
A NON-ELEMENTARY PROOF OF THE SNAKE LEMMA

JONATHAN WISE

Abstract. Every student of homological algebra has proved the snake lemma.
Well, every student of homological algebra has at least proved the snake

lemma in the category of R-modules and then mumbled something about the
Freyd–Mitchell Embedding Theorem.

Okay, every student of homological algebra has at least made all of the

constructions in a proof of the snake lemma in the category of R-modules, done
some of the tedious verifications, and then gotten tired and done something

else.

We will give a proof that is valid in any abelian category and avoids all of
the unpleasant verifications. We also give a proof of Bergman’s salamander

lemma.

1. The snake lemma

The snake lemma is best stated with a picture:

(S)

0 0 0

K ′ K K ′′

A′ A A′′ 0

0 B′ B B′′

L′ L L′′

0 0 0

Theorem 1. In any abelian category, any diagram (S) of solid lines with exact
rows and columns can be completed by dashed arrows making the sequence of dashed
arrows exact.
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2. Abelian categories

Among the many axiomatizations of an abelian category, we will use the following
one:

Definition 1. A category C is abelian if it possesses the following properties:

AB0 finite products and finite coproducts exist and coincide;
AB1 all morphisms have kernels and cokernels;
AB2 images and coimages coincide.

The precise meaning of AB0 is that, for any finite set I and any family of objects
Ai indexed by i, the canonical map

∐
i∈I Ai →

∏
i∈I Ai, induced by the identity

maps on all Ai, is an isomorphism.
The axiomsAB1 andAB2 were given by Grothendieck [Gro57, §1.4]. Grothendieck

used a stronger assumption than AB0, but the conjunction of the axioms yields
the same notion of an abelian category.

2.1. The additive structure on morphisms. By itself, AB0 implies that the
set Hom(A,B) has the structure of a commutative monoid with unit for any A and
B in C . First we’ll construct the zero element of Hom(A,B). Let 0 ∈ C denote the
empty product, which by AB0 is also the empty coproduct. The empty product
is the final object of the category, so there is a unique morphism A → 0; likewise,
the empty coproduct is an initial object, so there is a unique morphism 0 → B.
Composing these gives a morphism A→ B that is also denoted 0.

Note first that there is a canonical identification

(1) Hom(A ⊔B,C ×D) ≃ Hom(A,C)×Hom(A,D)×Hom(B,C)×Hom(B,D)

from the universal properties of product and coproduct. We therefore write elements
of Hom(A ⊔B,C ×D) as 2× 2 matrices. In particular, there is a map(

id 0
0 id

)
: A ⊔A→ A×A.

Since products and coproducts coincide, this map is always an isomorphism.
We can now construct an addition law on Hom(A,B). Consider a pair of maps

f, g : A→ B. These induce a map (f, g) : A→ B ×B. We obtain

A

(
f
g

)
−−−→ B ×B

∼←− B ⨿B
∇−→ B.

The sum could also have been constructed as the composition

A
∆−→ A×A

∼←− A⨿A
( f g )−−−−→ B.
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Fortunately, diagram (2) is commutative so these definitions agree!

(2)

A×A A⨿A

A B

B ×B B ⨿B

f×g

∼

(
f

g

)
f⨿g

( f g )∆

(
f
g

)
∼

∇

We leave it as an exercise to verify that the addition law is commutative (use the
automorphism A × A ≃ A × A exchanging the factors) and associative (use the
isomorphism A× (A×A) ≃ (A×A)×A).

We will employ the following standard notation for cokernels and nonstandard
notation for kernels:

B/A = coker(A→ B)

B : A = ker(A→ B)

Lemma 1. In an abelian category C , a morphism with trivial kernel and cokernel
is an isomorphism.

Proof. Consider f : A→ B with trivial kernel and cokernel. Then we can factor f
as

A→ coim f
∼−→ im f → B.

But coim f = A/ ker(f) = A/0 = A and im f = (B : coker(f)) = (B : 0) = B. □

From now on, we will write products and coproducts with the same symbol: ⊕.
AssumingAB1, we can construct differences in Hom(A,B). Let i : K → A⊕A be

the kernel of∇ : A⊕A→ A. Composing with the two projections p1, p2 : A⊕A→ A
gives two maps p1i, p2i : K → A.

Lemma 2. The maps p1i and p2i are isomorphisms and p1i+p2i = 0 in Hom(K,A).

Proof. Let’s consider the cokernel:

coker(p1i) = A/p1iK = A⊕A/(0⊕A+ iK) = A/(∇(0⊕A)) = A/A = 0

Now let’s consider the kernel:

ker(p1i) ⊂ ker(p1) ∩ ker(∇).

But ker(p1) = 0 ⊕ A and ∇ restricts to the isomorphism 0 ⊕ A ≃ A on 0 ⊕ A.
Therefore ker(p1) ∩ ker(∇) = 0.

Thus p1i has zero kernel and zero cokernel. By Lemma 1, it must be an isomor-
phism. The proof for p2i is similar and is omitted.

Now, we compute p1i+ p2i. By definition,

p1i+ p2i = ∇
(
p1i p2i

)
= ∇i = 0,

as desired. □
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Now, p1i ◦ (p2i)−1 gives a map A → A called −id. As p1i + p2i = 0, it follows
that id+ (−id) = (p1i+ p2i) ◦ (p2i)−1 = 0. Composing with −id allows us to define
−f ∈ Hom(A,B) for any B. Thus Hom(A,B) has the structure of an abelian group.

2.2. Exact sequences.

Lemma 3. Suppose that X
f−→ Y

g−→ Z are morphisms in an abelian category and
gf = 0. Then the natural map (Z : Y )/X → Z : (Y/X) is an isomorphism.

