
AN INTRODUCTION TO STABILITY CONDITIONS

FRANCO ROTA

Abstract. In these notes we introduce the notion of stability condition on

the category of coherent sheaves on a smooth projective variety. These notes

are meant to be a guide for someone approaching the subject for the first time,
they are focused on examples and motivation to help intuition.
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1. Introduction and motivation

The classification problem which permeates many areas of study in algebraic
geometry is probably the main motivation for the study of moduli spaces. The
ideas behind a moduli space are very simple, and represent attempts to answer
questions like: is there a way to parametrize the set of objects I’m interested in?
How far are these two objects from being isomorphic to each other? What does
”far” in the previous question even mean?

One encounters moduli spaces very soon in algebraic geometry, often without
even noticing. A simple example of a moduli space is a linear series: we can regard
|OPn(k)| as a projective space whose points represent a hypersurface of degree k
in Pn. In some sense, a moduli space is a geometric object whose points represent
isomorphism classes of elements of some set. To be more precise, let’s focus on
moduli spaces of coherent sheaves on a variety. Given a smooth projective variety
X over a field k, we want to construct a scheme which parametrizes isomorphism
classes of coherent sheaves on X.

The case of line bundles is well understood: there exists a scheme PicX , called
the Picard scheme of X, whose k-rational points form the Picard group Pic (X).
This scheme is neither projective nor finite type, but it decomposes as

PicX =
⊔

Pic PX

and each component is projective and parametrizes line bundles with a given Hilbert
polynomial with respect to a very ample class O(1). The Hilbert polynomial of
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a line bundle L is χ(X,L(m)) =
∫

ch(L)ch(O(m))td(S) (recall the Hirzebruch-
Riemann-Roch formula). It only depends on the choice of the ample class and
c1(L). This suggests that when we try to generalize to higher rank we will need to
make assumptions on numerical invariants, if we want to obtain components which
are reasonably well-behaved. Unfortunately, fixing the Hilbert polynomial won’t
be enough to get the nice geometric properties we are interested in, as illustrated
by the next examples.

Example 1.1. Consider the family of rank 2 vector bundles En = O(n)⊕O(−n)
on P1. These are not isomorphic (for example, their spaces of global sections have
different dimensions, h0(En) = n + 1). However, their Hilbert polynomials agree:
ch(En) = rkEn + c1(En) = (2, 0) for all En. If a moduli space representing in
particular the En existed, even indexing its components with the Hilbert polynomial
wouldn’t give a scheme of finite type: the condition h0(En) ≥ m is closed, so we
would get an infinite, stricly descending chain of closed subschemes.

Example 1.2. On P1 the group Ext1 (O(1),O(−1)) = H1(P1, ωP1) has dimension
one. This means that non-trivial extensions

0→ O(−1)→ Eλ → O(1)→ 0

are isomorphic to O⊕O (the only other rank 2 vector bundle with 2 global sections
and trivial first Chern class). This yields a rank 2 vector bundle over A1 × P1

resctricting to O ⊕ O above λ × P1 for λ 6= 0 and to O(−1) ⊕ O(1) above zero.
Again, assume that a moduli space M existed. By its universal property, the vector
bundle above corresponds to a map A1 →M which sends the line minus the origin
in a point x corresponding to O ⊕ O and the origin to a different point y. This
gives a way to extend the constant map to x defined on A1 − 0 which is different
from the obvious assignment 0 7→ x. In other words, M is not a separated scheme.

It is evident at this point that we need to add some extra condition to hope for
the existence a well-behaved moduli space. To make a more precise statement, if X
is a smooth projective variety over k, and P is a fixed Hilbert polynomial, denote
by (∗) the aforementioned extra condition. We are interested in the functor

M :(Sch/k) → Sets

S 7→ {E ∈ Coh(S ×X)|E S-flat, ∀s ∈ S : P (Es) = P,Es satisfies (∗)} / ∼
where the equivalence relation is given by E ∼ E ⊗ p∗M for some M ∈ Pic (S).

