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Abstract

We give an elementary presentation of the Lie superalgebras, their classification
and some properties of their representations. A sketch of the classical Lie super-
group is also given.

Introduction

Lie superalgebras are also known 1in the Titerature as graded Lie algebras and
pseudo Lie algebras. Before this colloquium Kac has convinced me to subscribe to the
first name since already Kaplansky [1] did so, I gave in and I hope that other people

will do the same.

Two other reviews of the subject are available [2,3]. The first one, by Corwin,
Ne'eman and Sternberg, presents the situation in the field in the fall of 1974. The
second one, by Kac is an excellent survey presented in a Tanguage which is not always
accessible to physicists. Here we try to give a self contained catalogue of the main
properties of superalgebras (for physical applications see Refs. [4,5]. I am aware
that an  enumeration of results (a detailed presentation could cover a book) makes
the text hard to read and much of the beauty of the subject gets Tost. It is very
much Tike staying in Tiibingen and reading a Paris Michelin guide without seeing thecity.

Consider M generators Qn (n=1,2,...M) and N generators Ru (a=1,...N) that we can

think of as matrices which satisfy the following commutation and anticommutation
relations
= P
19001 = 2, (1a)
- B
[Q,R,] = FoRg (1b)
_ M
{ Ru’RB} = AaBQm (Tc)
where

[A,B] = AB-BA, { A,B} = AB+BA
The structure constants satisfy generalized Jacobi identities

P £9 4¢P 59 4#P £4 =
fnrfmp+fr‘mfhp+fmnfrp 0 (2a)
Y &$ Y pS _op g8
FnuF;y Fiorny = Fnf po (2b)
§,n .8, ,n _.n,p
Py Fmays = Tpa v (2¢)
AP ES AP FS P S oo (2d)

BY pa ya p8 a8 py
Equations (1) and (2) define a Lie superalgebra S. From Egs. (la) and (2a) we see
that the Qy generators define a Lie algebra Sp. We denote by Sythe set of generators
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R, obviously
S=Sy+ S, (3)

From Eqs. (1b) and (2) follows that Ru are tensor operators corresponding to a cer-
tain N-dimensional representation (in general reducible)} of the Lie algebra SO.

At a first glance the construction of a classification theory of superalgebras
Tooks very difficult. One may start with a given Lie algebra (fﬁn in Eq. (T1a)),
choose a representation in general reducible (Fﬁu in Eq. (1b)) and end up with an
infinite number of possibilities for the coefficients AEB
time to understand that fortunately the structure of superalgebras is very similar
to that of Lie algebras and in many respects all what we have to do is to generalize

in Eq. (Tc). It took some

the concepts used for Lie algebras. When this job is done, we realize that Lie
algebras can be looked upon as a special case of superalgebras.

ATthough superalgebras were known in mathematics for twenty years and rediscov-
ered in physics in 1966 [20], most of the progress was made starting in 1974 when it
was understood that superalgebras have major applications in physics. The content
of the next sections will show that the problem of superalgebras is now essentially
solved.

In Sec. 2 we define the Killing form metric, the Casimir operators and give a
generalization of the Schur Lemma.

Simple superalgebras are defined in the same way as simple Lie algebras. 1In
Sec. 3 we present all simple superalgebras (this corresponds to the Cartan class-
ification of simple Lie algebras). It turns out that simple superalgebras belong to
two classes. If the representation S1 is completely reducible one gets the classical
superalgebras; those are defined considering the algebra of matrices (19). There
are essentially four series of classical superalgebras; (spi{m,n), osp(m,n), P(m)}
and Q(m)) and three exceptional ones (F(4), G(3) and osp(4,2;a)). If the representa-
tion S1 is not completely reducible one gets the Cartan type superalgebras (W(n),
S(n), §?n) and H(n)) which are defined using Fermi-Dirac creation and annihilation
operators (see Eq. (30}).

Semisimple superalgebras (defined as S/I where S is a superalgebra and I the
maximum solvable ideal (see Sec. 4)}) can be expressed in terms of simple superalge-
bras. As opposed to the Lie algebra case, solvable superalgebras may have irreduc-
ible representation which are not one-dimensional.

