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We say that a phenomenon is “stable” if it can occur in any dimension, or in any sufficiently large dimension, and if it
occurs in essentially the same way independent of dimension, provided, perhaps, that the dimension is sufficiently large.

- The Honorable Rev. John F.Adams

Introduction

The following theorem gives the canonical example of a stable phenomenon.

Theorem (Freudenthal, 1938). If X has dimension d and Y is (n − 1)-connected, then [X,Y ] → [ΣX,ΣY ] is an
isomorphism when d ≤ 2n− 2.

Corollary. When X and Y are finite, the sequence [X,Y ]→ [ΣX,ΣY ]→ · · · stabilizes.

Corollary. We can define the stable homotopy groups of spheres πSn = colimkπn+k(Sn).

Duality

Suppose we have X ↪→ Sn. Then Alexander duality gives us that H̃r(X) ' H̃n−r−1(Xc), where Xc denotes the
complement. Of course we can have different embeddings X ↪→ Sn, but it turns out that the complement of X is
nevertheless stably determined by X.

Definition 1. IfX and Y are finite complexes, we say thatX and Y are stably homotopy equivalent and writeX ∼ Y
if there is some m such that ΣmX ' ΣmY . We define the stable mapping space by {X,Y } = colim[ΣkX,ΣkY ].

Theorem (Spanier-Whitehead, 1953). If X,Y ⊆ Sn are stably homotopy equivalent, then so are Xc and Y c.

Proof. Since we have X ⊆ Sn we have ΣX ⊆ Sn+1. So without loss of generality, we can say that f : X → Y is a
homotopy equivalence. Then we embed Mf ⊆ Sn ∗ Sn (the join). Now we have X ↪→ Mf ←↩ Y , and this gives us
the homotopy equivalences S2n+1\X ← S2n+1\Mf → S2n+1\Y .

The Hopf Invariant Problem

We can often turn geometric problems into problems in stable homotopy theory, which gives us a rich set of tools to
attack our problems. For example, the Hopf invariant problem asks: For which n do we have S2n−1 → Sn with Hopf
invariant 1? This ends up requiring that in the the mapping cone X = Sn∪e2n, we have that Sqn : HnX → H2nX is
nontrivial. The Adem relations then immediately give us that we need n = 2t. In fact, we can make this construction
more generally; since the Steenrod squares are stable, then geometric questions about homotopy groups turn into
stable ones. More broadly, many of these questions can be rephrased as questions about whether certain classes in
the E2 page of the Adams spectral sequence are permanent.

Cobordism

We say that two k-manifolds M and N are cobordant if there is some compact (k + 1)-manifold W such that
∂W = M

∐
N ; in this case we write M ≡ N . We denote the equivalence classes Nk; these form a group under

disjoint union, and the graded group N∗ becomes a ring under Cartesian product.

Theorem (Thom, 1954). There is a sequence of spaces MO(n) and maps ΣMO(n)→MO(n+ 1) such that Nk
'→

colimnπn+k(MO(n)) =: πk(MO). It works out that N∗ = π∗(MO) = Z/2[xi : i 6= 2s−1] = Z/2[x2, x4, x5, x6, x8, . . .].
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The construction is very pretty. Suppose we have an embedding Mk ↪→ Rn+k ↪→ Rn+k ∪ ∞ = Sn+k. Let N
be a tubular neighborhood of M . Then we have the Thom collapse map Sn+k → N/∂N ∼= T (ν), where ν is the
normal bundle of the embedding Mk ↪→ Rn+k. But not that we can consider this as ν : M → BO(n), and so we
get a map on Thom spaces T (ν) → T (γn) =: MO(n). This ends up being well-defined since different embeddings
of M are isotopic in sufficiently large Euclidean spaces, and we obtain from M an element of π∗(MO).

Spectra

Of course, things would be much easier if we could treat the MO(n) as a single object. So, we define a “spectrum”
(which is in quotes because we’ll soon see fancier, more high-tech definitions).

Definition 2. A spectrum is a sequence of spaces {En} together with maps ΣEn → En+1.

We won’t say exactly how maps are constructed here, but the point is that built into the morphisms of this
category is the idea that they don’t need to be defined until some arbitrarily high suspension.

When spectra?

Let K be a (reduced) (generalized) cohomology theory. We have the following beautiful theorem.

Theorem (Brown, 1962). There is a spectrum {En} such that Kn(X) = [X,En].

In this setup, the coboundary map in the long exact sequence and excision give the diagram

Kn(X)
δ

'
- Kn+1(CX,X)

Kn+1(ΣX).

'

?

'
-

Representability gives us that these are [X,En], [ΣX,En+1], and [X,ΩEn+1]; this tells us that the adjoint map
En → ΩEn+1 must be a weak equivalence.

So to a cohomology theory we can associated a spectrum. Conversely, to a spectrum E we can define the
cohomology theory via Ek(X) := colimn[Σn+kX,En]. (If E came from a cohomology theory, then [Σn−kX,En] '
[X,Ωn−kEn] ' [X,Ek]. So this is good.)

We want a category that allows us to study both of these phenomena at once: homotopy theory of spaces and
cohomology theories.

What should the stable homotopy category SH look like?

1. We should have CW-spectra. More explicitly, we should be able to attach an n-cell by taking the cofiber
of a map CSn → X. This is important so that we can carry over CW approximation from the classical
setting, so that instead of having to invert weak equivalences we can just look at CW replacements. Then
weak homotopy equivalences are necessarily homotopy equivalences.

2. We want our category to be additive: it should be that X ∨ Y ' X × Y .

3. If we take a finite complex X and look at its suspension spectrum Σ∞X, our definitions should yield that
πkΣ∞X = colimnπn+kΣnX. This gives us a faithful embedding of spaces into spectra.

4. The suspension functor Σ : SH → SH should be an equivalence. (Since this is adjoint to looping, this will
give that taking loops is also an equivalence.)

5. We want Brown representability internal to the category of spectra.

6. Cohomology theories often come with more structure than just graded groups, e.g. cup products. We’d like
this structure to be witnessed by a map of spectra. For example, EnX ⊗EmX → Em+nX should come from
a map of spectra EE → E.

The good news is that we can do this! The bad news is that it’s quite difficult to get a sufficiently nice
construction that one can work with, and in fact there’s a theorem to the effect that no category of spectra can
have a smash product with all the properties we’d like.

2


