
Monads and interaction:
Lecture 4

Tarmo Uustalu

MGS 2021, Sheffield, UK, 12–16 Apr. 2021



Monad-comonad interaction laws



Effects happen in interaction

To run,

an effectful (effect-requesting) program behaving as
a computation

needs to interact with

a environment
that an effect-providing (coeffectful) machine behaves as

E.g.,

a nondeterministic program needs a machine making choices;
a stateful program needs a machine coherently responding to fetch
and store commands.



Monad-comonad interaction laws

Let C be a Cartesian category. (Symmetric monoidal works too.)

A monad-comonad interaction law is given
by a monad (T , η, µ) and a comonad (D, ε, δ)
and a nat. transf. ψ typed

ψX ,Y : TX × DY → X × Y

such that

X × Y X × Y

X × DY

id×εY 66

ηX×id ((
TX × DY

ψX,Y // X × Y

TTX × DDY
ψTX,DY// TX × DY

ψX,Y // X × Y

TTX × DY

id×δY 55

µX×id ))
TX × DY

ψX,Y // X × Y

Legend:
X – values, TX – computations
Y – states, DY – environments (incl an initial state)



Reader monads

TX = S ⇒ X (the reader monad),

DY = S0 × Y (the coreader comonad)

for some S0, S and c : S0 → S

ψ (f , (s0, y)) = (f (c s0), y)

Legend:
X – values, S – “views” of stores (data states),
Y – (control) states, S0 – stores (data states)



State monads

TX = S ⇒ (S × X ) (the state monad),

DY = S0 × (S0 ⇒ Y ) (the costate comonad)

for some S0, S , c : S0 → S and d : S0 × S → S0
forming a (very well-behaved) lens

ψ (f , (s0, g)) = let (s ′, x) = f (c s0) in (x , g (d (s0, s
′)))

Legend:
X – values, S – “views” of stores (data states),
Y – (control) states, S0 – stores (data states)



Free functor-algebras monads (free monads)

Free monad for intensional nondeterminism:

TX = µZ .X + Z × Z ,

DY = νW .Y × (W + W )

ψX ,Y : TX × DY → X × Y

ψ (in (inl x), e) = (x , fst (out e))

ψ (in (inr (c0, c1)), e) = case snd (out e) of

{
inl e′ 7→ψ (c0, e

′)
inr e′ 7→ψ (c1, e

′)

Free monad for intensional store manipulation:

TX = µZ .X + (S ⇒ Z ) + (S × Z ),

DY = νW .Y × (S ×W )× (S ⇒W )

ψX ,Y : TX × DY → X × Y

ψ (in (inl x), e) = (x , fst (out e))

ψ (in (inr (inl f )), e) = let (s, e′) = fst (snd (out e)) in ψ (f s, e′)
ψ (in (inr (inr (s, c))), e) = ψ (c , snd (snd (out e)) s)



Monad-comonad interaction laws are monoids

A functor-functor interaction law is given
by two functors F ,G : C → C and a family of maps

φX ,Y : FX × GY → X × Y

natural in X ,Y .

A functor-functor interaction law map between (F ,G , φ), (F ′,G ′, φ′)
is given by nat. transfs. f : F → F ′, g : G ′ → G such that

FX × GY
φX,Y // X × Y

FX × G ′Y

id×gY 33

fX×id
++
F ′X × G ′Y

φ′X,Y // X × Y

Functor-functor interaction laws form a category with a
composition-based monoidal structure.

These categories are isomorphic:
monad-comonad interaction laws;
monoid objects of the category of functor-functor interaction laws.



Some degeneracy thms for func-func int laws

Assume C is extensive (“has well-behaved coproducts”).

If F has a nullary operation, i.e., a family of maps

cX : 1→ FX

natural in X (eg, F = Maybe)
or a binary commutative operation, i.e., a family of maps

cX : X × X → FX

natural in X such that

X × X

sym

��

cX

**
FX

X × X
cX

44

(eg, F =M+
fin) and F interacts with G , then GY ∼= 0.