The representation theory of simple superalgebras is given in Sec. 5. From all
simple superalgebras only the representations of osp(1,n) are completely reducible
(the osp(1,2) example is presented in detail). The irreducible representations can
be Tabelled by the highest weight (1ike for simple Lie algebras ) but the Casimir
operators do not specify anymore the presentation (there are different irreducible
representations corresponding to the same eigenvalues of the Casimir operators; this
point is illustrated in the example of sp1(2,1}). Finally the hermitian representa-
tions have their equivalent in the star and superstar representations.



Supergroups of linear transformations are defined in Sec. 6. The parameters of
supergroups are elements of Grassman algebras. For matrices with both commuting and
anticommuting elements we show how the trace, determinant, transpose and adjoint
operations can be generalized. In this way we define the classical supergroups.

2. Some Properties of Superalgebras

It is convenient to introduce a compact notation for Egs. (1) and (2). Let Xu
comprise the sets of generators Q_ (m=1,...M) and R, (0=1,...N)
Xu = Qm’Ru (u=T,..., M+N)
Further, define the degree g(Xu) of a generator by
9(Q,) =0, g(R) =1
If g = 0{1) the corresponding generator will be called even (odd). We define (XU,X\;)

by
- 93X )a(xy)
XX, D= X=X x (4)
With this notation the Egs. (1) and (2) can bc(e w;ﬂ(;ter)\ as:
Y w - _o11v9(X )g(Xy)ew
<KX, D= €K, (c,= (-1 co) (5)
< Xu’< Xv,Xw>>(~1)g(Xu)g(Xw)+ cyclical permutations= 0 (6)
A superalgebra S is Z-graded if it is decomposed into a direct sum of m+n+]
subspaces Gj (i=-n, -n+1, ... 0,1, ... m) such that
S =é;)G1., < 6y67€By, g (7)

Obviously any superalgebra is Z, graded because of Egs. (1) and (3) we have
< S'i’sj >Cs.i+j (193 = 031)
where S =€1.DGZ1" Sl=?G21'+'I'
Example 1. Consider the Lie superalgebra
[Q,Ri]]=0; {Rﬂ’Ril =0 {R1,R_]} = Q (8)
The generators have the following 2-dimensional irreducible representation:
Q=(1 o); R1=(o 1); R_1=oo (9)
01 00 10
we also have
SO=Q; S'|= R]@_]: G_-|=R_~I, G0=Q, G~I=R-I
Example 2. Consider the Lie superalgebra:
[Q.R,41=0; {R.{,R,;}=0; {RysR_;}=10Q (10)

[QSROJ =09 {RoaRi‘l } = 0: { RosRo} = Q
The generators have the following 4-dimensional irreducible representation
001710 00 0 1/2}
.p 10000 -]J]oo -1 0
s Ri=loooo Ry=lo-1/20 o) (1)
0100 10 00

000
; o _ooo
Ril1 00
000

0
11 .
0 1]
0



This example is interesting because although the representation is irreducible, there
exists a matrix K

o o =

(12)

N O O O

0 0
0 2
T 0
0 0 0O
which commutes with all the generators (11) although it is not a multiple of the unit
matrix; thus for superalgebras the Schur Temma is not always valid.
The generators Qm and Ru act in a Zz—graded vector space V = V0 GDV1 having the
general form
o A BT (O I
m 0 U U
where Am and Dm are square matrices, Bu and Cu are rectangular matrices. Qm trans-
forms an even {odd) vector into an even {odd) vector, Ru transforms an even (odd)
vector into an odd (even) vector.
We define the supertrace of the generator Xu:
str Xu = tr Au - tr Du (14)
The following properties can easily be shown:
str ( <Xu, Xv>) = 0; str( <Xu’Xv> Xw) = str(Xu <Xv’Xw>)

Let us consider the superalgebra (5) and let Xﬁd represent the matrices corres-
ponding to the adjoint representation and XR the matrices corresponding to a certain

U
representation R. We define the Killing form metric [6]
_ Ad Ady _ o gixwi w
9y = str(Xu X, ) = Cwu( 1) Cov (15)
and the supertrace form metric correspond;ng t? acertain representation R[7,8]:
R RR,. R, . 3KJa(X) ¢
9, = str(X X)) g, = (1) w (16)
If det gﬁv # 0 we can construct Casimir operators [6,9]
_ R R 1,%n 9 G_ OV
Kn = str(XO1...XOn)X Lo X (X"=g Xv) (17)

[Kn’Xu] =0
Before proceeding further Tlet us observe that for Lie superalgebras the Schur_Lemma
generalizes as follows [3,10].