Definition 1.3. We say that a functor M is corepresented by a scheme M if
there exists a natural transformation α : M→ Hom(−,M) such that every other
transformation M→ Hom(−, N) factors through a unique M → N , i.e.:

M Hom(−,M)

Hom(−, N)

∃!

α

In this case, M is said to be a moduli space forM. It is a coarse moduli space if we
have a bijection M(k) → M(k). It is a fine moduli space if α is an isomorphism.
In this case we say that M represents M. This last condition is equivalent to the
existence of a universal family over M ×X
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Our hope is to find a notion of stability which can guarantee the existence of
a moduli space for M. In these notes, rather than explaining why an efficient
notion of stability is the one presented below, we want to illustrate how this notion
generalizes to a much broader framework.

2. Stability for vector bundles on curves

Consider a smooth projective curve C over an algebraically closed field, and
denote by Coh(C) the cateogry of coherent sheaves on C.

Definition 2.1. A coherent sheaf E ∈ Coh(C) is said to be µ-stable (resp. µ-
semistable) if E is torsion free (i.e. locally free), and all proper torsion free sub-
sheaves 0 6= F ⊂ E satisfy

µ(F ) < µ(E) (resp. µ(F ) ≤ µ(E) )

where µ(E) =
deg(E)

rk(E)
is called the slope of E.

The notion of µ-stability, or the more general definition of stability à la Gieseker,
turns out to be a suitable notion of stability for the construction of a moduli space
of sheaves, indeed:

Theorem 2.2. Fix a smooth projective curve C, and a Hilbert polynomial P . Then
the functor

M :(Sch/k) → Sets

S 7→ {E ∈ Coh(S × C)|E S-flat, ∀s ∈ S : P (Es) = P,Es µ-stable } / ∼iso
is corepresented by a projective scheme M . The closed points of M parametrize
isomorphism classes of stable sheaves with Hilbert polynomial P .1

We shall rewrite stability in a way which is better suited to the generalizations
we want to make. Define

Z(E) = −deg(E) + irk(E)

and let the phase φ(E) ∈ (0, 1] of a nonzero sheaf E be uniquely defined by

Z(E) ∈ exp(iπφ(E)) · R>0

Then, the stability function Z defines

Z : Coh(C)− {0} → H := H ∪ R<0.

We can talk about phases rather than slopes, because of the following:

Lemma/Definition 2.3. Suppose E ∈ Coh(C) is locally free. Then E is µ-stable
iff for all proper subsheaves 0 6= F ⊂ E we have the following inequality:

(1) φ(F ) < φ(E).

Likewise for µ-semistability. Moreover, observe the formulae µ(E) = − cot(πφ(E))
and πφ(E) = cot−1(−µ(E)).

Proof. Write
Z(E)

rk(E)
= −µ(E) + i. �

1For more on this part, see [2].
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It seems natural to extend the definition of (semi)stability to the whole Coh(C)
in terms of the (weak) inequality (1). This allows to treat torsion sheaves and
vector bundles with the same machinery. The following properties will guide us in
generalizing the notion of stability.

Proposition 2.4. The following semi-orthogonality properties hold:

• Let 0→ K → E → G→ 0 be a short exact sequece in Coh(C). Then

φ(K) < φ(E)⇔ φ(E) < φ(G);

• Let F 6= E ∈ Coh(C) be semistable (resp. stable) such that φ(E) > φ(F )
(resp. φ(E) ≥ φ(F )). Then

Hom(E,F ) = 0;

• If E,F are stable and φ(E) ≥ φ(F ), then either E ' F or Hom(E,F ) = 0;
• if E is stable, then End(E) ' k.

Proof. For the first assertion: write equivalent inequalities for slopes and use ad-
ditivity of degree and rank. The second assertion is proved as follows: let a be a
nontrivial map a : E → F , let K ⊂ E be the kernel. Then by semistability and the
first statement:

φ(E/K) ≥ φ(E) > φ(F ) ≥ φ(E/K)

a contradiction. Similarly one proves the other statements. �

Proposition 2.5. Every E ∈ Coh(C) admits a Harder-Narasimhan filtration
0 = E0 ⊂ E1 ( . . . ( En = E such that the quotients Ai := Ei/Ei−1 are semistable
sheaves of phase φ1 > . . . > φn. The Ai are called semistable factors of E, they’re
unique.

