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Twists of the Iwasawa-Tate Zeta Function

David J. Wright
Department of Mathematics, Oklahoma State University, Stillwater, OK 74078-0613, USA

Introduction

The intent of this paper is to develop the theory of a simple variation of the
adelic zeta function first described by Tate [14] and Iwasawa [9] in independent
efforts to simplify Hecke’s analysis of his L-functions attached to GréBencharak-
ters. Our “twists” of the Iwasawa-Tate zeta function arise in the framework
of a more general theory of zeta functions associated to representations of alge-
braic groups. Many of the basic problems of this general theory have already
been solved by Yukie and the author (see [20] and [21]) but still await appea-
rance in final written form. Thus, it seems worthwhile to give here a general
statement of these problems before proceeding to the very special case considered
in this paper.

Let k be a global field (i.e. algebraic number field or function field of a
curve defined over a finite field). Let A and A™ denote the ring of adeles and
the group of ideles of k, respectively. Let w be a quasicharacter of the idele
group trivial on the embedded group k™ of nonzero elements of k. The group
Q=0, of all such quasicharacters « has a natural Riemann surface structure.
Let ||, denote the usual idele norm on A ™, and for seC let w, be the principal
quasicharacter w,(t)=|t|a. Let Re(w) be the real part of we(, defined as the
unique real number ¢ such that |oj=w,.

For any reductive linear algebraic group G defined over k, let G, denote
the “adelization” of G over k as defined in [16], and let G, be the group of
k-rational points of G embedded as a discrete group in G,. For simplicity,
we shall fix G as Gl, now, although the theory to be described below can
also be effected for any reductive algebraic group with at least one nontrivial
k-rational character. Let p: G — Gl1(V) be an irreducible k-rational representation
of G in the finite-dimensional vector space V of dimension m. Let I be the
identity matrix in G. By Schur’s lemma, there is an integer d such that p(tl)
=t p(I) for all scalars t. We shall always assume that d>0. Let dg be any
convenient left-invariant measure on the quotient G,/G,. Let & (V,) be the
Schwartz-Bruhat space of functions on V,. For the time being, let ¥} be any
G,-invariant subset of V,. The zeta function associated to the representation
p may now be defined:

Z,, 0= | odetg Y P(pl)x)dg (&)

Ga/Gi er,’(
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for w in © and @ in ¥ (V). Unless necessary, we shall omit the subscript p.

There are several major phases to the investigation of this zeta function.
The first objective is to establish the absolute and locally uniform convergence
of Z(w, @) for all @ in & (V,) and all @ with sufficiently large real part. The
question of convergence amounts to determining the largest G,-invariant subset
Vi of ¥, such that this happens. This question can be settled by means of geome-
tric invariant theory and reduction theory.

The second main problem is to obtain the analytic continuation of the zeta
function to all of Q. The design of the zeta function envisioned the application
of the Poisson summation formula for this purpose. Let & denote the Fourier
transform of ®e.¥ (V) defined with respect to a suitable k-rational inner product
on V. Let p* be the contragredient representation to p with respect to this

. dm . .
inner product. Define ¥ =——. The main theorem should assert that under certain
n

assumptions Z(w, @) has an analytic continuation to all of  which is holomor-
phic everywhere except possibly for poles at w =y w, with

s=0,1,...,n—1Lk—(n—1),..., k—1,k
and y of finite order. Moreover, the following functional equation should hold
Z,(0,®)=Z, (0,0, D).

The third major problem is an extension of the previous one, namely, to
determine precisely the nature of the poles of the zeta function, including a
calculation of the leading terms of the Laurent expansions. The singularities
of the zeta function are largely determined by the nature of the “missing” lattice
points in its definition, that is, S;=V,— V. The answer to this problem should
be expressed in terms of special values of zeta functions associated to smaller
representations.

After these basic analytic questions have been answered about the zeta func-
tion, there remains the vague problem of interpretation of these results. Often
this will involve a great deal of analysis over local fields. The gencral idea
is that the answers to the above questions will reveal interesting information
about the distribution of the G,-orbits in V.

The above program was first delineated in something approaching this gene-
rality in the work of Sato and Shintani on zeta functions associated with preho-
mogeneous vector spaces (see [10, 12, 13]). For reasons connected with the
local analysis, they chose to deal exclusively with representations for which
there is a G-orbit of dimension equal to that of V, the so-called prehomogeneous
representations. For all the questions listed above there is no reason why such
an assumption must be made.

In the papers [18, 1, 2, 3], Datskovsky and the author presented an adelic
formulation of the above type for Shintani’s work on the natural representation
of Gl, in the space of binary cubic forms. The end product was a set of theorems
on the distribution of discriminants of cubic extensions of k. It is worth noting
an important difference between the representation in these papers and that
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in Shintani’s paper. Vectors x=(x,,x,, X3, X,) are identified with binary cubic
forms as follows

F(u,0)=x,u>+x,u?v+x3uv?+x,0°.

In Shintani’s work, the representation p(g) of geGl, is defined by the functional
equation

Fp(g)x(us U) = Fx((“; U)g)’

where we simply multiply the variable vector (u, v) on the right by g. In the
papers of Datskovsky and the author, a slightly twisted representation p’ defined
by

is used instead. For the representation p, the degree d turns out to be 3, whereas
for p’ we have d=1. For the twisted representation p’, the G,-orbits in V| are
in precise correspondence with the extensions of degree at most three of k.
This is not true for Shintani’s representation. One also has to deal with the
difference between k* and the subgroup k* of cubes in k*. While the residues
of the zeta function for p’ may be evaluated in terms of the Iwasawa-Tate
zeta function, in the case of p the analogous analysis leads to a twisted version
of this zeta function. This observation is what led to the subject of the present
paper.