Let R be an irreducible representation of the Lie superalgebra S acting in a
vector space V = Vd@)/1 and K a matrix which commutes with all the generators of S
then either K is a multiple of the unit matrix or if dim V0 = dim V1, K can be a non-
singular matrix which permutes V0 and V1 (see example 2).



3. Classification Of Simple Lie Superalgebras
A superalgebra S contains an ideal I € S if

<X,¥>¢ 1 (Xxeci, YecS5s) (18)
A superalgebra S is called simple if it contains no ideals. As opposed to simple Lie
algebras for which the Killing form metric is nonsingular, for simple Lie superalge-
bras we encounter three possibilities: a) the Killing form metric is nonsingular,
b) the Killing form metric is identically zero but the supertrace metric form is
nonsingular, c) the supertrace metric form vanishes (one cannot find a representation
R for which gﬁv defined by Eq. (16) does not vanish identically). We have thus to
specify for each simple superalgebra which possibility applies.

Simple Lie superalgebras fall into two classes. The first one corresponds to the
case when the odd generators Ru (see Eq. (1b))correspond to a completely reducible
representation of the Lie algebra SO‘ In this case one can show that S0 is reductive
(semisimple plus abelian Lie algebras). The superalgebras belonging to this class
are called classical superalgebras. For the superalgebras belonging to the second

class and which are called Cartan type superalgebras the odd generators belong to a

representation which is not completely reducible.
We now 1ist the simple Lie superalgebras.
Classical superalgebras
Consider matrices of the form (13):

A B
c D) (19)

where A is an m X m matrix and D an n X n matrix.

spl{m,n) _ (m#n, m> n31) superalgebras are defined by:
trA = trD (20)
There are (m+n)2—1 generators, the Lie algebra So is s1(m) @ s1{n) @g1(1) and
det guv# 0.
The spl{m,m) superalgebras are not simple but spl(m,m n are. The center is
I 0
x(Om 1)
m
where Im is the g X m unit matrix. "
There are 4m°-2 generators, So=slﬂn)GDs1(m), 9. =0, det guv# 0.
osp(m,n)  (myl, n=2p) superalgebras are defined by,

Zm—

DTG + GD = 0; Al = -A;, B=Clg (21)

where AT is the transpose of A and

G = (_0 Ip) (22)

I 0
P
There are %{(m+n)2+n-m] generators, Sy =o(m) @ sp(n), det guv# 0 (except



osp(n+2,n) when 9y =0, det gﬁv# 0); osp(2,2) is isomorphic to sp1(2,1).
P(m) (m > 3) superalgebras. Take m = n in Eq. (19) and

Al +D=0; B=B3; C=-C'; trA=0 (23)

There are 2m2-1 generators, Sg = sT{m), gﬁvszo.
Q(m)  (m 3 3) superalgebras. Take m = n in Eq. (19) and
A=D,B=C; trB=20 (24)
These superalgebras (6(m)) are not simple but they become simple if we divide them
by 2 (Q(m) = ?j(m)/zm are simple). There are me-2 generators, S; = s1(m) and gEVE 0.

These Q(m) superalgebras are well known to physicists; they are the (f,d) algebras
of Gell-Mann, Michel and Radicati [11] the commutation relations are:

(0,01 = £,,0,
[Q,:Rs] = ok, (25)
{Ru’R }= dYuBQY

where o, 8, v = 1,...,m*-1, f (duBY) are the usual totally skew-symmetric (sym-

aBy
metric) symbols.