A degeneracy thm for mnd-cmnd int laws

If T has a binary associative operation, ie a family of maps
cX : X × X → TX natural in X such that

(X × X ) × X

ass

��

`X

--
TX

X × (X × X )
rX

11

where

`X = (X × X ) × X
cX×ηX // TX × TX

cTX // TTX
µX // TX

rX = X × (X × X )
ηX×cX // TX × TX

cTX // TTX
µX // TX

(eg, T = List+), then any int law ψ of T and D obeys

(X × X ) × X × DY

fst×id×id
��

`X×id // TX × DY
ψX,Y

((
X × X × DY

cX×id // TX × DY

ψX,Y // X × Y

X × (X × X ) × DY

id×snd×id
OO

rX×id // TX × DY

ψX,Y

66



Residual interaction laws

Given a monad (R, ηR , µR) on C.

Eg, R = Maybe, M+ or M.

A residual functor-functor interaction law is given
by two functors F ,G : C → C and a family of maps

φX ,Y : FX × GY → R(X × Y )

natural in X , Y .



Residual interaction laws ctd

A residual monad-comonad interaction law is given
by a monad (T , η, µ), a comonad (D, ε, δ)
and a family of maps

ψX ,Y : TX × DY → R(X × Y )

natural in X , Y such that

X × Y X × Y

ηRX×Y

��

X × DY

id×εY 77

ηX×id ''
TX × DY

ψX,Y// R(X × Y )

TTX × DDY
ψTX,DY// R(TX × DY )

RψX,Y// RR(X × Y )

µRX×Y

��

TTX × DY

id×δY 55

µX×id ))
TX × DY

ψX,Y // R(X × Y )

R-residual functor-functor interaction laws form a monoidal category
with R-residual monad-comonad interaction laws as monoids.



Duals



Duals

Given a functor/monad/comonad, is there a “greatest”
functor/comonad/monad interacting with it?

TX × DY //

��

X × Y

TX × ?Y

88

The same question makes sense in the presense of a residual monad
R.



Dual of a functor

Assume again that C is Cartesian closed
(or symm monoidal closed).

For a functor G : C → C, its dual is the functor G◦ : C → C is

G◦X =
∫
Y
GY ⇒ (X × Y )

(if this end exists).

(−)◦ is a functor [C, C]op → [C, C]
(if all functors C → C are dualizable;
if not, restrict to some full subcategory of [C, C] closed under
dualization).

G◦ = G −? Id where G −? (−) is the right adjoint of (−) ? G
and F ? G is the Day convolution of F and G .



Dual of a functor ctd

The dual G◦ is the “greatest” functor interacting with G .

These categories are isomorphic:

functor-functor interaction laws;
pairs of functors F , G with nat. transfs. F → G◦;
pairs of functors F , G with nat. transfs. G → F ◦.

FX × GY → X × Y nat in X ,Y

FX →
∫

Y
GY ⇒ (X × Y )︸ ︷︷ ︸

G◦X

nat in X

FX × GY //

��

X × Y

G◦X × GY

88 F //

��

G◦

G◦



Some examples of dual

For GY = 0, we have G◦X ∼= 1
and, for GY = G0Y + G1Y , we have G◦X ∼= G◦0 X × G◦1 X .

For GY = 1, we have G◦X ∼= 0.

For GY = A× G ′Y , we have G◦X ∼= A⇒ G ′◦X .

For GY = A⇒ Y , we have G◦X ∼= A× X .

For GY = A⇒ G ′Y , we only have G◦X ← A× G ′◦X .

Id◦ ∼= Id.

But we only have (G0 · G1)◦ ← G◦0 · G◦1 .

For any G with a nullary or a binary commutative operation, we
have G◦X ∼= 0.



Dual of a comonad / Sweedler dual a monad

The dual D◦ of a comonad D is a monad.

This is because (−)◦ : [C, C]op → [C, C] is lax monoidal, so send
monoids to monoids.

But (−)◦ is not oplax monoidal, does not send comonoids to
comonoids.

So the dual T ◦ of a monad T is generally not a comonad.

However we can talk about the Sweedler dual T • of T .

Informally, it is defined as the greatest functor D that is smaller than
the functor T ◦ and carries a comonad structure η•, µ• agreeing with
η◦, µ◦.



