Hj
(By the Frobenius reciprocity theorem)

= |G|−1
∑

φ(|Hj|)χ(1)− |G|−1
∑ |Hj|−1

∑
〈gj〉=Hj

|Hj|χ(gj)

= |G|−1|G|χ(1)− |G|−1
∑

g∈G χ(g)

= χ(1)− 〈χ, 1G〉.

Since χ was chosen arbitrarily, ρG − 1G = |G|−1
∑

iGHj
χj as required.

IV. CYCLIC GROUPS

We now return to the topic of Artin exponents. To get our hands wet, we start by

considering one of the most basic types of groups: the cyclic groups. Recall that the Artin

exponent of a finite group G is denoted by A(G). To prove the major theorem in this section,

we need several lemmas.

Lemma 7. Let L be the least common multiple of [N(Hj) : Hj], where j runs over the set

of indices for which Hj is maximal. Then, L divides A(G).

Proof. Let A(G)1G =
∑k

i=1 ciχiGHi
1 where ci ∈ Z. Furthermore, let C(g) denote the conju-

gacy class of g in G. Notice that for each maximal cyclic subgroup Hj, χiGHi
1xj 6= 0 iff i = j.

Then,

A(G) = A(G)1G(xj) =
∑k

i=1 ciχiGHi
1(xj)

= cjχiGHj
1(xj)

= cj[G : Hj]/|C(g)|
= cj[N(Hj) : Hj].

Therefore, [N(Hj) : Hj] divides A(G) for each j and hence L divides A(G).

The next lemma is parallel to the last one and has a very similar proof.
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Lemma 8. Let M be the greatest common divisor of [G : Hi], where i = 1, 2, · · · k runs over

the whole set of indices. Then, M divides A(G).

Proof. As before, we have

A(G)1G =
k∑

i=1

ciχiGHi
1.

Evaluating at the identity we obtain

A(G) =
∑k

i=1 ciχiGHi
1(x1)

=
∑k

i=1 ci[G : Hi].

Therefore, [G : Hi] divides A(G) for each i and hence M divides A(G).

Here, we want to remark that L and M do not have to equal A(G) in general. For

G = Z/4Z⊕ Z/4Z, A(G) = 8 but L = 4. For G = S3, A(G) = 2 but M = 1.

Recall that the ordinary exponent of a group G is equal to the order of any element of G

of maximal order, i.e., the cardinality of any maximal order cyclic subgroup of G. We define

the p-exponent of G, denoted by exp(G, p), to be the exponent of a Sylow p-subgroup P of

G. This definition leads to the following lemma.

Lemma 9. Let P be a Sylow p-subgroup of G of cardinality pn. If exp(G, p) ≤ pn−m, then

pm divides A(G).

Proof. Assume that exp(G, p) ≤ pn−m. We shall prove that pm|[G : Gi] for all i = 1, 2, · · · , k,

and the result will then follow from Lemma 8. Suppose that pm does not divide [G : Gi]

for some i. Then, pn−m+1 divides |Gi|, and so the cyclic subgroup Gi has a subgroup H of

order pn−m+1. By Sylow’s theorem, there exists a Sylow p-subgroup P of G which contains

H as a subgroup. But then, we have pn−m+1 ≤ |P | = exp(G, p) ≤ pn−m, which is a

contradiction.

Corollary 10. p|A(G) unless every Sylow p-subgroup of G is cyclic.

Recall that a group G is metacyclic if it has a cyclic normal subgroup H such that the

quotient group G/H is also cyclic. It follows that all metacyclic groups have a normal series

of length two. The following proposition gives a sufficient condition for a group G being

metacyclic. Its proof can be found in many group theory texts, such as ([6]). Only within

the scope of the proposition we let G′ denote the derived group of G.
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Proposition 1. Suppose all Sylow subgroups of G are cyclic. Then G is solvable. Moreover,

G/G′ and G′ are both cyclic, so that G is metacyclic.

Theorem 11. A(G) = 1 if and only if G is cyclic.