We shall deal here only with the case G=Gl, and dim(V)=1. All the repre-
sentations are given by p,(t)x =t"x, for integral n. Let ¢ be a Schwartz-Bruhat
function on the locally compact abelian group A. Let |d ™ t|, be a multiplicative
Haar measure on A ™. The Iwasawa-Tate zeta function is a distribution defined
as follows

w, @)= | w@)®)|d™t]a.
Ax

Special choices of w and @ lead to all possible Hecke L-functions. The basic
references for this theory are [14] and [17]. A summary is given in Sect. 1
of [18]. Using the principle of telescoping series, we may rewrite the zeta function
as

@)= [ o@) ) O@x)|d tl.

A k* xek

It is in this guise that we see the natural generalization stated above. For any
positive integer n, define the n-th twist of the Iwasawa-Tate function by

Mo, @)= | o) Y &1"x)|d t]. (1.2)

A kX xek*
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This zeta function has no apparent Euler product decomposition for n> 1.
Indeed, if we mimic the telescoping of the Iwasawa-Tate zeta function, we arrive
at the formula

(@ B)=— Y [ @@ x)|d" tla, (13)

n xek>/kn Ax

where w, denotes the number of n-th roots of unity contained in k and k"
is the subgroup of n-th powers in k*. Nonetheless, the analytic continuation
of this twisted zeta function may be carried out exactly as in the untwisted
case. A summary of results is given in Sect. 1, in particular, Theorem 1.1.

The integrals that appear here in (1.3) are “orbital integrals” attached to
the orbit of x under multiplication by k" If the characteristic of k is prime
to n, there is a finite-to-one correspondence between elements of k*/k" and

Kummer extensions k(%). Thus, the properties of the twisted zeta function
are closely connected with the distribution of such extensions. In Sect. 2, we
shall briefly study the local versions of these orbital zeta functions. In Sect. 3,
we shall consider the product of these local zeta functions over all the places
of k. Along the way, we produce some interesting Dirichlet series as well as
their function-theoretic properties, assuming the characteristic of k does not
divide n.

Classically, the structure of k" /k" is studied by decomposing this group into
three parts, the ideal class group modulo the subgroup of n-th powers, the
group of units modulo n-th powers, and finally the full group of fractional
ideals of k again modulo the subgroup of n-th powers. Following such traditional
paths leads one to suspect that the Dirichlet series appearing in the twisted
zeta function are not so different from Hecke L-series after all. The main result
of Sect. 4 and the paper brings the study of the twisted zeta function back
to the original zeta function of Tate and Iwasawa. Let S be a finite nonempty
set of places of k including all infinite places. Let C,(S) be the finite group
of characters yeQ which are unramified outside S and which are trivial on
the subgroup A" of n-th powers in A*.

Theorem L1. Given any weQ and any Schwartz-Bruhat function ® on A, there
is a finite nonempty set S, of places of k containing all infinite places so that
for any finite set S8, we have '

/ /

(0", B=- Y (g, ) (L4)

XeCn(S)

It is proved in Sect. 1 (Prop. 1.2) that (" (w, #)=0 unless w is an n-th power
of a quasicharacter. The set S, depends heavily on w and @, although remarkably
the formula does not change by enlarging S, to S. The formula in this theorem
resembles an integral of some sort over Q. A direct derivation of this formula
via a change-of-variables theorem seems difficult because the group A" of n-th
powers of ideles is not open in A*. In fact, A" is a closed subset of measure



Twists of the Iwasawa-Tate Zeta Function 213

zero. It is important to note that the quasicharacter @ in (I1.4) is completely
arbitrary.

Much of the work of Sects. 1 through 3 is performed simply to illustrate
the analogue with the theory of the original Iwasawa-Tate zeta function and
also that of general zeta functions. Clearly, the short combinatorial proof of
the above theorem removes any essential need for those sections, since all the
results in those sections can be quickly deduced from (1.4). For arbitrary repre-
sentations, the properties of the zeta function are blindly pursued along the
lines of Sects. 1, 2, and 3. For instance, for the space of binary cubic forms,
the orbital decomposition analogous to (1.3} is

1
Z,(,®)= ) — [ o(detg)P(p(g)x)dg

xeGk\V"( X Ga

where y, is the order of the stabilizer of x in G,. Once again, there is no obvious
Euler product structure for the zeta function. In the case of the twisted zeta
function, Eq. (I.4) reveals all the associated Dirichlet series to be finite linear
combinations of Euler products. An analogue of (1.4) for the case of the space
of binary cubic forms is currently unknown; although, such a formula would
be immensely interesting. Part of the reason for presenting this paper is that
these twists of the Iwasawa-Tate zeta function are examples where the zeta
function is not itself an Euler product but is at least a finite linear combination
of Euler products.

The last section of this paper presents an application of this zeta function
theory to the analysis of discriminants of quadratic extensions of number fields.
We prove the following theorem (Theorem 5.2 and subsequent remarks).

Theorem L.2. Let k be a global field of characteristic not equal to 2. Choose
weQ with Re(w)>1 and the property that w* is unramified at all finite places.
Let S be any finite set of places of k containing all infinite places, all places
lying over 2, and all places at which w is ramified. Let C,(S) be the group of
all yeQ satisfying x> =1 and which are unramified outside S. Then

—IS8|

2
Y oUak/k)="——5 3 As(1o)Lis(xo)

[k':k]<2 Lk,S(w ) xeCa(S)

where L, s(w) are Hecke L-series (defined in Sect. 3), A ,(k'/k) is Fréhlich’s relative
idelic discriminant (see Sect. 5), and Ag is a finite sum defined by

As@)=]] Y w(4(K/k,).

veS [K:k, <2

This sum ranges over the quadratic extensions K of the local field k,, with A(K/k,)
being the relative discriminant.

