Monads and interaction:
Lecture 4

Tarmo Uustalu

MGS 2021, Sheffield, UK, 12-16 Apr. 2021

Monad-comonad interaction laws

Effects happen in interaction

@ To run,

an effectful (effect-requesting) program behaving as
a computation

needs to interact with

a environment
that an effect-providing (coeffectful) machine behaves as

e Eg,

@ a nondeterministic program needs a machine making choices;
o a stateful program needs a machine coherently responding to fetch
and store commands.

Monad-comonad interaction laws

@ Let C be a Cartesian category. (Symmetric monoidal works too.)

@ A monad-comonad interaction law is given
by a monad (7,7, 1) and a comonad (D, ¢,)
and a nat. transf. ¥ typed

’pr)yZTXXDY—>X><Y

such that
P TX,DY L'8%
) XXY—XXxY) TTX x DDY —> TX x DY —> X x Y
|d><y, idx 8y
X x DY TTX x DY
nm ¥YX,Y % X,y
TX x DY —> X x Y TX x DY XxY

@ Legend:
X — values, TX — computations
Y — states, DY — environments (incl an initial state)

Reader monads

@ TX =S = X (the reader monad),
DY = Sp x Y (the coreader comonad)
for some Sp, Sand c: Sy — S

° ¢ (f,(s0,y)) = (f(cs0),y)

o Legend:
X — values, S — “views" of stores (data states),

Y — (control) states, Sp — stores (data states)

State monads

@ TX =5 = (S x X) (the state monad),
DY = Sy x (Sp = Y) (the costate comonad)

for some Sp, S, c:Sp— Sandd:5 xS —= S
forming a (very well-behaved) lens

° ¢ (f,(s0,8)) =let (s,x) = f (cs0) in (x,8(d (50,5)))

@ Legend:
X —values, S — “views" of stores (data states),
Y — (control) states, Sp — stores (data states)

Free functor-algebras monads (free monads)

@ Free monad for intensional nondeterminism:
o TX=pZX+2Zx12,

DY =vW.Y x (W + W)

Yx,y : TX X DY - X xY

¥ (in (inlx), e) = (x, fst (out e))

¥ (in (inr (co, c1)), €) = case snd (out €) of {inl e = (co,)

inr e’ (cp, €’)

@ Free monad for intensional store manipulation:
e TX=puZX+(S=2)+(Sx 2),
DY =vW.Y x (Sx W) x (S= W)

¢X,y2 TX xDY - XxY
¥ (in (inl x), €) = (x, fst (out e))

¥ (in (inr (inl f)), e) = let (s, e’) = fst(snd (out €)) in ¥ (f s, €’)
¥ (in (inr (inr (s, ¢))), €) = ¥ (¢, snd (snd (out €)) s)

Monad-comonad interaction laws are monoids

@ A functor-functor interaction law is given
by two functors F, G : C — C and a family of maps

bxy FX X GY 5 X x Y

natural in X,Y.
@ A functor-functor interaction law map between (F, G, ¢), (F', G, ¢')
is given by nat. transfs. f : F — F’, g : G’ — G such that

('
idx gy FX X GY —> X x Y

FX x G'Y

bxy
F'XxGY—>XxY

f xid
@ Functor-functor interaction laws form a category with a
composition-based monoidal structure.

@ These categories are isomorphic:
e monad-comonad interaction laws;
e monoid objects of the category of functor-functor interaction laws.

Some degeneracy thms for func-func int laws
@ Assume C is extensive (“has well-behaved coproducts™).
o If F has a nullary operation, i.e., a family of maps
cx:1— FX

natural in X (eg, F = Maybe)
or a binary commutative operation, i.e., a family of maps

ox X x X = FX

natural in X such that

XXX o
syml T
Xx X

(eg, F = M) and F interacts with G, then GY = 0.

A degeneracy thm for mnd-cmnd int laws

o If T has a binary associative operation, ie a family of maps
cx : X x X — TX natural in X such that

(X x X) x X Lx
aSS\L > X
r
X X (X % X) X
where
X XX TX mXx
by = (X X X) x X TX X TX TTX X
X Xex TX KX
ry = X X (X X X) TX x TX TTX X

(eg, T = List™), then any int law ¢ of T and D obeys

£y Xid
(X X X) X X x DY — > TX X DY

X,y
fst xid x id
cx Xid ¥x,

XXXXDY — > TXXDY — > XXY

idXsndXTd’? /
rx Xid WXy

X X (X X X) x DY — > TX x DY

Residual interaction laws

e Given a monad (R. 7", ") on C.
e Eg, R = Maybe, M™ or M.

@ A residual functor-functor interaction law is given
by two functors F, G : C — C and a family of maps

dx.y i FX x GY = R(X x Y)

natural in X, Y.

