SKEW-SIMPLICIAL GROUPS

R. Krasauskas UDC 515.142.5

The present paper arose from an attempt to understand the connection between the phenomenon
of a cyclic object and the action of the circle on a topological space. The concept of cyc-
lic object lies at the base of the construction of cyclic homology, introduced independently
by A. Connes [1] and B. L. Tsygan [2]. There have already appeared dihedral, gquaternionic,
and symmetric objects [3, 4]. It turns out that all of them can be unified in the framework
of the general concept of the action of a skew-simplicial group on a simplicial object.

1t is shown in the first section that the category of skew-simplicial groups has a non-
trivial final object W., consisting of the Weyl groups of a system of roots of type B. Each
skew-simplicial group is an extension of some simplicial group by one of the seven objects in
W.. The second section is devoted to connections with equivariant topology. It is proved
that the geometric realization |G.| of a skew-simplicial group G. is a topological group.
Moreover, the homotopy category of simplicial sets with action of G. is equivalent to the
homotopy category of topological |G.|-spaces.

1, Let A be the category of finite totally ordered sets [n] = {0, 1, ..., n) and non-
decreasing maps. We consider the dual category A’. It is well known that its morphisms are
generated by the simplest morphisms of the form

di:fn] ~[n—11, s:n]—[n+1], 0<i<n,
which satisfy the following relations:

didi=di-1d', i<j; (L
]sf’ldi i<j,
disi= id.  i=]. i=j+1, (2)
sidi=t, is>j+1;
stsd =gl gy, )

Definition 1.1. A small category % is called a category of type A if it contains A as a
subcategory and has the same objects. In addition, it is required that each morphism feHom.
([n], [m]) can be represented uniquely as a composition f=o¢-g. where geAut: [n], and ccHom,

([n], [m]).

Thus, a category I of type A is determined completely by a collection of automorphisms
of Autg [n], n=0, I, .... and rules for commutation with the morphisms of A. The collection of
such T forms a category Cat A with functors preserving A as morphisms.

Example 1.2, The category AW. We define a sequence of groups W, =(Z[2)"*'xZX,,;, n=0, 1...
Here Z,,; 1s the symmetric group, acting on the right on the set [n] = {0, 1, ... n}

Pl X Zyry = [n], (G, ©) b 1* (),
and Z/2 is the group with two elements {+1, —1). We define the multiplication
((EO’ <ees Ep) T) ((“’)o, ey nn)s O‘) = ((50‘ Ner(0)s .+ »«s En*Nee (n)): T 0')-

On W. we introduce the structure of a simplicial set, defining the face and degeneracy oper-
ators in the following way:
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d'((ser - -, &), ) =((c0 +vvs &1 ..., g, d'<),

D ixj, () > ()

- i), )< (); %)
TUHD iS), T @O> ()

FUHD-1, i<y, ()< G+ 1);

si((so, cees &), T)=((so, cees B gy ol 5, siT)’

=) i>), () > ()

D+ i>j )<t ());

*HG=D, i<j-1, @) > (—1); : (5)
=D+, i<j-l, @<t (—1);

O+ (1 -e))2, i=j;

TFO+A+e)2, i=j+1. (6)

@ =)* ()=

G'H* ()=

Finally, we define the category AW of type A by commutation relations in the dual form
(i.e., for the category AW®):
do=(d'w)-do'0, .= (s w). 5D, (7)

Here w* denotes the action of the group W, on the set [n], induced by the obvious projection
W, =T

Definition 1.3. A skew-simplicial group is a pair (G., ), consisting of a simplicial
set G. and a simplicial map 7:G. - W., for which the following conditions hold:

1) the set G, is a group and the map v, a homomorphism for each n;
2) for eachn and al1 0 < i <n, 0 < j < n one has

d'(g182)=(d'gy) (d["{ (g)* (0] gz),

57 (g182)=(s" 1) (s [ (8)* ()] g)- (8)-
Here and below for awkward indices we use the abbreviations d[i]=d', s[j]=+.
By a morphism of skew-simplicial groups (G., vy) - (G.’, v') is meant a simplicial map

f:G. » G.' such that f is a homomorphism for each n, while y=y'-f We denote the category
of skew-simplicial groups by Skew-SGr.