The Exceptional Classical Superalgebras

F(4) superalgebra. Has forty generators. So=s1(2) + 0o(7), det g 0. e give
the commutation relations: The even generators are Qi(l sig3) and apq(1 $p,q<7s
apqz -aqp)' The od? generators %re Ruu {a=£1, 1<ng8)

[QJ’QK] = 1€jKQQQ’ [Qi’ pq] =0

N ~ ~
[qu’Qrs] ) 'Gpraqs ¥ 6q\;dlcw'6qs’(\jprﬁloqur

S
[QJ’ROLU:I - "2"[ R

1Yu YU
R = T R
[apq R 7(pq?vu w
= J 1B

{Ruu’HSv} zeﬁv(CT )uBQj+3 CuB(EFqu)uvapq

where
1=(0 1)‘ 2= [0 -i 3= 0) c={01

T 7\ o0/ io) {0-1/° -1 0 (26)
The I ,{1< pg7)are a family of 8x8 matrices which satisfy [T _,I 1 = 2§
n p P q pq

C is the corresponding charge conjugation matrix with
R

Ny
For a convenient choice of Tp and € see [12].

G(3) superalgebra. Has thirty one generators. SO= s1(2)® 62 , det guvf 0.

The even generators are Qi{1g ig 3) and qu(1 £ps 98 7)s qu=-6qp, gpqrapq=0)-
The odd generators are Rup(“= £#1, 1 ¢<pg 7). qur is a totally skew-symmetric
G,-invariant tensor. If (i,j,k) is one of the triples

(1,2,3), (1,4,5), (1,7,6), (2,4,6), (2,5,7), (3,4,7), (3,6,5) (27)



then g ik = 1. If there is no permutation of (1,...,7) which transforms (i,j,k} into
the tr1p1es (27) then £1Jk =0.
Commutation relations:

[Q"Qk]=i€'iijk’ [Q ,d

n, 4"
[0 Grg 1385, - 3aqr?fps aslor3 pslorEpaufrsyluy (28)

[Q pq’ Rur] 2(Sp\r'Ruq -28 qPRup-npquRus

[Q R ]_ 2 o uRu p

(R } = 25 (Cd) Q-C“B?i
up’RBq pq aBi 2 “pq

where n1Jpq is totally skew-symmetric.
ruples

niqu =1 if (i,3.p,q) is one of the quad-
(1,2,4,7), (1,2,6,5), (1,3,6,4), (1,3,7,5), (2,3,4,5), (2,3,7,6),
(4,5,7,6) (29)
and yr =0 if there is no permutation of (1,...7) which transforms (i,j,p,q) in one
of the quadruples (29).

osp{4,2;a) superalgebras. Haveseventeen generators (as osp(4,2)) so=sn(2xEsn(2) |
@s4(2

guv =0, det gﬁvf 0. The even generators are Q? (1g m, jg3) and the odd generators
are RuBY (B 5y =21).
Commutation relations:
m ANq_ s m
1R - B 1.3
[Qj’ uBy] 2 Tu uRu BY [Q ’ uBY] 2 B 8 uB [QJ uBY] 2 TY'YROLBY
2
PRaysRargrsd = o w‘%&'(CT ) Qjragt BB'CM'(CT 'Y

03Cag1Cpr (€505
where aps Gps Gg Are arbitrary non-zero numbers which satisfy u]+u2+u3=0.
Exercise: Find the values of the parameters o for wich osp(4,2;a) is isomorphic to
osp(4,2).
Cartan type simple superalgebras [3,13]

Cons1der 2n Fermi-Dirac creat1onand annihilation operators 2, and a (i=1,...n).

{af ,aJ} {a1,aj} = 03 {a 535 =85, ij (30)
Construct 2" vectors
10> : a;lo >,...a;l0> ; aTa;|0> eens aTa .a |0> (a;]0> = (31)

W(n) superalgebras (n> 3).
W(n) = 6_0G,06,0...66 |

<G1’Gj> c.’.G1.+j



where
3= 23
+
Gn = a.a.
° (32)
G, = a.a.a (i#£3)
1 3%k
o+ + ..
6pop = 2585 a2, (i#3# ... #2)

GO is isomorphic to g&(n), W(n)} has n2" generators. W(2) is isomorphic to spa(2,1).