Example 2.6. Let’s illustrate the above notions on P1. Suppose a coherent sheaf
on P1 has the form E = E1⊕ (

⊕
a1>...>an

O(ai)), where E1 is the torsion part and
also the first semistable factor. The Harder-Narasimhan filtration of E is given by

El = E1 ⊕

(⊕
i<l

O(ai)

)
for l ≥ 2. Indeed, E1 is semistable since all its subobjects are torsion, hence
of phase 1, and the subsequent quotients Ai ' O(ai) are semistable sheaves of
decreasing degree (hence of decreasing slope and of increasing phase). The only
other possibility is that 2 or more ai coincide. In that case, arrange the filtration
to group them tohether in the same quotient. Indeed, the direct sum of two stable
vector bundles of the same slope is again semistable. A hint on how to prove this:
consider F ⊂ E ⊕ G, and let F1 := F ∩ (E ⊕ {0}) and F2 be the image of the
projection of F to G. Then F = F1 ⊕ F2, and...

We can also introduce the following subcategories:

Definition 2.7. For φ ∈ (0, 1], let

P(φ) := {E ∈ Coh(X)|E is semistable of phase φ}

considered as full linear subcategories of Coh(C).
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3. Stability conditions

In this section we generalize the definition of µ-stability as presented above to
the broader framework where A is an abelian category. Simultaneously we will also
give definitions for a triangulated category D, a reason why this will be needed is
illustrated in example [4.2].

Definition 3.1. A slicing of A (resp. of D) is a collection of full additive subcat-
egories P(φ) ⊂ A for φ ∈ (0, 1] (resp. P(φ) ⊂ D for φ ∈ R) such that:

(1) Semi-orthogonality: Hom(P(φ1),P(φ2)) = 0 if φ1 > φ2;
(2) Harder-Narasimhan: for all 0 6= E ∈ A there exists a filtration 0 = E0 ⊂

E1 ( . . . ( En = E such that the quotients Ai := Ei/Ei−1 ∈ P(φi)
and φ1 > . . . > φn (For E ∈ D, replace the inclusions with morphisms
Ei−1 → Ei and the quotients Ai with the respective cones).

(3) In the triangulated case, we require P(φ)[1] = P(φ+ 1).

We will call semistable of phase φ the objects in P(φ), and stable the minimal ones
among those, i.e. those without any proper subobject.

We also need to introduce the general version of the function Z in the previous
section:

Definition 3.2. A stability function or central charge on an abelian category A
is a linear map Z : K(A) → C such that Z(E) = Z([E]) ∈ H = H ∪ R<0 for all
0 6= E ∈ A. Given a slicing P of A, we say that Z is compatible with P if for all
0 6= E ∈ P(φ) we have

(2) Z(E) ∈ exp(iπφ(E)) · R>0.

Similarly, but without restrictions on the image, a stability function on a triangu-
lated category is a linear map Z : K(D)→ C. Compatibility is defined in the same
way, just notice that in this case not all objects E ∈ D have a well defined slope
(since the kernel of Z is nontrivial: it contains for example all objects of the form
F ⊕ F [1]).

Definition 3.3. A stability condition on an abelian category A is a pair σ = (P, Z)
of a slicing of A and a compatible stability function. Likewise for a triangulated
category2.

Remark 3.4. Suppose we consider the abelian category Coh(X) of a smooth pro-
jective variety.

We are particularly interested in stability conditions which are geometric, i.e.
such that point like objects (e.g. skyscrapers k(x)) are semistable of phase 1.