THEOREM 1.4, dqe has an isomorphism of categories
Cat A =- Skew —SGr.

Proof., Let X be a category of type A. We construct a skew-simplicial group structure
on G.=Aut} [.]in four steps. For convenience we shall work in the dual category =°. By the
letter g (possibly with dashes) we shall denote the elements of G.

Step 1, Structure of simplicial set. According to Definition 1.1, the morphism d-g
of the category 2° can be written uniquely in the form g'-&. The correspondence g g’
defines operators d':G,— G,_;. Analogously, we get operators g:G,— G,.,. The simplicial
identities (1)-(3) automatically hold by virtue of the uniqueness.

Step 2. Construction of homomorphisms e, &,:G,=3Z,.;. The equation di-g=g' -4 from
the first step also gives a correspondence (d', g) » &/, defining a right action of G, on the
set [n): g*()=j. This is equivalent to giving a homomorphism e,:G,—~Z,,, (cf. Example 1.2).
In exactly the same way, from the equations s -g=g”.-s* we get a homomorphism 8y G =2,

Step 3, The homomorphisms e and e are equal. We introduce the abbreviations g*=e(g)*,
g* =é(g)*." As a result of steps 1 and 2, we have the equations

di-g=(d'g)-d=®, sl.g=(s'g) 55", (%)
which let us make the transformations
d'-sl-g=(d's’ g)-d (s g)* (D]-5[8* ()],

siml.dl g =(s'-1dig). s [(dg)* (j—1)]- d[g* ()]
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"When i < j, the left sides of these equations coincide according to (2). It follows from the

uniqueness that
di(s’ )* (O] s [&* ()] =5 [(@)* (j— 1)]- d[g* ()]
since this is a relation of type (2), necessarily g*()=g*(}).
If i > j + 1, analogously we get
d((s)* (i)]- s [g* (/)] =sl(@ ™ g)* ()]~ d[g* (i~ D).

Again directly g*(i—1)#g*(j). Thus, if i = j, then g* () #g*(j) always. Consequently, g*=§",
i.e., e = e.

Step 4, Lifting the maps ¢,: G, —ZX,., to a simplicial map G. » W.. Applying the method
of step 3, from (9) and (1) we express (d'g)*in terms of g*. We get exactly (4) with the
letter r replaced by g. This means that the map e commutes with face operators. We consider
how matters stand with degeneracies. From (9) and (3) we get (5) w1th 7 replaced by g. How-
ever, there remains an uncertainty: (s'9)* () can be equal to g (1) or g (1) + 1. In the first
case we set h;(g) = +1, and in the second, h;(g) = —1. The map

< v e ((h@, . @), @)

is exactly the 1ift needed. Combining (2), (3), and (6), ..: see finally that this is a
simplicial map.

It is easy to see that the correspondence X + Aut}{.] defines a functor CatA -+ Skew —
SGr.

If a skew-simplicial group (G., 7) is given, one can construct a category AG of type A,
defining the morphisms formally and imposing relations of the form (7). The existence of
Example 1.2 guarantees that in the simplicial "part", new relations, different from the
standard ones (1)-(3), do not appear. Thus, we have constructed an inverse functor. The
theorem is completely proved.

We have reduced the study of categories of type A to the study of skew-simplicial
groups. For the sake of brevity, we shall call them S5S-groups and write G. = (G., 7).

It follows from Definition 1.3 that W. is a final object, i.e., any SS-group maps
uniquely into W.. It is easy to prove the following proposition.

