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Abstract.

In this article we review the theory of anafunctors introduced by Makkai and Bartels,
and show that given a subcanonical site S, one can form a bicategorical localisation
of various 2-categories of internal categories or groupoids at weak equivalences using
anafunctors as 1-arrows. This unifies a number of proofs throughout the literature, using
the least assumptions possible on S.

Contents

1 Introduction 1
2 Sites 5
3 Internal categories 9
4 Anafunctors 14
5 Localising bicategories at a class of 1-cells 21
6 2-categories of internal categories admit bicategories of fractions 24
7 Examples 28
A Superextensive sites 36

DR note 1: Finish examples section.

Make sure all references in bibliography are used, delete if not.

1. Introduction

It is a well-known classical result of category theory that a functor is an equivalence (that
is, in the 2-category of categories) if and only if it is fully faithful and essentually surjective.
This fact is equivalent to the axiom of choice. It is therefore not true if one is working with
categories internal to a category S which doesn’t satisfy the (external) axiom of choice.
As internal categories are the objects of a 2-category Cat(S) we can talk about internal
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equivalences, and even fully faithful functors. In the case S has a singleton1 pretopology
E we can define an analogue of essentially E-surjective functors. Internal functors which
are fully faithful and essentially surjective are called weak equivalences in the literature
[Bunge-Paré 1979]. We shall call them E-equivalences for clarity. We can recover the
classical result mentioned above if we localise the 2-category Cat(S) at the class WE of
E-equivalences.

However, we are not just interested in localising Cat(S), but various full sub-2-
categories Cat′(S) ⊂ Cat(S) which arise in the study of presentable—that is, algebraic,
topological, differentiable, etc.—stacks. As such it is necessary to ask for a compatibility
condition between the pretopology on S and the sub-2-category we are interested in. We
call this condition existence of base change for arrows in the pretoplogy, and demands that
for any cover p : U //X0 of the object of objects of X ∈ Cat′(S), there is a fully faithful
functor in Cat′(S) with object component p.

1.1. Theorem. Let S be a category with singleton pretopology E and let Cat′(S) be a
full sub-2-category of Cat(S) which admits base change along arrows in E. Then Cat′(S)
admits a calculus of fractions for the E-equivalences.

Pronk gives us the appropriate notion of a calculus of fractions for a 2-category in
[Pronk 1996] as a generalisation of the usual construction for categories. In her construction,
1-arrows are spans and 2-arrows are equivalence classes of bicategorical spans of spans.
However, this construction, while canonical, is a little unwieldy, so we look for a simpler
construction of the localisation.

We find this in the notion of anafunctor, introduced by Makkai for plain small categories
[Makkai 1996] (Kelly described them briefly in [Kelly 1964] but did not develop the concept
further). In his setting an anafunctor is a span of functors which that the left (or source)
leg is a surjective-on-objects, fully faithful functor. For a general category S with a
subcanonical singleton pretopology J [Bartels 2006], the analogon is a span with left leg a
fully faithful functor with object component a cover. Composition of anafunctors is given
by composition of spans in the usual way, and there are 2-arrows between anafunctors
(a certain sort of span of spans) that give us a bicategory Catana(S, J) with objects
internal categories and 1-arrows anafunctors. We can also define the full sub-bicategory
Cat′ana(S, J) analogous to Cat′(S), and there is a strict 2-functor Cat′(S) //Cat′ana(S, J).
This gives us our second main theorem.

1.2. Theorem. Let S be a category with subcanonical singleton pretopology J and let
Cat′(S) be a full sub-2-category of Cat(S) which admits base change along arrows in J ,
Then Cat′(S) //Cat′ana(S, J) is a localisation of Cat′(S) at the class of J-equivalences.

So far we haven’t mentioned the issue of size, which usually is important when
constructing localisations. If the site (S, J) is locally small, then Cat′(S) is locally small,
in the sense that the hom-categories are small. This also implies that Cat′ana(S, J) and
hence any Cat′(S)[W−1

J ] has locally small hom-categories. To prove that the localisation

1A pretopology is a singleton pretopology if all covering families consist of single maps.
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is locally essentially small (that is, hom-categories are equivalent to small categories), we
need to assume a size restriction axiom on the pretopology J , called WISC (Weakly Initial
Set of Covers).

WISC is actually an extremely weak choice principle, similar to the existence of enough
projectives, and states that for every object A of S, there is a set of J-covers of A which
is cofinal in all J-covers of A. It is automatically satisfied if the pretopology is specified as
an assignment of a set of covers to each object.

1.3. Theorem. Let S be a category with subcanonical singleton pretopology J satisfying
WISC, and let Cat′(S) be a full sub-2-category of Cat(S) which admits base change along
arrows in J . Then any localisation of Cat′(S) at the class of J-equivalences is locally
essentially small.

Since a singleton pretopology can be conveniently defined as a certain wide subcategory,
this is not a vacuous statement for large sites, such as Top or Grp(E) (group objects in
a topos E). In fact WISC is independent of the Zermelo-Fraenkel set axioms (without
Choice) [van den Berg 2012, Roberts 2012], thus it is possible to have as a counterexample
to this result even for the topos Set¬AC with surjections as covers.

The theme of giving 2-categories of internal categories or groupoids more equivalences
has been approached in several different ways over the decades. We sketch a few of them,
without necessarily finding the original references, to give an idea of how widely the results
of this paper apply. We give some more detailed explanation on this applicability in a
later section.

Perhaps the oldest related construction is the distibutors of Benabou, also known as
modules or profunctors [Bénabou 1973] (see [Johnstone 2002] for a detailed treatment of
internal profunctors, as the former is difficult to find). Benabou pointed out [Bénabou
2011], after a preprint of this article was released, that in the case of the category Set
(and more generally in a finitely complete site with reflexive coequalisers, see [Mantovani
et al 2012]), the bicategory of small (or internal) categories with representable profunctors
as 1-arrows is equivalent to the bicategory of small categories with anafunctors as 1-arrows.
In fact this was discussed by Baez and Makkai [Baez-Makkai 1997], where the latter
pointed out that representable profunctors correspond to saturated anafunctors in his
setting. The author’s preference for anafunctors lies in the fact they can be defined with
weaker assumptions on the site (S, J), and in fact in the sequel [Roberts ∞2], do not
require the 2-category to have objects which are internal categories. Benabou has pointed
out in private communication that he has an unpublished distributor-like construction
that does not rely on existence of reflexive coequalisers, but the author has not seen any
details of this.

Related to this is the original work of Bunge and Paré [Bunge-Paré 1979], where they
consider functors between the indexed categories associated to internal categories, that
is, the externalisation of an internal category. This was one motivation for considering
weak equivalences in the first place, in that a pair of internal categories have equivalent
externalisations if and only if they are connected by a span of internal functors which are
weak equivalences.
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Another approach is constructing bicategories of fractions a la Pronk [Pronk 1996]. This
has been followed by a number of authors, usually followed up by an explicit construction
of a localisation simplifying the canonical one. Our work here sits at the more general
end of this spectrum, as others have tailored their constructions to take advantage of
the structure of the site they are interested in. For example, butterflies (originally called
papillon) have been used for the category of groups [Noohi 2005b, Aldrovandi-Noohi
2008, Aldrovandi-Noohi 2009], abelian [Breckes 2009] and semiabelian categories [Abbad
et al 2010, Mantovani et al 2012]. These are similar to the meromorphisms of [Pradines
1989], introduced in the context of the site of smooth manifolds; though this is only using
a 1-categorical approach to localisation.

Vitale [Vitale 2010], after first showing that the 2-category of groupoids in a regular
category has a bicategory of fractions, then shows that for protomodular regular categories
one can generalises the pullback congruences of Bénabou in [Bénabou 1989] to discuss
bicategorical localisation. This approach can be applied to internal categories, as long as
one restricts to invertible 2-arrows. Similarly, [Mantovani et al 2012] give a construction
of what they call fractors between internal groupoids in a Mal’tsev category, and show
that in an efficiently regular category (e.g. a Barr-exact category) fractors are 1-arrows in
a localisation of the 2-category of internal groupoids. The proof also works for internal
categories if one considers only invertible 2-arrows.

Other authors, in dealing with internal groupoids, have adopted the approach pioneered
by Hilsum and Skandalis [Hilsum-Skandalis 1987], which has gone by various names,
including: Hilsum-Skandalis morphisms, Morita morphisms, bimodules, bibundles, right
principal bibundles and so on. All of these are very closely related to saturated anafunctors,
but In fact no published definition of a saturated anafunctor in a site other than Set
([Makkai 1996]) has appeared, except in the guise of internal profunctors (e.g. [Johnstone
2002], section B2.7). Note also that this approach has only been applied to internal
groupoids. The review [Lerman 2010] covers the case of Lie groupoids, and in particular
orbifolds, while [Mrčun 2001] treats bimodules between groupoids in the category of affine
schemes, but from the point of view of Hopf algebroids.

The link between localisation at weak equivalences and presentable stacks is considered
in (of course) [Pronk 1996], as well as more recently in [Carchedi 2012], [Schäppi 2012], in
the cases of topological and algebraic stacks respectively, and for example [Tu et al 2004]
in the case of differentiable stacks.

A third approach is by considering a model category structure on the 1-category of
internal categories. This is considered in [Joyal-Tierney 1991] for categories in a topos,
and in [Everaert et al 2005] for categories in a subcanonical site (S, J). In the latter case
the authors show when it is possible to construct a Quillen model category structure on
Cat(S) where the weak equivalences are the weak equivalences from this paper. Sufficient
conditions on S include being a topos with nno, being locally finitely presentable or being
finitely complete regular Mal’tsev – and additionally having enough J-projective objects.
If one is willing to consider other sorts of model categories, then these assumptions can be
dropped. The proof from [Everaert et al 2005] can be adapted to show that for a finitely
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complete site (S, J), the category of groupoids with source and target maps J-covers has
the structure of a category of fibrant objects, with the same weak equivalences.