S(n) superalgebras (n » 3).
S(n) = G_q @GO®G1 o... ©6

where
G = 3y
G = aTa] - a}aj (3#1)
a:.'aj (i#3)
6 = aj(aja -aja;)  (irj#1)
aT(aZaz-a;aj) (3#1,2) (33)
ajaa (1£37k)

= afaf(aTa]-aEak) (i#3#k#1)
ka1(a2 , aJ .) (k#3#1,2)

a1a2(a3 3' k k) (k#15293)

ajajaa, (173#k#0) etc.

G0 1s isomorphic to s&(n), S{n) has (n- 1)2 +1 generators.
S(n) superalgebras (n » 4, n even).
These supera]gebras are identical to the S{n) except for G RE
G_y (1+a1a2 oo )a

[ep]
N
1

GO is isomorphic to s&(n), S(n) has (n—1)2n+1 generators.
H(n) superalgebras (n» 4).
H(n) = G_0G86,® ... @G _

n-3
where
6.1 = 3
+ +

Gy = 2;2;-a53; (34)
G atata a ata.-a a+a a tata.+atata.-atata

17 %%% k%3 k%4 k71 kT Tkihd

etc. ...

GO is isomorphic to so{n), H{(n) has 2"-2 generators.
This completes the Tistofall simple superalgebras, the real simple superalgebras
can be found in [3].



1"

The simple Lie superalgebras with a nonsingular supertrace metric form have been
found by Freund and Kaplansky [7], the classical superalgebras have been discussed
by Nahm, Rittenberg and Scheunert [14,15] and all simple superalgebras have been
found by Kac [16]. Very important contributions have been made by Djokovi€ and
Hochschild [17]. Here we give a table of the notations used by different authors.

el [3] [7] [15]
sp&(m,n) A(m-1,n-1) spa(m,n) sp&(m,n)
osp(m,n) osp(m,n) osp(n,m) osp(n,m)

P(n) P{n-1) b(n)

atn) Q(n-1) i,

F(4) F(4) s2(2) X o(7)

G(3) G(3) s2(2) X G,
osp{4,2;a) D(2,1,a) s(2)Xsa{2)Xs2(2)
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4. Semisimple Superalgebras

A superalgebra S is called solvable if

<5,5> =s(1)5 «s(1) s(Ns5(2) (5ln=1) (n-1), () g (35)

The superalgebras of examples 1 and 2 (see Egs. (8) and (12)) are solvable. For
solvable Lie algebras the only finite-dimensional irreducible representations are
one-dimensional. This is not true anymore for solvable Lie superalgebras, one can
show however the following theorems [3]:

a) Let S=SoeS1 be a solvable Lie superalgebra. A1l its irreducible representa-
tions are one-dimensional if and only if <S1,S1>(350,SO>.

b) Let V=V0($V1 be the space of irreducible finite-dimensional representations of
a solvable Lie algebra. Then either dim V0=d1m V1 and dim v=2" » O<sgdim S] or
dim v=1.

Consider now a superalgebra S which can be written as follows

M), sMo ), (D g2, (), (2) 5(2),_ (1), g(2)

then we define the quotient superalgebra 5(2)25/5(1) by dropping S(]) in
the last commutation relation.

(if <S(2), 5(2)>=S(2), S = 5(1) D¢ 5(2), S is the semi-direct sum of 5(1) and S(z);
if <S(2),S(2)>=S(2) and <S(1),S(z)>=O,S=S(1%BS(2), S is the direct sum of the Lie
(M and 5(2)).

For Lie algebras there are three equivalent definitions of semisimplicity:

superalgebras S

a) If So is a Lie algebra and I, the maximal solvable ideal then §O=SO/IO is
semisimple and S =1, G%§o.

b) If So is a Lie algebra whose metric tensor Y is nonsingular, then 50 is
semisimple.

c) If §0 is a Lie algebra whose all finite-dimensional representations are com-
pletely-reducible, then S, is semisimple.