Proposition 1.5. The SS-group W. contains exactly seven S$S-subgroups. The complete
list is given here (name, notation, generators, group of n-dimensional simplices):

Trivial 1. @ V L=1

Cyclic C. (+1, +1; %) C,,=Z/n+1
Symmetric S (41, +1, +1; 7) S,=%"

Reflexive R (-1; id) R,=1Z[2

Dihedral D (-1, —1; id) . D,=ZIn+1xZ2
Reflexosym-

metric T. (—=1;id), (+1, +1, +1; 7 T,=Z]2xZ,4
Weyl SS-group w. (+1, —1; id) Wa=(Z[2)"*' x Zpey

Here r is transposition.

The diagram of inclusions has the form
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Thus, all SS-groups fall into seven classes depending on the image in W.. Here the
trivial class consists precisely of the simplicial groups. We shall call the SS-groups from
the list 1.5 simple.

Proposition 1.6. Any SS-group can be represented as an extension
o | ~H G L —>1,
where H. is a simplicial group and L. is a simple SS-group.

Proof, We set H =ker(y:G.— W), L =v(G). Then H. necessarily belongs to the trivial
class. ]

Example 1.7, (1) The multiple cyclic SS-groups (™, n=2, 3, ..., »x (which correspond to
the categories A of [1]) can be represented as extensions

1. -(Z), - C" > C -1, n<oo;
1l >Z >C® - C 1,

(ii) The quaternionic object Q. [4] is the extension
I.>(Z/2). -Q. - D —1.

(iii) The SS-group of braids B. is an extension of the simplicial group of colored
braids 4.:1. +-4 —B. —S — 1. The groups B, consist of the braids which are interlacings of
n + 1 threads. Under the action of the operator dl on a braid the i-th thread disappears and
the operator sJ duplicates the j-th thread.

One defines the SS-group of braids of bands B* analogously:
1. »4* > B* W 1,

The bands can be twisted. The number of revolutions modulo 2 gives the sign in W.. Under a
degeneracy the corresponding band is cut into two halves, which are interlaced as many times
as they themselves are twisted.

Now we consider SS-groups from the homotopy point of view.
Proposition 1.8. Simple SS-groups have the following homotopy type:
L~vs, C~8% S ~a, Rimi 4w, D ~ST|SY, To~sl i, W~
Here * denotes a point and S! a circle.

The proof for 1., C., R., D. involves no difficulties. In the case of the symmetric SS-
group S. we firstly verlfy that 7;(8.) = 0, and then we construct a contracting homotopy in
the integral chains by the formula

0, i=0;

SEHI=\ oy +1, iso;

where <=8, s:ZS,~+ZS,.:.

A simplicial set is called finite if it contains only a finite number of nondegenerate
simplices.

Proposition 1.9, The connected finite SS-groups are completely enumerated in the
following sequence:

1, C, CP CO, ..., C",

Proof, We consider a conmected finite SS-group G.. If it is not trivial, then it
belongs to the cyclic class. According to Proposition 1.6, one can construct an extension

I —-H -G —-C —1.
Here H. is a finite simplicial group. It follows from [5] that it satisfies the Kan
condition. On the other hand, this is a finite simplicial set. Consequently, its connected
component coincides with the standard simplicial simplex A[n] of some dimension n. There
remains only a unique possibility H. is a discrete simplicial group. If we now pass to
geometric realizations (cf. Sec. 2), then we get a finite-sheeted covering .|G. |—|C |=S. It
is clear that G. can only be equal to C, C?, C?, ... |
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Now we make some inferences about homology theories. Such homology theories as cyclic,
dihedral, and quaternionic, are based on finite $S-groups, whose geometric realizations are
the Lie groups SO(2), 0(2), and the normalizer of a circle in SU(2) respectively. It is
natural to ask whether there exist analogous homology theories for the other Lie groups.
proposition 1.9 asserts that the component of the identity of such a group is necessarily a
circle, i.e., there do not exist S0(3), SU(2), etc. homologies.