In a similar vein, one could consider a localisation using hammock localisation [Dwyer-
Kan 1980a] of a category of internal categories, which puts one squarely in the realm of
(∞, 1)-categories. Alternatively, one could work with the (∞, 1)-category arising from
a 2-category of internal categories, functors and natural isomorphisms and consider a
localisation of this as given in, say [Lurie 2009a]. However, to deal with general 2-categories
of internal categories in this way, one needs to pass to (∞, 2)-categories to handle the
non-invertible 2-arrows. The theory here is not so well-developed, however, and one
could see the results here as giving toy examples with which one could work. This is one
motivation for making sure the results shown in this paper apply to not just 2-categories of
groupoids. Another is extending the theory of presentable stacks from stacks of groupoids
to stacks of categories [Roberts ∞1].

Sections 2 to 5 of this article give necessary background and notation on sites, internal
categories, anafunctors and bicategories of fractions respectively. Section 6 contains our
main results, while section 7 shows examples from the literature that are covered by the
theorems from section 6. A short appendix detailing superextensive sites is included, as
this material does not appear to be published.

This article started out based on the first chapter of the author’s PhD thesis, which
treated just the case of groupoids in the site of topological spaces and open covers. Many
thanks are due to Michael Murray, Mathai Varghese and Jim Stasheff, supervisors to the
author. The patrons of the n-Category Café and nLab, especially Mike Shulman, with
whom this work was shared in development, provided helpful input. Lastly, the referee
asked for a complete rewrite of this article, which has greatly improved the theorems,
proofs, and hopefully the exposition too. Any delays in publication are due entirely to the
author.

2. Sites

The idea of surjectivity is a necessary ingredient when talking about equivalences of
categories—actually just essential surjectivity—but it doesn’t generalise in a straightfor-
ward way from the category Set. The necessary properties of the class of surjective maps
are encoded in the definition of a Grothendieck pretopology, in particular what we call a
singleton pretopology. This section gathers definitions and notations for later use.

2.1. Definition. A Grothendieck pretopology (or simply pretopology) on a category S is
a collection J of families

{(Ui // A)i∈I}A∈Obj(S)

of morphisms for each object A ∈ S satisfying the following properties

1. (A′
∼ // A) is in J for every isomorphism A′ ' A.
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2. Given a map B // A, for every (Ui // A)i∈I in J the pullbacks B ×A Ai exist and
(B ×A Ai //B)i∈I is in J .

3. For every (Ui // A)i∈I in J and for a collection (V i
k

// Ui)k∈Ki
from J for each

i ∈ I, the family of composites

(V i
k

// A)k∈Ki,i∈I

are in J .

Families in J are called covering families. A category S equipped with a pretopology J is
called a site, denoted (S, J).

The pretopology J is called a singleton pretopology if every covering family consists of
a single arrow (U //A). In this case a covering family is called a cover and we call (S, J)
a unary site.

Very often, one sees the definition of a pretopology as being an assignment of a set
covering families to each object. We do not require this, as one can define a singleton
pretopology as a subcategory with certain properties, and there is not necessarily then
a set of covers for each object. One example is the category of groups with surjective
homomorphisms as covers. This distinction will be important later.

One thing we will require is that sites come with specified pullbacks of covering families.
If one does not mind applying the axiom of choice (resp. axiom of choice for classes) then
any site (resp. large site) can be so equipped. But often sites that arise in practice have
more or less canonical choices for pullbacks.

2.2. Example. The prototypical example is the pretopology O on Top, where a covering
family is an open cover. The class of numerable open covers (i.e. those that admit a
subordinate partition of unity [Dold 1963]) also forms a pretopology on Top. Much of
traditional bundle theory is carried out using this site; for example the Milnor classifying
space classifies bundles which are locally trivial over numerable covers.

2.3. Definition. A covering family (Ui //A)i∈I is called effective if A is the colimit of
the following diagram: the objects are the Ui and the pullbacks Ui ×A Uj, and the arrows
are the projections

Ui ← Ui ×A Uj // Uj.

If the covering family consists of a single arrow (U // A), this is the same as saying
U // A is a regular epimorphism.

2.4. Definition. A site is called subcanonical if every covering family is effective.

2.5. Example. On Top, the usual pretopology O of opens, the pretopology of numerable
covers and that of open surjections are subcanonical.

2.6. Example. In a regular category, the class of regular epimorphisms forms a sub-
canonical singleton pretopology.
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2.7. Definition. Let (S, J) be a site. An arrow P //A in S is called a J-epimorphism
if there is a covering family (Ui // A)i∈I and a lift

P

��
Ui

??

// A

for every i ∈ I. A J-epimorphism is called universal if its pullback along an arbitrary map
exists. We denote the singleton pretopology of universal J-epimorphisms by Jun.

The definition of J-epimorphism is equivalent to the definition in III.7.5 in [Mac
Lane-Moerdijk 1992]. The dotted maps in the above definition are called local sections,
after the case of the usual open cover pretopology on Top. If J is a singleton pretopology,
it is clear that J ⊂ Jun.

2.8. Example. The universal O-epimorphisms for the pretopology O of open covers on
Diff is Subm, the pretopology of surjective submersions.

Sometimes a pretopology J contains a smaller pretopology that still has enough covers
to compute the same J-epimorphisms.

2.9. Definition. If J and K are two singleton pretopologies with J ⊂ K, such that
K ⊂ Jun, then J is said to be cofinal in K.

Clearly J is cofinal in Jun for any singleton pretopology J .

2.10. Lemma. If J is cofinal in K, then Jun = Kun.

We have the following lemma, which is essentially proved in [Johnstone 2002], C2.1.6.

2.11. Lemma. If a pretopology J is subcanonical, then so any pretopology in which it is
cofinal. In particular, J subcanonical implies Jun subcanonical.

As mentioned earlier, one may be given a singleton pretopology such that each object
has more than a set’s worth of covers. If such a pretopology contains a cofinal pretopology
with set-many covers for each object, then we can pass to the smaller pretopology and
recover the same results. In fact, we can get away with something weaker: one could ask
only that the category of all covers of an object (see definition 2.14 below) has a set of
weakly initial objects, and such set may not form a pretopology. This is the content of the
axiom WISC below. We first give some more precise definitions.

2.12. Definition. A category C has a weakly initial set I of objects if for every object
A of C there is an arrows O // A from some object O ∈ I.

Every small category has a weakly initial set, namely its set of objects.
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2.13. Example. The large category Fields of fields has a weakly initial set, consisting
of the prime fields {Q,Fp|p prime}. To contrast, the category of sets with surjections for
arrows doesn’t have a weakly initial set of objects.

We pause only to remark that the statement of the adjoint functor theorem can be
expressed in terms of weakly initial sets.

2.14. Definition. Let (S, J) be a site. For any object A, the category of covers of
A, denoted J/A has as objects the covering families (Ui // A)i∈I and as morphisms
(Ui // A)i∈I // (Vj // A)j∈J tuples consisting of a function r : I // J and arrows
Ui // Vr(i) in S/A.

When J is a singleton pretopology this is simply a full subcategory of S/A. We now
define the axiom WISC (Weakly Initial Set of Covers), due independently to Mike Shulman
and Thomas Streicher.

2.15. Definition. A site (S, J) is said to satisfy WISC if for every object A of S, the
category J/A has a weakly initial set of objects.

A site satisfying WISC is in some sense constrained by a small amount of data for each
object. Any small site satisfies WISC, for example, the site of finite-dimensional smooth
manifolds and open covers. Any pretopology J containing a cofinal pretopology K such
that K/A is small satisfies WISC.

2.16. Example. Any regular category (for example a topos) with enough projectives,
equipped with the canonical pretopology, satisfies WISC. In the case of Set ‘enough
projectives’ is the axiom COSHEP, also known as the presentation axiom (PAx), studied,
for instance, by Aczel [Aczel 1978] in the context of constructive set theory.

2.17. Example. [Shulman] (Top,O) satisfies WISC, using AC in Set.

Choice may be more than is necessary here; it would be interesting to see if weaker
choice principles in the site (Set, surjections) are enough to prove WISC for (Top,O) or
other concrete sites.

2.18. Lemma. If (S, J) satisfies WISC, then so does (S, Jun).

It is instructive to consider an example where WISC fails in a non-artificial way. The
category of sets and surjections with all arrows covers clearly doesn’t satisfy WISC, but is
contrived and not a ‘useful’ sort of category. For the moment, assume the existence of a
Grothendieck universe U with cardinality λ, and let SetU refer to the category of U-small
sets. Clearly we can discuss WISC relative to U. Let G be a U-large group and BG the
U-large groupoid with one object associated to G. The boolean topos SetBGU of U-small
G-sets is a unary site with the class epi of epimorphisms for covers. One could consider
this topos as being an exotic sort of forcing construction.
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2.19. Proposition. If G has at least λ-many conjugacy classes of subgroups, then
(SetBGU , epi) does not satisfy WISC.

Alternatively, one could work in foundations where it is legitimate to discuss a proper
class-sized group, and then consider the topos of sets with an action by this group. If
there is a proper class of conjugacy classes of subgroups, then this topos with its canonical
singleton pretopology will fail to satisfy WISC.

Recently, van den Berg [van den Berg 2012] (relative to a large cardinal axiom) and the
author [Roberts 2012] (with no large cardinals) have shown that the category of ZF-sets
may fail to satisfy WISC.

Perhaps of independent interest is a form of WISC with a bound: the weakly initial
set for each category J/A has cardinality less than some cardinal κ (call this WISCκ).
Then one could consider, for example, sites where each object has a weakly initial finite or
countable set of covers. Note that the condition ‘enough projectives’ is the case κ = 2.

3. Internal categories

Internal categories were introduced in [Ehresmann 1963], starting with differentiable
and topological categories (i.e. internal to Diff and Top respectively). We collect here
the necessary definitions, terminology and notation. For a thorough recent account, see
[Baez-Lauda 2004] or the encyclopedic [Johnstone 2002].

Fix a category S, referred to as the ambient category.

3.1. Definition. An internal category X in a category S is a diagram

X1 ×X0 X1 ×X0 X1 ⇒ X1 ×X0 X1
m−→ X1

s,t

⇒ X0
e−→ X1

in S such that the multiplication m is associative (we demand the limits in the diagram
exist), the unit map e is a two-sided unit for m and s and t are the usual source and target.
An internal groupoid is an internal category with an involution

(−)−1 : X1
//X1

satisfying the usual diagrams for an inverse.

