DStevenson Notes on classification of left fibrations

Given a left fibration XSX\to S, we want to show that there is a map S𝒮S\to \mathcal{S} such that XSX\to S is induced from the universal left fibration 𝒮 1/𝒮\mathcal{S}_{1/}\to \mathcal{S} in the sense that there is a homotopy pullback diagram (??in the Joyal model structure on S\mathbf{S}??)

X 𝒮 1/ S 𝒮 \array{ X & \rightarrow & \mathcal{S}_{1/} \\ \downarrow & & \downarrow \\ S & \rightarrow & \mathcal{S} }

Furthermore, we want to show that the classifying map S𝒮S\to \mathcal{S} is unique up to equivalence.

Observe firstly that there are 1-1 correspondences between commutative diagrams

X 𝒮 1/ S 𝒮 \array{ X & \to & \mathcal{S}_{1/} \\ \downarrow & & \downarrow \\ S & \to & \mathcal{S} }

in S\mathbf{S}, maps

1X XS𝒮 1\star X\cup_X S \to \mathcal{S}

in S\mathbf{S}, and finally simplicial functors

(1X XS)Kan. \mathfrak{C}(1\star X\cup_X S)\to \mathbf{Kan}.

Let vv denote the cone point in 1X1\star X and let \mathcal{M} denote a fibrant replacement of (1X XS)\mathfrak{C}(1\star X\cup_X S).

Then we obtain a simplicial functor

(1X XS)Kan \mathfrak{C}(1\star X\cup_X S)\to \mathbf{Kan}

by the formula

Map (v,):(1X XS)Kan. \Map_{\mathcal{M}}(v,-)\colon \mathfrak{C}(1\star X\cup_X S)\to \mathbf{Kan}.
Revised on September 24, 2013 at 10:42:03 by Danny Stevenson