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Abstract.

We show that given a category S with binary products and a 2-category Cat′(S) ⊂
Cat(S) of internal categories in S, closed under some natural operations, the bicategor-
ical localisation Cat′(S)[W−1

E ] exists for WE a class of weak equivalences analogous to
fully faithful and essentially surjective functors. Secondly we show that this localisation
is given by a bicategory with anafunctors as 1-arrows when S is a site, and give conditions
when various such bicategories of anafunctors are equivalent. While the connections to
stacks are not pursued here, this work provides a precise setting to the claim that stacks
on arbitrary sites are internal groupoids up to essential equivalence. Finally, we make
some conjectural comments about localisation of bicategories qua (∞, 2)-categories.
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1. Introduction

Pronk, in her work on stacks [Pronk, 1996], introduced the concept of localising a bi-
category at a class of 1-arrows. She gave axioms that are analogues of the familiar
Gabriel-Zisman axioms for a category of fractions [Gabriel-Zisman, 1967]. All this was in
order to prove that a certain 2-category of topological stacks is a localisation of a certain
2-category of topological groupoids. In the same paper parallel results on differentiable
and algebraic stacks also appear. This work refined the results in [Moerdijk, 1988].

This article is based on material from the author’s PhD thesis. Many thanks are due to Michael
Murray, Mathai Varghese and Jim Stasheff, supervisors to the author. The patrons of the n-Category
Café and nLab, especially Mike Shulman, with whom this work was shared in development, provided
helpful input. An Australian Postgraduate Award provided financial support during part of the time the
material for this paper was written.
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In the years since, a number of papers (e.g. [Landsman, 2001, Noohi, 2005b, Lerman,
2008, Carchedi, 2009, Breckes, 2009, Vitale, 2010, Abbad et al, 2010]) have appeared
dealing with localising 2-categories of internal groupoids at a class of weak equivalences.1

Weak equivalences, in this sense, were introduced by Bunge and Paré [Bunge-Paré, 1979]
for groupoids in a regular category (e.g. a topos), and are an internal version of fully
faithful, essentially surjective functors between internal categories. Since ‘surjective’ only
makes sense in concrete categories, and even then it is not always useful, we need to intro-
duce a class E of maps with which to replace the surjection part of ‘essentially surjective’.
For example, in the literature on Lie groupoids, surjective submersions are universally
used. With the class E specified, we refer to weak equivalences as E-equivalences.

We note in passing that the articles [Joyal-Tierney, 1991, Everaert et al, 2005, Colman-
Costoya, 2009], under various assumptions on S, construct model category structures on
1-categories of internal categories or groupoids for which the weak equivalences are E-
equivalences for various ambient categories. In fact for S only finitely complete the model
structure of [Everaert et al, 2005] may not exist, but the slightly weaker structure of a
category of fibrant objects will.

In this paper we generalise the half of Pronk’s result that says a full sub-2-category
Cat′(S) ⊂ Cat(S) of categories in S, with certain properties, admits a localisation at the
class WE of E-equivalences. More formally, let Cat′(S) be a full sub-2-category of Cat(S)
with objects internal categories such that all pullbacks of the source and target maps exist,
and let Gpd′(S) ↪→ Cat′(S) be the sub-2-category of groupoids. We say Cat′(S) has
enough groupoids if the sub-(2,1)-category Gpd′(S) ↪→ Cat′(S) is coreflective. Recall
that I is the groupoid with two objects and a unique isomorphism between them.

1.1. Theorem. If Cat′(S) admits base change along arrows in E, a class of admissible
maps2 in S, admits cotensors with I and has enough groupoids then Cat′(S) admits a
calculus of fractions for WE.

The construction in [Pronk, 1996], while canonical, is not very efficient, as 2-arrows are
equivalence classes of diagrams, and the hom-categories are a priori large in the technical
sense. While largeness of its own is not detrimental, it would be desirable to show that
the hom-categories are at least essentially small. These points are partial motivation for
our second result, which we shall shortly describe.

In the case that maps belonging to E are refined by covers from a subcanonical sin-
gleton3 pretopology J , then we can compare the localisation from theorem 1.1 to the bi-
category Cat′ana(S, J) with the same objects as Cat′(S) and J-anafunctors for 1-arrows
([Makkai, 1996, Bartels, 2006], see definition 5.1 below). Put simply, anafunctors are
spans

X ← X[U ]
f−→ Y

1Other examples of early work on localising 1-categories of groupoids are [Hilsum-Skandalis, 1987,
Pradines, 1989]

2See definitions 2.22 and 7.1 for details on base change and admissible maps respectively.
3A singleton Grothendieck pretopology is one where all the covering families consist of a single map.
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of internal categories where the left ‘leg’ is a resolution of X by taking the base change
X[U ] along a J-cover U // X0 (as as such is fully faithful). Anafunctors will not be
completely unfamiliar beasts, in that when X is an object of S and Y is a group object
in S, considered as a groupoid with one object, anafunctors from the former to the latter
are precisely Čech cocycles, and maps of anafunctors are coboundaries.

The second main result of this paper is the following. Note that Cat′(S) is a sub-
bicategory of both Cat′ana(S, J) and Cat′(S)[W−1

E ].

1.2. Theorem. Let Cat′(S) and E be as in Theorem 1.1 and let J be a subcanoni-
cal singleton pretopology on S which is cofinal in E. Then there is an equivalence of
bicategories

Cat′ana(S, J) ' Cat′(S)[W−1
E ]

which is, up to equivalence, the identity on Cat′(S).

When a weak size axiom holds for the category of J-covers of each object in S, then
it is easy to show that Cat′ana(S, J) is locally essentially small. This axiom holds for any
reasonable category of geometric objects, for example manifolds, spaces, schemes, topoi
with enough projectives.

As far as the author is aware, theorem 1.1 should cover all cases of bicategorical local-
isation of categories of groupoids in the literature (but is happy to be corrected!). What
is new here is that these results work for internal categories proper, not just internal
groupoids. For example, while the (2, 1)- category of Lie groupoids is well studied, and
various models for the localisation considered here exist, the (2, 2)-category of Lie cate-
gories does not seem to have been considered since the work of Ehresmann and students.

As pointed out to me by Urs Schreiber, the technique of localising (∞, 1)-categories
(presented by simplicially-enriched categories) has been around for a long time, going
back to work of Dwyer and Kan on simplicial localisation [Dwyer-Kan, 1980a, Dwyer-
Kan, 1980b, Dwyer-Kan, 1980c]. In that context, one can consider a (2, 1)-category of
internal groupoids as being contained in the (∞, 1)-category of sheaves of (∞, 0)-categories
on the ambient category, and apply the results of Dwyer-Kan. However, dealing with
non-invertible 2-arrows in the ∞-category context seems to be a lot more difficult, and
requires much more machinery (see [Lurie, 2009]). Hence Theorem 1.1 could be viewed
as localising an (∞, 2)-category of presheaves of (∞, 1)-categories. There is clearly a
huge gap between this result, and one comparable to Dwyer-Kan’s for (∞, 2)-categories,
but it is perhaps a small clue as to what may be achievable in the future, in particular,
presenting (∞, 2)-categories by bicategories with a chosen class of weak equivalences.

A remark is necessary about the relation between anafunctors and distributors =
profunctors [Bénabou, 1973]. As mentioned in [Makkai, 1996], anafunctors are similar
to profunctors. It was pointed out by Jean Bénabou in January 2011 on the ‘categories’
mailing list that anafunctors correspond to representable profunctors (in that there is an
equivalence of bicategories with representable profunctors and anafunctors as 1-arrows
between categories respectively), although this fact seems to have been independently
discovered by others. However, anafunctors are not precisely profunctors, though they
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are similar in description, and although one can define internal profunctors (see, e.g.
[Johnstone, 2002], section B2.7), these latter require more of the ambient category than
we admit here merely in order to state the equivalence between internal profunctors and
internal anafunctors, and also to define composition of internal profunctors. We thus use
the terminology of anafunctors in this paper.

In private communication, J. Bénabou says that the concept of calibration was intro-
duced by him ([Bénabou, 1975]) to extend internal profunctors beyond regular categories.
I have not been able to ascertain the extent to which this paper overlaps with the said
work of Bénabou.

We now outline the contents of the paper, which is intended to be self-contained.
Sections 2 and 3 cover necessary background on internal categories and Grothendieck
pretopologies, all of which would be familiar to experts. Section 4 covers weak equivalences
between internal categories, while section 5 reviews the theory of internal anafunctors
from [Bartels, 2006]. Section 6 covers the localisation theory for bicategories from [Pronk,
1996], before section 7 proves the main results of the paper. The last section gives a
sufficient condition for the localised bicategories to be locally essentially small.

2. Internal categories

Internal categories were introduced in [Ehresmann, 1963], starting with differentiable
and topological categories (i.e. internal to Diff and Top respectively). We collect here
the necessary definitions, terminology and notation. For a thorough recent account, see
[Baez-Lauda, 2004] or the encyclopedic [Johnstone, 2002].

Fix a category S. It will be referred to as the ambient category. We will assume
throughout that S has binary products.

2.1. Definition. An internal category X in a category S is a diagram

X1 ×X0 X1
m−→ X1

s,t

⇒ X0
e−→ X1

in S such that the multiplication m is associative (we also demand the triple pullback
X1 ×X0 X1 ×X0 X1 exists), the unit map e is a two-sided unit for m and s and t are the
usual source and target. An internal groupoid is an internal category with an involution

(−)−1 : X1
//X1

satisfying the usual diagrams for an inverse.

Since multiplication is associative, there is a well-defined map X1×X0X1×X0X1
//X1,

which will also be denoted by m. The pullback in the diagram in definition 2.1 is

X1 ×X0 X1
//

��

X1

s

��
X1 t

// X0 .
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This, and pullbacks like this (where source is pulled back along target), will occur often.
If confusion can arise, the maps in question will be explicity written, as in X1 ×s,X0,t X1.
One usually sees the requirement that S is finitely complete in order to define internal
categories. This is not strictly necessary, and not true in the well-studied case of S = Diff ,
the category of smooth manifolds.

Often an internal category will be denoted X1 ⇒ X0, the arrows m, s, t, e (and (−)−1)
will be referred to as structure maps and X1 and X0 called the object of arrows and the
object of objects respectively. For example, if S = Top, we have the space of arrows and
the space of objects, for S = Grp we have the group of arrows and so on.

2.2. Example. If X // Y is an arrow in S admitting iterated kernel pairs, there is
an internal groupoid Č(X) with Č(X)0 = X, Č(X)1 = X ×Y X, source and target are
projection on first and second factor, and the multiplication is projecting out the middle
factor in X ×Y X ×Y X.