A corollary to this theorem is the elegant identity

Y Aak/Ra=11{ X 314(K/k)}}

[k:k]1=£2 v [K:iky]£2
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which holds if and only if the absolute ray class group modulo 4 of k has
no elements of order 2. If the 2-primary part of this ray class group is nontrivial,
then in general the global discriminant series is a sum of twists of this Euler
product by the characters of order at most 2 of the same ray class group.

The conductor-discriminant formula of class field theory may also be used
to obtain similar results (see [3]). Our methods should be considered only as
a slightly more precise and elementary alternative.

There are a few conventions in our notation worth describing at the outset
of this paper. The fields of rational, real, and complex numbers are denoted
by @, R, and C, respectively. Given any ring R, the group of units is denoted
by R*, and the subgroup of n-th powers of units is written R". If T is a subset
of the set S, the complement of T'in S is denoted S— T.

The author would like to thank the Sonderforschungsbereich 170 in Got-
tingen for their hospitality during the preparation of part of this work and
the National Science Foundation for their support under NSF grant number
DMS-8601251.

Section 1. Global Theory

First, we shall establish some notational conventions that will be in force
throughout the remainder of this paper. Our notation will largely be drawn
from Sect. 1 of [18] and Sect. 6 of [2], which in turn is derived primarily from
[17]. Let k denote a global field (i.e. algebraic number field or function field
of a curve over a finite field). A and A* shall denote the ring of adeles and
group of ideles of k, respectively. Let M, be the set of all places of k. The
set of all infinite places of k shall be denoted by M_. For any place v, let
k, denote the completion of k with respect to v.

The absolute value | |, on k, is normalized to be the modulus function with
respect to any additive Haar measure on k,. The idele norm # , is similarly
defined as the modulus with respect to any additive Haar measure on A. The
usual product formula for this idele norm is then valid. Let A, denote the
group of all ideles with norm 1.

The space of Schwartz-Bruhat functions for a locally compact abelian group
X shall be denoted ¥ (X) (see [6], Ch.1I and Ch.IV for details). Next, we
fix a choice {( ) of a nontrivial additive character on A which is trivial on
k, and define the Fourier transform of a function @ in ¥ (A) by

S(y)= [ (x)<xy) |dx|s
A

where |dx|, is the self-dual measure on A with respect to < >. Then & is an
element of & (A), and we have

(x)= [ ()< —xy)|dyla.
A
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Moreover, the Poisson summation formula

Y. P(x)= 73 B(x)

xek xek

is valid for all ®e ¥ (A).

The multiplicative Haar measure |d* x|} on A, shall be chosen so that
the compact quotient A,/k™ has induced measure 1. If k is a number field
of degree m over @, for any positive real number A define 1=(a,)eA™ such
that a,=AY™ for all veM_, and a,=1 for all finite v. Then |A|,=A. The Haar
measure |d ™ x|, on A™ is then defined by

*dA
J o()1d* x|p= | - [ ®(2x)1d* x]a.
0

Ax Y ¥

If k is a function field with field of constants of order g, we may choose a
fixed element e A™ such that |n|,=¢q. Then the Haar measure |d™ x|, on
A is defined by

oC

f o) |d " x|la= Y [ &(n'x)|d*x]|4.

A I=—o A

Let Q denote the group of complex quasicharacters of A™ that are trivial
on k™. Q has a natural Riemann surface structure. The principal quasicharacters
are those of the form wy(x)={x|%, for any seC. All quasicharacters that are
trivial on A, are principal. The “real part” Re(w) of w is defined to be the
unique real number ¢ such that |o|=w,. Let Q, be the subgroup of quasichar-
acters w such that w(4)=1 for all positive 4 in the number field case and w(n}=1
in the function field case. Q, is a discrete topological group. Every quasicharacter
w is of the form w =& w, for some seC and a unique HeQ,.

Let n be a fixed positive integer. The n-th twist of the Iwasawa-Tate zeta
function is defined by

(o, @)= | o) ) ¢@"x)|d"t]a

A k> xek*
for weQ and P S (A). For n= 1, this is precisely the Iwasawa-Tate zeta function

{w, D)= [ w@)®(t)]d t],.

A

The relation between (" and { is not clear at this point. We shall present
the precise relation in Theorem 4.4, when the characteristic of k does not divide
n. That theorem makes much of the analysis in this and the following two
sections unnecessary, since the properties of the twisted zeta function may then
be easily derived from those of the original Iwasawa-Tate zeta function. Skimp-
ing somewhat on the details (on account of Theorem 4.4), we shall develop
the theory of {™ in a way entirely analogous to that used for {. First, an estimate
modelled after that of Lemma 1.1 of [18] may be used to show that {* converges
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for all @ and all Re(w)>n. To obtain the analytic continuation of (™, one
would then use the Poisson summation formula in the following form:

Y O x)=|t|z" Y B(t7"x).

xek xek

With this formula, simply follow the proof for n=1 given in [17]. Further
details of the proof of the next theorem are very clearly indicated in the references
cited above.

Theorem 1.1. For all ®€ % (B), ("™ (w, P) converges absolutely and locally uniform-
ly for Re(w)> n, and has an analytic continuation to all of Q, which is holomorphic
everywhere except possibly for simple poles at w=w, and w,. The residues there
are given by

Res C(n) (CU, (p) =C é5(0)3

=Wy,

Res {"(w, ®)= —c, (0),

w=wg

where ¢, =1 for number fields k and c,=(logq)~" for function fields k. Moreover,
(™ (w, D) satisfies the functional equation

("o, &)={" (v, D).
Finally, if k is a function field and yeQ,, x+1, then
{"(xo,, ®)=qNsP(y, ;97
for some integer N and some polynomial P(y, @; T). Also,

qMsP(®;q7°)
(1-g™(1—q")

Jfor some integer M and some polynomial P(®; T).