Since multiplication is associative, there is a well-defined map X1×X0X1×X0X1
//X1,

which will also be denoted by m. The pullback in the diagram in definition 3.1 is

X1 ×X0 X1
//

��

X1

s

��
X1 t

// X0 .

and the double pullback is the limit of X1
t→ X0

s← X1
t→ X0

s← X0. These, and pullbacks
like these (where source is pulled back along target), will occur often. If confusion can
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arise, the maps in question will be explicity written, as in X1 ×s,X0,t X1. One usually sees
the requirement that S is finitely complete in order to define internal categories. This is
not strictly necessary, and not true in the well-studied case of S = Diff , the category of
smooth manifolds.

Often an internal category will be denoted X1 ⇒ X0, the arrows m, s, t, e (and (−)−1)
will be referred to as structure maps and X1 and X0 called the object of arrows and the
object of objects respectively. For example, if S = Top, we have the space of arrows and
the space of objects, for S = Grp we have the group of arrows and so on.

3.2. Example. If X // Y is an arrow in S admitting iterated kernel pairs, there is
an internal groupoid Č(X) with Č(X)0 = X, Č(X)1 = X ×Y X, source and target are
projection on first and second factor, and the multiplication is projecting out the middle
factor in X ×Y X ×Y X. This groupoid is called the Čech groupoid of the map X // Y .
The origin of the name is that in Top, for maps of the form

∐
I Ui

// Y (arising from an
open cover), the Čech groupoid Č(

∐
I Ui) appears in the definition of Čech cohomology.

3.3. Example. Let S be a category. For each object A ∈ S there is an internal groupoid
disc(A) which has disc(A)1 = disc(A)0 = A and all structure maps equal to idA. Such a
category is called discrete. There is also an internal groupoid codisc(A) with

codisc(A)0 = A, codisc(A)1 = A× A

and where source and target are projections on the first and second factor respectively.
Such a groupoid is called codiscrete.

3.4. Definition. Given internal categoriesX and Y in S, an internal functor f : X // Y
is a pair of maps

f0 : X0
// Y0 and f1 : X1

// Y1

called the object and arrow component respectively. Both components are required to
commute with all the structure maps.

3.5. Example. If A // C and B // C are maps admitting iterated kernel pairs, and
A //B is a map over C, there is a functor Č(A) // Č(B).

3.6. Example. If (S, J) is a subcanonical unary site, and U // A is a cover, a functor
Č(U) // disc(B) gives a unique arrow A //B. This follows immediately from the fact A
is the colimit of the diagram underlying Č(U).

3.7. Definition. Given internal categories X, Y and internal functors f, g : X // Y ,
an internal natural transformation (or simply transformation)

a : f ⇒ g
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is a map a : X0
// Y1 such that s ◦ a = f0, t ◦ a = g0 and the following diagram commutes

X1
(g1,a◦s) //

(a◦t,f1)

��

Y1 ×Y0 Y1

m

��
Y1 ×Y0 Y1

m // Y1

(1)

expressing the naturality of a.

Internal categories (resp. groupoids), functors and transformations form a locally small
2-category Cat(S) (resp. Gpd(S)) [Ehresmann 1963]. There is clearly an inclusion 2-
functor Gpd(S) //Cat(S). Also, disc and codisc, described in example 3.3, are 2-functors
S //Gpd(S), whose underlying functors are left and right adjoint to the functor

Obj : Cat(S) // S, (X1 ⇒ X0) 7→ X0.

Here Cat(S) is the 1-category underlying the 2-category Cat(S). Hence for an internal
category X in S, there are functors disc(X0) // X and X // codisc(X0), the arrow
component of the latter being (s, t) : X1

//X2
0 .

We say a natural transformation is a natural isomorphism if it has an inverse with respect
to vertical composition. Clearly there is no distinction between natural transformations
and natural isomorphisms when the codomain of the functors is an internal groupoid. We
can reformulate the naturality diagram (1) in the case that a is a natural isomorphism.
Denote by −a the inverse of a. Then the diagram (1) commutes if and only if the diagram

X0 ×X0 X1 ×X0 X0
−a×f1×a //

'
��

Y1 ×Y0 Y1 ×Y0 Y1

m

��
X1 g1

// Y1

(2)

commutes, a fact we will use several times.

3.8. Example. If X is a category in S, A is an object of S and f, g : X // codisc(A)
are functors, there is a unique natural isomorphism f

∼⇒ g.

3.9. Definition. An internal or strong equivalence of internal categories is an equivalence
in the 2-category of internal categories. That is, an internal functor f : X // Y such that
there is a functor f ′ : Y //X and natural isomorphisms f ◦ f ′ ⇒ idY , f ′ ◦ f ⇒ idX .

3.10. Remark. In all that follows, ‘category’ will mean object of Cat′(S) and similarly
for ‘functor’ and ‘natural transformation/isomorphism’.

The strict pullback of internal categories

X ×Y Z //

��

Z

��
X // Y
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when it exists, is the internal category with objects X0 ×Y0 Z0, arrows X1 ×Y1 Z1, and all
structure maps given componentwise by those of X and Z. Often we will be able to prove
that certain pullbacks exist because of conditions on various component maps in S. We
do not assume that all strict pullbacks of internal categories exists in our chosen Cat′(S).

3.11. Definition. For a category X and a map p : M //X0 in S the base change of
X along p is any category X[M ] with object of objects M and object of arrows given by
the pullback

M2 ×X2
0
X1

//

��

X1

(s,t)

��
M2

p2
// X2

0

If Cat′(S) ⊂ Cat(S) denotes a full sub-2-category and if the base change along any
map in a given class K of maps exists for all objects of Cat′(S), then we say Cat′(S)
admits base change along maps in K, or simply admits base change for K.

It follows immediately from the definition that given maps N //M and M //X0,
there is a canonical isomorphism

X[M ][N ] ' X[N ]. (3)

with object component the identity map, when these base changes exist.

3.12. Remark. If we agree to follow the convention that M ×N N = M is the pullback
along the identity arrow idN , then X[X0] = X. This also simplifies other results of this
paper, so will be adopted from now on.

One consequence of this assumption is that the iterated fibre product

M ×M M ×M . . .×M M,

bracketed in any order, is equal to M . We cannot, however, equate two bracketings of a
general iterated fibred product; they are only canonically isomorphic.

3.13. Lemma. Let Y //X be a functor in the unary site (S, J) and U //X0 a cover.
When base change along arrows in J exist, the following square is a strict pullback

Y [Y0 ×X0 U ] //

��

X[U ]

j
��

Y // X
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Proof. Since base change along arrows in J exists, we know that we have the functor
Y [Y0×X0 U ] // Y , we just need to show it is a strict pullback of j. On the level of objects
this is clear, and on the level of arrows, we have

(Y0 ×X0 U)2 ×Y 2
0
Y1 ' U2 ×X2

0
Y1

' (U2 ×X2
0
X1)×X1 Y1

' X[U ]1 ×X1 Y1

so the square is a pullback.

We are interested in 2-categories Cat′(S) which admits base change for a given
pretopology J on S, which we shall detail in section 7.

Equivalences in Cat—assuming the axiom of choice—are precisely the fully faithful,
essentially surjective functors. For internal categories, however, this is not the case. In
addition, we need to make use of a pretopology to make the ‘surjective’ part of ‘essentially
surjective’ meaningful.

The first definition of weak equivalence of internal categories along the lines we are
considering appeared in [Bunge-Paré 1979] for S a regular category, and J the class of
regular epimorphisms, in the context of stacks and indexed categories. We will in fact use
a different definition which is equivalent to the one in [Bunge-Paré 1979] in the sites they
consider (see corollary 7.6).

3.14. Definition. Let (S, J) be a unary site. An internal functor f : X // Y in S is
called

1. fully faithful if

X1
f1 //

(s,t)
��

Y1

(s,t)
��

X0 ×X0 f0×f0
// Y0 × Y0

is a pullback diagram

2. J-locally split if there is a an J-cover U // Y0 and a diagram

Y [U ]

f̄
��

u

��
X

f
// Y

��

commuting up to a natural isomorphism

3. an J-equivalence if it is fully faithful and J-locally split.

The class of J-equivalences will be denoted WJ . If mention of J is suppressed, they will
be called weak equivalences.
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3.15. Remark. There is another defintion of full faithfulness for internal categories,
namely that of a functor f : Z // Y being representably fully faithful. This means that
for all categories Z, the functor

f∗ : Cat(S)(Z,X) //Cat(S)(Z, Y )

is fully faithful. It is a well-known result that these two notions coincide, so we shall use
either characterisation as needed.

3.16. Lemma. If f : X // Y is a functor such that f0 is in J , then f is J-locally split.
Thus the functor X[U ] //X is an J-equivalence whenever the base change exists.

Notice that J is not required to be subcanonical. We record here a useful lemma.

3.17. Lemma. Given a fully faithful functor f : X // Y in Cat′(S) and a natural
isomorphism f ⇒ g, the functor g is also fully faithful. In particular, an internal
equivalence is fully faithful.

Proof. This is a simple application of the definition of representable full faithfulness and
the fact the result is true in Cat.

4. Anafunctors

We now let J be a subcanonical singleton pretopology on the ambient category S. In this
section we assume that Cat′(S) admits base change along arrows in the given pretopology
J . This is a slight generalisation of what is considered in [Bartels 2006], where only
Cat′(S) = Cat(S) is considered.

4.1. Definition. [Makkai 1996, Bartels 2006] An anafunctor in (S, J) from a category
X to a category Y consists of a cover (U //X0) and an internal functor

f : X[U ] // Y.

Since X[U ] is an object of Cat′(S), an anafunctor is a span in Cat′(S), and can be denoted

(U, f) : X−7→ Y.

4.2. Example. For an internal functor f : X //Y in S, define the anafunctor (X0, f) : X−7→
Y as the following span

X
=←− X[X0]

f−→ Y.

We will blur the distinction between these two descriptions. If f = id : X // X, then
(X0, id) will be denoted simply by idX .