Dual of a comonad / Sweedler dual of a monad ctd

Formally, the Sweedler dual of the monad T is the comonad
(T •, η•, µ•) together with a natural transformation ι : T • → T ◦

such that

Id

e ,,
Id◦

e−1

kk

T•

η•
OO

ι // T◦
η◦
OO T• · T•

ι·ι // T◦ · T◦
mT,T --

(T · T )◦

??

mm

T•

µ•
OO

ι // T◦
µ◦
OO

and such that, for any comonad (D, ε, δ) together with a natural
transformation ψ satisfying the same conditions, there is a unique
comonad map h : D → T • satisfying

Id
e // Id◦

Id

T•

η•

OO

ι // T◦

η◦

OO

D

ε

OO

h 66
ψ

33

T• · T•
ι·ι // T◦ · T◦

mT,T // (T · T )◦

D · D

h·h 55
ψ·ψ

22

T•

µ•

OO

ι // T◦

µ◦

OO

D

δ

OO

h
44

ψ

11



Some examples of dual and Sweedler dual

Let TX = List+X ∼= Σn : N. ([0..n]⇒ X )
(the nonempty list monad) .

We have T ◦Y ∼= Πn : N. ([0..n]× Y )
but T •Y ∼= Y × (Y + Y ).

Let TX = S ⇒ (S × X ) ∼= (S ⇒ S)× (S ⇒ X )
(the state monad).

We have T ◦Y = (S ⇒ S)⇒ (S × Y )
but T •Y = S × (S ⇒ Y ).



An algebraic-coalgebraic perspective



Stafeful runners

Given

a resid mnd-cmnd int law, i.e., nat transf typed
ψX ,Y : TX × DY → R(X × Y ) subject to eqns

a coEM coalgebra (Y , χ : Y → DY ) of D
(a “cohandler”)

we get

a nat transf typed θX : TX × Y → R(X × Y ) subject to other eqns
(a resid stateful runner)

by

θX = TX × Y //TX×χ // TX × DY
ψX,Y // R(X × Y )

Where do these constructions with EM (co)algebras come from?



Alternative definitions

If C is Cartesian closed (or symmetric monoidal closed), R-resid
mnd-cmnd int laws of T ,D can be defined in multiple ways:

TX × DY → R(X × Y ) nat in X ,Y subj to eqs

C(X × Y ,Z )→ C(TX × DY ,RZ ) nat in X ,Y ,Z subj to eqs

T (Y ⇒ Z )→ DY ⇒ RZ nat in Y ,Z subj to eqs

D(X ⇒ Z )→ TX ⇒ RZ nat in X ,Z subj to eqs

(Yoneda again!)

(A symm monoidal closed category will also do.)

Legend:
X – values
Y – states
Z – observables

(values for residual computations)
X × Y → Z – observation functions



A (co)algebraic view

Resid mnd-cmnd int laws are in a bijection with coalgebra-algebra
exponentiation functors:

T (Y ⇒ Z )→ DY ⇒ RZ nat in Y ,Z subj to eqs

(coEM(D))op × EM(R)

Uop×U
��

// EM(T )

U

��
Cop × C ⇒ // C

(Y , χ : Y → DY ), (Z , ζ : RZ → Z ) 7→ (Y ⇒ Z ,T (Y ⇒ Z )→ (Y ⇒ Z ))

(coKl(D))op ×Kl(R)

LDop×RT

��

// EM(T )

U

��
Cop × C ⇒ // C



A (co)algebraic view ctd

Explicitly, given a resid mnd-cmnd int law ψ,

the corresponding (co)alg exp functor E sends
an EM-coalgebra (Y , χ) of D and an EM-algebra (Z , ζ) of R to the
EM-algebra (Y ⇒ Z , ξ) of T where

ξ = T (Y ⇒ Z )
ψY ,Z // DY ⇒ RZ

χ⇒ζ // Y ⇒ Z

Conversely, given a (co)alg exp functor E ,

the corresponding resid mnd-cmnd int law is

ψY ,Z = T (Y ⇒ Z )
T (εY⇒ηRZ )// T (DY ⇒ RZ )

eY ,Z // DY ⇒ RZ

where (DY ⇒ RZ , eY ,Z ) = E ((DY , δY ), (RZ , µR
Z )).



Intermediate views

In fact the picture is finer, there are also two intermediate bijections:

MCILR(T ,D)
∼= ∼=

[(coEM(D))op, (SRunR(T ))op]cp.

∼=

[EM(R),CRunD(T )]cp.