Proof. (Necessity) Assume that A(G) = 1. By Corollary 10, we see that the Sylow p-

subgroups of G are all cyclic. Therefore, G is metacyclic and hence has a normal series

{1} E H E G of length two. If K is any subgroup of G containing H, then K E G by the

correspondence theorem. So, without loss of generality we could assume that H is a maximal

cyclic subgroup of G. By Lemma 7 and the hypothesis that A(G) = 1, N(H) must be equal

to H. But H is normal in G, so G = N(H) = H and hence G is cyclic.

(Sufficiency) Suppose that G is cyclic. We enumerate all divisors of |G| in an increasing

sequence of numbers, say s1 = 1, s2, · · · , sq = |G|. Then, there are exactly q irreducible

rational representations of G, whose characters χs1 , · · · , χsq are afforded by the represention

modules Q(ζs1), · · · ,Q(ζsq), where ζsj
= e2πi/sj is a primitive sjth root of unity. Here we let

G act on Q(ζsj
) by agreeing that a fixed generator g acts as multiplication by ζsj

. For each

sj dividing |G|, there is a unique subgroup Hj ≤ G such that [G : Hj] = sj. We now claim

that for all j between 1 and q,

χiGHj
1 =

∑

s|sj

χs. (7)

By the Frobenius character formula, if h ∈ Hj = 〈gsj〉, then χiGHj
1(h) = [G : Hj] = sj

and
∑

s|sj
χs(h) =

∑
s|sj

χs(1) =
∑

s|sj
φ(s) = sj. On the other hand, if g′ = gk /∈ Hj

and (k, sj) = d, then it is easy to calculate that χiGHj
1(g

′) = 0 and
∑

s|sj
χs(g

′) = d ·
∑

(
sj

d
th root of unity) = d · 0 = 0. Now, by arguing inductively, it is clear that any χsj

is

an integral combination of the induced characters χiGHk
1, 1 ≤ k ≤ q, and therefore so is any

rational character χ. We conclude that A(G) = 1.

V. p-GROUPS (p ≥ 3)

Throughout the remaining sections, let µ denote the Möbius function. In 1950, Brauer

proved the following deep theorem in his paper ([1]) by applying techniques from algebraic

number theory.
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Theorem 12. Let χ be a rational valued character of G. Then,

χ =
∑

aHχiGH1 with aH =
1

[G : H]

∑
µ([G′ : H])χ(g′),

where the first summation is taken over all cyclic subgroups H of G and the second sum-

mation over all cyclic subgroups G′ = 〈g′〉 ≥ H.

In the special case where χ = 1G, we obtain

1G =
∑

aHχiGH1 with aH =
1

[G : H]

∑
µ([G′ : H]). (8)

We are now going to calculate the Artin exponents of a large collection of p-groups

(p ≥ 3). Following Lam’s notations, let z(G) = z be the number of subgroups of order p

in G and let sol(G) be the number of solutions of the equation xp = 1 for x ∈ G. In 1895,

Frobenius proved that sol(G) is divisible by p.

Theorem 13. Let p ≥ 3 be a prime and let G be a p-group of order pn, n ≥ 2. If sol(G) is

not congruent to p modulo p2, then A(G) = pn−1.

Proof. In equation 8, if we group together terms in the first summation with respect to con-

jugacy classes of H, then we end up with the following relation which should look somewhat

familiar to the readers:

1G =
k∑

i=1

aiχiGHi
1 with ai =

1

[N(Hi) : Hi]

∑
µ([G′ : Hi]),

where the second summation is taken over all cyclic subgroups G′ of G containing Hi as

a subgroup. Let us evaluate the coefficient a1. In the expression for a1, µ([G′ : H1]) =

µ(|G′|) 6= 0 iff |G′| is squarefree, i.e., G′ = {1} or G′ is cyclic of order p. Therefore,

a1 = |G|−1(1 +
∑

|G′|=p

µ(|G′|)) = (1− z)/pn.