{(awy, P)=

Let u be any idele such that u"=1. The change of variables ¢ — tu establishes
the relation

(0, &)= 0 W) (o, &).

Thus, the twisted zeta function vanishes unless w(u)=1 for all such ideles w.
The Pontryagin duality theorem for locally compact abelian groups implies
that any quasicharacter satisfying this triviality condition is in fact an n-th
power of a quasicharacter. This proves the following.

Proposition 1.2. (™ (w, @) =0 unless o =y" for some YyeQ.

The final observations of this section concern the decomposition of (™ (w, ®)
into orbital integrals. Let w,=w,(k) denote the number of n-th roots of unity
contained in k*. A straightforward rearrangement proves
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Theorem 1.3. For Re(w)>n and & S (A),

(", ‘P)=i- 2 (o),

n xek> fkn
where the sum ranges over any complete set of coset representatives and

(0, 9)= [ o) P("x)|d" t|a.

A

This theorem indicates the connection between (™ and the structure of k *Jk™,
In turn, to each coset xek™/k" are associated the extensions k(]/?) generated
by n-th roots of x. To exploit this connection, we need to assume that the
characteristic of k does not divide n. It is precisely under this assumption when
given such a Kummer extension there are only finitely many corresponding
cosets in k*/k". Thus, with this assumption, Theorem 1.3 exposes (™ to be
a generating function counting the Kummer extensions of k of degree not greater
than n. However, it is worth emphasizing that all the preceding theory is true
independent of the characteristic of k.

We shall see that for Schwartz-Bruhat functions of “product form” the orbi-
tal zeta functions appearing in Theorem 1.3 decompose into a product over
all places of k of local orbital zeta functions. To the study of these local zeta
functions we now turn.

Section 2. Local Theory

Let K be a local field. Recall that these fields are divided into two categories,
that of IR-fields, consisting of R and €, and that of p-fields, those with residue
class field of characteristic p, for some prime p. Let |x| denote the modulus
of multiplication by xeK with respect to any additive Haar measure on K.
For any p-field K, the maximal compact subring shall be denoted by R, the
unique maximal ideal by P, and a fixed generator of P by n. Then |n|=q""
where q is the order of the residue class field R/P.

Let dx be any additive Haar measure on K. Let d*t be a multiplicative
Haar measure on K™, and let the positive constant a be such that d*t=a %—t‘
If K is a p-field, we shall always assume that a is chosen so that the measure
of R™ is 1. Let Q denote the group of quasicharacters of K. For any weQ,
let Re(w) denote its real part as usual.

For any ae K™, we, and ®c ¥ (K), define

(P, &)= | o@)P(t"x)d"t.

Kx
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When n=1, we write simply

{(w, @)= | w@d@®d™t.

K*

First, we shall discuss the convergence and analytic continuation of these local
orbital zeta functions. It is a simple matter to verify that, for any ae K *, integer
nz1, and ®e¥(K), the function ¥(x)=®(x"«) is also a Schwartz-Bruhat func-
tion on K. Thus, all the properties of the twisted local zeta function may be
deduced from those of the untwisted (n = 1) version and the equation

{0, P)={(w, ¥).

A list of these properties is given in Proposition 1.1 of [2]. At this point, we
limit our observations to the following.

Lemma 2.1. [’ (w, ®) converges absolutely and locally uniformly for all Pe ¥ (K)
and Re(w)>0. If @ vanishes at 0, {{(w, ) converges absolutely and locally uni-

formly to an entire function of w. (M (w, ®) has a meromorphic continuation to
all of Q.

In addition, for reasons analogous to those behind Proposition 1.2 in the
present paper, {(w, ®) vanishes unless  is trivial on the group of n-th roots
of unity contained in K. This in turn implies that w is an n-th power of a
quasicharacter of K *. Thus, it suffices to analyze {(w", ®).

We must now attend to a more detailed description of the orbital structure
of K* modulo multiplication by n-th powers. For brevity, we shall denote the
quotient group K*/K" by « =.o/,. When necessary, we shall also use .o/ to
refer to a specific set of coset representatives always chosen of the following
form. In the event that K is R, we take o/ ={+1} if n is even, and o ={1}
if nis odd. If K is €, we take .7 = {1}. When K is a p-field, we shall assume

o ={n'e|0<I<n,eeR*/R"},

where ¢ ranges over any complete set of coset representatives of R */R".

If K is a p-field, let ®,e.%(K) be the characteristic function of R. Then,
for any ael, @y(t"a)=d,(t) by a simple consideration of the absolute value
of t"a. Thus

if wis ramlﬁed

. 2.
—w(n)~!, otherwise @1)

0, 20)= | w()d r—{(l

This formula is crucial to the adelic calculations in Sect. 3.

To progress further, we must know something more about the structure
of R*/R". For the remainder of this section, we shall assume that the characteris-
tic of K does not divide n. It is precisely this assumption that guarantees that
R" is an open subgroup of R*. In fact, Hensel’s lemma implies that R">1
+ 7 n?R. Thus, when the characteristic is prime to n, R*/R" is a finite set.
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Integrals over K may be dissected into a sum of orbital integrals. Indeed,
for any locally integrable function @ on K, we have

fo(x)dx=3 [ @(x)dx.

aedd a(K*)m

The map x+—ax" is a continuous map of K* into K* with jacobian anx" '
The degree of this map is the number w,=w,(K) of n-th roots of unity contained
in K. Thus, by the change of variables theorem for a local field

_Inl

fP(x)dx Y ol [ Ix|"" ' @(ax") dx.

K n aeod
In terms of the multiplicative Haar measure, this formula becomes

|n

w

[ 1] @@)d™t= | Y Jof [ ¢]"®(atm)d* . (2.2)
K K

noacod

In particular, if we apply this formula to the characteristic function of R™,
when K is a p-field, we find that

Card(R*/R") = r}vﬂ .