For a semisimple Lie algebra §o we have

where Sé1) are simple.
For Lie superalgebras the three definitions stop being equivalent

a) If S is a Lie superalgebra and I the maximal solvable }d§a1 than 5=S/1 is semi=
R . _ = z_ (1) i .
simple [3]. The relations S=1 @S and 5= ?S where S are simple do not
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hold. A semisimple Lie superalgebra can be expressed in terms of simple super-
algebras but the algorithm is more complicated [3,10].

b) If S is a Lie super§1gebra and the killing form metric (15) is nonsingular,
then S= @ S(T) where 5(1) are simple superalgebras with det gwf 0 (simpTe Lie
a1gebras1and spl(m,n) (m#n), osp(m,n) (m#Fn+2), F(4), G(3)}) [3,14].
c) If S is a Lie superalgebra and if qH its finjte-dimensiona] representations
are completely reducible, then S= (19 5(1) where 5(1) are simple Lie algebras and
osp (1,n) simple superalgebras [17]. (From all the simple Lie superalgebras only
the osp(1,n) have the property that all the finite-dimensional representations are
fully reducible.)

Let us now consider the superalgebra 3=5, (&) S1 and assume that its Lie algebra

S, is semisimple, what can be said about the superalgebra $?

If $=5.@5, is a Lie superalgebra, with S, semisimple, then S is an elementary
extension of a direct sum of Lie algebras or one of the Lie superalgebras
spl (m,m)/Zm, osp(m,n) (m#2), osp(4,2;a), F(4), G(3), Q(n),derQ(n) or G(S1,..Sr;L)
31.
(The Lie superalgebras der Q(n) and G(S1,..Sr;L) are defined in [3]. If S=So(JF]S1
is a superalgebra with S completely reducible, S=S@$T is called its elementary
extension if T is an odd commutative ideal and <S1,T> =0.)



5. Representations of Simple Lie Superalgebras

In the case of simple Lie algebras the finite-dimensional representations are
compTletely reducible, the irreducible representations are equivalent to hermitian
representations and they can be Tabelled either by the highest weight or by the
eigenvalues of the Cesimir operators. Which of these properties remain valid for
simple Lie superalgebras? (We have seen already that we have complete-reducibility
only for the osp{(1,n) superalgebras.) We consider two examples and we will mention
which properties are of general validity.

osp(1,n) superalgebra [6,18] This superalgebra is defined by the commutation
relations:

[Q3aQi]=iQis [Q+s Q_]= 2Q3:
[Q3.R,1= 5 R, , [0,.R,1=0, [Q,R,I=R, (36)

{RRI= 25 Qys 1Ry, RI=- 5 0g

This is a Z graded superalgebra S=6_, @ G_; @G, &G @G, with 6,,= Q, ,
Gi1=Vi’ GO = Q3.

We Tabel the state vectors of an irreducible representation by Ix,q,q3>
12395037 ala+1) [139,0 >(52=Q$+Q§+Q§, 0,=0,+1Qy)
Q3IX§Qaq3> = q3'x§Q>q3> (g=x,x-1/25 A=0, 1/2,1,.., q3=-qa--’Q)

Thus the irreducible representation can be labelled by the highest weight ).

This property is valid fgﬁpg}l simple Lie superalgebras: the irreducible repre-
sentations of simple Lietalgebras can be Tabelled by the highest weight[3].

There is only one Casimir operator
K= 07 + R,R_-R_R,
its eigenvalues are
Ko[230,03 >= A(A+1/2)]23q,03 >.
The Clebsch-Gordan series reads
AR = [a-n"], [A-AtE 172, oo, ARAN

The Clebsch-Gordan coefficients are known explicitly [18] and the Wigner-Eckart
theorem was proven [19] .
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For a certain irreducible representation the generators are matrices which
can be written in the block form

(AB

**\c o

one block xorresponds to the |x,X,qg3) states, the other to the [x,1-1/2,q5% states.
We define the superadjoint (XS+) of the matrix X:

+ +
Y AL L (37)
gt ot

where A+ is the usual adjoint of a matrix A. We can then show that the irreducible
representations of the osp(1,2) superalgebra are equivalent to superstar representa-
tions [19] for which

Q=0 . V=V, vy, (38)

In the case of osp(1,2) the superstar representations represent the generalization
of hermitian representations of Lie algebras.

sp1{2,1) superalgebra [18] ,

[QmsQn]=1€manp, [QmsB] =0 (m=15293)
< lam ) _ 1 _
[0,R0= 75, Res [BsR 1= 585 Ry (0,8=1,2,3,4) (39)

_ A m AA
R, RB}—(CT )uBQm-(CE)uBB

. am » A
where the 4x4 matrices 7', C and € are

«m_(Tm 0) ,\_(o C) A (1 0) (40)
=l M C=1c of » T (o0
™ and C are given by Eq. (36).