2.3. Example. Let S be a category. For each object A ∈ S there is an internal groupoid
disc(A) which has disc(A)1 = disc(A)0 = A and all structure maps equal to idA. Such a
category is called discrete. We have disc(A×B) ' disc(A)× disc(B).
There is also an internal groupoid codisc(A) with

codisc(A)0 = A, codisc(A)1 = A× A

and where source and target are projections on the first and second factor respectively.
Such a groupoid is called codiscrete. Again, we have codisc(A × B) ' codisc(A) ×
codisc(B).

2.4. Example. The codiscrete groupoid is obviously a special case of example 2.2, which
is called the Čech groupoid of the map X //Y . The origin of the name is that in Top, for
maps of the form

∐
I Ui

// Y (arising from an open cover), the Čech groupoid Č(
∐

I Ui)
appears in the definition of Čech cohomology.

2.5. Definition. Given internal categoriesX and Y in S, an internal functor f : X // Y
is a pair of maps

f0 : X0
// Y0 and f1 : X1

// Y1

called the object and arrow component respectively. Both components are required to
commute with all the structure maps.

2.6. Example. If A // B is a map in S, there are functors disc(A) // disc(B) and
codisc(A) // codisc(B).

2.7. Example. If A // C and B // C are maps admitting iterated kernel pairs, and
A //B is a map over C, there is a functor Č(A) // Č(B).
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2.8. Definition. Given internal categories X, Y and internal functors f, g : X // Y ,
an internal natural transformation (or simply transformation)

a : f ⇒ g

is a map a : X0
//Y1 such that s◦a = f0, t◦a = g0 and the following diagram commutes

X1

(g1,a◦s)//

(a◦t,f1)
��

Y1 ×Y0 Y1

m

��
Y1 ×Y0 Y1

m // Y1

(1)

expressing the naturality of a. If a factors through the ‘object Y iso of invertible arrows’
(to made precise below), then it is called a natural isomorphism. Clearly there is no dis-
tinction between natural transformations and natural isomorphisms when Y is an internal
groupoid.

We can reformulate the naturality diagram above in the case that a is a natural
isomorphism. Denote by −a the composite arrow

X0
a−→ Y iso

1

(−)−1

−−−→ Y iso
1 ↪→ Y1.

Then the diagram (1) commuting is equivalent to this diagram commuting

X0 ×X0 X1 ×X0 X0
−a×f1×a //

'
��

Y1 ×Y0 Y1 ×Y0 Y1

m

��
X1 g1

// Y1

(2)

a fact we will use repeatedly.

2.9. Example. If X is a category in S, A is an object of S and f, g : X // codisc(A)
are functors, there is a unique natural isomorphism f

∼⇒ g.

Internal categories (resp. groupoids), functors and transformations form a 2-category
Cat(S) (resp. Gpd(S)) [Ehresmann, 1963]. There is clearly a 2-functor Gpd(S) //Cat(S).
Also, disc and codisc, described in examples 2.3 and 2.6 are 2-functors S // Gpd(S),
whose underlying functors are left and right adjoint to the functor

Obj : Cat(S) // S, (X1 ⇒ X0) 7→ X0.

Here Cat(S) is the 1-category underlying the 2-category Cat(S). Hence for an internal
category X in S, there are functors disc(X0) // X and X // codisc(X0), the arrow
component of the latter being (s, t) : X1

//X2
0 .

For some calculations we need access to the object of isomorphisms of an internal cat-
egory. In ordinary category theory, given a category we can consider its core – the largest
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subcategory that is a groupoid. When S is finitely complete, the category of internal
groupoids is a coreflective subcategory of the category of internal categories (morphisms
are internal functors, see definition 2.5) [Bunge-Paré, 1979],4 and so for every internal
category X1 ⇒ X0 there is a maximal subobject X iso

1 ↪→ X1 such that X iso
1 ⇒ X0 is an

internal groupoid. The object X iso
1 of isomorphisms can in this case be constructed as

a finite limit. However, the reverse implication (coreflective subcategory implies finitely
complete) is not true, as shown by the following lemma, essentially proved in [Ehresmann,
1959].

2.10. Lemma. Let LieCat be the category of categories internal to Diff , the category
of finite-dimensional smooth manifolds, such that the source and target maps are sub-
mersions, and LieGpd the corresponding category of internal groupoids. The inclusion
LieGpd ↪→ LieCat makes LieGpd a coreflective subcategory.

In general, we shall consider sub-2-categories Cat′(S) ↪→ Cat(S) such that Gpd′(S) =
Cat′(S) ∩Gpd(S) ↪→ Cat′(S)(2,1) is coreflective, where C(2,1) ↪→ C is the maximal sub-
(2,1)-category. If this condition is fulfilled we shall say that Cat′(S) has enough groupoids.

2.11. Example. The following ambient 2-categories admit enough groupoids:

• Cat(S) for S finitely complete

• Gpd(S) for S with binary products

• LieCat, where the objects are categories in Diff such that the source and target
maps are submersions.

• Cat(TopManif)reg, where the objects are categories in topological manifolds such
that the source and target maps define foliations on a small enough neighbourhood
of each point in the space of arrows (this result is also in [Ehresmann, 1959]).

• The 2-category of smooth monoid actions by a smooth monoid of finite type in
the category of schemes over a field k (thanks to Matt E on math.stackexchange
for showing this [Matt E, 2011]). That is, the full sub-2-category of categories in
Sch/k which arise from the smooth action of a smooth monoid in schemes of finite
type on a scheme.

It is a reasonable conjecture that the smoothness assumption on the monoid can be
dropped, and one could go so far as to try to extend this from schemes over a field to
schemes over a more general ring.

Over the course of this section we shall consider additional properties we want to
impose on Cat′(S) in order to prove our result about localisation.

4In fact, the (2,1)-category of internal groupoids is coreflective in the (2,1)-category of internal cate-
gories, functors and natural isomorphisms.
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2.12. Definition. An internal or strong equivalence of internal categories is an equiva-
lence in the 2-category of internal categories. That is, an internal functor f : X //Y such
that there is a functor f ′ : Y //X and natural isomorphisms f ◦ f ′ ⇒ idY , f ′ ◦ f ⇒ idX .

Many constructions involving internal categories require pullbacks of the source and
target maps. To this end, we shall be interested in a full sub-2-category Cat′(S) ⊂ Cat(S)
consisting of objects – internal categories X – such that all pullbacks of s, t : X1

//X0 and
s, t : X iso

1
//X0 exist. More precisely, we suppose that these maps belong to a class of maps

in S of pullbacks exist. The reason for this is that when considering presentations of stacks
by groupoids, where stacks are considered as generalisations of spaces/schemes/manifolds,
the source and target maps arise as pullbacks of the ‘cover’ of the stack by a representable
stack, and these are, in practice, required to be well-behaved. That being said, for finitely
complete S one can always take the class of maps to be Mor(S).

2.13. Example. The prototypical example is that of Lie groupoids, where the source
and target maps are required to be submersions. Restricting further we could consider
étale Lie groupoids, where the source and target maps are local diffeomorphisms.

2.14. Example. In [Noohi, 2005a] Noohi considers a class LF of local fibrations which,
amongst other properties, are stable under pullback, closed under composition and contain
the open embeddings. The source and target maps of topological groupoids presenting
topological stacks are then local fibrations. The 2-category of these topological groupoids
will be denoted CatLF (Top).

2.15. Example. Let C be a Serre class in an abelian category A. Then consider the 2-
category of groupoids X in A such that the kernel and cokernel of the associated crossed
module s−1(0) //X0 are in C. One could denote the resulting 2-category by GpdC(S).
When S = Ab, then these groupoids represent pointed connected 2-types with abelian
fundamental group and homotopy groups in C.

Any class of algebraic stacks should also provide more examples of groupoid schemes
with a restricted class of source and target maps.

The strict pullback of internal categories

X ×Y Z //

��

Z

��
X // Y

when it exists, is the internal category with objects X0 ×Y0 Z0, arrows X1 ×Y1 Z1, and all
structure maps given componentwise by those of X and Z. Often we will be able to prove
that certain pullbacks exist because of conditions on various component maps in S. We
do not assume that all strict pullbacks of internal categories exists.

There is a weaker notion of pullback, which is of much more interest in this 2-
categorical setting, known as a bipullback (or in some places weak pullback – [Moerdijk-
Mrčun, 2003] for example – but this has a separate meaning when in a 1-category, so
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we will not use it). This can be defined via considering an internal version of the arrow
category of a category, or more precisely, the isomorphism category.

2.16. Definition. (see, e.g. [Everaert et al, 2005]) Assume for an internal category X
the object X iso

1 of isomorphisms exists. The isomorphism category of X is the internal
category denoted XI, with

XI
0 = X iso

1 , XI
1 = (X1 ×s,X0,t X

iso
1 )×X1 (X iso

1 ×s,X0,t X1).

where the fibred product over X1 arises by considering the composition maps

X1 ×s,X0,t X
iso
1

//X1

X iso
1 ×s,X0,t X1

//X1.

Composition in XI is the same as commutative squares in the case of ordinary categories.
There are two functors s, t : XI //X which have the usual source and target maps of X
as their respective object components.

This construction is an internal version of the functor category Cat(I, C), since there

is not always a groupoid analogous to I = (◦ '−→ •) internal to S. In other words, XI is
the cotensor (or power) of X with I (see e.g. [Kelly, 2005]).

2.17. Definition. If for all objects X of Cat′(S) the cotensor XI exists, we say Cat′(S)
admits cotensors with I.

2.18. Remark. There is an isomorphism XI
1 ' X iso

1 ×t,X0,t X1 ×s,X0,t X
iso
1 given by

projecting out the last factor in

(X1 ×s,X0,t X
iso
1 )×X1 (X iso

1 ×s,X0,t X1).

It is easy to see in this form that this pullback exists given our assumptions on pullbacks
of the source and target maps. In fact, we have an isomorphism XI

1 ' X[X iso
1 ].

The following lemma is a simple exercise in keeping track of pullbacks.

2.19. Lemma. Assume Cat′(S) has enough groupoids. If the source and target maps of
X, an object of Cat′(S), belong to a class of maps stable under pullback and closed under
composition, then the source and target maps of XI also belong to that class.

As an example, if the 2-category of Lie categories (or groupoids) is defined to have
objects those categories (resp. groupoids) with submersions for source and target maps,
then LieCat and LieGpd have cotensors with I, by lemma 2.10.

2.20. Remark. We shall thus assume from now on that Cat′(S) is defined so that
XI ∈ Cat′(S) whenever X ∈ Cat′(S). This is true if we define Cat′(S) to be all internal
categories with source and target maps belonging to a specified class of arrows from S of
which pullbacks exist.