Residual interaction laws ctd

o A residual monad-comonad interaction law is given
by a monad (T,n, 1), a comonad (D, ¢, 0)
and a family of maps

Ux.y i TX x DY = R(X x Y)

natural in X, Y such that

P TX,DY Ribx y
, X xY X XY _TTX x DDY == R(TX x DY) == RR(X x Y)
idxey Wy,
X x DY Fxxy | TTX x DY 1Fxxy
nxxk X,y /L)(Xi\d X,y
TX x DY = R(X x Y) TX x DY R(X X Y)

@ R-residual functor-functor interaction laws form a monoidal category
with -residual monad-comonad interaction laws as monoids.

Duals

Duals

@ Given a functor/monad/comonad, is there a “greatest”
functor/comonad/monad interacting with it?

TX X DY —= X xY

7

TX x?Y

@ The same question makes sense in the presense of a residual monad
R.

Dual of a functor

@ Assume again that C is Cartesian closed
(or symm monoidal closed).

@ For a functor G : C — C, its dual is the functor G° : C — C is
G°X:fYGY:>(X>< Y)
(if this end exists).
e (—)° is a functor [C,C]°? — [C,C]
(if all functors C — C are dualizable;

if not, restrict to some full subcategory of [C,C] closed under
dualization).

e G° = G — Id where G — (—) is the right adjoint of (=) x G
and F x G is the Day convolution of F and G.

Dual of a functor ctd

@ The dual G° is the “greatest” functor interacting with G.

@ These categories are isomorphic:

o functor-functor interaction laws;
e pairs of functors F, G with nat. transfs. F — G°;
o pairs of functors F, G with nat. transfs. G — F°.

FX x GY - X x Ynatin X,Y
FX — [, GY = (X x Y) natin X
| S —

GoX

FX x GY ——= X xY F——G°

PV

GX><GY

Some examples of dual

@ For GY =0, we have G°X =1

and, for GY = GoY + G1Y, we have G°X = G5 X x G X.
@ For GY =1, we have G°X = 0.
@ For GY = Ax G'Y, we have G°X =X A= G'°X.

@ For GY =A= Y, we have G°X =X A x X.
@ For GY = A= G'Y, we only have G°X + A x G°X.

o Id° = Id.
@ But we only have (Gp - G1)° + Gg§ - Gy.

@ For any G with a nullary or a binary commutative operation, we
have G°X = 0.

Dual of a comonad / Sweedler dual a monad

@ The dual D° of a comonad D is a monad.

@ This is because (—)° : [C,C]°? — [C,(C] is lax monoidal, so send
monoids to monoids.

@ But (—)° is not oplax monoidal, does not send comonoids to
comonoids.

@ So the dual T° of a monad T is generally not a comonad.

@ However we can talk about the Sweedler dual T® of T.

o Informally, it is defined as the greatest functor D that is smaller than
the functor T° and carries a comonad structure 1®, u® agreeing with

n°, ue.

Dual of a comonad / Sweedler dual of a monad ctd

o Formally, the Sweedler dual of the monad T is the comonad
(T*,n®, pu®) together with a natural transformation ¢ : T®* — T°

such that
e mr.T
— Lot RN
d T d° T . T* ——=T°.7° (T-T)°

S T e

L

T LN T° T T°

and such that, for any comonad (D, ¢, §) together with a natural
transformation v satisfying the same conditions, there is a unique
comonad map h: D — T* satisfying

hh >

Some examples of dual and Sweedler dual

o Let TX = List™X = ¥n:N.([0..n] = X)
(the nonempty list monad) .

@ We have T°Y = n: N.([0..n] x Y)
but T°Y = Y x (Y + Y).

olet TX=5=(SxX)2(5=95)x(S=X)
(the state monad).

@ Wehave T°Y =(5=5)=(SxY)
but T*Y = S x (S = Y).

An algebraic-coalgebraic perspective

Stafeful runners

e Given
e a resid mnd-cmnd int law, i.e., nat transf typed
Yx,y : TX X DY — R(X x Y) subject to eqns
e a coEM coalgebra (Y,x : Y — DY) of D
(a “"cohandler”)
we get
e a nat transf typed 6x : TX X Y — R(X x Y) subject to other egns
(a resid stateful runner)
by

Ox = TX x Y 22X 7X x DY 2% R(X x V)

@ Where do these constructions with EM (co)algebras come from?

Alternative definitions

@ If C is Cartesian closed (or symmetric monoidal closed), R-resid
mnd-cmnd int laws of T, D can be defined in multiple ways:
TX x DY — R(X x Y) nat in X, Y subj to eqs
C(XxY,Z)—= C(TX x DY,RZ) nat in X, Y, Z subj to eqs
T(Y=Z2)— DY = RZ natin Y, Z subj to eqgs
D(X = Z) — TX = RZ nat in X, Z subj to eqs

(Yoneda again!)

(A symm monoidal closed category will also do.)