By separate consideration of R and €, we may show that in complete generality

Card (K */K") = m . 2.3)
Applying (2.2) to the Iwasawa-Tate zeta function yields
(0.0)="1 T @ e, o) (2.4
n oacof

We can invert this equation by means of orthogonality of characters of finite
abelian groups. Let C,=C,(K) denote the group of yeQ satisfying y"=1. Then
C, may be naturally interpreted as the group of characters of the group ..
By duality of finite abelian groups, we have Card(C,)=Card (/). Then

Y 1@ on®="1 T Y 0r(f) 1) (P (", P)

26Cn Wa xeCy, Best

=nw(x) (P(w", D). 2.5

The functional equation for ¥ may be derived from the above formula
together with that for the untwisted case, presented in Sect. 1 of [2], among
other places. Let I'(w) and 1., be the local gamma factor and the local gauss
sum, respectively, as defined in Table 1.1 of [2]. (Be aware that I'(w) must strictly
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speaking be considered as a branched meromorphic function on ©.) Then the
local Iwasawa-Tate zeta function satisfies

Ioy 0™ ) (o, &)=1,(®) (0,0, D).
Applying this functional equation to (2.5) produces

|n] Tox I@y)

¥ { S 78 m}wm“(ﬁ) (0", )

n Bed \xeC,

(@) (P (0", )=

This functional equation is interesting because it gives an example of the kind
of explicit formula for the functional equation of the local zeta function of
a prehomogeneous vector space that would be most desirable (see [7] and [8]).

Section 3. Adelic Synthesis

In this section, we shall apply the local analysis of Sect. 2 to the decomposition
of the adelic zeta function presented in Theorem 1.3. All test functions ®e.¥ (A)
considered in this section shall be of “product form”, i.e. of the form

P(x)=[]P,(x,),

for functions @,e.%(k,). (Unless explicitly stated otherwise, all products written
as above shall be assumed to extend over all places v of k.) For almost all
finite places v, @, is the characteristic function @, , of the maximal compact
subring o, of k,,.

The idelic measure |d ™ t|, defined in Sect. 1 may be decomposed as a product
of local measures. For infinite places v, let |dt,]|, be the additive Haar measure
on k, for which the set of all tek, with absolute value less than one has measure
equal to 1, if v is real, and 2=, if v is complex. The multiplicative Haar measure

dt,l, .. . . . . e .

'It UTI_U if v is infinite, and, if v is finite, the measure
for which the compact subgroup o) of units has measure 1. Then the idelic
measure |d* t|, selected in Sect. 1 is a constant multiple of the product of all

these local measures, a relation we shall write as

|d>< tlA:plc‘l@'dx tv!v'

|d*t,], on kS is chosen to be

The constant p, has a well-known evaluation in terms of the basic number-
theoretical constants associated with k. This evaluation is presented in Sect. 6
of [2].

The adelic orbital zeta functions may now be unveiled as products of local
zeta functions

(P(@", P)=p 'T] | wi(t,) D,(tx)|d* 1],

v ky
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For every place v, let o7, be the set of representatives for k., /k} selected in
Sect. 2. For every xek™ and every place v, we may choose u, €k, and a unique
o, €., such that

X=uj o, ,. 3.1)

Then u, =(u, ,),cp, and a,=(a, ), m, define elements of A ™. Also, since w(x)=1,
we have o™ "(u,)=w(a,). Then

(0" @)=pi ‘@) ] | 0i(t,) @, (tha,) |d™ t, ],
v ky
The “tail” of this product may be simplified in the following sense. There
is a finite nonempty set S of places of k including all infinite places such that,
for all places v¢S, ¢=9@, , and w, is unramified. For each finite place v, let

n, be any generator of the unique maximal ideal of o,. Then, according to
Eq. (2.1),

Clgcn)(wn’ d))zpl: ! 0)(ax){n j wv(tu) (pv(tz au) Idx tv‘v} Lk,S(wn)a
veS k,
where
L s)=[]01-o,mx)""
vgS

This last Euler product is the most general form of a Hecke L-function. The
function-theoretic properties of the Hecke L-functions are well-known; indeed,
that was the purpose of the original treatment of {(w, ®). Thus, the analytic
continuation of the adelic orbital zeta function is now complete. Except for
a finite number of Euler factors, it is nothing other than a Hecke L-function.

We shall introduce an abbreviation for the finite product over the places
in S appearing in the above formula. Let </ be the cartesian product of all
o, with ve §, also viewed with the natural group structure. For any o« =(a,)e .9
set

(5@, @) =11 | o) ¢, (tye) [d™ t, ],
veS ky,

Given xek™, let « denote the corresponding representative in /. Then the
previous formula may be written

(", @)= py ' o (o) L, s (0") {s(", D).

Any representative ae.o/ defines a subset of A ™, namely, the set of all ideles
x such that x,ea,k for all veS. In subsequent notation, we shall use a to
denote the set of all cosets in k*/k" that belong to this corresponding subset
of A*. With that in mind, we define the Dirichlet series

Ers(w)= ), (o).

xeu

Remember that when n=1 this series collapses to be identically 1. The decompo-
sition in Theorem 1.3 may now be written

(o, ¢)=L—‘;S—(“i’ T () (", B). (3.2)

kWn  gews
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Equation (3.2) is valid under the assumptions stated above for w and @ with
regard to the choice of S.

To continue our analysis of these Dirichlet series, we must resume our suppo-
sition that the characteristic of k is prime to n. Under this assumption, the
subset corresponding to any ae.sZ is open in A*. Then for any weQ and
any a,e/,, we may choose ®,e%(k,) such that @, has compact support con-
tained in o, ky and also so that ({)(w}, @,) is nonzero. Thus, the properties
of &% follow quickly from those of (™ and ( stated in Sects. 1 and 2. We
shall refrain from a statement of these properties because we shall shortly see
that these Dirichlet series may be written as simple combinations of Hecke
L-functions.