The astute reader will recognise the following as an internalisation of the usual notion
of bipullback.
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2.21. Definition. The bipullback X×̃YZ of a diagram

Z

��
X // Y

of internal categories is the 2-universal filler for this diagram. It is given, if it exists, by
the strict pullback X ×Y,s Y I ×t,Y Z. There is a 2-commutative square

X×̃YZ

��

// Z

��
'

{� ~~~~~~~~

~~~~~~~~

X // Y

the universal property of which can be found in [Moerdijk-Mrčun, 2003] (we will not need
to use the universal property).

If the ambient category S has pullbacks, then all bipullbacks exist in Cat(S) and
Gpd(S) (see e.g. [Vitale, 2010] for a proof). However it is not immediate that all bipull-
backs exist in Cat′(S), even if S is finitely complete. Lemma 2.19 ensures that if Cat′(S)
has strict pullbacks and cotensors with I, then it has bipullbacks by assumption 2.20.

Recall that there is a functor Obj : Cat′(S) // S, sending an internal category to its
object of objects. Given a category X and a map p : M //X0 in S, a cartesian lift of p
is, amongst other things, a functor with object component p.

2.22. Definition. For a category X and a map p : M //X0 in S, the domain X[M ]
of a cartesian lift X[M ] //X of p will be called the base change of X along p.

If the base change along any map in a given class K of maps exists for all objects of
Cat′(S), then we say Cat′(S) admits base change along maps in K. The base change, if
it exists, is given by taking the strict pullback5

X[M ] //

��

X

��
codisc(M) // codisc(X0)

(3)

in Cat(S). The canonical functor in the top row has p as its object component. If desired
we could probably choose a cartesian lift for each map in S (using Choice) and get a weak
2-functor with object component

Obj(Cat′(S))×Obj(S) Mor(S) // Obj(Cat′(S))
(X,M //X0) 7→ X[M ],

5Note that codisc may not land in Cat′(S), so we work in Cat(S), then check if the pullback is in
Cat′(S). See example 2.27 for cases when this happens.
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but we will not be using this, so will not make it precise.
It follows immediately from the definition that given maps N //M and M // X0,

there is a canonical isomorphism

X[M ][N ] ' X[N ]. (4)

with object component the identity map.

2.23. Remark. If we agree to follow the convention that M ×N N = M is the pullback
along the identity arrow idN , then X[X0] = X. This also simplifies other results of this
paper, so will be adopted from now on.

One consequence of this assumption is that the iterated fibre product

M ×M M ×M . . .×M M,

bracketed in any order, is equal to M . We cannot, however, equate two bracketings of a
general iterated fibred product; they are only canonically isomorphic.

In all that follows, ‘category’ will mean object of Cat′(S) and similarly for ‘functor’
and ‘natural transformation/isomorphism’.

2.24. Lemma. Let X be a category and M // X0, N // X0 arrows in S such that
M ×X0 N exists. Then the following square is a strict pullback

X[M ×X0 N ] //

��

X[N ]

��
X[M ] // X

when the various base changes exist.

Proof. Consider the following cube

X[M ×X0 N ] //

((RRRRRRRRRRRRRR

��

X[N ]

��

''OOOOOOOOOOOOO

X[M ]

��

// X

��

codisc(M ×X0 N)

((RRRRRRRRRRRRR
// codisc(N)

''OOOOOOOOOOO

codisc(M) // codisc(X0)

The bottom and sides are pullbacks, either by definition, or using (4), and so the top is
a pullback.
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The following technical lemma will be useful later. Even though Obj does not extend
to a 2-functor, it captures some of the interaction between the fibrational nature of Obj
and the 2-category nature of Cat′(S).

2.25. Lemma. Let f, g : disc(M) // Y be functors and a : f ⇒ g be a natural isomor-
phism. Assume further that the base change of Y along f exists. Then the base change
of Y along g exists, there is an isomorphism

M2 ×f2,Y 2
0
Y1 'M2 ×g2,Y 2

0
Y1

commuting with the projections to M2, and in fact the categories Y [M
f−→ Y0] and Y [M

g−→
Y0] are isomorphic via a functor which is the identity on objects.

Proof. Supressing the canonical isomorphisms X2
0×Y 2

0
Y1 ' X0×Y0Y1×Y0X0, the required

isomorphism is

X0 ×f,Y0 Y1 ×Y0,f X0
(id,−a)×id×(a,id)−−−−−−−−−−→X0 ×g,Y0 Y1 ×Y0 Y1 ×Y0 Y1 ×Y0,g X0

id×m×id−−−−−→ X0 ×g,Y0 Y1 ×Y0,g X0.

which is the identity map when restricted to the X0 factors, from which the claim follows.

2.26. Remark. We will need to prove several times that certain pullbacks in S exist.
We shall do this by implicitly exploiting the fact the presheaf category Ŝ := Cat(Sop,Set)
is the completion of S together with the Yoneda lemma. In essence, one takes the pullback
of a diagram in Ŝ, shows it is isomorphic to a representable presheaf, hence the pullback
exists. We shall do this implicitly, by assuming that the pullback exists in S and showing it
is isomorphic to a given pre-existing object in S (and all the requisite diagrams commute)
by maps constructed out of given maps in S.

We are interested in 2-categories Cat′(S) which admits base change along a given
class of maps E from S. The main examples for our purposes are when S is one of: Top
(a category of topological spaces, convenient or otherwise), Diff , a category of manifolds
(finite or infinite dimensional – the latter Fréchet for choice), Grp (or more generally a
semi-abelian category), Sch (some category of schemes) or an abelian category A, or a
topos E (or more generally a Barr-exact category). The reader is invited to consider their
own examples.

2.27. Example. If LieGpd denotes the 2-category of Lie groupoids, which are defined
such that the source and target maps are submersions, then consider the following sub-2-
categories:

• Proper Lie groupoids: those X where the map (s, t) : X1
//X2

0 is proper,

• étale Lie groupoids: those X where the maps s, t : X1
// X0 are local diffeomor-

phisms (i.e. étale),
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• Proper étale Lie groupoids – also known as orbifolds [Moerdijk, 2002].

All of these are good examples of Cat′(Diff). Differentiable stacks of varying sorts are
modelled by groupoids in these 2-categories.Note that codisc(M) is not an object of the
2-category of proper étale groupoids, but the base change along any submersion exists in
that 2-category (see lemma 7.7).

The third item in example 2.27 illustrates an important point: the intersection of
any two sub-2-categories of Cat(S) that satisfy our assumptions will also satisfy the
assumptions.

2.28. Example. In [Noohi, 2005a] we find the definition of a class LF of local fibrations,
which are maps in Top satisfying the properties:

1. Open embeddings are in LF,

2. LF is closed under composition,

3. LF is stable under pullback and local on the target,6

4. LF is stable under coproducts when considered as elements of a slice category
Top/Y .

We then consider the 2-categories CatLF (Top), GpdLF (Top) of topological categories
and groupoids where the source and target maps belong to LF . Examples of classes
LF include: open maps, local homeomorphisms, locally split maps, local Serre/Hurewicz
fibrations.

Groupoids in GpdLF (Top) model topological stacks with varying properties, and all
admit base change along arrows of the form

∐
Ui //X where {Ui} is an open cover of

X (see lemma 7.7).

These two examples have a ‘geometric’ flavour, but we are not restricted to examples
that look like stacks. Since Grp is a Mal’cev category, categories in Grp are all groupoids,
so we only consider groupoids in Grp. It is well known that groupoids in Grp model
pointed, connected 2-types, and π1(X) := Aut(1X0) and π0(X) := X0/X1 correspond
to the second and first homotopy groups of the homotopy type corresponding to the
groupoid X. It is therefore an interesting question to consider models of localisations of
2-types, for example at a set P of primes, or models of nilpotent 2-types. More generally,
consider a class of groups C satisfying: if given an epimorphism of groups, p : G //H, then
G ∈ C if and only if H, ker(p) ∈ C. For example, we could take the classes of p-groups,
finitely generated p-groups, nilpotent groups. We can then consider sub-2- categories of
Gpd(Grp) where π1 and π0 are either elements of C, or are localised at C. We shall not
pursue this further here.

6A class of maps is local on the target if given an open cover U //Y , and if the projection U×Y X //U
is in that class, then X // Y is in that class.
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One last example we consider is groupoid schemes, which correspond to algebraic
stacks. Without going into details, algebraic stacks are stacks of groupoids

X : Schop //Gpd

on the category of schemes, satisfying two generic conditions:

1. There is a representable cover X // X , from a representable stack X, defined via
some pretopology J on Sch (in particular, it is a map belonging to a pullback stable
class);

2. The diagonal X //X ×X is representable and belongs to a class of maps which is
pullback stable.

We gloss over the details about what it means for these various classes of maps to work
and so on. The important point for us is that these two conditions imply that there is a
groupoid X [2] := X ×X X ⇒ X internal to Sch where the source and target maps belong
to J , and where (s, t) : X [2] //X ×X belongs to a pullback-stable class of maps. Since
Sch is finitely complete, we do not need to worry about pullbacks existing, only about
the base change existing in the 2-category Cat′(Sch) we are interested in. (Note that this
sort of base change is not the same as base change as considered in algebraic geometry –
caveat lector.) Since (s, t) belongs to a pullback-stable class, this obviously presents no
obstruction to the existence of base change along any map. The only thing we need to
check is that source and target maps are what they need to be. See example 7.9.

3. Sites and covers

The idea of localness is inherent in many constructions in algebraic topology and algebraic
geometry. For an abstract category the concept of ‘local’ is encoded by a Grothendieck
