

Holographic QCD

Status and perspectives for the future

Shigeki Sugimoto (Kavli IPMU)

Claim:

String theory can be a theory of hadrons

The string scale here is around 1 GeV.

I'm NOT saying QCD is wrong.

(in a certain curved background)

"Holographic QCD"

"Gauge/String duality"

How can we realize QCD in string theory?

Comments

 We try to get rid of the states that contain these unwanted modes as much as possible

using a symmetry argument.

These artifacts may contribute in loops.
 We simply hope the contributions are not large.

cf) quench approximation in lattice QCD

Holographic QCD

 N_c D4-brane on S^1 + N_f D8- $\overline{D8}$ pairs (low energy) $SU(N_c)$ QCD

with N_f massless quarks

replace D4 with curved background

[Witten 1998]

String theory in the D4 background

+ N_f D8-branes

dual

Open + closed string theory in this background

"Holographic QCD" 6

(low energy)

$$SU(N_c)$$
 QCD with N_f massless quarks

Open + closed string theory in this background

parameters:

$$\begin{cases} M_{\rm KK} \sim \text{ cut off scale} \\ \lambda = g_{\rm YM}^2 N_c \end{cases}$$
 ('t Hooft coupling)

 $\left\{ egin{array}{l} {
m string \ coupling} \propto 1/N_c \ {
m string \ length} & \propto \lambda^{-1/2} \end{array}
ight.$

good description for

$$\begin{cases} \text{large } N_c \\ \text{large } \lambda &\longleftrightarrow \text{low energy}_{\scriptscriptstyle 7} \end{cases}$$

Chiral Sym Breaking

 N_c D4-brane on S^1 + N_f D8- $\overline{
m D8}$ pairs

replace D4 with curved background

String theory in the D4 background

+ N_f D8-branes

$$U(N_f)_L \times U(N_f)_R$$
 \downarrow

D8

 \downarrow

D8

$$U(N_f)$$
 \updownarrow
Connected D8

As expected in QCD!

Do we have hadrons?

Particles in this system

Closed strings

Open strings on D8

 \bullet D4 wrapped on S^4

 N_{c} strings are attached

Surprise:

A lot of properties of hadrons can be extracted using this new description!

Caution:

- We have only estimated the leading terms in the $1/N_c$ and $1/\lambda$ expansions.
- M_{KK} is around 1 GeV.
- Quark masses are neglected.

We should not expect too much. But, don't be too pessimistic!

Meson effective theory is written as

a 5 dim $U(N_f)$ YM-CS theory in a curved background.

$$(x^{0\sim 3},z)$$

$$S_{\text{5dim}} \simeq S_{\text{YM}} + S_{\text{CS}} \qquad k(z) = 1 + z^2 \qquad \text{CS5-form}$$

$$S_{\text{YM}} = \kappa \int d^4x dz \, \text{Tr} \left(\frac{1}{2} h(z) F_{\mu\nu}^2 + k(z) F_{\mu z}^2 \right) \qquad S_{\text{CS}} = \frac{N_c}{24\pi^2} \int_5 \omega_5(A)$$

$$h(z) = (1 + z^2)^{-1/3}$$

$$A_{\mu}(x^{\mu},z) = \sum_{n\geq 1} B_{\mu}^{(n)}(x^{\mu})\psi_n(z)$$

$$A_{z}(x^{\mu},z) = \sum_{n\geq 0} \varphi^{(n)}(x^{\mu})\phi_n(z)$$

complete sets of functions of z

$$\varphi^{(0)} \sim \text{pion} \quad B_{\mu}^{(1)} \sim \rho \text{ meson} \quad B_{\mu}^{(2)} \sim a_1 \text{ meson} \quad \cdots$$

$$S_{\text{5dim}}(A) = S_{\text{4dim}}(\pi, \rho, a_1, \rho', a'_1, \cdots)$$

traditional meson effective action

A lot of models are reproduced without making any phenomenological assumptions!

Skyrme model [Skyrme 1961]

next

slide

Vector meson dominance [Sakurai 1960, Gell-Mann-Zachriasen 1961]

Gell-Mann Sharp Wagner model [Gell-Mann –Sharpe-Wagner 1962]

Hidden local symmetry [Bando-Kugo-Uehara-Yamawaki-Yanagida 1985]

Son-Stephanov's bottom up holographic model [Son-Stephanov 2003]

masses and couplings roughly agree with experimental data.