4.3. Example. If U //A is a cover in (S, J) and BG is a groupoid with one object in S
(i.e. a group), an anafunctor (U, g) : disc(A)−7→ BG is the same thing as a Čech cocycle.
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4.4. Definition. [Makkai 1996, Bartels 2006] Let (S, J) be a site and let

(U, f), (V, g) : X−7→ Y

be anafunctors in S. A transformation

α : (U, f)⇒ (V, g)

from (U, f) to (V, g) is a natural transformation

X[U ×X0 V ]

xx &&
X[U ]

f
&&

α⇒ X[V ]

g
xx

Y

If α is a natural isomorphism, then α will be called an isotransformation. In that case
we say (U, f) is isomorphic to (V, g). Clearly all transformations between anafunctors
between internal groupoids are isotransformations.

4.5. Example. Given functors f, g : X // Y between categories in S, and a natural
transformation a : f ⇒ g, there is a transformation a : (X0, f)⇒ (X0, g) of anafunctors,
given by the component X0 ×X0 X0 = X0

a−→ Y1.

4.6. Example. If (U, g), (V, h) : disc(A)−7→ BG are two Čech cocycles, a transformation
between them is a coboundary on the cover U ×A V // A.

4.7. Example. Let (U, f) : X−7→ Y be an anafunctor in S. There is an isotransfor-
mation 1(U,f) : (U, f) ⇒ (U, f) called the identity transformation, given by the natural
transformation with component

U ×X0 U ' (U × U)×X2
0
X0

id2U×e−−−→ X[U ]1
f1−→ Y1 (4)

4.8. Example. [Makkai 1996] Given anafunctors (U, f) : X //Y and (V, f ◦k) : X //Y
where k : V // U is a cover (over X0), a renaming transformation

(U, f)⇒ (V, f ◦ k)

is an isotransformation with component

1(U,f) ◦ (k × id) : V ×X0 U // U ×X0 U // Y1.

If k is an isomorphism, then it will itself be referred to as a renaming isomorphism.
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We define (following [Bartels 2006]) the composition of anafunctors as follows. Let

(U, f) : X−7→ Y and (V, g) : Y−7→ Z

be anafunctors in the site (S, J). Their composite (V, g) ◦ (U, f) is the composite span
defined in the usual way. It is again a span in Cat′(S).

X[U ×Y0 V ]

xx

fV

&&
X[U ]

|| f
&&

Y [V ]

xx

g

!!
X Y Z

The square is a pullback by lemma 3.13 (which exists because V //Y0 is a cover), and the
resulting span is an anafunctor because V // Y0, and hence U ×Y0 V //X0, is a cover,
and using (3). We will sometimes denote the composite by (U ×Y0 V, g ◦ fV ).

Here we are using the fact we have specified pullbacks of covers in S. Without this we
would not end up with a bicategory (theorem 4.16), but what Makkai calls an anabicategory
[Makkai 1996]. This is similar to a bicategory, but composion and other structural maps
are only anafunctors, not functors.

Consider the special case when V = Y0, and hence (Y0, g) is just an ordinary functor.
Then there is a renaming transformation (the identity transformation!) (Y0, g) ◦ (U, f)⇒
(U, g ◦ f), using the equality U ×Y0 Y0 = U (by remark 3.12). If we let g = idY , then we see
that (Y0, idY ) is a strict unit on the left for anafunctor composition. Similarly, considering
(V, g) ◦ (Y0, id), we see that (Y0, idY ) is a two-sided strict unit for anafunctor composition.
In fact, we have also proved

4.9. Lemma. Given two functors f : X // Y , g : Y // Z in S, their composition as
anafunctors is equal to their composition as functors:

(Y0, g) ◦ (X0, f) = (X0, g ◦ f).

4.10. Example. As a concrete and relevant example of a renaming transformation we
can consider the triple composition of anafunctors

(U, f) : X−7→ Y,

(V, g) : Y−7→ Z,

(W,h) : Z−7→ A.

The two possibilities of composing these are(
(U ×Y0 V )×Z0 W,h ◦ (gfV )W

)
,
(
U ×Y0 (V ×Z0 W ), h ◦ gW ◦ fV×Z0

W
)
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The unique isomorphism (U×Y0 V )×Z0W ' U×Y0 (V ×Z0W ) commuting with the various
projections is then the required renaming isomorphism. The isotransformation arising
from this renaming transformation is called the associator.

A simple but useful criterion for describing isotransformations where one of the ana-
functors involved is a functor is as follows.

4.11. Lemma. An anafunctor (V, g) : X−7→ Y is isomorphic to a functor (X0, f) : X−7→
Y if and only if there is a natural isomorphism

X[V ]

}}

g

!!
X

f

99
∼⇒ Y

Just as there is composition of natural transformations between internal functors, there
is a composition of transformations between internal anafunctors [Bartels 2006]. This is
where the effectiveness of our covers will be used in order to construct a map locally over
some cover. Consider the following diagram

X[U ×X0 V ×X0 W ]

uu ))
X[U ×X0 V ]

yy ))

X[V ×X0 W ]

uu &&
X[U ]

f

++

a⇒ X[V ]

g

��

b⇒ X[W ]

h

ssY

from which we can form a natural transformation between the leftmost and the rightmost
composites as functors in S. This will have as its component the arrow

b̃a : U ×X0 V ×X0 W
id×∆×id−−−−−→ U ×X0 V ×X0 V ×X0 W

a×b−−→ Y1 ×Y0 Y1
m−→ Y1

in S. Notice that the Čech groupoid of the cover

U ×X0 V ×X0 W // U ×X0 W (5)

is

U ×X0 V ×X0 V ×X0 W ⇒ U ×X0 V ×X0 W,
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with source and target arising from the two projections V ×X0 V // V . Denote this pair
of parallel arrows by s, t : UV 2W ⇒ UVW for brevity. In [Bartels 2006], section 2.2.3, we
find the commuting diagram

UV 2W t //

s
��

UVW

b̃a
��

UVW
b̃a

// Y1

(6)

(this can be checked by using elements) and so we have a functor Č(U ×X0 V ×X0

W ) // disc(Y1). Our pretopology J is assumed to be subcanonical, and using remark 3.6
this gives us a unique arrow ba : U ×X0 W // Y1, the composite of a and b.

4.12. Remark. In the special case that U ×X0 V ×X0 W // U ×X0 W is split (e.g. is
an isomorphism), the composite transformation has

U ×X0 W // U ×X0 V ×X0 W
b̃a−→ Y1

as its component arrow. In particular, this is the case if one of a or b is a renaming
transformation.

4.13. Example. Let (U, f) : X−7→ Y be an anafunctor and U ′′
j′−→ U ′

j−→ U successive
refinements of U // X0 (e.g isomorphisms). Let (U ′, fU ′) and (U ′′, fU ′′) denote the
composites of f with X[U ′] //X[U ] and X[U ′′] //X[U ] respectively. The arrow

U ×X0 U
′′ idU×j◦j′−−−−−→ U ×X0 U // Y1

is the component for the composition of the isotransformations (U, f) ⇒ (U ′, fU ′),⇒
(U ′′, fU ′′) described in example 4.8. Thus we can see that the composite of renaming
transformations associated to isomorphisms φ1, φ2 is simply the renaming transformation
associated to their composite φ1 ◦ φ2.

4.14. Example. If a : f ⇒ g, b : g ⇒ h are natural transformations between functors
f, g, h : X // Y in S, their composite as transformations between anafunctors

(X0, f), (X0, g), (X0, h) : X−7→ Y.

is just their composite as natural transformations. This uses the equality

X0 ×X0 X0 ×X0 X0 = X0 ×X0 X0 = X0,

which is due to our choice in remark 3.12 of canonical pullbacks

Even though we don’t have pseudoinverses for weak equivalences of internal categories,
one might guess that the local splitting guaranteed to exist be definition is actually more
than just a splitting of sorts. This is in fact the case, if we use anafunctors. While the
definition of weak equivalence looks tailored so that this is the case, we shall see in section
7 that this definition is in many cases of interest equivalent to another definition of weak
equivalence of internal categories which is widely used.
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4.15. Lemma. Let f : X // Y be a J-equivalence in S. There is an anafunctor

(U, f̄) : Y−7→ X

and isotransformations

ι : (X0, f) ◦ (U, f̄)⇒ idY

ε : (U, f̄) ◦ (X0, f)⇒ idX

Proof. We have the anafunctor (U, f̄) by definition as f is J-locally split. Since the
anafunctors idX , idY are actually functors, we can use lemma 4.11. Using the special case
of anafunctor composition when the second is a functor, this tells us that ι will be given
by a natural isomorphism

X
f

��
Y [U ] //

f̄
<<

Y
��

This has component ι : U //Y iso
1 , using the notation from the proof of the previous lemma.

Notice that the composite f1 ◦ f̄1 is just

Y [U ]1 ' U ×Y0 Y1 ×Y0 U
ι×id×−ι−−−−−→ Y iso

1 ×Y0 Y1 ×Y0 Y iso
1 ↪→ Y3

m−→ Y1.

Since the arrow component of Y [U ] // Y is U ×Y0 Y1 ×Y0 U
pr2−−→ Y1, ι is indeed a natural

isomorphism using the diagram (2).
The other isotransformation is between (X0 ×Y0 U, f̄ ◦ pr2) and (X0, idX), and is given

by the arrow

ε : X0 ×X0 X0 ×Y0 U ' X0 ×Y0 U
id×(s′,a)−−−−−→ X0 ×Y0 (X0 ×Y0 Y1) ' X2

0 ×Y 2
0
Y1 ' X1

This has the correct source and target, as the object component of f̄ is s′, and the source
is given by projection on the first factor of X0 ×Y0 U . This diagram

(X0 ×Y 2
0
U)2 ×X2

0
X1

'
��

pr2 // X1

'

��

U ×Y0 X1 ×Y0 U
−ι×f×ι

��
(X0 ×Y0 Y iso

1 )×Y0 Y1 ×Y0 (Y iso
1 ×Y0 X0)

id×m×id
// X0 ×Y0 Y1 ×Y0 X0

commutes (a fact which can be checked using elements), and using (2) we see that ε is
natural.
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The first half of the following theorem is proposition 12 in [Bartels 2006], and the
second half follows because all the constructions of categories involved in dealing with
anafunctors outlined above are still objects of Cat′(S).