2. In this section we shall work with geometric realizations of simplicial sets. The
results remain valid in a more general situation. Only a suitable realization functor of a
simplicial object in a category is needed.

A simplicial set (or A’-set) is a functor from the category A’ to the category of sets
Sets. For any category T of type A (cf. Definition 1.1) we define a Z°-set analogously as a
functor =¢ + Sets. According to Theorem 1.4, the category X has the form AG for some skew-

simplicial group G..
Definition 2.1. Let G. be a skew-simplicial group. We define a functor G inside the
category of simplicial sets A%ets, letting GX, = G, X X,

di(g, x)=(d'g, & Px), s/(g, x)=('g, sV x).
We note that G(*) = G.

We define another natural transformation =:1—>G, u:Gi. ~Gby =(x)=(, %), p (gl, (g3, x)):(glgg, x).
The collection (G, €, p) forms a monad (or "triple") in the category A%Sets. This means that
the following diagrams are commutative:

6—= 66 =26 666 L 66

N/ o, b oo

By a G-algebra we mean a pair (X., ) consisting of a A’-set X. and a simplicial map
:.GX — X, such that the following diagrams are commutative:

X —&— 6x. 66X, -5 6x.

ST T

GX. X.

“ir

A morphism of G-algebras (X, £ — (X', £) is a simplicial map £:X. -+ X.', such that f-&=£&-Gf.
It is easy to verify the following:

LEMMA 2.2. The categories of AG’-sets and G-algebras are isomorphic. An isomorphism is
given by associating with each AG’-set X. a G-algebra (X., £¢) such that £(g, x) = gx.

Thus, a AG%-set is a simplicial set with an "action" of a skew-simplicial group G..

Now we recall the definition of geometric realization and singular complex. We shall
consider the category of Hausdorff, compactly generated, spaces, Spaces. Let A™ be a geo-
metric simplex of dimension n: A"= {(to, vont) €R™1 1,20, Zt,=1}. We shall denote by ' and ol
the standard maps of coboundary and codegeneracy. By geometric realization of a A%-set X. is
meant the quotient-space (with compactly generated topology)

|X,(=(U X, x A1)/~

nz0

with respect to the equivalence relation (d'x, 1) ~(x, 8'u), (s'x, u)~(x, c’'u). The class of the
element (x, v) will be denoted by [x, v].

Ve define the singular complex s.(Y) of the topological space Y to be the A’-set repre-
sented as the composition of the covariant and contravariant functors

A — Spaces — Sets, (12
[7] » A" &» Map (A", 7).
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It is known that the geometric realization functor is the left adjoint of the singular com-
plex functor. We denote the natural transformations of the adjoint by

xil—=s |, Bils. ()] >1. (13)

Let F be the category of finite sets [n] and any maps between them. Since the first
arrow of (12) factors through the inclusion A -+ F, and the category AW "projects" to F, then
s.(Y) is endowed with a natural structure as AW%-set, hence also the structure of AG®-set for
any skew-simplicial group G.. According to Lemma 2.2 this defines a G-algebra (s.(Y), w).
Actually w defines an action of the group G, on the set s,(Y): each singular simplex o¢:A"—>Y

1s "mixed" inside itself according to the formulas

g@N=c(g*®), &*O=((-1qp ---, Zgmtye o) (14)
where r=(1, ..., t,) e A"
THEOREM 2.3, Let G. be a skew-simplicial group.

A. For a A% set X. there is a natural homeomorphism ®(X):|GX |-~ |G |x | X. |, such
that:

(i) the map pr=lp [+ ®(G)1: |G |x|G |—-|G. | turns [G.| into a topological group;
(ii) for the G-algebra £:GX. + X., the composition

E=l5].OX)1: G ix|X |+|X|
defines an action of the group |G.} on the space |X. .