pretopology. Localness is needed to be able to talk about local sections of a map in a
category – a concept that will replace surjectivity when moving from Set to more general
categories. This section gathers definitions and notations for later use.

3.1. Definition. A Grothendieck pretopology (or simply pretopology) on a category S
is a collection J of families

{(Ui // A)i∈I}A∈Obj(S)

of morphisms for each object A ∈ S satisfying the following properties

1. (id : A // A) is in J for every object A.

2. Given a map B //A, for every (Ui //A)i∈I in J the pullbacks B ×A Ai exist and
(B ×A Ai //B)i∈I is in J .
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3. For every (Ui // A)i∈I in J and for a collection (V i
k

// Ui)k∈Ki
from J for each

i ∈ I, the family of composites

(V i
k

// A)k∈Ki,i∈I

are in J .

Families in J are called covering families. A category S equipped with a pretopology J
is called a site, denoted (S, J).

3.2. Example. The basic example is the lattice of open sets of a topological space, seen
as a category in the usual way, where a covering family of an open U ⊂ X is an open
cover of U by opens in X. This is to be contrasted with the pretopology O on Top, where
the covering families of a space are just open covers of the whole space.

3.3. Example. On Grp the class of surjective homomorphisms form a pretopology.

3.4. Example. On Top the class of numerable open covers (i.e. those that admit a
subordinate partition of unity [Dold, 1963]) form a pretopology. Much of traditional
bundle theory is carried out using this site, for example, the Milnor classifying space
classifies bundles which are locally trivial over numerable covers [Mil56, Dold, 1963, tom
Dieck, 1966].

3.5. Definition. Let (S, J) be a site. The pretopology J is called a singleton pretopol-
ogy if every covering family consists of a single arrow (U // A). In this case a covering
family is called a cover.

3.6. Example. In Top, the classes of covering maps, local section admitting maps,
surjective étale maps and open surjections are all examples of singleton pretopologies.
The results of [Pronk, 1996] pertaining to topological groupoids were carried out using
the site of open surjections.

3.7. Example. The class Subm of surjective submersions in Diff , the category of
smooth manifolds, is a singleton pretopology.

There are many different and useful pretopologies on the category Sch of schemes,
such as the Zariski, étale, fpqc and Nisnevich pretopologies. Only the author’s lack of
familiarity with these will prevent these from playing much of a rôle in this paper. The
knowledgeable reader is invited to try out their own examples from algebraic geometry in
parallel to those given here.

3.8. Definition. A covering family (Ui //A)i∈I is called effective if A is the colimit of
the following diagram: the objects are the Ui and the pullbacks Ui×A Uj, and the arrows
are the projections

Ui ← Ui ×A Uj // Uj.

If the covering family consists of a single arrow (U // A), this is the same as saying
U // A is a regular epimorphism.
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3.9. Definition. A site is called subcanonical if every covering family is effective.

3.10. Example. On Top, the usual pretopology of opens, the pretopology of numerable
covers and that of open surjections are subcanonical.

3.11. Example. In a regular category, the regular epimorphisms form a subcanonical
singleton pretopology.

In fact, the (pullback stable) regular epimorphisms7 in any category form the largest
subcanonical singleton pretopology, so it has its own name.

3.12. Definition. The canonical singleton pretopology R is the largest class of regu-
lar epimorphisms which are pullback stable. It contains all the subcanonical singleton
pretopologies.

3.13. Remark. If U // A is an effective cover, a functor Č(U) // disc(B) gives a
unique arrow A //B. This follows immediately from the fact A is the colimit of Č(U).

3.14. Definition. A finitary (resp. infinitary) extensive category is a category with
finite (resp. small) coproducts such that the following condition holds: let I be a a finite
set (resp. any set), then, given a collection of commuting diagrams

Xi
//

��

Z

��
Ai //

∐
i∈I Ai ,

one for each i ∈ I, the squares are all pullbacks if and only if the collection {Xi
// Z}I

forms a coproduct diagram.

In such a category there is a strict initial object (i.e. given a map A //0 with 0 initial,
we have A ' 0).

3.15. Example. Top is infinitary extensive.

3.16. Example. Ringop is finitary extensive.

In Top we can take an open cover {Ui}I of a space X and replace it with the single
map

∐
I Ui

//X, and work just as before using this new sort of cover, using the fact Top
is extensive. The sort of sites that mimic this behaviour are called superextensive.

7Of course, the nomenclature was decided the other way around; ‘subcanonical’ meaning ‘contained
in the canonical pretopology’.
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3.17. Definition. (Bartels-Shulman) A superextensive site is an extensive category S
equipped with a pretopology J containing the families

(Ui //
∐
I

Ui)i∈I

and such that all covering families are bounded; this means that for a finitely extensive site,
the families are finite, and for an infinitary site, the families are small. The pretopology
in this instance will also be called superextensive.

3.18. Example. Given an extensive category S, the extensive pretopology has as cover-
ing families the bounded collections (Ui //

∐
I Ui)i∈I . The pretopology on any superex-

tensive site contains the extensive pretopology.

3.19. Example. The category Top with its usual pretopology of open covers is a su-
perextensive site.

3.20. Example. A topos with the coherent pretopology is finitary superextensive, and
a Grothendieck topos with the canonical pretopology is infinitary superextensive.

Given a superextensive site, one can form the class qJ of arrows
∐

I Ui
// A.

3.21. Proposition. The class qJ is a singleton pretopology, and is subcanonical if and
only if J is.

Proof. Since identity arrows are covers for J they are covers for qJ . The pullback of a
qJ-cover

∐
I Ui

//A along B //A is a qJ-cover as coproducts and pullbacks commute
by definition of an extensive category. Now for the third condition we use the fact that
in an extensive category a map

f : B //
∐
I

Ai

implies thatB '
∐

I Bi and f =
∐

i fi. GivenqJ-covers
∐

I Ui
//A and

∐
J Vj

//(
∐

I Ui),
we see that

∐
J Vj '

∐
IWi. By the previous point, the pullback∐

I

Uk ×‘
I Ui′

Wi

is a qJ-cover of Ui, and hence (Uk ×‘
I Ui′

Wi
// Uk)i∈I is a J-covering family for each

k ∈ I. Thus
(Uk ×‘

I Ui′
Wi

// A)i,k∈I

is a J-covering family, and so∐
J

Vj '
∐
k∈I

(∐
I

Uk ×‘
I Ui′

Wi

)
// A

is a qJ-cover.
The map

∐
I Ui

//A is the coequaliser of
∐

I×I Ui ×A Uj ⇒
∐

I Ui if and only if A is the
colimit of the diagram in definition 3.8. Hence (

∐
I Ui

// A) is effective if and only if
(Ui // A)i∈I is effective
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Notice that the original superextensive pretopology J is generated by the union of qJ
and the extensive pretopology.

3.22. Definition. Let (S, J) be a site. An arrow P //A in S is called a J-epimorphism
(or simply J-epi) if there is a covering family (Ui // A)i∈I and a lift

P

��
Ui

??~
~

~
~

// A

for every i ∈ I. The class of J-epimorphisms will be denoted (J-epi).

This definition is equivalent to the definition in III.7.5 in [Mac Lane-Moerdijk, 1992].
The dotted maps in the above definition are called local sections, after the case of the
usual open cover pretopology on Top. If the pretopology is left unnamed, we will refer
to local epimorphisms.

One reason we are interested in superextensive sites is the following

3.23. Lemma. If (S, J) is a superextensive site, the class of J-epimorphisms is precisely
the class of qJ-epimorphisms.

If S has all pullbacks then the class of J-epimorphisms form a pretopology. In fact
they form a pretopology with an additional property – it is saturated. The following is
adapted from [Barr-Wells, 1984].8

3.24. Definition. A singleton pretopology J is saturated if whenever the composite
V // U // A is in J , then U // A is in J .

It should be pointed out that a saturated singleton pretopology is called a calibration
in [Bénabou, 1975]. Note that only a slightly weaker condition on S is necessary for
(J-epi) to be a pretopology.

3.25. Example. Let (S, J) be a site. If pullbacks of J-epimorphisms exist then the
collection (J-epi) of J-epimorphisms is a saturated pretopology.

There is a definition of ‘saturated’ for arbitrary pretopologies, but we will use only this
one. Another way to pass from an arbitrary pretopology to a singleton one in a canonical
way is this:

3.26. Definition. The universal J-epimorphisms Jun ⊂ (J-epi) associated to a pre-
topology J on an arbitrary category S is the largest class of those J- epimorphisms which
are pullback stable.

It is clear that (Jun)un = Jun, and that when pullbacks exist, (J-epi) = Jun.

8Note that what we are calling a Grothendieck pretopology is referred to as a Grothendieck topology
in [Barr-Wells, 1984].
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3.27. Example. The universal O-epimorphisms for the class of open covers O in Diff
is Subm, the class of surjective submersions. Notice that all surjective submersions admit
local sections (essentially by the implicit function theorem), whereas not all maps in
(O-epi) are submersions, so that Oun 6= (O-epi).

If J is a singleton pretopology, it is clear that J ⊂ Jun. In fact Jun contains all the
covering families of J with only one element when J is any pretopology.

From lemma 3.23 we have

3.28. Corollary. In a superextensive site (S, J), we have Jun = (qJ)un.

One class of extensive categories which are of particular interest is those that also have
finite/small limits. These are called lextensive. For example, Top is infinitary lextensive,
as is a Grothendieck topos. In contrast, a general topos is finitary lextensive. In a
lextensive category

Jun = (qJ)un = (J-epi) = (qJ-epi).