4.16. Theorem. [Bartels 2006] For a site (S, J) where J is a subcanonical single-
ton pretopology, internal categories, anafunctors and transformations form a bicategory
Catana(S, J). If we restrict attention to a full sub-2-category Cat′(S) which admits base
change for arrows in J , we have an analogous full sub-bicategory Cat′ana(S, J).

There is a strict 2-functor Cat′ana(S, J) //Catana(S, J) which is an inclusion on objects
and is the identity on hom-categories. The following is the main result of this section, and
allows us to relate anafunctors to the localisations considered in the next section.

4.17. Proposition. There is a strict, identity-on-objects 2-functor

αJ : Cat′(S) //Cat′ana(S, J)

sending J-equivalences to equivalences, and commuting with the respective inclusions into
Cat(S) and Catana(S, J).

Proof. We define αJ to be the identity on objects, and as described in examples 4.2, 4.5
on 1-arrows and 2-arrows (i.e. functors and transformations). We need first to show that
this gives a functor Cat′(S)(X, Y ) //Cat′ana(S, J)(X, Y ). This is precisely the content
of example 4.14. Since the identity 1-cell on a category X in Cat′ana(S, J) is the image of
the identity functor on S in Cat′(S), αJ respects identity 1-cells. Also, lemma 4.9 tells us
that αJ respects composition. That αJ sends J-equivalences to equivalences is the content
of lemma 4.15.

The 2-category Cat′(S) is locally small (ie. enriched in small categories) if S itself is
locally small (ie. enriched in sets), but a priori the collection of anafunctors X−7→ Y do
not constitute a set for S a large category.

4.18. Proposition. Let (S, J) be a locally small, subcanonical unary site satisfying
WISC and let Cat′(S) admit base change along arrows in J . Then Cat′ana(S, J) is locally
essentially small.

Proof. Given an object A of S, let I(A) be a weakly initial set for J/A. Consider
the locally full sub-2-category of Cat′ana(S, J) with the same objects, and arrows those
anafunctors (U, f) : X−7→ Y such that U //X0 is in I(X0). Every anafunctor is then
isomorphic, by the generalisation of example 4.8, to one in this sub-2-category. The
collection of anafunctors (U, f) : X−7→ Y for a fixed U forms a set, by local smallness of
Cat′(S), and similarly the collection of transformations between a pair of anafunctors
forms a set by local smallness of S.
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Examples of locally small sites (S, J) where Cat′ana(S, J) is not known to be locally
essentially small are the category of sets from the model of ZF used in [van den Berg 2012],
the model of ZF constructed in [Roberts 2012] and the topos from proposition 2.19. We
note that local essential smallness of Cat′ana(S, J) seems to be a result just slightly weaker
than WISC.

5. Localising bicategories at a class of 1-cells

Ultimately we are interesting in inverting all J-equivalences in Cat′(S) and so need to
discuss what it means to add the formal pseudoinverses to a class of 1-cells in a 2-category
– a process known as localisation. This was done in [Pronk 1996] for the more general
case of a class of 1-cells in a bicategory, where the resulting bicategory is constructed and
its universal properties (analogous to those of a quotient) examined. The application in
loc. cit. is to show that the equivalence of various bicategories of stacks to localisations of
2-categories of smooth, topological and algebraic groupoids. The results of this article can
be seen as one-half of a generalisation of these results to more general sites.

5.1. Definition. [Pronk 1996] Let B be a bicategory and W ⊂ B1 a class of 1-cells. A
localisation of B with respect to W is a bicategory B[W−1] and a weak 2-functor

U : B //B[W−1]

such that U sends elements of W to equivalences, and is universal with this property i.e.
composition with U gives an equivalence of bicategories

U∗ : Hom(B[W−1], D) //HomW (B,D),

where HomW denotes the sub-bicategory of weak 2-functors that send elements of W to
equivalences (call these W -inverting, abusing notation slightly).

The universal property means that W -inverting weak 2-functors F : B //D factor,
up to a transformation, through B[W−1], inducing an essentially unique weak 2-functor

F̃ : B[W−1] //D.

5.2. Definition. [Pronk 1996] Let B be a bicategory B with a class W of 1-cells. W is
said to admit a right calculus of fractions if it satisfies the following conditions

2CF1. W contains all equivalences

2CF2. a) W is closed under composition
b) If a ∈ W and there is an isomorphism a

∼⇒ b then b ∈ W



22

2CF3. For all w : A′ // A, f : C // A with w ∈ W there exists a 2-commutative square

P

v

��

g // A′

w

��
C

f // A

'
z�

with v ∈ W .

2CF4. If α : w ◦ f ⇒ w ◦ g is a 2-arrow and w ∈ W there is a 1-cell v ∈ W and a 2-arrow
β : f ◦ v ⇒ g ◦ v such that α ◦ v = w ◦ β. Moreover: when α is an isomorphism,
we require β to be an isomorphism too; when v′ and β′ form another such pair,
there exist 1-cells u, u′ such that v ◦ u and v′ ◦ u′ are in W , and an isomorphism
ε : v ◦ u⇒ v′ ◦ u′ such that the following diagram commutes:

f ◦ v ◦ u β◦u +3

f◦ε '

��

g ◦ v ◦ u

g◦ε'

��
f ◦ v′ ◦ u′

β′◦u′
+3 g ◦ v′ ◦ u′

(7)

For a bicategory B with a calculus of right fractions, [Pronk 1996] constructed a
localisation of as a bicategory of fractions; the 1-arrows are spans and the 2-arrows are
equivalence classes of 2-categorical spans-of-spans diagrams.

From now on we shall refer to a calculus of right fractions as simply a calculus of
fractions, and the resulting localisation constructed by Pronk as a bicategory of fractions.
Since B[W−1] is defined only up to equivalence, it is of great interest to know when a
bicategory D in which elements of W are sent to equivalences by a 2-functor B // D
is itself equivalent to B[W−1]. In particular, one would be interested in finding such an
equivalent bicategory with a simpler description than that which appears in [Pronk 1996].

5.3. Proposition. [Pronk 1996] A weak 2-functor F : B //D which sends elements of
W to equivalences induces an equivalence of bicategories

F̃ : B[W−1]
∼−→ D

if the following conditions hold

EF1. F is essentially surjective,

EF2. For every 1-cell f ∈ D1 there are 1-cells w ∈ W and g ∈ B1 such that Fg
∼⇒ f ◦Fw,
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EF3. F is locally fully faithful.

Thanks are due to Matthieu Dupont for pointing out (in personal communication) that
proposition 5.3 actually only holds in one direction, not in both, as claimed in loc. cit.

The following is useful in showing a weak 2-functor sends weak equivalences to equiva-
lences, because this condition only needs to be checked on a class that is in some sense
cofinal in the weak equivalences.

5.4. Proposition. In the bicategory B and let V ⊂ W be two classes of 1-cells such
that for all w ∈ W , there exists v ∈ V and s ∈ W such that there is an isomorphism

a

w

��
b v

//

s

??

c .

'
��

Then a weak 2-functor F : B //D that sends elements of V to equivalences also sends
elements of W to equivalences.

Proof. In the following the coherence arrows will be present, but unlabelled. It is enough
to prove that in a bicategory D with a class of maps M (in our case, the image of W )
such that for all w ∈M there is an equivalence v and an isomorphism α

a

w

��
b v

//

s

??

c .

'α
��

with s ∈M , then w is also an equivalence. Let v̄ be a pseudoinverse for v and let j = s ◦ v̄.
Then there is the following invertible chain of isomorphisms

w ◦ j ⇒ (w ◦ s) ◦ v̄ ⇒ v ◦ v̄ ⇒ I.

Since s ∈ M , there is an equivalence u and t ∈ M and an isomorphism β giving the
following diagram

d

t

��

u // a

w

��
b v

//

s

??

c .

α
��

β
��
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Let ū be a pseudoinverse of u. We know from the first part of the proof that we have a
pseudosection k = t ◦ ū of s, with an isomorphism s ◦ k ⇒ I. We then have the following
chain of isomorphisms:

j ◦w = (s ◦ v̄) ◦w ⇒ ((s ◦ v̄) ◦w) ◦ (s ◦ k)⇒ s ◦ ((v̄ ◦ v) ◦ (t ◦ ū))⇒ (s ◦ t) ◦u⇒ ū ◦u⇒ I.

Hence all elements of M are equivalences.

6. 2-categories of internal categories admit bicategories of fractions

In this section we prove the result that Cat′(S) admits a calculus of fractions for the
J-equivalences, where J is a singleton pretopology on S.

The following is the first main theorem of the paper, and subsumes a number of other,
similar theorems throughout the literature (see section 7 for details).

6.1. Theorem. Let S be a category with a singleton pretopology J . Assume the 2-
category Cat′(S) admits base change along maps in J . Then Cat′(S) admits a right
calculus of fractions for the class WJ of J-equivalences.

Proof. We show the conditions of definition 5.2 hold.
2CF1. An internal equivalence is clearly J-locally split. Lemma 3.17 gives us the rest.
2CF2 a). That the composition of fully faithful functors is again fully faithful is trivial.

Consider the composition g ◦ f of two J-locally split functors,

Y [U ]

��

u

��

Z[V ]

��

v

��
X

f
// Y g

// Z
�� ��

By lemma 3.13 the functor u pulls back to a functor Z[U ×Y0 V ] // Z[V ]. The composite
Z[U ×Y0 V ] //Z is fully faithful with object component in J , hence g ◦ f is J-locally split.

2CF2 b). Lemma 3.17 tells us that fully faithful functors are closed under isomorphism,
so we just need to show J-locally split functors are closed under isomorphism.