This superalgebra has been discovered by Stavraki in 1966! in a very different
context [201.

The eigenstates are IX,B;q,q3b>

BIK,B;q,q3,b>= blxaBQqu3’b>

Q3IA,BEqu3sb>= Q3|X;B;q,q3sb> (41)

621x583q5q3sb>= q(q+1)|x,B§QsQ3’b>



16

(x=0,1/2,1,..; 8 any real number, q3=-q,..,q)

The generators act in a vector space V=V ® V; where if 18] #xﬂx,s;x,q3,3>,
]x,s;x-1,q3,s> are the even vectors and IX,B;A—1/2,q3,B+1/2> s [x,s;x—1/2,q3,6—1/2>
are the odd vectors. We obviously have dim Vo=dimV1=4 A . Representations for which
dim Vc=dim vV, are called typical. If g=tA the even vectors are Ix,ix;x,q3,ix>

and the odd ones ]x,ix;x-1/2,q3, +(A+1/2) >. In this case dim Vofdim V1 and
the representations are called nontypical.

There are two Casimir operators
Kp= §°-8%+ & RCR
Ky=BKy*+ & BRCR + ROSTCR + 7 RETCRD (42)
Ky[1:830,05,b> = (AZ-BZ)IA,B;q,q3b>
K3l2:850,a3:0> =8 (\%-87)[,830,0b>

From equation (42) we see that for typical representations ( AZ#BZ) the eigenvalues
of the Casimir operators are nonvanishing. If x2=32 both Casimir operators have

zero eigenvalues. Thus in general the e.v. of the Casimir operators do not define

the irreducible representations.

For all simple superalgebra (except osp{1,n)) the following property is valid:

if a certain representation p can be brought into_the block form

(pn p12)
0 P22
and the Pon representation corresponds to_a typical irreducible representation

then 912=0[27].
This property can be checked in our example if we consider the Kronecker
product of two (1/2,0) representations (A=1/2, g=0). We have

(1/230) ® (1/2a0) = (1,0) @ p
p is a noncompletely reducible representation; the representation (1,0) is indeed
typical.

The question arises if there are classes of irreducible representations for
which the Kronecker product of two of them is completely reducible.

One can show that for R3A, for all the representations (X,8) one can choose
a basis such that

Gy = Qe B'= B, R = Dy Ry (43)



17

o0 C
)

these representations form a class of star representations [19]. Another class of
star representations (there are no more than two classes) contains representations
for which -83x and

where

Q= Q, , B= B, R =-D_ R (43')

The Kronecker product of two irreducible star representations belonging to the same

class is completely reducible into irreducible star representations belonging to the
same class. The star representations (Tike the superstar representations) represent
a generalization of hermitian representations, for more details see [191].

For completeness we 1ist here the dimension (N) of the representations of
minimal dimension for the simple Lie superlagebras [21] .

spT(m,n), osp(m,n) (N=m+n); P(m} (N=2m); Q(m)
(N=2m2-2); W(n), S(n), S(n) (N=2"-1); H(n) (N=2"-2);
F(4) (N=40); G(3) (N=31); osp(4,2;a)} (N=17)

Exercise: Find the values of the parameters u1(1=1,2,3) for which the representa-
tion of minimal dimension of osp(4,2;a) is smaller then seventeen.
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6. Supergroups

An extensive discussion of supergroups and supermanifolds was given by Kostant
[22]. In the present paper we confine ourselves to a presentation of the classical
supergroups [21,23,24,25] 1in a framework first introduced by Berezin [23].

For a usual Lie group the group elements are described by a set of parameters
which are real numbers Oy, 8 multiplication rule is given
oy = fm(ur'],up) (fm(O,up)wm)
and the Lie algebra describes the Lie group for small values of the parameters O

A similar situation occurs for supergroups with the difference that the parameters
are elements of a Grassman algebra.