∼=
[(coEM(D)op × EM(R),EM(T )]ce.

where

SRunR(T ) - R-residual stateful runners of T
CRunD(T ) - D-fuelled continuation-based runners of T



Stateful runners

For any Y , we have

R-residual stateful runners of T w/ carrier Y , ie
TX × Y → R(X × Y ) nat in X subj to eqs

monad morphisms from T to StRY , ie
TX → Y ⇒ R(X × Y ) nat in X subj to eqs

EM(R) //

U

��

EM(T )

U

��
C

Y⇒(−) // C

where StRY is the R-transformed state monad
for state object Y given by

StRYX = Y ⇒ R(X × Y )



Continuation-based runners

For any Z , we have

D-fuelled continuation-based runners of T w/ carrier Z , ie
D(X ⇒ Z )→ TX ⇒ Z nat in X subj to eqs

monad morphisms from T to CntDZ , ie
TX → D(X ⇒ Z )⇒ Z nat in X subj to eqs

(coEM(D))op //

U

��

EM(T )

U

��
C

(−)⇒Z // C

where CntDZ is the D-transformed continuation monad
for answer object Z given by

CntDZX = D(X ⇒ Z )⇒ Z



EM algebras of T w/ carrier Y ⇒ Z as runners

For any Y ,Z , we have

state and continuation based runners of T w/ carrier Z , ie
C(X × Y ,Z )→ C(TX × Y ,Z ) nat in X subj to eqs

monad morphisms from T to xCntStY ,Z ∼= xCostCntY ,Z , ie
TX → Y ⇒ xCntZ (X × Y )

∼= xCostY (X ⇒ Z )⇒ Z nat in X subj to eqs

EM algebras of T with carrier Y ⇒ Z

where

xCntZX = C(X ,Z ) t Z
xCntStY ,ZX = Y ⇒ xCntZ (X × Y )

= Y ⇒ (C(X × Y ,Z ) t Z )
xCostYX = C(Y ,X ) • Y

xCostCntY ,ZX = xCostY (X ⇒ Z )⇒ Z
= (C(Y ,X ⇒ Z ) • Y )⇒ Z



Monoid-comonoid interaction laws



Residual interaction laws and Chu spaces

The Day convolution of F , G is

(F ? G )Z =
∫ X ,Y C(X × Y ,Z ) • (FX × GY )

(if this coend exists).

These categories are isomorphic for a given monad R:

R-residual functor-functor interaction laws;
Chu spaces on the symm monoidal category ([C, C], J, ?) with vertex
R, ie, triples of two functors F , G with a nat transf F ? G → R.

(if ? is defined for all functors).

FX × GY → R(X × Y ) nat in X ,Y

C(X × Y ,Z)→ C(FX × GY ,RZ) nat in X ,Y ,Z∫ X ,Y C(X × Y ,Z) • (FX × GY )︸ ︷︷ ︸
(F?G)Z

→ RZ nat in Z



Residual interaction laws and Chu spaces ctd

We do not immediately get another chacterization of the category of
R-residual monad-comonad interaction laws.

We have to use that [C, C] has a duoidal structure (Id, ·, J, ?).

In particular, ? is oplax monoidal wrt (Id, ·), so there are structural
laws

Id ? Id→ Id
(F · F ′) ? (G · G ′)→ (F ? G ) · (F ′ ? G ′)

with the requisite properties.

This duoidal structure induces a monoidal structure on Chu(R)
based on (Id, ·).

R-residual monad-comonad interaction laws are monoid objects of
Chu(R) wrt this monoidal structure.



General residual interaction laws

Instead of an endofunctor category, one can consider any duoidal
category (D, I , �, J, ?).

Given a monoid object (R, ηR , µR) wrt. (I , �), we get a (I , �)-based
monoidal structure on Chu(R).

An R-residual monoid-comonoid interaction law is a monoid object
of Chu(R).

Explicitly, it is given by a monoid (T , η, µ), a comonoid (D, ε, δ) and
a map ψ : T ? D → R such that

I ? I // I

ηR

��
I ? D

id?ε 99

η?id %%
T ? D

ψ // R

(T � T ) ? (D � D) // (T ? D) � (T ? D)
ψ�ψ// R � R

µR

��

(T � T ) ? D

id?δ 55

µ?id **
T ? D

ψ // R