Section 4. S-idelic Decompositions

We may derive another series expansion for £ by applying the S-idelic decom-
position to {". Throughout most of this section, we shall assume that S is
nonempty and contains all infinite places. Let A(S) and A *(S) denote the ring
of S-adeles and group of S-ideles of k, respectively. Once again, this standard
terminology and notation is drawn from Sect. 1 of [18] and Sect. 6 of [2].
For the benefit of the reader, we state here the definitions of A(S) and A *(S)
as direct products.

AS)={TTk}x{ITo}; B S)={[Tks} x{T]o}.

veS vegS veS vésS

Define og=kn A(S) and o5 =k* nA*(S) to be the ring of S-integers and the
group of S-units in k, respectively. Let o be the set of nonzero S-integers.
Let ks=]]k, and kg =]] k. For any Schwartz-Bruhat function @ of product

veS veS

form, let ®g be the restricted product (X)®,. Similarly, for any weQ, let wg(x)

veS

=[] w,(x,) for all xekg. We shall continue to suppose that w, is unramified
veS

and @,=d, , for all v¢S. For convenience, we shall also assume S is chosen
so large that the S-ideal class number of k is 1. That'is, we shall assume that
A* =AM (S)k*. This may always be achieved by including finitely many more
places in S. Note that A (S) is an open subgroup of A*. Thus, we may rewrite
the zeta function as follows:

(N, @)= | o) ), ot"x)|dt],

A*(S)k*[k* xekx

= [ 0@ o@Ex)|d tl

A (S)/os xek

=p U | ws(t) Y, Bst"x)|d* t]s.

kS jod x€o0%
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Here |d* t|g is the restricted product measure (X)|d*t,|,. The last equality fol-
veS
lows from the assumptions ¢,= @, , and w, is unramified outside S. In addition,
bear in mind that the measures are chosen so that o, has measure 1.
To this last formula, we may apply the same orbital decomposition argument
underlying the proof of Theorem 1.3. We obtain

("o, @)= Y [ os@estx)|d" tls

PrWn xeoxfiod)m kd

1
YUY 05w} {P(w9)

PrWn aed s Xeo0q/(0§ )"

where 0,=o0ga, considering a as a subset of A*. Comparison of this equation
with (3.2) proves

Ly s(@") ffz")s(w): Z wg " (uy),

XE0,/0%
once again substituting o" for w. In light of (3.1), we have

Ly s(@" Es(w)y=w(@) Y, os'(x). (4.1)

XE0,[0%

Here, w(a) is to be calculated by realizing o as an idele which is 1 at all places
outside S.
Specializing (4.1) to the case n=1, we obtain simply

Ly sw)= ) o5'(x).

xeok/os

This suggests using character sums to identify the right side of (4.1) in terms
of Hecke L-series. Any character y of the group .« corresponds to a character
on kg =[]k, which is trivial on all n-th powers. This may be extended to

veS
a character in Q unramified outside S if and only if y is trivial on the group
og of S-units in k. Summing over .2/, we obtain

Y i@ Y os'= Y ixwos' ()

acds X€0,/0% xeos/od

= Y Y ikxyos'xy)

xeogjo§ yeos [0%

after grouping into cosets modulo og. Since w is unramified outside S, wg is
trivial on S-units. Thus, the preceding sum may be written as

Y {Y i i es ' (x)

xeok/og yeo [o%
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The character sum inside the braces vanishes unless y is trivial on og. In the
latter case, ye 2, and the above sum simplifies to

Los :05] Ly, s(x ).
In addition, Dirichlet’s unit theorem implies that
Log o8] =w,n!SI~1,

At last, we have the identities of our series .

Proposition 4.1. If the character y of st is trivial on the image of the group
os of S-units in k, then

plsI-1 Lk,S(wX)
Ly s(@")

Y 07 70 (@) =w,

acdg

If x is nontrivial on og' , then the sum on the left side above vanishes.

Orthogonality of characters enables us to write the series EU in terms of
Hecke L-series. Let w, , denote the number of n-th roots of unity contained
in k,. Define |n|g=]]|n|, and w,s=][]w,,. The order of the group . is
then veS veS

n!Sl Wn.s

ldslz s

Let C,(S) denote the subgroup of characters of Q which are unramified outside
S and such that y"=1.

Propesition 4.2. We have

W, |nl 2 0@ Ls(@y)
e

nw, s

Ly (@™

Both these theorems assume that o is unramified outside S and that the
S-ideal class number of k is 1. Inserting this formula back into (3.2) leads us
to a formula for {™.

G"’(w",a>)=~l—{'"’s} Y Y 01 Ls(@n ", @)

NPk Wns) sews yeCuis)

1
=-{'”'S} Y Lis@r) Y oz@ 0", o)

P Wn,s) yecois) sests

The last sum may be evaluated in terms of the local Iwasawa-Tate zeta function
according to Eq. (2.5). Then, using (3.2) for the case n= 1, we establish the follow-
ing.
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Proposition 4.3. Given weQ and ®eF (D), let S be large enough so that the
S-ideal class number of k is 1, w, is unramified and ®,= P, , for v¢S. Then

1
C(") (wn’ ¢) = Z C(w X @)

xeCn(S)

For any global field, S may be enlarged to the point that the S-class number
is 1, as has already been mentioned. Thus, Propositions 4.2 and 4.3 may be
easily generalized to any finite set S including all infinite places and all finite
places v where w, is ramified or where @, is not @, , (this last inclusion being
only necessary for the situation of Proposition 4.3). Indeed, let S be such a
set, and let T be any set of places containing S and for which the T-class number
of k is 1. Given Be/y, let B|s denote the natural restriction of § to an element
of /. Then