Sometimes a pretopology J contains a smaller pretopology that still has enough covers
to compute the same J-epis.

3.29. Definition. If J and K are two singleton pretopologies with J ⊂ K, such that
K ⊂ Jun, then J is said to be cofinal in K, denoted J ≤ K.

Clearly J ≤ Jun for any singleton pretopology J .

3.30. Lemma. If J ≤ K, then Jun = Kun.

4. Weak equivalences

Equivalences in Cat—assuming the axiom of choice—are precisely the fully faithful, es-
sentially surjective functors. For internal categories, however, this is not the case. In
addition, we need to make use of a pretopology to make the ‘surjective’ part of essentially
surjective meaningful. To start with we shall just assume that our ambient category is
equipped with a class E of morphisms which is pullback stable. We shall also assume
throughout this section that our 2-category of internal categories has enough groupoids,
so that we can use the object of isomorphisms of an internal category.

The following definition first made its appearence in [Bunge-Paré, 1979] for S finitely
complete and regular, and E the class of regular epimorphisms, in the context of stacks
and indexed categories.

4.1. Definition. [Bunge-Paré, 1979, Everaert et al, 2005] Let S be a category with a
specified class E of morphisms. An internal functor f : X // Y in S is called



20

1. fully faithful if

X1
f1 //

(s,t)

��

Y1

(s,t)

��
X0 ×X0 f0×f0

// Y0 × Y0

is a pullback diagram

2. essentially E-surjective if the arrow labelled ~ is in E

X0 ×Y0 Y
iso

1

yyssssssssss

~

��

��
X0

f0
��

Y iso
1

s
yysssssssssss

t
%%KKKKKKKKKKK

Y0 Y0

3. an E-equivalence if it is fully faithful and essentially E-surjective.

The class of E-equivalences will be denoted WE.

If (S, J) is a site, then we are interested in the class E = Jun. The class of Jun-
equivalences will be denoted WJ and they will, following [Everaert et al, 2005], be referred
to as J-equivalences. If mention of J is suppressed, they will be called weak equivalences.
This usage differs from loc. cit. where the class of (J-epi)-equivalences are referred to as
J-equivalences. In a finitely complete category there is no difference, but this definition
allows later proofs to hold for non-finitely complete categories.

4.2. Example. The canonical functor X[M ] //X is always fully faithful, by definition.

4.3. Example. If X // Y is an internal equivalence, then it is a J-equivalence for all
pretopologies J such that split epimorphisms are contained in Jun [Everaert et al, 2005].
In fact, if T denotes the trivial pretopology (only isomorphisms are covers) on a finitely
complete category, the T -equivalences are precisely the internal equivalences.

4.4. Remark. This example does not include Lie groupoids as Oun = Subm does not
contain the split epimorphisms. Internal equivalences are O-equivalences, but this is a
result that uses the structure of Lie groupoids in an essential way. In fact we have chosen
to take Jun-equivalences as standard for non-finitely complete categories as this reflects
the usage in the Lie groupoid literature.

4.5. Lemma. If f : X // Y is a functor such that f0 is in Jun, then f is essentially
Jun-surjective.

4.6. Corollary. If (S, J) is a site, X a category in S and (U // X0) is a covering
family (e.g. J is a singleton pretopology), the functor X[U ] //X is a J-equivalence.
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Proof. The object component of the canonical functor X[U ] //X is U //X0 and since
it is in J it is in Jun. Hence as X[U ] //X is fully faithful it is a J-equivalence.

We now consider some easy results on the behavious of weak equivalences under pull-
backs, both strict and weak. First, fully faithful functors are stable under strict pullback.

4.7. Lemma. If f : X // Y is fully faithful, and g : Z // Y is any functor, pr1 in

Z ×Y X //

pr1
��

X

f

��
Z g

// Y

is fully faithful whenever the strict pullback exists.

Proof. Assuming the pullback exists, the following chain of isomorphisms establishes the
claim

(Z0 ×Y0 X0)2 ×Z2
0
Z1 ' X2

0 ×Y 2
0
Z1

' (X2
0 ×Y 2

0
Y1)×Y1 Z1

' X1 ×Y1 Z1,

the last following from the fact f is fully faithful.

The following terminology is adapted from [Everaert et al, 2005], although strictly
speaking this map is only a fibration when model structure from loc. cit. exists, or more
generally when the structure of a category of fibrant objects exists.

4.8. Definition. An internal functor f : X // Y is called a trivial E-fibration if it is
fully faithful and f0 ∈ E.

4.9. Lemma. Let Cat′(S) admit base change along arrows in E and cotensors with I.
If a functor f : X // Y is an E-equivalence, the strict pullback X ×Y Y I exists and

X ×Y Y I t◦pr2−−−→ Y

is a trivial E-fibration.

Proof. The object component of t ◦ pr2 is t ◦ pr2, which is in E by definition as f is
essentially E-surjective. Consider now the pullback

(X0 ×Y0 Y
iso

1 )2 ×Y 2
0
Y1

//

��

Y1

��
(X0 ×Y0 Y

iso
1 )2 // Y0 × Y0
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Remark 2.18 tells us that the pullback is isomorphic to X2
0 ×Y 2

0
Y I

1 in the pullback square

X2
0 ×Y 2

0
Y I

1

pr2 //

��

Y I
1

pr1

��
Y1

��
X2

0
// Y0 × Y0

but if f is fully faithful,

X2
0 ×Y 2

0
Y I

1 ' X2
0 ×Y 2

0
Y1 ×Y1 Y

I
1

' X1 ×Y1 Y
I

1 ,

hence t ◦ pr2 is fully faithful.

The internal category X ×Y Y I is called the mapping path space construction in
[Everaert et al, 2005] and if the model structure therein exists, the above follows from
cofibration-acyclic fibration factorisation.

4.10. Corollary. If the bipullback of an E-equivalence exists, it is again an E-equivalence.

Proof. Trivial E-fibrations are stable under strict pullback and a bipullback of an E-
equivalence is given by a strict pullback of a trivial E-fibration.

4.11. Lemma. Let Cat′(S) admit base change along a class E of arrows in S and admit
cotensors with I. Then bipullbacks of E-equivalences exist in Cat′(S).

Proof. Suppose we want to form the bipullback of

X

f

��
Z g

// Y

where f is an E-equivalence. It is an easy exercise to see that this is given by the base

change of Z along Z0 ×Y0 (Y1 ×Y0,f X0)
pr1−−→ Z0, which is in E, as it is the pullback of

Y1 ×Y0,f X0
// Y0, which is in E.

5. Anafunctors

We now let J be a subcanonical singleton pretopology on the ambient category S. In this
section we assume that Cat′(S) admits base change along arrows in the given pretopology
J . This is a slight generalisation of what is considered in [Bartels, 2006], where only
Cat′(S) = Cat(S) is considered.
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5.1. Definition. [Makkai, 1996, Bartels, 2006] An anafunctor in (S, J) from a category
X to a category Y consists of a cover (U //X0) and an internal functor

f : X[U ] // Y.

Since X[U ] is an object of Cat′(S), an anafunctor is a span in Cat′(S), and can be
denoted

(U, f) : X−7→ Y.

5.2. Example. For an internal functor f : X //Y in S, define the anafunctor (X0, f) : X−7→
Y as the following span

X
=←− X[X0]

f−→ Y.

We will blur the distinction between these two descriptions. If f = id : X // X, then
(X0, id) will be denoted simply by idX .

5.3. Example. If U // A is a cover in (S, J) and BG is a groupoid with one object
in S (i.e. a group), an anafunctor (U, g) : disc(A)−7→ BG is the same thing as a Čech
cocycle.

5.4. Definition. [Makkai, 1996, Bartels, 2006] Let (S, J) be a site and let

(U, f), (V, g) : X−7→ Y

be anafunctors in S. A transformation

α : (U, f)⇒ (V, g)

from (U, f) to (V, g) is an internal natural transformation

X[U ×X0 V ]

xxqqqqqqqqqq

&&MMMMMMMMMM

X[U ]

f
&&NNNNNNNNNNNN
α⇒ X[V ]

g
xxpppppppppppp

Y

If α is a natural isomorphism, then α will be called an isotransformation. In that case
we say (U, f) is isomorphic to (V, g). Clearly all transformations between anafunctors
between internal groupoids are isotransformations.

5.5. Example. Given functors f, g : X // Y between categories in S, and a natural
transformation a : f ⇒ g, there is a transformation a : (X0, f) ⇒ (X0, g) of anafunctors,
given by the component X0 ×X0 X0 = X0

a−→ Y1.

5.6. Example. If (U, g), (V, h) : disc(A)−7→ BG are two Čech cocycles, a transformation
between them is a coboundary on the cover U ×A V // A.
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5.7. Example. Let (U, f) : X−7→ Y be an anafunctor in S. There is an isotransfor-
mation 1(U,f) : (U, f) ⇒ (U, f) called the identity transformation, given by the natural
transformation with component

U ×X0 U ' (U × U)×X2
0
X0

id2U×e−−−→ X[U ]1
f1−→ Y1 (5)

5.8. Example. [Makkai, 1996] Given anafunctors (U, f) : X //Y and (V, f◦k) : X //Y
where k : V ' U is an isomorphism over X0, a renaming transformation

(U, f)⇒ (V, f ◦ k)

is an isotransformation with component

1(U,f) ◦ (k × id) : V ×X0 U // U ×X0 U // Y1.

The isomorphism k will be referred to as a renaming isomorphism.
More generally, we could let k : V //U be any refinement, and this prescription also gives
an isotransformation (U, f)⇒ (V, f ◦ k).

See example 5.10 below for another useful example of an isotransformation.
We define (following [Bartels, 2006]) the composition of anafunctors as follows. Let

(U, f) : X−7→ Y and (V, g) : Y−7→ Z

be anafunctors in the site (S, J). Their composite (V, g) ◦ (U, f) is the composite span
defined in the usual way. It is again a span in Cat′(S).

X[U ×Y0 V ]

xxqqqqqqqqqq
fV

&&MMMMMMMMMM

X[U ]

||yyyyyyyy

f
&&NNNNNNNNNNNN

Y [V ]

xxqqqqqqqqqqqq
g

!!DDDDDDDD

X Y Z

The square is a pullback by lemma 2.24 (which exists because V // Y0 is a cover), and
the resulting span is an anafunctor because V // Y0, and hence U ×Y0 V // X0, is a
cover, and using (4). We will sometimes denote the composite by (U ×Y0 V, g ◦ fV ).

Consider the special case when V = Y0, and hence (Y0, g) is just an ordinary functor.
Then there is a renaming transformation (the identity transformation!) (Y0, g) ◦ (U, f)⇒
(U, g ◦ f), using the equality U ×Y0 Y0 = U (by remark 2.23). If we let g = idY , then
we see that (Y0, idY ) is a strict unit on the left for anafunctor composition. Similarly,
considering (V, g) ◦ (Y0, id), we see that (Y0, idY ) is a two-sided strict unit for anafunctor