@ Legend:
X — values
Y — states

Z — observables
(values for residual computations)
X x'Y — Z — observation functions

A (co)algebraic view

@ Resid mnd-cmnd int laws are in a bijection with coalgebra-algebra
exponentiation functors:

T(Y = 2Z)— DY = RZ natin Y, Z subj to eqgs

(c0EM(D))°P x EM(R) —= EM(T)

\LUOPXU lu
c

CP x C —
(Yox:Y—=DY),(Z,(:RZ—=2Z)—(Y=Z,T(Y=2Z)— (Y= 2))

(coKI(D)) x KI(R) —= EM(T)

J/LD”xRT lu

CPxC— = - C

A (co)algebraic view ctd

o Explicitly, given a resid mnd-cmnd int law),

the corresponding (co)alg exp functor E sends
an EM-coalgebra (Y, x) of D and an EM-algebra (Z, () of R to the
EM-algebra (Y = Z,£) of T where

Yy,z x=¢

t=T(Y=2)—2 DY =RZ-—s vy =7

o Conversely, given a (co)alg exp functor E,

the corresponding resid mnd-cmnd int law is

T(ey=n5)

by z= T(Y = 2) - T(DY = RZ) — 2~ DY = RZ

where (DY = RZ,ey 7) = E((DY,éy),(RZ, uf)).

Intermediate views
@ In fact the picture is finer, there are also two intermediate bijections:

MCILg(T, D)

\
/

[(coEM(D))°P, (SRung(T))°Plep. [EM(R), CRunp(T)]ep.

/
\

[(coEM(D)°? x EM(R), EM(T)]ce.

where

SRung(T) - R-residual stateful runners of T
CRunp(T) - D-fuelled continuation-based runners of T

Stateful runners

@ For any Y, we have

R-residual stateful runners of T w/ carrier Y, ie
TX XY — R(X x Y) nat in X subj to eqs

monad morphisms from T to St ie
TX = Y = R(X x Y) nat in X subj to eqgs

EM(R) — EM(T)

Ul lu
=) 4

C———

where St¥ is the R-transformed state monad
for state object Y given by

SthX =Y = R(X x Y)

Continuation-based runners

e For any Z, we have

D-fuelled continuation-based runners of T w/ carrier Z, ie
D(X = Z) — TX = Z nat in X subj to egs

monad morphisms from T to Cnt?, ie
TX — D(X = Z) = Z nat in X subj to eqs

(coEM(D))°P —— EM(T)

where Cnt?2 is the D-transformed continuation monad
for answer object Z given by

Cnt2X =D(X = Z2)= Z

EM algebras of T w/ carrier Y = Z as runners

e For any Y, Z, we have

state and continuation based runners of T w/ carrier Z, ie
C(XxY,Z)—=C(TX x Y,Z) nat in X subj to eqgs

monad morphisms from T to xCntSty 7 = xCostCnty z, ie
TX = Y = xCntz(X x Y)
= xCosty(X = Z) = Z nat in X subj to egs

EM algebras of T with carrier Y = Z

where

xCntzX = C(X,Z)hZ

xCntSty zX = Y =xCntz(X xY)
= Y= (C(XxY,Z)h2)
xCosty X = C(Y,X)eY

xCostCnty 7z X xCosty (X = Z) = Z

= CY.X=2)eY)=7Z

Monoid-comonoid interaction laws

Residual interaction laws and Chu spaces
@ The Day convolution of F, G is
(FxG)Z = [XVC(X x Y,Z)e(FX x GY)
(if this coend exists).

@ These categories are isomorphic for a given monad R:

o R-residual functor-functor interaction laws;
o Chu spaces on the symm monoidal category ([C,C], J,*) with vertex
R, ie, triples of two functors F, G with a nat transf F x G — R.

(if % is defined for all functors).
FX x GY — R(X x Y) natin X, Y
C(X x Y,Z) — C(FX x GY,RZ) natin X,Y,Z
[YC(X x Y,Z) e (FX x GY) = RZ nat in Z

(FxG)Z

Residual interaction laws and Chu spaces ctd

We do not immediately get another chacterization of the category of
R-residual monad-comonad interaction laws.

We have to use that [C,C] has a duoidal structure (Id, -, J, *).

In particular, * is oplax monoidal wrt (Id,), so there are structural

laws
IdxId — Id

(F-FY*(G-G)—= (FxG)-(F/xG")
with the requisite properties.

This duoidal structure induces a monoidal structure on Chu(R)
based on (Id,-).

R-residual monad-comonad interaction laws are monoid objects of
Chu(R) wrt this monoidal structure.

General residual interaction laws

@ Instead of an endofunctor category, one can consider any duoidal
category (D, 1,0, J,*).

e Given a monoid object (R, 7R, uf) wrt. (I,¢), we get a (/,¢)-based
monoidal structure on Chu(R).

@ An R-residual monoid-comonoid interaction law is a monoid object
of Chu(R).

e Explicitly, it is given by a monoid (T,, 1), a comonoid (D, e,4) and
amap ¢ : T %D — R such that

Yorp
y I —>1 (ToT)x(DoD)—=>(T*D)o(T+xD)—=>RoR
w*s/ id/*‘s-/
I'+D 2Rl (ToT)D uR
"$ WM »

P
TxD—=>R T+D R