(@)= ) &Pr(w)

Bls=a

the sum ranging over all e/ the restriction of which to & is a. Applying
Proposition 4.2 to the inner Dirichlet series, we obtain

a1
=" T Y o) Luren. @2)

N Wn,1 XCn(T) Bls=a
The sum inside the braces may be evaluated as

Y oxBy=ox@ [I { Y @B}

Bls=a veT—8S Bped,

Assuming that o is unramified outside S, the sum on the right side of the
preceding equation is

(Y B+, x(m)+...+o, x5, (15 ")
Boeoy [0}
Wyv (1 - wg(nu))
= Inlv (I—Q)va(nv))’
0, otherwise.

if x,(0,)=1,

Inserting this result into (4.2) proves Proposition 4.2 for the set S. Repeating
the argument prior to Proposition 4.3, we have at last

Theorem 4.4. Given weQ and P S (B), let S be any finite set of places of k
containing all infinite places and all places v at which w, is ramified or ®,+ P, ,,.
Then

1
(0" P)=— 3 (o9

2eCn(S)
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Section 5. Generating Series of Quadratic Discriminants

Equality of generating series is a powerful manner in which to describe relations
between arithmetic objects. The series ¢% count cosets in the quotient k™ /k"
which correspond, as has already been remarked, to extensions of k of the
form k(']'/;). Thus, the equality furnished by Proposition 4.2 may be used to
study the distribution of these extensions. We shall give a brief summary of
this method in this section in the case n=2, where the results are most elegant.

We must assume that the characteristic of k is not 2. In that case, there
is a one-to-one correspondence between the cosets of k*/k? and the extensions
of k of degree at most 2. Given xek”™, let o, be the idele of representatives
modulo squares defined in Sect. 3. The quantity a, is closely related to the
idelic discriminant 4 A(k(]&)/k) defined in [5]. We shall briefly review the defini-
tion of Frohlich’s discriminant. Let k'/k be a finite separable extension of global
fields. For any place v of k, we have

kK ®k,= DKk,
wlv
where the direct sum ranges over all places w of k' lying over v. The relative
discriminant 4(k,/k,) is defined in the usual way. For infinite places, 4(R/R)
=A4(C/C)=1 and A(C/R)= — 1. For finite places, 4(k/,/k,) is defined as det(6Y)?
where {0;} is an o,-module basis of the maximal compact subring of k,, and
0% ranges over the conjugates of 6; over k,. The discriminant is in this case
well-defined up to multiplication by the square of a unit. The v-part of the
discriminant of k'/k is defined to be
A, (k' [ky=T] A(k,/k,).
wlv

The idelic discriminant 4, (k'/k) is the idele whose v-component is 4, (k'/k).

To describe the relation between discriminants and a,, first consider local
extensions. For the moment, let n be arbitrary again. Let K be a local field
of characteristic not dividing n (see Sect. 2 for the notation used). For conve-
nience, we make the additional assumption that K contains all the n-th roots
of unity. To each ae.o/ =K*/K" we then associate the extension K, =K (]/&),
which is independent of the choice of n-th root. Then K. is of degree m over
K where m is the order of « in the group ., i.e. the smallest integer such
that «™e K" The calculation of the relative discriminant of K/K is in general
a delicate matter. Straightforward computation shows that the relative discrimin-
ant is a divisor of n"a" 1. If K is a p-field and p does not divide n, then the
extension K,/K is at worst tamely ramified, and the discriminant is easier to
describe. Let e be the smallest positive integer such that a®e R* K”. It follows
that e is a divisor of m. Moreover, without changing the extension K/, we
can arrange that a=n"¢¢"™ for some 8GR;. Then

AKJK)=mmme ™V gm=-1)
again up to multiplication by squares of units. When n=2, we have the following
complete statement, taken from [5].
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Lemma 5.1. Suppose K is a p-field of characteristic not equal to 2. Choose
aeR*uURR™.

() If p+2, then A(K()/2)/K)=1.
(i) If p=2, let e be the positive integer such that 2en°R™. For aenR”™,
we have A(K(V&)/K)=4oc. If aeR™, then

4
AK(/2/K)=—5;

where | is the largest integer less than or equal to e such that ae(l +n* R)R>.
All these equalities hold modulo squares of units.

Returning to the global extensions k’=k(1/;), we have as a consequence
of Lemma 5.1 that A,(k'/k)=a,,, for all finite places v of k not lying over 2.
We are now prepared to use Proposition 4.2 to identify the generating series
of quadratic discriminants

Ew)= ), o(dak/k)).

[k:k]s2

Having fixed a set ./, of representatives of k) /k? for all places v, we shall
suppose that each A4,(k'/k) belongs to .7,. This frees us to select any quasichar-
acter  whatsoever as the argument of &(w).

Choose S to be a finite nonempty set of places of k, containing all the
infinite places, all places v at which w, is ramified, and all places lying over
2. We may now reinterpret the series £2}(w) in terms of quadratic discriminants.
Each ae.o/ determines a collection of extensions k'/k, namely, all those of the
form k([/;) for some xea. Abusing our notation slightly, we shall write k'ea.
The condition that k'ea amounts to specifying k'®k, for each veS. Then

ER (@)= o)

Xeax

=ow() ), [[w(4,K/k).

k'ea v¢S
From Proposition 4.2 (extended by the remarks at the end of Sect. 4), we obtain

ey 2oy
L oak)="p 05" 3 1@ Ls@),

k'ea xeC2(S)

using the abbreviation

@ (4,) =[] oAk, (/2)/k,)).

veS
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In simplifying the coefficient in Proposition 4.2, we have made use of the facts
that all fields in question contain +1 and that |2|¢=1 provided S contains
all infinite places and all places over 2. Summing over all ae.of, we see that

=151

T Losw?)