Proof. We may identify (Z : Y )/X with coim(D : C → C/X) and Z : (Y/X) with
im(D : C → C/X). □

In the situation of the lemma, the notation Z : Y/X is unambiguous, so we omit
the parentheses in the future.

Definition 2. A sequence of morphisms

A
f−→ B

g−→ C

in an abelian category is said to be exact if any of the following equivalent conditions
hold:

(i) im(f) = ker(g)
(ii) coker(f) = im(g)
(iii) gf = 0 and C : B/A = 0

Lemma 4. Suppose that

(3) A→ B → C → D → E

is an exact sequence in an abelian category and X → B is any morphism. Then the
sequence

(4) A→ B/X → C/X → D → E

is also exact.

Proof. The exactness of (3) gives an isomorphism B/A → D : C. Dividing both
sides by X gives an isomorphism (B/X)/A→ D : C/X, which proves the exactness
of (4) at B/X and C/X. For exactness at D, we observe that E : D/(C/X) = E :
D/C = 0. □

3. Proof of the snake lemma

The proof proceeds by updating the diagram by taking a series of quotients and
kernels. Let’s begin with the sequence

(5) L′ → L→ L′′,
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which is easier to construct. Begin with the diagram

(6)

A′ A A′′ 0

0 B′ B B′′

L′ L L′′

0 0 0

Divide first by A′.

0 A/A′ A′′ 0

B′/A′ B B′′

L′ L L′′

0 0 0

∼

Then divide by A/A′.

0 0 0

B′/A′ B/A B′′/A′′

L′ L L′′

0 0 0

∼ ∼ ∼

This gives the exact sequence (5). A similar argument using kernels instead of
cokernels gives the exact sequence

(7) K ′ → K → K ′′

If we fill these arrows into diagram (S), we see that the only thing left to do is
produce a map K ′′ → L′ and show that it induces an isomorphism K ′′/K ≃ L :L′.
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First take quotients by K ′ and
kernels into L′′.

0 0

0 K/K ′ K ′′

A′/K ′ A/K ′ A′′ 0

0 B′ L′′ :B L′′ :B′′

L′ L′′ :L 0

0 0

Now divide by K/K ′ and take
kernels into L :L′′.

0

0 0 K ′′/K

A′/K ′ A/K A′′/K 0

0 L :B′ L :B L′′ :B′′

L :L′ 0 0

0

Finally, divide by A′/K ′ and take kernels into L′′ :B′′. Here is the result:

0

0 K ′′/K

0 B′′ :A/(K⊕A′) B′′ :A′′/K 0

0 L :B′/A′ (B′′⊕L) :B/A′ 0

L′ :L 0

0

∼

∼

∼

∼

∼

Now we can follow the chain of isomorphisms and the snake lemma is proved!

4. The salamander lemma

Theorem 2. Let K be an object of an abelian category, equipped with a morphism
d : K → K such that d3 = 0. Then the following sequence is exact:

(8) ker d2

im d
ker d
im d2

d
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The morphism ker d
im d2 → ker d2

im d is induced by the inclusions ker d ⊂ ker d2 and

im d2 ⊂ im d.

Proof. It is equivalent to show that the map

ker d2

im d

/ ker d

im d2
d−−−−→ ker d2

im d
:
ker d

im d2

is an isomorphism. We can identify this with

(9)
ker d2

im d+ ker d

d−−−−→ ker d ∩ im d

im d2

Under the map

d : ker d2 → ker d ∩ im d

we have d−1(im d2) = im d + ker d and d(ker d2) = ker d ∩ im d. Thus (9) is an
isomorphism. □

The Salamander Lemma concerns a double complex and is due to Bergman [Ber].
We will follow the presentation of [Ger]. Consider a position in a double complex:

A

a
b

c d

e
f

One introduces notation:

=A =
ker d

im c

A∥ =
ker e

im b

□A =
ker d ∩ ker e

im a

A□ =
ker f

im b+ im c
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Theorem 3 (Salamander Lemma). In a double complex containing (10), the se-
quence (11) is exact.

(10)

A

B C

D

r

α

β

s γ t

δ

ϵ

u

(11) A□ →=B → B□ →□C →= C →□D

First proof. Nothing will be changed in the sequence (11) if we replace diagram (10)
with

coker(r)

coker(s) ker(t)

ker(u)

α

β

γ

δ

ϵ

We can therefore assume r = s = t = u = 0 without any loss of generality. We can
rearrange the diagram linearly:

· · · α−→ A
β−→ B

γ−→ C
δ−→ D

ϵ−→ · · ·

Let K be the direct sum of all the entries, with ‘differential’ d : K → K. Note that
d3 = 0 so we can apply Theorem 2 to get an exact sequence:

ker γβ

imα

β−→ ker γ

imβα
→ ker δγ

imβ

γ−→ ker δ

im γβ
→ ker ϵδ

im γ

δ−→ ker ϵ

im δγ

This is exactly the sequence we require. □

Second proof. We can also prove the Salamander lemma as a corollary of the snake
lemma. In Diagram (10), we can make the following replacements without changing
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the sequence (11):

A⇝ A/ im(r) + im(α)

B ⇝ B/ im(s)

C ⇝ ker(t)

D ⇝ ker(ϵ) ∩ ker(u)

Then the sequence (11) becomes

(12) C : A→ C : B → D : B/A→ D : C/A→ C/B → D/B

This is the snake in

(13)

C : A C : B D : B/A

A B B/A 0

0 D : C C D

D : C/A C/B D/B

□
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