Let w, f : X // Y be functors and a : w ⇒ f be a natural isomorphism. First, let w
be J-locally split. It is immediate from the diagram

Y [U ]

��

u

��
X

w

''

f

77 Y


�

a��

That f is also J-locally split.
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2CF3 Let w : X // Y be an J-equivalence, and let f : Z // Y be a functor. From the
definition of J-locally split, we have the diagram

Y [U ]

��

u

��
X w

// Y
��

We can use lemma 3.13 to pull u back along f to get a 2-commuting diagram

Z[U ×Y0 Z0]
v

%%xx
Y [U ]

��

u

!!

Z

f
yy

X w
// Y

�	

with v ∈ WJ as required.
2CF4. Since J-equivalences are representably fully faithful, given

Y
w

  
X

f
==

g
!!

⇓ a Z

Y

w

>>

where w ∈ WJ , there is a unique a′ : f ⇒ g such that

Y
w

  
X

f
==

g
!!

⇓ a Z

Y

w

>>
= X

f

$$

g

::⇓ a′ Y
w // Z .

The existence of a′ is the first half of 2CF4, where v = idX . If v′ : W //X ∈ WJ such
that there is a transformation

X
f

  
W

v′
==

v′ !!

⇓ b Y

X

g

>>
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satisfying

X
f

  
W

v′
==

v′ !!

⇓ b Y
w // Z

X

g

>>
=

Y
w

  
W

v′ // X

f
==

g
!!

⇓ a Z

Y

w

>>

= W v′ // X

f

$$

g

::⇓ a′ Y w // Z , (8)

then as v′ is a J-equivalence we have a functor u′ : X[U ] //W for some u = u′0 : U //X0 ∈ J
and a natural isomorphism ε:

X[U ]
u′

||

u

""
W

v′

99⇐ ε X

where u ∈ WJ , and since v′ ◦ u′ '⇒ u, we have v′ ◦ u′ ∈ WJ by 2CF2 a) above as required
by 2CF4. The uniqueness of a′ from the earlier, together with equation (8) gives us

X
f

  
W

v′
==

v′ !!

⇓ b Y

X

g

>>
= W

v′ // X

f

$$

g

::⇓ a′ Y .

We paste this with ε,

X[U ]

u

%%

u′ ""

ε ⇓ X
f

��
W

v′
>>

v′ !!

⇓ b Y

X

g

>>
=

X[U ]

u′

��

u

��
W

v′
// X

f

$$

g

::⇓ a′ Y

ε
�� ,

which is precisely the diagram (7) with v = idX . Hence 2CF4 holds.
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The proof of theorem 6.1 is written using only the language of 2-categories, so can be
generalised from Cat′(S) to other 2-categories. This approach will be taken up in [Roberts
∞2].

The second main result of the paper is that we want to know when this bicategory of
fractions is equivalent to a bicategory of anafunctors, as the latter bicategory has a much
simpler construction.

6.2. Theorem. Let (S, J) be a subcanonical unary site and let Cat′(S) admit base
change along arrows in J Then there is an equivalence of bicategories

Cat′ana(S, J) ' Cat′(S)[W−1
J ].

Proof. Let us show the conditions in proposition 5.3 hold. First, αJ sends J-equivalences
to equivalences by proposition 4.17.

EF1. αJ is the identity on 0-cells, and hence surjective on objects.
EF2. This is equivalent to showing that for any anafunctor (U, f) : X−7→ Y there are

functors w, g such that w is in WJ and

(U, f)
∼⇒ αJ(g) ◦ αJ(w)−1

where αJ(w)−1 is some pseudoinverse for αJ(w).
Let w be the functor X[U ] //X and let g = f : X[U ] // Y . First, note that

X[U ]

}}

=

##
X X[U ]

is a pseudoinverse for

αJ(w) =

X[U ][U ]
=

yy ##
X[U ] X

.

Then the composition αJ(f) ◦ αJ(w)−1 is

X[U ×U U ×U U ]

ww ''
X Y

which is isomorphic to (U, f) by the renaming transformation arising from the isomorphism
U ×U U ×U U ' U .

EF3. If a : (X0, f)⇒ (X0, g) is a transformation of anafunctors for functors f, g : X //Y ,
it is given by a natural transformation

f ⇒ g : X ' X[X0 ×X0 X0] // Y.

Hence we get a unique natural transformation a : f ⇒ g such that a is the image of a′

under αJ .
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We now give a series of results following from this theorem, using basic properties of
pretopologies from section 2.

6.3. Corollary. When J and K are two subcanonical singleton pretopologies on S
such that Jun = Kun, for example, J cofinal in K, there is an equivalence of bicategories

Cat′ana(S, J) ' Cat′ana(S,K).

The class of maps in Top of the form
∐
Ui //X for an open cover {Ui} of X form a

singleton pretopology. This is because O is a superextensive pretopology (see the appendix).
Given a site with a superextensive pretopology J , we have the following result which is
useful when J is not a singleton pretopology (the singleton pretopology qJ is defined
analogously to the case of Top, details are in the appendix).

6.4. Corollary. Let (S, J) be a superextensive site where J is a subcanonical pretopology.
Then

Cat′(S)[W−1
Jun

] ' Cat′ana(S,qJ).

Proof. This essentially follows by lemma A.9.

Obviously this can be combined with previous results, for example if K is cofinal in
qJ , for J a non-singleton pretopology, K-anafunctors localise Cat′(S) at the class of
J-equivalences.

Finally, given WISC we have a bound on the size of the hom-categories, up to equiva-
lence.

6.5. Theorem. Let (S, J) be a subcanonical unary site satisfying WISC with S locally
small and let Cat′(S) admit base change along arrows in J . Then any localisation
Cat′(S)[W−1

J ] is locally essentially small. Moreover, this localisation can be chosen such
that the class of objects is the same size as the class of objects of Cat′(S).

We note that the issue of size of localisations is not touched on in [Pronk 1996]. even
though such issues are commonly addressed in localisation of 1-categories. If we have a
specified bound on the hom-sets of S and also know that some WISCκ holds, then we can
put specific bounds on the size of the hom-categories of the localisation. This is important
if examining fine size requirements or implications for localisation theorems such as these,
for example higher versions of locally presentable categories.

7. Examples

The easiest case to start with is that of a regular category with the canonical singleton
pretopology, which is the class of regular epimorphisms. This is the setting of [Bunge-Paré
1979]. However they use an a priori different notion of weak equivalence, which is also
used in [Everaert et al 2005].

When S is finitely complete, Gpd(S) ↪→ Cat(S)(2,1) is a coreflective, full sub-2-
category [Bunge-Paré 1979], where C(2,1) denotes the maximal (2,1)-category2 underlying

2That is, a 2-category with all 2-arrows invertible
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the 2-category C, with the counit an identity-on-objects functor. Hence for every internal
category X1 ⇒ X0 there is a maximal subobject X iso

1 ↪→ X1 such that X iso
1 ⇒ X0 is an

internal groupoid. The object X iso
1 of isomorphisms can be constructed as a finite limit,

and in the case when X is a groupoid we have X iso
1 ' X1.

7.1. Definition. [Bunge-Paré 1979, Everaert et al 2005] For a finitely complete unary
site (S, J) a functor f is called essentially J-surjective if the arrow labelled ~ below is in
J .

X0 ×Y0 Y iso
1

yy ~

��

��
X0

f0
��

Y iso
1

s
yy

t
%%

Y0 Y0

A functor is called a Bunge-Paré J-equivalence if it is fully faithful and essentially J-
surjective. Denote the class of such maps by WBP

J .

7.2. Lemma. Let J be a singleton pretopology on S containing the split epimorphisms.
Then all functors in S of the form X[U ] //X are Bunge-Paré J-equivalences.

We can relate J-equivalences as we have defined them in this paper and Bunge-Paré
J-equivalences as follows, where we let Cat′(S) one of Cat(S), Gpd(S).

7.3. Proposition. Let (S, J) be a finitely complete unary site. Then every Bunge-Paré
J-equivalence in Cat′(S) is an J-equivalence. If J contains the split epimorphisms then
any WBP

J -inverting 2-functor Cat′(S) //D is a WJ-inverting 2-functor, and hence

Cat′(S)[(WBP
J )−1] ' Cat′(S)[W−1

J ]

Proof. Let f : X //Y be a Bunge-Paré J-equivalence, and choose for an J-cover U //Y0

the map X0×Y0 Y iso
1

//Y0. Denote by ι the projection X0×Y0 Y iso
1

//Y iso
1 . The projection

pr1 will be the object component of a functor σ : Y [U ] //X, we need to define the arrow
component. Consider the composite

Y [U ]1
id×id×((−)−1×id)−−−−−−−−−−→ (X0 ×Y0 Y iso

1 )×Y0 Y1 ×Y0 (Y iso
1 ×Y0 X0)

↪→ X0 ×Y0 Y3 ×Y0 X0
id×m×id−−−−−→ X0 ×Y0 Y1 ×Y0 X0 ' X1

where the last isomorphism arises from f being fully faithful. It is clear that this commutes
with source and target, because these are given by projection on the first and last factor
at each step. To see that it respects identities and composition, one can use generalised
elements and the fact that the ι component will cancel with the −ι = (−)−1 ◦ ι component.

We define the natural isomorphism f ◦ s ⇒ j (here j : Y [U ] // Y is the canonical
functor) to have component ι as denoted above. Notice that the composite f1 ◦ f̄1 is just

Y [U ]1 ' U ×Y0 Y1 ×Y0 U
ι×id×−ι−−−−−→ Y iso

1 ×Y0 Y1 ×Y0 Y iso
1 ↪→ Y3

m−→ Y1.
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Since the arrow component of Y [U ] // Y is U ×Y0 Y1 ×Y0 U
pr2−−→ Y1, ι is indeed a natural

isomorphism using the diagram (2).
Since functors of the form X[U ] // X are cofinal in WJ , lemma 7.2 implies that

Bunge-Paré J-equivalences are cofinal in WJ , hence applying proposition 5.4 we get the
desired equivalence from the universal property of the localisation.

We might also like to know when the class of Bunge-Paré weak equivalences is exactly
the class of weak equivalences. For this to be the case, we need to have a condition on the
pretopology under consideration.

7.4. Definition. A singleton pretopology J is called saturated if whenever the composite

A
h // B

g
// C is in J , then g ∈ J .