composition. In fact, we have also proved
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5.9. Lemma. Given two functors f : X // Y , g : Y // Z in S, their composition as
anafunctors is equal to their composition as functors:

(Y0, g) ◦ (X0, f) = (X0, g ◦ f).

5.10. Example. As a concrete and relevant example of a renaming transformation we
can consider the triple composition of anafunctors

(U, f) : X−7→ Y,

(V, g) : Y−7→ Z,

(W,h) : Z−7→ A.

The two possibilities of composing these are(
(U ×Y0 V )×Z0 W,h ◦ (gfV )W

)
,
(
U ×Y0 (V ×Z0 W ), h ◦ gW ◦ fV×Z0

W
)

The unique isomorphism (U ×Y0 V ) ×Z0 W ' U ×Y0 (V ×Z0 W ) commuting with the
various projections is then the required renaming isomorphism. The isotransformation
arising from this renaming transformation is called the associator.

A simple but useful criterion for describing isotransformations where one of the ana-
functors involved is a functor is as follows.

5.11. Lemma. An anafunctor (V, g) : X−7→ Y is isomorphic to a functor (X0, f) : X−7→
Y if and only if there is a natural isomorphism

X[V ]

}}zzzzzzzz g

!!CCCCCCCC

X

f

99
∼⇒ Y

Just as there is composition of natural transformations between internal functors, there
is a composition of transformations between internal anafunctors [Bartels, 2006]. This is
where the effectiveness of our covers will be used in order to construct a map locally over
some cover. Consider the following diagram

X[U ×X0 V ×X0 W ]

uukkkkkkkkkkkkkk

))SSSSSSSSSSSSSS

X[U ×X0 V ]

xxqqqqqqqqqq

))SSSSSSSSSSSSSSSS
X[V ×X0 W ]

uukkkkkkkkkkkkkkkk

&&MMMMMMMMMMM

X[U ]

f

++XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX a⇒ X[V ]

g

��

b⇒ X[W ]

h

rrffffffffffffffffffffffffffffffffff

Y
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from which we can form a natural transformation between the leftmost and the rightmost
composites as functors in S. This will have as its component the arrow

b̃a : U ×X0 V ×X0 W
id×∆×id−−−−−→ U ×X0 V ×X0 V ×X0 W

a×b−−→ Y1 ×Y0 Y1
m−→ Y1

in S. Notice that the Čech groupoid of the cover

U ×X0 V ×X0 W // U ×X0 W (6)

is

U ×X0 V ×X0 V ×X0 W ⇒ U ×X0 V ×X0 W,

using the two projections V×X0V //V . Denote this pair of parallel arrows by s, t : UV 2W ⇒
UVW for brevity. In [Bartels, 2006], section 2.2.3, we find the commuting diagram

UV 2W
t //

s

��

UVW

eba
��

UVW eba // Y1

(7)

(again, this can be checked by using elements) and so we have a functor Č(U ×X0 V ×X0

W ) // disc(Y1). Our pretopology J is assumed to be subcanonical, and using remark
3.13 this gives us a unique arrow ba : U ×X0 W // Y1, the composite of a and b.

5.12. Remark. In the special case that U×X0 V ×X0W //U×X0W is an isomorphism
(or is even just split), the composite transformation has

U ×X0 W // U ×X0 V ×X0 W
eba−→ Y1

as its component arrow. In particular, this is the case if one of a or b is a renaming
transformation.

5.13. Example. Let (U, f) : X−7→ Y be an anafunctor and U ′′
j′−→ U ′

j−→ U succes-
sive refinements of U // X0 (e.g isomorphisms). Let (U ′, fU ′) and (U ′′, fU ′′) denote the
composites of f with X[U ′] //X[U ] and X[U ′′] //X[U ] respectively. The arrow

U ×X0 U
′′ idU×j◦j′−−−−−→ U ×X0 U // Y1

is the component for the composition of the isotransformations (U, f) ⇒ (U ′, fU ′),⇒
(U ′′, fU ′′) described in example 5.8. Thus we can see that the composite of renaming
transformations associated to isomorphisms φ1, φ2 is simply the renaming transformation
associated to their composite φ1 ◦ φ2.
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5.14. Example. If a : f ⇒ g, b : g ⇒ h are natural transformations between functors
f, g, h : X // Y in S, their composite as transformations between anafunctors

(X0, f), (X0, g), (X0, h) : X−7→ Y.

is just their composite as natural transformations. This uses the equality

X0 ×X0 X0 ×X0 X0 = X0 ×X0 X0 = X0,

which is due to our choice in remark 2.23 of canonical pullbacks

The first half of the following theorem is proposition 12 in [Bartels, 2006], and the
second half follows because all the constructions of categories involved in dealing with
anafunctors outlined above are still objects of Cat′(S).

5.15. Theorem. [Bartels, 2006] For a site (S, J) where J is a subcanonical single-
ton pretopology, internal categories, anafunctors and transformations form a bicategory
Catana(S, J). If we restrict attention to a sub-2-category Cat′(S) which admits base
change for arrows in J , we have an analogous full sub-bicategory Cat′ana(S, J).

There is a strict 2-functor Cat′ana(S, J) // Catana(S, J) which is the identity on 0-
cells and induces isomorphisms on hom-categories. The following is the main result of
this section, and allows us to relate anafunctors to the localisations considered in the next
section.

5.16. Proposition. There is a strict 2-functor

αJ : Cat′(S) //Cat′ana(S, J)

sending J-equivalences to equivalences, and commuting with the respective inclusions into
Cat(S) and Catana(S, J).

Proof. We define αJ to be the identity on objects, and as described in examples 5.2,
5.5 on 1-cells and 2-cells (i.e. functors and transformations). We need first to show that
this gives a functor Cat′(S)(X, Y ) //Cat′ana(S, J)(X, Y ). This is precisely the content
of example 5.14. Since the identity 1-cell on a category X in Cat′ana(S, J) is the image of
the identity functor on S in Cat′(S), αJ respects identity 1-cells. Also, lemma 5.9 tells
us that αJ respects composition. That αJ sends J-equivalences to equivalences is the
content of lemma 5.18.

In a site (S, J) where the axiom of choice holds—every J-epimorphism has a section9—
one can prove that every J-equivalence between internal categories is in fact an internal
equivalence of categories. It is precisely the lack of splittings that prevents this theorem
from holding in general sites. The best one can do in a general site is described in the
the following two lemmas, where we make the additional assumption that our 2-category
of internal categories has enough groupoids.

9In other words, existence of local sections is enough to guarantee a global section.
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5.17. Lemma. Let f : X // Y be a J-equivalence, and choose a cover U // Y0 and
a local section s : U // X0 ×Y0 Y

iso
1 . Then there is a functor Y [U ] // X with object

component s′ := pr1 ◦ s : U //X0.

Proof. The object component is given, we just need the arrow component. Denote the
local section by (s′, ι) : U //X0 ×Y0 Y

iso
1 . Consider the composite

Y [U ]1 ' U ×Y0 Y1 ×Y0 U
(s′,ι)×id×(−ι,s′)−−−−−−−−−→ (X0 ×Y0 Y

iso
1 )×Y0 Y1 ×Y0 (Y iso

1 ×Y0 X0)

↪→ X0 ×Y0 Y3 ×Y0 X0
id×m×id−−−−−→ X0 ×Y0 Y1 ×Y0 X0 ' X1

where the last isomorphism arises from f being full faithful. It is clear that this commutes
with source and target, because these are projection on the first and last factor at each
step. To see that it respects identities and composition, just use the fact that the ι
component will cancel with the −ι component.

Hence we have an anafunctor Y−7→ X, and the next proposition tells us this is a
pseudoinverse to f .

5.18. Lemma. Let f : X // Y be a J-equivalence in S. There is an anafunctor

(U, f̄) : Y−7→ X

and isotransformations

ι : (X0, f) ◦ (U, f̄)⇒ idY

ε : (U, f̄) ◦ (X0, f)⇒ idX

Proof. We have the anafunctor (U, f̄) from lemma 5.17. Since the anafunctors idX , idY
are actually functors, we can use lemma 5.11. Using the special case of anafunctor com-
position when the second is a functor, this tells us that ι will be given by a natural
isomorphism

X
f

��????????

��
Y [U ] //

f̄
<<zzzzzzzz

Y

This has component ι : U // Y iso
1 , using the notation from the proof of the previous

lemma. Notice that the composite f1 ◦ f̄1 is just

Y [U ]1 ' U ×Y0 Y1 ×Y0 U
ι×id×−ι−−−−−→ Y iso

1 ×Y0 Y1 ×Y0 Y
iso

1 ↪→ Y3
m−→ Y1.

Since the arrow component of Y [U ] // Y is U ×Y0 Y1 ×Y0 U
pr2−−→ Y1, ι is indeed a natural

isomorphism using the diagram (2).
The other isotransformation is between (X0×Y0 U, f̄ ◦ pr2) and (X0, idX), and is given

by the arrow

ε : X0 ×X0 X0 ×Y0 U ' X0 ×Y0 U
id×(s′,a)−−−−−→ X0 ×Y0 (X0 ×Y0 Y1) ' X2

0 ×Y 2
0
Y1 ' X1



29

This has the correct source and target, as the object component of f̄ is s′, and the source
is given by projection on the first factor of X0 ×Y0 U . This diagram

(X0 ×Y 2
0
U)2 ×X2

0
X1

'
��

pr2 // X1

'

��

U ×Y0 X1 ×Y0 U

−ι×f×ι
��

(X0 ×Y0 Y
iso

1 )×Y0 Y1 ×Y0 (Y iso
1 ×Y0 X0)

id×m×id
// X0 ×Y0 Y1 ×Y0 X0

commutes (a fact which can be checked using elements), and using (2) we see that ε is
natural.

6. Localising bicategories at a class of 1-cells

Ultimately we are interesting in inverting all weak equivalences in Cat′(S) and so need to
discuss what it means to add the formal pseudoinverses to a class of 1-cells in a 2-category
– a process known as localisation. This was done in [Pronk, 1996] for the more general
case of a class of 1-cells in a bicategory, where the resulting bicategory is constructed and
its universal properties (analogous to those of a quotient) examined. The application in
loc. cit. is to showing the equivalence of various bicategories of stacks to localisations of
2-categories of smooth, topological and algebraic groupoids. The results of this article
can be seen as one-half of a generalisation of these results to more general sites.

6.1. Definition. [Pronk, 1996] Let B be a bicategory and W ⊂ B1 a class of 1-cells.
A localisation of B with respect to W is a bicategory B[W−1] and a weak 2-functor

U : B //B[W−1]

such that U sends elements of W to equivalences, and is universal with this property i.e.
composition with U gives an equivalence of bicategories

U∗ : Hom(B[W−1], D) //HomW (B,D),

where HomW denotes the sub-bicategory of weak 2-functors that send elements of W to
equivalences (call these W -inverting, abusing notation slightly).

The universal property means that W -inverting weak 2-functors F : B // D factor,
up to a transformation, through B[W−1], inducing an essentially unique weak 2-functor

F̃ : B[W−1] //D.
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6.2. Definition. [Pronk, 1996] Let B be a bicategory B with a class W of 1-cells. W