If ek(k=1,..p) are the generators of a Grassman algebra (eiek+ekei= 0), a
general element of the algebra has the form

a+ akek+akeekee+ ...+a123_._p9192...9p
(ai F) are complex numbers).
If an element contains only even powers of the generators it is called even,
(it commutes with the other elements), if an element contains only odd powers of

the generators it is called odd (it anticommutes with odd elements).

A Lie superalgebra is obtained from a supergroup the same way a Lie algebra
is obtained from a Lie group, the even generators corresponding to even parameters
(which are even elements of a Grassmann a1gebra)not numbers!) and the odd generators
to odd parameters (which are odd elements of the Grassman algebra).

We now consider supergroups of Tinear transformations. Consider matrices of

the form ﬁ 3
M =1le 2 (44)

where f} is an m x m matrix whose e1ementsjhj are even elements of a certain
Grassman algebra,%)) is an n x n matrix whose elements are even, P and ¥ have
matrix elements which are odd

Bijﬁ«; +Bke31j=0 s 15€%e + Cre G50

1]

31.3. {ke +ﬁ<e31j=0 ;Jkijﬂke-ﬁkeﬂij:o etc.. .

The matrices (44) which have an inverse define through the usual matrix multiplication
a supergroup called the general linear supergroup GL(m,n).

In order to define subsupergroups of GL{m,n) it is useful to define the
equivalent of the transpose and determinant for the matrices (44). We define the
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transpose (MT), supertranspose (#ST) and for m=n the p-transpose (MP) of M

. AT g7 &T _\CT
M =(3T 97 ;M5 - CUE )

(T
M @ P (m=n)

ConT FN M MNDST= 6T 5T (80P P

notice that

We define the supertrace
strM= trf-0r D
If&=® andg 4 (str& =0) we define anw-supertrace [21]
str”M=aJtr$

where @ is a fixed anticommuting element.

The superdeterminant is defined as follows: if

o 2

sdetM = det & det 9 = oStr 1

IfR =2 and R =€ (sdetM=1) we define an w-superdeterminant [21] .

sdet M=1+9 tr n [(&-B) 7 (R+3)] -eStraln M

notice that

sdet (MN) = sdetM sdet N ;sdetw(M.N—)=sdet“MsdetuJ\r

(47)

(48)

(49)

(50)

(51)

(52)

We now define the equivalent of the adjoint operation of the matrix (44).
In order to do so we have to define the complex conjugation operation for anti-

commuting objects. There are two ways to do it.
a) the (*) operation is defined:
(aB) =a*e*, 6**=6; (610,)*=6%6F}

(a is a complex number, 8are anticommuting objects)

(53)
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b) the (x) operationis defined [24]:

*
(a0)= a 6%, 8"%=-0, (870,)"=076} (54)
(notice the unusual property 6%XX=-g)
The adjoint ( +) and the superadoint ( S+) of the matrix (44) are

+

M-t M e (55)

notice that

(nN) .N+ (MN')S+ .NS+‘”_S+ (56)

We now Tist the classical supergroups (we do not include the exceptional ones).

SPL{m,n): M e€GL(m,n) ; sdetM =1 (57)
0SP(m,n): M &6L(m,n) (n=2p); MSTHM= H (58)
where
Im 0
where G is defined in Eq. (22).
P(n): M €bL(mm), MM =T, sdetM=] (60)
'_Q:m: MoesL(mm) ;£ =0 ,B=¢; sdetw.M. =1 (61)

In order to define the "compact" forms of the supergroups notice that there
exists two unitary groups:

U(m,n) : 8 ebL(m,n) sMMT =1 (62)
sU(m,n): M eGL(m,n) ;8M 5= (63)

The "compact" forms of the supergroups SPL{m,n) in OSP{m,n) are

USPL(m,n) : M €6L(n,n), sdetM =1,/444"=1 (64)
sOSP(m,n) =8 eGL(m,n) sMSTHM  =H; M5H=1 (65)

The theory of characters for supergroups can be found in [27] . The problem

of the integral over a supergroup is considered in Refs. [28,29,23, 19] .
The author is grateful to V.G. Kac, A. Pais and M. Scheunert for many useful

conversations and to H.-S. Tsao for reading the manuscript.
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