B. Let the group |G.] act continuously on the space Y, i.e., let Y be a |{G.[-space.
There exists a natural monomorphism of A-sets W(Y):Gs. (Y)—+5 |G ixs (Y). such that the map
#=s5. v F(Y):Gs (Y)—5.(Y) defines a G-algebra (5. (1, Vo).

C. The constructions given above define adjoint functors
XL D B (XL D)L SO, ) e (s (D), v,
r9:AG%Sets 2 |G | —Spaces : 56,
Here we identify the category of G-algebras with the category AG%Sets.

Proof of A, We define p:GX -G by the formula (g, x)»g.  The map adjoint to the
composition

GX 255 Gs |X | —25 51X |,

will be denoted by :|GX |— | X [.. Here w is given by (14) and a is the morphism adjoint to
(13). We set @ (X)=(|pl, 9. It is also easy to extract the explicit formula g=G,, x=X,. ueAn,

DX ):[(g. ¥). u] = (g ul, [x. g*W)]).

The proof that this is a homeomorphism goes in the same way as the formula |Y xZ |2|Y |x|Z. |
in the classical case for A%-sets [5]. The only difference is the appearance of "twisted"
and not just standard partitions of the prism A*x A" into simplices of dimension k-n.

(1) We let u=]u|-tb1: [GIx|G|—~1G]|. 1t is easy to see that the inclusion of the
point *—>|G. | is a two-sided unit. We define the "inversion” map 7:[/G |+ ]G | by the
formula [g, u] »I[g7, g*(1)). We verify that it is well defined. Let us assume that u=35 so
(g 1)=(g, ¥o)~(dig, ). We apply the map x to the last element x(d'g. ©)=((dg)=, (dig)* (). It
follows from the equation d(gg-1)=(d’g)(d[g* ()] g !) that (d'g)'=(d[g* (ifl¢?).. Hence we can write
d'g, v) =(d[g* (D]g (dig)* () ~ (g7 8 [g* (D] (dig)* (). But g*di=3[g* (I)](dig)*, since these are
images of equal morphisms from the category AG (cf. the dual equation (7)). One verifies
analogously that it is well defined with respect to degeneracies. The map x really inverts
the group law. This follows from the commutativity of the following diagram:

61 — =2 o |61 x16,

1% X ¢
b J{) /
1@l K

where f is the map to the distinguished point 1 = *. In fact, (] xy) g, u]=([g. u]. [g7}. g" (]=
® (g, g7, ul, but juille. g7 Wl=[1, ul=x

|GG
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The associativity of the multiplication v follows from (ii) as a special case.

} (ii) We prove that the map 1=|Z| - ®7':|G |x|X |—|.X | gives an action of the group 1G. 1
? on the space [X.|. The associativity of the action is precisely the commutativity of the
| right square in the diagram

166X | id 161 % 16,1% IX.)
N o
16X.1 ® _ iGixix.
1G%l |§|1 1 p 1%y
s oy X X -
16X.I ¢ 16.1% 1X.1
|

Here GY=(lx(D(X))-®(GXj is a homeomorphism. Consequently, it suffices to establish the
commutativity of all the other squares. For the central, lower, and left squares this
follows from the definition of n and the fact that (X., ¢) is a G-algebra (cf. (11)). From
the calculations (Ix7) ®'=(1Ixn1xD)P=(1x7nP)  P=(Ix[£]) - ®=0-|GZ| the commutativity of
the outer square of the diagram follows. It remains to verify the upper square. We compare
the values on elements

@-1u)) i b x), Wl=(lgh, ul, [x (gh)*@]),
(Ox D @) h x), = (Jul-O-1x 1)(lg, ul. [h g* @), [x. h*g* @)=
=(lulx D (e, A, ul, [x, h*g*@])=([gh, ul. [x. I*g* W)]),
‘ i.e., ®-ju|=(vx1)®, which is what was required.
! The validity of the equatiom n(l, 2)==:, ze| X | is guaranteed by the existence of a unit