[Sakai-S.S. 2004, 2005]

	I			coupling	our model	experiment
mass	ρ	a_1	ρ'	f_{π}	▶ [92.4 MeV]	92.4 MeV
exp.(MeV)	776	1230	1465	L_1	0.584×10^{-3}	$(0.1 \sim 0.7) \times 10^{-3}$
our model	[776]	1189	1607	L_2	1.17×10^{-3}	$(1.1 \sim 1.7) \times 10^{-3}$
ratio	[1]	1.03	0.911	L_3	-3.51×10^{-3}	$-(2.4 \sim 4.6) \times 10^{-3}$
	^			L_9	8.74×10^{-3}	$(6.2 \sim 7.6) \times 10^{-3}$
			J	L_{10}	-8.74×10^{-3}	$-(4.8 \sim 6.3) \times 10^{-3}$
input —				$g_{ ho\pi\pi}$	4.81	5.99
				$g_ ho$	0.164 GeV ²	0.121 GeV ²
(to fix M_{KK}, λ)				$g_{a_1 ho\pi}$	4.63 GeV	2.8 ~ 4.2 GeV

• w meson decay
$$(\omega \to \pi^0 \gamma \text{ and } \omega \to \pi^0 \pi^+ \pi^-)$$

• Our model predicts that the relevant diagrams for $\omega \to \pi^0 \gamma$ and $\omega \to \pi^0 \pi^+ \pi^-$ are

Exactly the same as the GSW model!

[Gell-Mann -Sharp-Wagner 1962]

Furthermore, we find

$$\Gamma(\omega \to \pi^0 \gamma) = \frac{N_c^2}{3} \frac{\alpha}{64\pi^4 f_\pi^2} \left(\sum_{n=1}^{\infty} \frac{c_n g_{\rho^n}}{m_{\rho^n}^2} \right)^2 |\mathbf{p}_{\pi}|^3 = \frac{N_c^2}{3} \frac{\alpha}{64\pi^4 f_\pi^2} \frac{g_{\rho\pi\pi}^2}{g_{\rho\pi\pi}^2} |\mathbf{p}_{\pi}|^3$$

reproduces the proposal given by Fujiwara et al!

 Other mesons, including higher spin mesons, are obtained as excited open string states.

rotating open string meson [Imoto-Sakai-S.S. 2010]

- 1st excited states
 - $\rightarrow a_2(1320), b_1(1235), \pi(1300), a_0(1450), \cdots$
- 2nd excited states
 - $\rightarrow \rho_3(1690), \ \pi_2(1670), \ \cdots$
- The existence of isovector mesons with 2⁻⁻, 1⁺⁻, 0⁺⁺ around 1700 MeV is suggested.
- No good candidate states for $a_0(980)$, $\pi_1(1400)$
 - → Suggesting that they are 4 quark states.

Baryon spectrum

We can analyze the spectrum, magnetic moments, charge radii by quantizing this soliton cf) Skyrme model

Properties of nucleons

	our result	exp.
$\left \langle r^2 \rangle_{I=0}^{1/2} \right $	0.74 fm	0.81 fm
$\left \langle r^2 \rangle_{I=1}^{1/2} \right $	0.74 fm	0.94 fm
$\left \langle r^2 \rangle_A^{1/2} \right $	0.54 fm	0.67 fm
$g_{I=0}$	1.7	1.8
$g_{I=1}$	7.0	9.4
g_A	0.73	1.3

[Hashimoto-Sakai-S.S. 2008]

[See also, Hong-Rho-Yee-Yi 2007, Hata-Murata-Yamato 2008, Kim-Zahed 2008]

nucleon ele-mag form factor

Summary of Status

Qualitative features

Confinement, Chiral symmetry breaking, ... understood from the geometry of the background.

Spectrum of hadrons

glueballs, mesons and baryons

←→ closed, open strings and D-branes

Comparison with experimental data is encouraging.

Structure of interaction

Many old phenomenological models are reproduced.

A lot of couplings are calculated and compared with experimental data.

Perspectives

More accurate calculation

 $1/\lambda$, $1/N_c$ corrections

- \leftrightarrow α' , loop corrections in string theory
- Connection to perturbative QCD

Go beyond $1/\lambda$ expansion

Need some clever ideas

Phase structure

Many works including T, μ, E, B, \cdots

Actively developing area of research.

Large T and/or density are more challenging.

What happens if we have many baryons?

Baryon = soliton in $5dim U(N_f)$ theory

- $(x^{0\sim 3},z)$

 - Soliton wants to be near z=0
- Repulsive at short distance mainly because of U(1) charge.

U(1) part
$$\ni \omega$$
-meson

Finite density

higher density

[Rozali-Shieh-Van Raamsdonk

- -Wu 2007, Kaplunovsky-Melnikov
- -Sonnenschein 2012, de Boer
- -Chowdhury-Heller-Jankowski 2012]

Quarkyonic phase?

Interpretation is not clear to me yet.

Conclusion:

String theory can be a theory of hadrons