Notice that if xp = 1 for x ∈ G and x 6= 1, then x is contained in an unique cyclic subgroup

of order p. By our assumption that sol(G) is not congruent to p modulo p2, we can easily

deduce that z is not congruent to 1 modulo p2. If A(G) = pm, then by definition pma1 must

be an integer. This implies that m is at least n − 1. On the other hand, the Frobenius

theorem states that sol(G) ≡ 0 (mod p) =⇒ z ≡ 1 (mod p) =⇒ pn−1a1 ∈ Z. For j ≥ 2,

[N(Hj) : Hj] divides pn−1, so pn−1aj ∈ Z. Altogether we have that A(G) = pn−1, as

desired.
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VI. 2-GROUPS

In this section we shall complete the discussion of p-groups by calculating the Artin

exponents of 2-groups. First let us give a definition of three types of exceptional 2-groups.

Definition 1. Let G be a 2-group of order 2n generated by a and b. We say that

1. G is quaternion, if a and b satisfy the relations

a2n−1
= 1, b2 = a2n−2

, bab−1 = a−1;

2. G is dihedral, if a and b satisfy the relations

a2n−1
= 1, b2 = 1, bab−1 = a−1;

3. G is semi-dihedral, if a and b satisfy the relations

a2n−1
= 1, b2 = 1, bab−1 = a−1+2n−2

.

Thompson proved the following theorem which will help us greatly to compute A(G) for

2-groups.

Theorem 14. Let G be a noncyclic 2-group. Then, sol(G) ≡ 0 (mod 4) unless G is quater-

nion, dihedral or semi-dihedral, for which cases sol(G) are 2, 2n−1 + 2, and 2n−2 + 2 respec-

tively.

In addition to Thompson’s theorem, we also need the following lemma when proving the

main result which will follow after.

Lemma 15. Let G be a finite group and d ∈ Z. Suppose

d · 1G =
n∑

i=1

aiχiGHi
1

where ai ∈ Z. If a1, a2, · · · , an have no common factor, then d = A(G).

Proof. This follows easily from the independence of the χiGHi
1’s and the definition of A(G).

Theorem 16. Let G be a noncyclic 2-group of order 2n. Then A(G) = 2n−1 unless G is

quaternion, dihedral or semi-dihedral, for which cases A(G) = 2.
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Proof. If sol(G) ≡ 0 (mod 4), then a repetition of the argument in the proof of Theorem 13

shows that A(G) = 2n−1. So, suppose that sol(G) is not divisible by 4. Then, by Theorem

14, G is either quaternion, dihedral or semi-dihedral. We consider each individual case to

verify that A(G) = 2.

Case 1. Suppose G is a quaternion group. We shall compute A(G) directly from Theorem

12. Take any cyclic subgroup H = 〈h〉 of G. If h /∈ 〈a〉, then without loss of generality we

may assume that h = b. For any m ∈ N, a−mbam = a−mbab−1bam−1 = a−m−1bam−1 = a−2mb.

Since a−2mb ∈ 〈b〉 iff a−2m = 1, it follows that [N(H) : H] = 2. Notice that there is no

proper subgroup of G strictly containing H. If h ∈ 〈a〉, but H 6= 1 and 6= 〈a〉, then the

corresponding Brauer coefficient has numerator equal to
∑

µ([G′ : H]), where G′ ranges over

all cyclic subgroups of G containing H. Now,
∑

µ([G′ : H]) = µ(1) + µ(2) = 0. If h = a,

then again [N(H) : H] = [G : H] = 2. At last, if h = 1, then by our previous calculation the

corresponding coefficient is (1− z)/2n. By Theorem 15, we have z = sol(G)−1 = 2−1 = 1,

hence (1− z)/2n = 0. Therefore, 2 · 1G ∈ Λ(G), so A(G) = 2 by Lemma 15.

Case 2. Suppose G is a dihedral group and H = 〈h〉 is a cyclic subgroup of G. Following

similar arguments, h /∈ 〈a〉 =⇒ [N(H) : H] = 2, h ∈ 〈a〉 =⇒ ∑
µ([G′ : H]) = 0, and h =

a =⇒ [N(H) : H] = 2. If h = 1, then z = 2n−1 +2− 1 = 2n−1− 1, hence (1− z)/2n = −1/2.

Therefore, 2 · 1G ∈ Λ(G), so again A(G) = 2 by Lemma 15.

Case 3. This case is again similar to the first, so we omit the details.
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