{ ¢:1 » G in the G-algebra (X., £). In fact, according to (11), £-s=id. Hence 4 (L, [x, u])=
: P2l wl=[x, ul.

i Proof of B. We define the map ¥ as the composition
Gs. (Y) 22, G x5 (¥) 2 5 |G | xs. (),

where p(g, x) = g, and a and w are defined, respectively, in (13) and (14). We note that the
; second map is injective and the first is an isomorphism (the inverse map is given by the
formula (g,x)r»(g,g‘LxD. Consequently, ¥ is a monomorphism. Let us assume that the map
7:]G, |xY—>Y defines the action of the group |G.|. We set E=s n-¥:Gs (¥Y)—>s (¥). The exis-
tence of a unit (cf. the first diagram of (1l1)) is equivalent with the commutativity of the
left triangle in the following diagram:

slY) —& = Gs(Y) —Lm 516G 18(Y)

~ Y

a(Y)

But this follows from the commutativity of the large and right triangles.

It remains to verify the commutativity of the left square in this diagram (the monomor-
phism ¥’ is defined below)

1
6Gs.(Y) B 4 516]% 5,164 x 5.(Y)
N p
| 6s(Y) —Fr—— slGixalY)
G¥ El Ls.rg Ixsp
‘ S(Y) — 5_(Y) . H
i > v =
; Gs.(Y) s.iB.ixs(Y)
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Since ¥ and ¥' are monomorphisms, it suffices to prove the commutativity of all the other
squares. With respect to the central, lower, and right squares, everything is clear from the
definitions. We set

¥=(G |xY). GV(Y).
Then the outer square splits into two commutative squares. 7
GGs. (Y) =X~ G(s.|G. | xs.(¥)) <516 |x5.|G. x5 (Y)

cel - Gs.n x5,

Gk,%Y) N Gé_(Y)-——~—§1————-+S.lG.ﬁ‘&(13
We check the commutativity of the upper square on elements
(Yeu) (e b, )="F(gh, x)=(x(gh), ghx),

¥ (g b D=F (g, (2 (), hx)=(x(g), g (h), ghx)).

It remains to prove that a(gh)=s v{x(g), gx(h). We verify this on values. Let wusA" for some
n, so x(gh)(w)=[gh, ul=|up|l(g, ), ul =v-D[(g, h), u]=(1 (g), g2 (h)) (), which is what was needed.-
Proof of C. To verify the adjointness of the functors
XL D (X, 8), S, ) e (s (D) 1)

we construct natural transformations 2%:1—s°r° and 8%:r%s% > 1, using @ and B from (13).
According to [5], it only remains to prove that the compositions

16:6 SG BG
sC - GGG LB, G
G G G G
e K L A

are identity transformations. But this follows directly from the analogous properties of the
transformations a and 4.

The proof of the theorem is completely finished. O

Now we define weak equivalences in the categories AG'Sets and |G.|-Spaces as maps induc-
ing isomorphisms in homotopy groups. Formally inverting (cf. [6]) weak equivalences, we get
the homotopy categories HoAGoSets and Ho|G. |-Spaces.

COROLIARY 2.4, The categories HoAG%Sets and Ho|G.|-Spaces are equivalent.

Proof. This is a direct consequence of part C of Theorem 2.3, if one uses the simplest
test for equivalence -of homotopy categories from [71. ' |
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Remark on the Paper

In the paper of W. G. Dwyer, M. J. Hopkins, and D. M. Kan, "The homotopy theory of cyc-
lic sets," Trans. Am. Math. Soc., 291, No. 1, 281-289 (1985), a stronger result is found.
The categories of |G.|-Spaces and AG? Sets are endowed with structures of closed model
categories in the sense of Quillen. It is proved that the equivalence of the corresponding
homotopy theories preserves these structures.
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