Moreover, we can restrict our attention on a particular class of stability functions.
Recall that the motivation for this study is the construction of moduli spaces, hence
our interest goes to the numeric properties of the sheaves. In particular, we can
focus our attention on functions Z : K(Coh(X)) → C which factor through the
Chern character ch : K(Coh(X)) → H∗(X,C). Thus, we can regard the central
charge as an element of H∗(X,C)∗. Stability conditions of this kind are called
numerical.

2In this case, an additional finiteness requirement on the slicing is needed.
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4. Examples

4.1. Numerical stability conditions on curves of positive genus. All numer-
ical stability condition on Db(C) for a smooth curve C, g > 0, induce3 µ-stability
on Coh(C). The argument, due to Bridgeland [6] and Macr̀ı [5], goes as follows.
First, one asseses the following:

Lemma 4.1. Suppose σ = (P, Z) is a numerical stability condition on Db(C),
where C is as above. Then all point sheaves k(x) and all line bundles L ∈ Pic (C)
are stable with respect to σ.

Now consider a line bundle L and a point sheaf k(x). Say that L is stable of
phase θ, by assumption k(x) has phase 1. Since Hom(L, k(x)) 6= 0, we deduce
θ < 1. On the other hand,

Hom(k(x), L[1]) ' Ext1 (k(x), L) ' Hom(L, k(x))∗ 6= 0

so θ+ 1 > 1 and θ > 0. This shows that all line bundles lie in the upper half plane
H. Now, consider the sheaf OC : suppose that Z(OC) = a + ib where b > 0. The
function Z must have the form

Z(r, d) = r(a+ ib)− d = −d+ ra+ rbi

since it’s numerical, linear, and it must fit what we know for k(x) and OC . Now
it’s easy to check that, for two numerical classes (r, d) and (r′, d′), if φ denotes the
phase induced by Z, we have

φ(r, d) < φ(r′, d′)⇔ r

d
<
r′

d′
.

If we translate back our work in the classical language, this is the stability condition
induced by µ-stability.

Since on a curve every vector bundle can be filtered using only point sheaves or
line bundles, this shows that the whole category Coh(C) is mapped in H. Another
fact we need to recall to conclude is that, on a curve, studying coherent sheaves is
enough to understand the derived category: any object of Db(C) splits as a sum of
shifts of coherent sheaves (see [3, Cor. 3.15]).

Remark 4.2. The case for P1 is more complicated. This is due, roughly speaking,
to the presence of many full exceptional sequences (cfr. [3, Sec. 1.4]). For a more
complete survey on this, see [7] or [8].

4.2. A first approach at surfaces. Fix a smooth projective surface S and a
curve C ⊂ S. It is not possible to build a geometric stability condition on Coh(S)
in which the sheaf OC is semistable of phase θ < 1. Given these assumptions
the image of Coh(S) does not lie in the upper half plane. Indeed, consider the
sequences

(3) 0→ OC(−C)→ OC → δ → 0

where δ is supported on a finite lenght subscheme. By geometricity, δ ∈ P(1),
hence Z(OC(−nC)) lies on the same horizontal line, distinct from the real axis
(since θ < 1) for all n. Then the sequence

(4) 0→ OS(−nC)→ OS(−(n− 1)C)→ OC(−(n− 1)C)→ 0

3We are being sloppy here. For a precise statement, see for example [1]
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implies that Z(OS(−nC)) will eventually fall off the region H.
This example illustrate the necessity of the more general definitions for the cate-

gory Db(S), in which we allow the central charge to have bigger image. The solution
to the problem presented in the example will be to tilt the category Coh(S) within
Db(S)4.

4.3. Perspectives. Stability conditions on surfaces provide a broad and interesting
landscape. Indeed, moduli spaces of Bridgeland stable sheaves tell us a lot about
the birational geometry of the classical space of Gieseker stable sheaves. A precise
study of these problems is performed by Bayer and Macr̀ı for K3 surfaces (see
[9],[10]) and by Bertram, Martinez and Wang for Del Pezzo surfaces (in bigger
detail for P2) in [11]. Bridgeland stability conditions were also successfully applied
to the study of the minimal model program for the Hilbert scheme of points on P2

in [12].
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