For example, the pretopology of epimorphisms in a topos is saturated. This class of
maps was introduced by Bénabou under the name calibration [Bénabou 1975].

7.5. Proposition. If (S, J) is a finitely complete unary site with J saturated then every
J-equivalence is a Bunge-Paré J-equivalence.

Proof. Given an J-equivalence f : X // Y , we have an J-cover j : U // Y0 and a map
(f, a) : U //X0 × Y iso

1 such that j = (t ◦ pr2) ◦ (f, a). Since J is saturated, (t ◦ pr2) ∈ J
and hence f is a Buge-Paré J-equivalence.

7.6. Corollary. The canonical singleton pretopology can on a finitely complete category
S is saturated. Hence WBP

can = Wcan for this site, and

Cat′(S)[(WBP
can )−1] ' Cat′(S)[W−1

can] ' Cat′ana(S, can)

We can combine this corollary with corollary 6.3 so that the localisation of either Cat(S)
or Gpd(S) at the Bunge-Paré weak equivalences can be calculated using J-anafunctors for
J cofinal in can. We note that can does not satisfy WISC in general (see proposition 2.19
and the comments following), so the localisation might not be locally essentially small.

The previous corollaries deal with the case when we are interested in the 2-categories
consisting of all of the internal categories or groupoids in a site. However, for many
applications of internal categories/groupoids it is not sufficient to take all of Cat(S) or
Gpd(S). One widely used example is that of Lie groupoids, which are groupoids internal
to the category of (finite-dimensional) smooth manifolds such that source and target maps
are submersions (more on these below). Other examples are used in the theory of algebraic
stacks, namely groupoids internal to schemes or algebraic spaces. Other types of such
presentable stacks use groupoids internal to some site with specified conditions on the
source and target maps. Although it is not covered explicitly in the literature, it is possible
to consider presentable stacks of categories, and this will be taken up in future work
[Roberts ∞1].

We thus need to furnish examples of sub-2-categories Cat′(S), specified by restricting
the sort of maps that are allowed for source and target, that admit base change along
some class of arrows. The following lemma gives a sufficiency condition for this to be so.
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7.7. Lemma. Let CatM(S) be defined as the full sub-2-category of Cat(S) with objects
those categories such that the source and target maps belong to a singleton pretopology
M. Then CatM(S) admits base change along arrows in M, as does the corresponding
2-category GpdM(S) of groupoids.

Proof. We shall denote arrows in M by � for the purposes of the current proof. Let X
be an object of CatM(S) and f : M � X0. In the following two diagrams, all the squares
are pullbacks

X[M ]1

����

//

s′

    

M

��

X[M ]1

t′

** **

��

// // X1 ×X0 M

��

// //M

��

M ×X0 X1

����

// X1
//

����

X0 X1
// //

��

X0

M // X0 M // // X0

The maps marked s′, t′ are the source and target maps for the base change along f , so
X[M ] is in CatM(S). The same argument holds for groupoids verbatim.

In practice one often only wants base change along a subclass ofM, such as the class of
open covers sitting inside the class of open maps in Top. We can then apply theoerems 6.1
and 6.2 to the 2-categories CatM(S) and GpdM(S) with the classes of M-equivalences,
and indeed to sub-2-categories of these, as we shall in the examples below.

We shall focus of a few concrete cases to show how the results of this paper subsume
similar results in the literature proved for specific sites.

The category of smooth manifolds is not finitely complete so none of the results in
this section so far apply to it. There are two ways around this. The first is to expand
the category of manifolds to a category of smooth spaces which is finitely complete (or
even cartesian closed). In that case all the results one has for finitely complete sites can
be applied. The other is to take careful note of which finite limits are actually needed,
and show that all constructions work in the original category of manifolds. There is
then a hybrid approach, which is to work in the expanded category, but point out which
results/constructions actually fall inside the original category of manifolds. Here we shall
take the second approach. First, let us pin down some definitions.

7.8. Definition. Let Diff be the category of smooth, finite-dimensional manifolds.
A Lie category is a category internal to Diff where the source and target maps are
submersions (and hence the required pullbacks exist). A Lie groupoid is a Lie category
which is a groupoid. A proper Lie groupoid is one where the map (s, t) : X1

//X0 ×X0

is proper. An étale Lie groupoid is one where the source and target maps are local
diffeomorphisms.

By lemma 7.7 the 2-categories of Lie categories, Lie groupoids and proper Lie groupoids
admit base change along any of the following classes of maps: open covers (O), surjective
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local diffeomorphisms (ét), surjective submersions (Subm). The 2-categories of étale Lie
groupoids and proper étale Lie groupoids admit base change along arrows in ét and Subm.
We should note that we have O cofinal in ét, which is cofinal in Subm.

We can thus apply the main results of this paper to the sites (Diff ,O), (Diff , ét) and
(Diff , Subm) and the 2-categories of Lie categories, Lie groupoids, proper Lie goupoids
and so on. However, the definition of weak equivalence we have here, involving J-locally
split functors, is not one that apppears in the Lie groupoid literature, which is actually
Bunge-Paré Subm-equivalence. However, we have the following result:

7.9. Proposition. A functor f : X // Y between Lie categories is a Subm-equivalence
if an only if it is a Bunge-Paré Subm-equivalence.

Before we prove this, we need a lemma proved by Ehresmann.

7.10. Lemma. [Ehresmann 1959] For any Lie category X, the subset of invertible arrows,
X iso

1 ↪→ X1 is an open submanifold.

Hence there is a Lie groupoid X iso and an identity-on-objects functor X iso //X which
is universal for functors from Lie groupoids. In particular, a natural isomorphism between
functors with codomain X is given by a component map that factors through X iso

1 , and
the induced source and target maps X iso

1
//X0 are submersions.

Proof. (proposition 7.9) Full faithfulness is the same for both definitions, so we just need
to show that f is Subm-locally split if and only if it is essentially Subm-surjective. We
first show the forward implication.

The special case of an O-equivalence between Lie groupoids is a small generalisation
of the proof of proposition 5.5 in [Moerdijk-Mrčun 2003], which states than an internal
equivalence of Lie groupoids is a Bunge-Paré Subm-equivalence. Since O is cofinal in
Subm, a Subm-equivalence is an O-equivalence, hence a Bunge-Paré Subm-equivalence.

For the case when X and Y are Lie categories, we use the fact that we can define
X0 ×Y0 Y iso

1 and that the local sections constructed in Moerdijk-Mrčun’s proof factor
through this manifold to set up the proof as in the groupoid case.

For the reverse implication, the construction in proposition 7.3 goes through verbatim,
as all the pullbacks used involve submersions.

The need to localise the category of Lie groupoids at WSubm was perhaps first noted in
[Pradines 1989], where it was noted that something other than the standard construction of
a category of fractions was needed. However Pradines lacked the 2-categorical localisation
results. Pronk considered the sub-2-category of étale Lie groupoids, also localised at
WSubm, in order to relate these groupoids to differentiable étendues [Pronk 1996]. Lerman
discusses the 2-category of orbifolds qua stacks and argues that it should be a localisation
of the 2-category of proper étale Lie groupoids (again at WSubm). These three cases use
different constructions of the 2-categorical localisation: Pradines used what he called
meromorphisms, which are equivalence classes of butterfly-like diagrams and are related
to Hilsum-Skandalis morphisms, Pronk introduces the techniques outlined in this paper,
and Lerman uses Hilsum-Skandalis morphisms, also known as right principal bibundles.
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Interestingly, [Colman 2010] considers this localisation of the 2-category of Lie groupoids
then considers a further localisation, not given by the results of this paper.3 Colman in
essence shows that the full sub-2-category of topologically discrete groupoids, i.e. ordinary
small groupoids, is a localisation at those internal functors which induce an equivalence
on fundamental groupoids.

Our next example is that of topological groupoids, which correspond to various flavours
of stacks on the category Top. The idea of weak equivalences of topological groupoids
predates the case of Lie groupoids, and [Pradines 1989] credits it to (Haefliger 1984, van Est
1984) and [Hilsum-Skandalis 1987]. In particular the first two were ultimately interested
in defining the fundamental group of a foliation, that is to say, the topological groupoid
associated to a foliation, considered up to weak eqivalence.

However more recent examples have focussed on topological stacks, or variants thereon.
In particular, in parallel with the algebraic and differentiable cases, the topological stacks
for which there is a good theory correspond to those topological groupoids with conditions
on their source and target maps. Aside from étale topological groupoids (which were
considered by [Pronk 1996] in relation to étendues), the real advances here have come from
work of Noohi, starting with [Noohi 2005a], who axiomatised the concept of local fibration
and asked that the source and target maps of topological groupoids are local fibrations.

7.11. Definition. A singleton pretopology LF in Top is called a class of local fibrations
if the following conditions hold:4

1. LF contains the open embeddings

2. LF is stable under coproducts, in the sense that
∐

i∈I Xi
// Y is in LF if each

Xi
// Y is in LF

3. LF is local on the target for the open cover pretopology. That is, if the pullback of
a map f : X // Y along an open cover of Y is in LF , then f is in LF .

Conditions 1. and 2. tell us that qO ⊂ LF , and that LF is qJ for some superex-
tensive pretopology J containing the open embeddings as singleton ‘covering’ families
(the terminology is misleading here). Note that LF will not be subcanonical, by the first
condition. As an example, given any of the following pretopologies C:

• Serre fibrations,

• Hurewicz fibrations,

• open maps,

• locally split maps,

3In fact this is the only 2-categorical localisation result involving internal categories/groupoids known
to the author to not be covered by theorem 6.1 or its sequel [Roberts ∞2].

4We have packaged the conditions in a way slightly different to [Noohi 2005a], but the definition is in
fact identical.
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• projections out of a cartesian product,

• isomorphisms;

one can define a class of local fibrations by choosing those maps which are in C on
pulling back to an open cover of the codomain. Such maps are then called local C. As
an example of the usefulness of this concept, the topological stacks corresponding to
topological groupoids with local Hurewicz fibrations as source and target have a nicely
behaved homotopy theory. The case of étale groupoids corresponds to the last named class
of maps, which give us local isomorphisms, i.e. étale maps. We can then apply lemma 7.7
and theorem 6.1 to the 2-category GrpLF (Top) to localise at the class WqO, as qO ⊂ LF ,
using anafunctors if we so wish. Note that if C satisfies WISC, so will the corresponding
LF , although this is probably not necessary to consider in the presence of full AC.