is said to admit a right calculus of fractions if it satisfies the following conditions

2CF1. W contains all equivalences

2CF2. a) W is closed under composition
b) If a ∈ W and there is an iso-2-cell a

∼⇒ b then b ∈ W

2CF3. For all w : A′ // A, f : C // A with w ∈ W there exists a 2-commutative square

P

v

��

g // A′

w

��
C

f // A

'
z� ||||||

||||||

with v ∈ W .

2CF4. If α : w ◦ f ⇒ w ◦ g is a 2-cell and w ∈ W there is a 1-cell v ∈ W and a 2-cell
β : f ◦ v ⇒ g ◦ v such that α ◦ v = w ◦ β. Moreover: when α is an iso-2-cell, we
require β to be an isomorphism too; when v′ and β′ form another such pair, there
exist 1-cells u, u′ such that v◦u and v′◦u′ are in W , and an iso-2-cell ε : v◦u⇒ v′◦u′
such that the following diagram commutes:

f ◦ v ◦ u β◦u +3

f◦ε '

��

g ◦ v ◦ u

g◦ε'

��
f ◦ v′ ◦ u′

β′◦u′
+3 g ◦ v′ ◦ u′

(8)

6.3. Remark. In particularly nice cases (as in the next section), the first half of 2CF4
holds due to left-cancellability of elements of W , giving us the canonical choice v = I.

6.4. Theorem. [Pronk, 1996] A bicategory B with a class W that admits a calculus of
right fractions has a localisation with respect to W .

From now on we shall refer to a calculus of right fractions as simply a calculus of
fractions, and the resulting localisation constructed by Pronk as a bicategory of fractions.
Since B[W−1] is defined only up to equivalence, it is of great interest to know when a
bicategory D in which elements of W are converted to equivalences is itself equivalent to
B[W−1]. In particular, one would be interested in finding such an equivalent bicategory
with a simpler description than that which appears in [Pronk, 1996]. Thanks are due
to Matthieu Dupont for pointing out (in personal communication) that proposition 6.5
actually only holds in one direction, not in both, as claimed in loc. cit.
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6.5. Proposition. [Pronk, 1996] A weak 2-functor F : B //D which sends elements
of W to equivalences induces an equivalence of bicategories

F̃ : B[W−1]
∼−→ D

if the following conditions hold

EF1. F is essentially surjective,

EF2. For every 1-cell f ∈ D1 there are 1-cells w ∈ W and g ∈ B1 such that Fg
∼⇒ f ◦Fw,

EF3. F is locally fully faithful.

The following is useful in showing a weak 2-functor sends weak equivalences to equiv-
alences, because this condition only needs to be checked on a class that is in some sense
cofinal in the weak equivalences.

6.6. Theorem. In the bicategory B and let V ⊂ W be two classes of 1-cells such that
for all w ∈ W , there exists v ∈ V and s ∈ W such that there is an invertible 2-cell

a

w

��
b v

//

s

??~~~~~~~~~~~~~~~~
c .

'
�� �

���

����

Then a weak 2-functor F : B // D that sends elements of V to equivalences also sends
elements of W to equivalences.

Proof. In the following the coherence arrows will be implicit. First we show that Fw
has a pseudosection in D for any w ∈ W . Let v, s be as above. Let F̃ v be a pseudoinverse
of Fv, and let j = Fs ◦ F̃ v. Then there is the following invertible 2-cell

Fw ◦ j ⇒ F (w ◦ s) ◦ F̃ v ⇒ Fv ◦ F̃ v ⇒ I.

We now show that j is in fact a pseudoinverse for Fw. Since s ∈ W , there is a v′ ∈ V
and s′ ∈ W and an invertible 2-cell giving the following diagram

d

s′

��

v′ // a

w

��
b v

//

s

??�����������������
c .

�� �
����

�����

�� �
���

����
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Apply the functor F , and denote pseudoinverses of Fv, Fv′ by F̃ v, F̃ v′. Using the 2-cell
I ⇒ Fv′ ◦ F̃ v′ we get the following invertible 2-cell

Fd

Fs

��

Fa
gFv′oo

Fw

��
Fb

Fv
// Fc

jr \\\\\\\\\\

Then there is this composite invertible 2-cell

j ◦ Fw ⇒ (Fs ◦ F̃ v) ◦ (Fv ◦ (Fs ◦ F̃ v′))⇒ (Fs ◦ Fs′) ◦ F̃ v′ ⇒ Fv′ ◦ F̃ v′ ⇒ I,

making Fw is an equivalence. Hence F sends all elements of W to equivalences.

7. Anafunctors are a localisation

In this section we prove the result that Cat′(S) admits a calculus of fractions for the
E-equivalences, and the bicategory of anafunctors is a localisation. Note that E is not
required to be subcanonical, but rather that it satisfies a weak saturation condition.

7.1. Definition. Let E be a class of arrows in the ambient category S. E is called a
class of admissible maps if it is a singleton pretopology containing the split epimorphisms
which satisfies the following condition:

(S) If e : A //B is a split epimorphism, and A
e−→ B

p−→ C is in E, then p ∈ E.

7.2. Example. If E is a saturated singleton pretopology, it is a class of admissible
maps. In particular, E could be Jun = (J-epi) for a non-singleton pretopology J on a
finitely complete category.

7.3. Example. The singleton pretopology Subm of surjective submersions on Diff is
subcanonical and satisfies condition (S), but does not contain the split epimorphisms, so
is not admissible.

7.4. Remark. Recall that Cat′(S) is assumed to be a sub-2-category of Cat(S) defined
such that all pullbacks of source and target maps exist. We do not assume that Cat′(S)
admits finite (strict) limits or even all bipullbacks.

7.5. Theorem. Let S be a category with a class E of admissible maps. Assume the
2-category Cat′(S) admits base change along maps in E, admits cotensors with I and has
enough groupoids. Then Cat′(S) admits a right calculus of fractions for the class WE of
E-equivalences.
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Proof. We show the conditions of definition 6.2 hold.
2CF1. Since E contains all the split epis, an internal equivalence is essentially E-

surjective (c.f. example 4.3). Let f : X //Y be an internal equivalence, and g : Y //X a
pseudoinverse. By definition there are natural isomorphisms a : g◦f ⇒ idX and b : f ◦g ⇒
idY . To show that f is fully faithful, we first show that the map

q : X1
//X2

0 ×f,Y 2
0
Y1

is a split monomorphism over X2
0 . This diagram commutes

X1
// X2

0 ×f,Y 2
0
Y1

��
X1 X2

0 ×gf,X2
0
X1 ,

'oo

by the naturality of a, the marked isomorphism coming from lemma 2.25, giving the
desired splitting (call it s). The splitting commutes with projection to X2

0 because the
isomorphism does. The same argument implies that

Y1
// Y 2

0 ×X2
0
X1

is a split monomorphism over Y 2
0 , and this implies the composite arrow

l : X2
0 ×Y 2

0
Y1

//X2
0 ×Y 2

0
Y 2

0 ×X2
0
X1 ' X2

0 ×gf,X2
0
X1

is a split monomorphism. This diagram commutes

X2
0 ×Y 2

0
Y1

l //

s

��

X2
0 ×gf,X2

0
X1

' // X1

X1 q
// X2

0 ×Y 2
0
Y1

l
// X2

0 ×gf,X2
0
X1

' // X1

using naturality again, and so q ◦ s = id, using the fact l is a monomorphism. Thus q is
an isomorphism, and f is fully faithful.

2CF2 a). That the composition of fully faithful functors is again fully faithful is trivial.
To show that the composition of essentially E-surjective functors f : X // Y , g : Y //Z
is again so, consider the following diagram

Y0 ×Z0 Z
iso
1

//

��

((
Ziso

1
t //

s

��

Z0

X0 ×Y0 Y
iso

1
//

��

))
Y iso

1
t //

s

��

Y0 g0
// Z0

X0 f0
// Y0
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where the curved arrows are in E by assumption. The lower such arrow pulls back to an
arrow X0 ×Y0 Y

iso
1 ×Z0 Z

iso
1

// Y0 ×Z0 Z
iso
1 (again in E). Hence the composite

X0 ×Y0 Y
iso

1 ×Z0 Z
iso
1

// Y0 ×Z0 Z
iso
1

t◦pr2−−−→ Z0

is in E, and is equal to the composite

X0 ×Y0 Y
iso

1 ×Z0 Z
iso
1

id×g×id−−−−→ X0 ×Z0 Z
iso
1 ×Z0 Z

iso
1

id×m−−−→ X0 ×Z0 Z
iso
1

t◦pr2−−−→ Z0.

The map

X0 ×Z0 Z
iso
1 ' X0 ×Y0 Y0 ×Z0 Z

iso
1

id×e×id−−−−→ X0 ×Y0 Y
iso

1 ×Z0 Z
iso
1

is a section of

X0 ×Y0 Y
iso

1 ×Z0 Z
iso
1

id×g×id−−−−→ X0 ×Z0 Z
iso
1 ×Z0 Z

iso
1

id×m−−−→ X0 ×Z0 Z
iso
1 .

Now condition (S) tells us that X0 ×Z0 Z
iso
1

t◦pr2−−−→ Z0 is in E, hence g ◦ f is essentially
E-surjective.

2CF2 b). We will show this in two parts: fully faithful functors are closed under
isomorphism, and essentially E-surjective functors are closed under isomorphism. Let
w, f : X // Y be functors and a : w ⇒ f be a natural isomorphism. First, let w be
essentially E-surjective. That is,

X0 ×w,Y0,s Y
iso

1

t◦pr2−−−→ Y0 (9)

is in E. Now note that the map

X0 ×f,Y0,s Y
iso

1

(id,−a)×id−−−−−−→ X0 ××w,Y0,sY
iso

1 ×t,Y0,s Y
iso

1
id×m−−−→ X0 ×w,Y0,s Y

iso
1 (10)

is an isomorphism, and so the composite of (10) and (9) is in E. Thus f is essentially
E-surjective.

Now let w be fully faithful. Thus

X1
w1 //

��

Y1

��
X0 ×X0w0×w0

// Y0 × Y0

is a pullback square. Using lemma 2.25 there is an isomorphism

X1 ' X0 ×w,Y0,s Y1 ×t,Y0,w X0 ' X0 ×f,Y0,s Y1 ×t,Y0,f X0.

The composite of this with projection on X2
0 is (s, t) : X1

//X2
0 , and the composite with

pr2 : X0 ×f,Y0,s Y1 ×t,Y0,f X0
// Y1
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is just f1 by the diagram (2), and so this diagram commutes

X1

'

%%LLLLLLLLLL

!!

((
X2

0 ×f2,Y 2
0
Y1

//

��

Y1

��
X2

0 f2
0

// Y 2
0

i.e. f is fully faithful.

2CF3 follows from lemma 4.11, as Cat′(S) is assumed to admit base change along
arrows in E.

2CF4. Section 4.1 in [Pronk, 1996] shows that given a natural transformation

Y
w

  BBBBBBBB

X

f
==||||||||

g
!!BBBBBBBB ⇓ a Z

Y

w

>>||||||||

where w is fully faithful (e.g. w is in WE), there is a unique a′ : f ⇒ g such that

Y
w

  BBBBBBBB

X

f
==||||||||

g
!!BBBBBBBB ⇓ a Z

Y

w

>>||||||||

= X

f

��

g

DD⇓a′ Y
w // Z .

This is the first half of 2CF4, where v = idX . If v′ : W //X ∈ WE such that there is a
transformation

X
f

  AAAAAAAA

W

v′
==||||||||

v′ !!BBBBBBBB ⇓ b Y

X

g

>>}}}}}}}}
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satisfying

X
f

  AAAAAAAA

W

v′
==||||||||

v′ !!BBBBBBBB ⇓ b Y
w // Z

X

g

>>}}}}}}}}

=

Y
w

  BBBBBBBB

W
v′ // X

f
==||||||||

g
!!BBBBBBBB ⇓ a Z

Y

w

>>||||||||

= W
v′ // X

f

��

g

DD⇓a′ Y
w // Z , (11)

then as v′ is an E-equivalence and Cat′(S) admits base change along arrows in E, we
have a functor u′ : X[W0 ×X0 X1] //W and a natural isomorphism ε:

X[W0 ×X0 X1]
u′

xxqqqqqqqqqqq
u

&&MMMMMMMMMMM

W

v′

66⇐ ε X

where u ∈ WE, and since v′ ◦ u′ '⇒ u, we have v′ ◦ u′ ∈ WE by 2CF2 a) above as required
by 2CF4. The uniqueness result from Pronk’s argument, together with equation (11) to
give us

X
f

  AAAAAAAA

W