¢(w) Y Asl@; 1) Ly s(@y), (5.1)

xeC2(S)
where
As(w; 0= ) x(@w(d,).

aed g

Reviewing the statement of Lemma 5.1, we see that in all cases « and 4 (k,,(]/&)/k,,)
differ only by multiplication by a square in k.. Thus, since ¥ is trivial on squares,
we may rewrite Ag(w; x) as Ag(wy) by means of the notation

As(w)y= ) w(4,). (5.2)

aeds

These finite sums Ag have a product decomposition

As(w)=[]4,(w) (5.3)

veS
with
4,(@)= ) o,4,).

aed,

To make (5.1) as explicit as possible, we must evaluate these finite sums. If
v is an infinite place, the possible values of this character sum are easily deter-
mined:

1, if k,=C,
A, (@)={2, if k,=IR and o,(-1)=1, (5.9
0, ifk=R and ow,(—-1)=-1.

If v is a finite place, the evaluation of 4,(w) depends on the choice of represen-
tatives for o,'/o7, unless we assume that , is trivial on 02 In the ensuing
calculations, we shall labor under this assumption. Using Lemma 5.1(i) and
the principle of orthogonality of characters, we find, for finite v not lying over 2,

20+ o,(m),  if o,0;)=1,

.5
0, otherwise. (53)

o=

When v lies over 2, we may use the description of local quadratic discrimin-
ants given in Lemma 5.1(ii). First of all, define the nonnegative integer e, by
|2|,=4, . Introduce the subgroup Q, of 0. /0o? consisting of all elements con-
gruent to a square modulo 72! for 0<I<e,. That is,

Qi=o0;(1+m3'0,)/0},



Twists of the Iwasawa-Tate Zeta Function 229
interpreting Qo =0, /02. The cardinality of Q, is
-1
[Qil=2q3"",

as may be most easily shown by applying (2.2) to the characteristic function
of (14 n2'0,). Then, according to Lemma 5.1,

Af@)={ Y o,@dne}+ Z 2 w(%)}

seo;/()% I1=0¢eQ1—Q1+1 v

Here, interpret Q, ., as the empty set. Given w,, let f be the largest integer
such that f <e,+ 1 and o, is trivial on Q. Then

(V1 = A
ZQ‘” 8)‘{0, if 1<,

by orthogonality of characters of finite abelian groups.

For simplicity, we introduce the abbreviation w,(n,)=q, * for some complex
number s,. Since 2en 0, we have d4en2 o2 Consequently, w,(4)=g, >,
since w, is trivial on o2. Assume first that /' =0.

e, e, 1
Av(w)=q.72e”“"{qv‘s”2qﬁ"+ Y ar2grT! = ) q3’5"2q$"”“‘}
1=0 1=0
_ B B 1_q5u<25v'1)
=243 ““){qv‘ S g0 V4 (1—g, ‘)W}. (5.6)

This formula does not simplify much further. However, it is worth noting that,
if s,=1, then A4, (w) simplifies to 2(1 +4, ').
Finally, if f >0, then a similar calculation shows

qf(lsu“ﬂ_q(ev’fl)(lsu‘l)
An(@)=2450 "2 (1 =gy ) = q;’sv_l : (5.7)

Although this formula does not simplify further, it is plain that this character
sum does not vanish as a function of w, unless f=e,+ 1. That is, 4,(w)=+0
unless w, is nontrivial on @, .

We summarize all these calculations in the theorem below.

Theorem 5.2. Let k be a global field of characteristic not equal to 2. Choose
wef with Re(w)> 1. Let S be any finite nonempty set of places of k containing
all infinite places, all places lying over 2, and all places at which w is unramified.
The generating series of relative discriminants of quadratic extensions of k may
be expressed in terms of Hecke L-functions as follows:

~|8]

2
Y oUalk/k)=7—5 Y As(rw)Lysxw)

3
[k':k]<2 Ly s(@%) yecais)
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where the finite character sums Ag are defined in (5.2). If we assume that w,
is trivial on o? for all finite places veS, then Ag is explicitly evaluated in (5.3)
through (5.7).

This identification of the discriminant series is as precise as possible. A result
of this nature can be derived from the conductor-discriminant formula of class
field theory (see [19]). From knowledge of the analytic continuation of L, g(w)
to all of 2 and from standard Tauberian theorems, we may deduce theorems
about the distribution of quadratic discriminants. Some of these theorems are
stated in Theorem 4.2 of [3].

The final question to be considered in this paper concerns any possible
further simplification in the formula established in Theorem 5.2. We shall sup-
pose that w=uw; is principal. Then the smallest set S we may choose consists
precisely of all infinite places and all the places lying over 2. (This will be
the empty set when k is a function field, assumed of characteristic not equal
to 2.) Given yeC,(S), A5(x w,) is nonzero as a function of s if and only if y,(—1)
=1 for all real places v and y, is trivial on Q.,=1+40, for all places v|2.
These are precisely the characters yeQ satisfying y>=1 and which are trivial
on

Us= [Tk x[](1+40)x J] o..

v|o v|2 vh2,0

These characters correspond to characters of A > /k* U,, which is the absolute
ray class group modulo 4 of k. If this ray class group has no elements of order
2, then the only y contributing a nonzero term to the expression for &(w) in
Theorem 5.2 is the trivial character. This establishes the following,.

Corollary 5.3. Assume that char(k)=2. The following equality holds if and only
if the absolute ray class group modulo 4 of k has no elements of order 2.

2 ak/ola=T1 3 ¥ 14K/k)E}.

[k':k]=2 veM; (K:k,]£2

In general, the discriminant series is a sum of twists of the stated Euler product
by Dirichlet characters, as stated in the introduction. This is established by
the same considerations preceding the corollary.
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