A slightly different approach is taken in [Carchedi 2012], where the author introduces
a new pretopology on the category CGH of compactly generated Hausdorff spaces. We
give a definition equivalent to the one in loc cit.

7.12. Definition. A (not necessarily open) cover {Vi ↪→ X}i∈I is called a CG-cover if
for any map K //X from a compact space K, there is a finite open cover {Uj ↪→ K}
which refines the cover {Vi ×X K //K}i∈I . CG-covers form a pretopology CG

Compactly generated stacks then correspond to groupoids in CGH such that source
and target maps are in the pretopology CGun. Again, we can localise GpdCG(CGH) at
WCGun using lemma 7.7 and theorem 6.1, and anafunctors can be again pressed into service.

We now arrive at the more involved case of algebraic stacks (for instance, see the
continually growing [Stacks project], for the extent of the theory of algebraic stacks), which
were the first presentable stacks to be defined. There are some subtleties about the site of
definition for algebraic stacks, and powerful representability theorems, but we can restrict
to three main cases: groupoids in the category of affine schemes, Aff = Ringop; groupoids
in the category Sch of schemes; groupoids in the category AlgSp of algebraic spaces.
The latter reduce to algebraic stacks represented by groupoids with trivial automorphism
groups, and the category of schemes is a subcategory of Sh(Aff), so we shall just consider
the case when our ambient category is Aff . In any case, all the special properties of
classes of maps in all three sites are ultimately defined in terms of properties of ring
homomorphisms. Note that groupoids in Aff are exactly the same thing as cogroupoid
objects in Ring, which are more commonly known as Hopf algebroids.

Despite the possibly unfamiliar language used by algebraic geometry, algebraic stacks
reduce to the following informal definition. We fix three singleton pretopologies on our
site Aff : J , E and D such that E and D are local on the target for the pretopology
J . An algebraic stack then corresponds to a groupoid X in Aff such that source and
target maps belong to E and (s, t) : X1

//X2
0 belongs to D. We recover the algebraic

stacks by localising the 2-category of such groupoids at WJ (this claim of course needs
substantiating, something we will not do here for reasons of space, referring rather to
[Pronk 1996, Schäppi 2012] and the forthcoming [Roberts ∞1]).
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In practice, D is something like closed maps (to recover Hausdorff-like conditions) and
E consists of either smooth or étale maps, corresponding to Artin and Deligne-Mumford
stacks respectively. J is then something like the étale topology (or rather, the singleton
pretopology associated to it, as the étale topology is superextensive), and we can apply
lemma 7.7 to see that base change exists along J , along with the fact that asking for
(s, t) ∈ D is automatically stable under forming the base change. In practice, a variety of
combinations of J,E and D are used, as well as passing from Aff to Sch and AlgSp, so
there are various compatibilities to check in order to know one can apply theorem 6.1.

A final application we shall consider is when our ambient category consists of algebraic
objects. As mentioned in the introduction, a number of authors have considered localising
groupoids in Mal’tsev, or Barr-exact, or protomodular, or semi-abelian categories, which
are hallmarks of categories of algebraic objects rather than spatial ones, as we have been
considering.

In the case of groupoids in Grp (which, as in any Mal’tsev category, coincide with
the internal categories) it is a well-known result that they can be described using crossed
modules.

7.13. Definition. A crossed module (in Grp) is a homomorphism t : G //H together
with a homomorphism α : H // Aut(G) such that t is H-equivariant (using the conjugation
action of H on itself), and such that the composition αt : G // Aut(G) is the action of G
on itself by conjugation. A morphism of crossed modules is a pair of maps [. . . ] making
the obvious square commute, and commuting with the action maps.

Similar definitions hold for groups internal to cartesian closed categories, and even just
finite-product categories if one replaces H // Aut(G) with its transpose H × G // G.
Ultimately of course there is a definition for crossed modules in semiabelian categories [],
but we shall consider just groups. There is a natural definition of 2-arrow between maps
of crossed modules, but the specifics are not important for the present purposes, so we
refer to [] for details. The 2-categories of groupoids internal to Grp and crossed modules
are equivalent, so we shall just work with the terminology of the latter.

Given the result that crossed modules correspond to pointed, connected homotopy
2-types, it is natural to ask if all maps of such arise from maps between crossed modules.
The answer is, perhaps unsurprisingly, no, as one needs maps which only weakly preserve
the group structure. One can either write down the definition of some generalised form of
map [?], or localise the 2-category of crossed modules (also shown in [?]). One takes the
singleton pretopology consisting of the epimorphisms.

There are potentially interesting sub-2-categories of crossed modules that one might
want to consider, for example, the one corresponding to nilpotent pointed connected
2-types. These are crossed modules t : G //H where the cokernel of t is a nilpotent group
and the (canonical) action of coker t on ker t is nilpotent.

DR note 2:

Abelian categories - 2-stage homotopy types, Picard stacks Noohi-Aldrovandi, but-
terflies. E.g. Ab with p-local epis. Abelian category with Serre class...
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Groups (crossed modules) semiabelian categories (butterflies again)

A. Superextensive sites

The usual sites of topological spaces, manifolds and schemes all share a common property:
one can (generally) take coproducts of covering families and end up with a covering
family. In this appendix we gather some results that generalise this fact, none of which
are especially deep, but help provide examples of bicategories of anafunctors.

A.1. Definition. [Carboni-Lack-Walters 1993] A finitary (resp. infinitary) extensive
category is a category with finite (resp. small) coproducts such that the following condition
holds: let I be a a finite set (resp. any set), then, given a collection of commuting diagrams

Xi
//

��

Z

��
Ai //

∐
i∈I Ai ,

one for each i ∈ I, the squares are all pullbacks if and only if the collection {Xi
// Z}i∈I

forms a coproduct diagram.

In such a category there is a strict initial object (i.e. given a map A // 0 with 0 initial,
we have A ' 0).

A.2. Example. Top is infinitary extensive. Ringop, the category of affine schemes, is
finitary extensive.

In Top we can take an open cover {Ui}I of a space X and replace it with the single
map

∐
I Ui

//X, and work just as before using this new sort of cover, using the fact Top
is extensive. The sort of sites that mimic this behaviour are called superextensive.

A.4. Definition. (Bartels-Shulman) A superextensive site is an extensive category S
equipped with a pretopology J containing the families

(Ui //
∐
I

Ui)i∈I

and such that all covering families are bounded; this means that for a finitely extensive site,
the families are finite, and for an infinitary site, the families are small. The pretopology in
this instance will also be called superextensive.

A.5. Example. Given an extensive category S, the extensive pretopology has as covering
families the bounded collections (Ui //

∐
I Ui)i∈I . The pretopology on any superextensive

site contains the extensive pretopology.
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A.6. Example. The category Top with its usual pretopology of open covers is a
superextensive site.

A.7. Example. An elemantary topos with the coherent pretopology is finitary su-
perextensive, and a Grothendieck topos with the canonical pretopology is infinitary
superextensive.

Given a superextensive site (S, J), one can form the class qJ of arrows of the form∐
I Ui

//A for covering families {Ui //A}i∈I in J (more precisely, all arrows isomorphic
in S/A to such arrows).

A.8. Proposition. The class qJ is a singleton pretopology, and is subcanonical if and
only if J is.

Proof. Since identity arrows are covers for J they are covers for qJ . The pullback of a
qJ-cover

∐
I Ui

// A along B // A is a qJ-cover as coproducts and pullbacks commute
by definition of an extensive category. Now for the third condition we use the fact that in
an extensive category a map

f : B //
∐
I

Ai

implies that B '
∐

I Bi and f =
∐

i fi. Given qJ-covers
∐

I Ui
//A and

∐
J Vj

//(
∐

I Ui),
we see that

∐
J Vj '

∐
IWi. By the previous point, the pullback∐

I

Uk ×∐
I Ui′

Wi

is a qJ-cover of Ui, and hence (Uk ×∐
I Ui′

Wi
// Uk)i∈I is a J-covering family for each

k ∈ I. Thus

(Uk ×∐
I Ui′

Wi
// A)i,k∈I

is a J-covering family, and so

∐
J

Vj '
∐
k∈I

(∐
I

Uk ×∐
I Ui′

Wi

)
// A

is a qJ-cover.
The map

∐
I Ui

// A is the coequaliser of
∐

I×I Ui ×A Uj ⇒
∐

I Ui if and only if A is the
colimit of the diagram in definition 2.3. Hence (

∐
I Ui

// A) is effective if and only if
(Ui // A)i∈I is effective

Notice that the original superextensive pretopology J is generated by the union of qJ
and the extensive pretopology.

One reason we are interested in superextensive sites is the following.



38

A.9. Lemma. In a superextensive site (S, J), we have Jun = (qJ)un.

This means we can replace the singleton pretopology Jun (e.g. local-section-admitting
maps of topological spaces) with the singleton pretopology qJ (e.g. disjoint unions of
open covers). This makes for much smaller pretopologies in practice.

One class of extensive categories which are of particular interest is those that also have
finite/small limits. These are called lextensive. For example, Top is infinitary lextensive,
as is a Grothendieck topos. In contrast, an elementary topos is in general only finitary
lextensive. We end with a lemma about WISC.

A.10. Lemma. If (S, J) is a superextensive site, (S, J) satisfies WISC if and only if
(S,qJ) does.

One reason for why superextensive sites are so useful is the following result from
[Schäppi 2012].

A.11. Proposition. [Schäppi 2012] Let (S, J) be a superextensive site, and F a stack

for the extensive topology on S. Then the associated stack F̃ on the site (S,q) is also the
associated stack for (S, J).

As a corollary, since every weak 2-functor F : S //Gpd for extensive S represented
by an internal groupoid is automatically a stack for the extensive topology, we see that we
only need to stackify F with respect to a singleton pretopology on S. This will be applied
in [Roberts ∞1].
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