v′
==||||||||

v′ !!BBBBBBBB ⇓ b Y

X

g

>>}}}}}}}}

= W
v′ // X

f

��

g

DD⇓a′ Y .

We paste this with ε,

X[U ]

u

%%

u′ ""EEEEEEEEE
ε ⇓ X

f

��@@@@@@@@

W

v′
>>|||||||||

v′ !!CCCCCCCC ⇓ b Y

X

g

>>}}}}}}}}

=

X[U ]

u′

��

u

��
W

v′
// X

f

��

g

DD⇓a′ Y
ε

��
��

��
�

��
��
�

,

which is precisely the diagram (8) with v = idX . Hence 2CF4 holds.
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7.6. Remark. If we replace the assumption that E contains the split epimorphisms by
the slightly weaker assumption that all internal equivalences in Cat′(S) areE-equivalences,
then theorem 7.5 still holds as split epimorphisms are only used to prove 2CF1. By the
result of [Moerdijk-Mrčun, 2005] that internal equivalences of Lie groupoids are Subm-
equivalences, we recover the result that theorem 7.5 holds for Lie groupoids (and Lie
categories more generally) and the class of Subm-equivalences, as well as for various sub-
2-categories, such as proper étale Lie groupoids aka orbifolds.

We thus need to furnish examples of 2-categories Cat′(S) that admit base change
along some class of arrows. The following lemma give a sufficiency condition for this to
be so.

7.7. Lemma. Let CatM(S) be defined as the full sub-2-category of Cat(S) with objects
those categories such that the source and target maps belong to a class M ⊂ Mor(S)
containing the isomorphisms which closed under pullback and composition (of course, this
assumes pullbacks of maps inM exist). Then CatM(S) admits base change along arrows
in M, as does the corresponding 2-category of groupoids.

Proof. Let X be an object of CatM(S) and f : M // X0 ∈ M. In the following two
diagrams, the upper and lower squares are pullbacks (which exist by definition of M)

X[M ]1

��

//

s′

  

M

��

X[M ]1

t′

**

��

// X1 ×X0 M

��

//M

��
M ×X0 X1

��

// X1
//

��

X0 X1
//

��

X0

M // X0 M // X0

The maps marked s′, t′ are the source and target maps for the base change along f , and
are obviously in M, so X[M ] is in CatM(S). The same argument holds for groupoids.

In practice one often only wants base change along a subclass of M, such as (open
covers) ⊂ (open maps) as classes of maps in Top.

7.8. Example. Take S = Diff andM = Subm, the class of surjective submersions. Or
from example 2.28, where M =LF is a class of local fibrations as defined by Noohi, and
we consider base change along maps of the form

∐
Ui //X0, which are open maps, local

homeomorphisms, and also local Serre/Hurewicz fibrations.

7.9. Example. Consider the example of the 2-category of groupoid schemes X with
source and target maps étale (and satisfying some condition on (s, t) : X1

// X0 × X0,
assumed to be a pullback-stable property). These correspond (up to details on (s, t)) to
Deligne-Mumford stacks. By lemma 7.7 the base change along étale maps exists in the
2-category of such groupoids.
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We now want to say when this bicategory of fractions is given by a bicategory of
anafunctors.

7.10. Definition. Given a singleton pretopology J and a class E of admissible maps,
we say E is admissible for J if J ≤ E.

7.11. Example. Jun is a class of admissible maps for J if Jun contains the split epi-
morphisms. A saturated singleton pretopology is a class of admissible maps for itself.

If E is a class of admissible maps for J , E-equivalences are J-equivalences and so
WE ⊂ WJ . This means that the 2-functor αJ in proposition 5.16 sends E-equivalences to
equivalences. We use this fact and proposition 6.5 to show the following.

7.12. Theorem. Let (S, J) be a site with a subcanonical singleton pretopology J , let E
be a class of admissible maps for J and let Cat′(S) be as in theorem 7.5. Then there is
an equivalence of bicategories

Cat′ana(S, J) ' Cat′(S)[W−1
E ]

Proof. Let us show the conditions in proposition 6.5 hold.
EF1. αJ is the identity on 0-cells, and hence surjective on objects.
EF2. This is equivalent to showing that for any anafunctor (U, f) : X−7→ Y there are

functors w, g such that w is in WE and

(U, f)
∼⇒ αJ(g) ◦ αJ(w)−1

where αJ(w)−1 is some pseudoinverse for αJ(w).
Let w be the functor X[U ] // X (this has object component in J ⊂ E, hence is an

E-equivalence) and let g = f : X[U ] // Y . First, note that

X[U ]

}}{{{{{{{{
=

##GGGGGGGGG

X X[U ]

is a pseudoinverse for

αJ(w) =

X[U ][U ]
=

yyttttttttt

##GGGGGGGGGG

X[U ] X

.

Then the composition αJ(f) ◦ αJ(w)−1 is

X[U ×U U ×U U ]

wwoooooooooooo

''OOOOOOOOOOOO

X Y
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which is isomorphic to (U, f) by the renaming transformation arising from the isomor-
phism U ×U U ×U U ' U .

EF3. If a : (X0, f)⇒ (X0, g) is a transformation of anafunctors for functors f, g : X //Y ,
it is given by a natural transformation with component

X0 ×X0 X0
// Y1.

But we have declared X0 ×X0 X0 = X0. Hence we get a unique natural transformation
a : f ⇒ g such that a is the image of a′ under αJ .

We now give a series of results following from this theorem, using basic properties
of pretopologies from section 3. Standing assumptions are as for theorem 7.5 and for
theorem 7.12.

7.13. Corollary. When J and K are two subcanonical singleton pretopologies on S
such that Jun = Kun, there is an equivalence of bicategories

Cat′ana(S, J) ' Cat′ana(S,K).

Using corollary 7.13 we see that using a cofinal pretopology gives an equivalent bicat-
egory of anafunctors.

If E is any class of admissible maps for subcanonical J , the bicategory of fractions
inverting WE is equivalent to that of J-anafunctors. Hence

7.14. Corollary. Let E be a class of admissible maps for the subcanonical pretopology
J . There is an equivalence of bicategories

Cat′(S)[W−1
E ] ' Cat′(S)[W−1

J ]

where of course WJ = WJun.

Finally, if (S, J) is a superextensive site (like Top with its usual pretopology of open
covers), we have the following result which is useful when J is not a singleton pretopology.

7.15. Corollary. Let (S, J) be a superextensive site where J is a subcanonical pre-
topology. Then

Cat′(S)[W−1
Jun

] ' Cat′ana(S,qJ).

Proof. This essentially follows from the corollary to lemma 3.23.

Obviously this can be combined with previous results, for example if K ≤ qJ , for J a
non-singleton pretopology, K-anafunctors localise Cat′(S) at the class of J-equivalences.
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8. Size considerations

The 2-category Cat′(S) is locally small, similar to the case of the 2-category of small
categories (and in fact the latter is cartesian closed). However the construction of B[W−1]
given by Pronk, even for a locally small bicategory B is a priori not necessarily locally
small (or even locally essentially small). Recall that the axiom of choice for a site (S, J)
is that for all J-epimorphisms p : P // A there exists a section of p. This is too strong
an assumption in practice. In many algebraic situations one has projective covers, for
instance in Grp (every group has an epimorphism from a free group). We can rephrase
this by saying the full subcategory of Grp/G consisting of the epimorphisms has a weakly
initial object. More generally one could ask only that the category of all singleton covers
of an object (see definition 8.3 below) has a set of weakly initial objects. This is the
content of the axiom WISC below. We first give some more precise definitions.

8.1. Definition. A category C has a weakly initial set I of objects if for every object
A of C there is an arrows O // A from some object O ∈ I.

Every small category has a weakly initial set, namely its set of objects.

8.2. Example. The category Field of fields has a weakly initial set, consisting of the
prime fields {Q,Fp|p prime}. To contrast, the category of sets with surjections for arrows
doesn’t have a weakly initial set of objects.

8.3. Definition. Let (S, J) be a site. For any object A, the category of covers of
A, denoted J/A has as objects the covering families (Ui // A)i∈I and as morphisms
(Ui // A)i∈I // (Vj // A)j∈J tuples consisting of a function r : I // J and arrows
Ui // Vr(i) in S/A.

When J is a singleton pretopology this is simply a full subcategory of S/A. We now
define the axiom WISC (Weakly Initial Set of Covers), due to Mike Shulman, which in a
sense limits how much Choice fails to hold. Let (S, J) be a site.

8.4. Definition. The site (S, J) is said to satisfy WISC if for every object A of S, the
category J/A has a weakly initial set of objects.

When S is Set with surjections as covers, this is implied by the axiom COSHEP
(Category Of Sets Has Enough Projectives). Without the condition that this is a set of
objects (as opposed to a class or large set) then this would be true of all sites.

8.5. Example. Any regular category with enough projectives with the regular pretopol-
ogy satisfies WISC.

8.6. Example. Assuming Choice in the metalogic—that is, in Set—then (Top,O) and
(Diff ,O) satisfy WISC.

Choice may be more than is necessary here; it would be interesting to see if WISC
in (Set, surjections) is enough to prove WISC in these cases, analogous to how enough
injectives in a topos proves enough injectives for abelian group objects therein.
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8.7. Lemma. If (S, J) satisfies WISC, then so does (S, Jun).

8.8. Lemma. If (S, J) is a superextensive site, (S, J) satisfies WISC if and only if
(S,qJ) does.

8.9. Proposition. Let (S, J) be a site with a subcanonical singleton pretopology J ,
satisfying WISC and let Cat′(S) admit base change along arrows in S. Then Cat′ana(S, J)
is locally essentially small.

Proof. Let I(A) be a weakly initial set for J/A. Consider the locally full sub-2-category
of Cat′ana(S, J) with the same objects, and arrows those anafunctors (U, f) : X−7→ Y
such that U //X0 is in I(X0). Every anafunctor is then isomorphic, by the generalisation
of example 5.8, to one in this sub-2-category.

8.10. Corollary. Assume Cat′(S) and J are as in theorem 7.12 (with E = Jun).
Then any localisation Cat′(S)[W−1

Jun
] is locally essentially small for (S, J) satisfying WISC.
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