
Allegories and bicategories of relations

Definition 1 ([CW87]). A (locally ordered) cartesian bicategory is a locally
partially ordered 2-category C satisfying the following:

1. C is symmetric monoidal: there is a pseudofunctor ⊗ : C ×C → C together
with natural isomorphisms α, λ, ρ and σ satisfying the usual coherence
conditions;

2. every object of C is a commutative comonoid, that is, comes equipped
with maps

∆X : X → X ⊗X tX : X → I

whose right adjoints we write ∆∗X , t
∗
X , where I is the tensor unit, satisfying

the obvious associativity, symmetry and unitality axioms, and this is the
only such comonoid structure on X;

3. every morphism r : X # Y is a lax comonoid morphism:

∆Y ◦ r ≤ (r ⊗ r) ◦∆X tY ◦ r ≤ tX

Proposition 2 ([CW87, theorem 1.6]). A bicategory C is cartesian if and only
if the following hold:

1. Map(B) has finite 2-products (given by ⊗ and I).

2. The hom-posets of B have finite products, and 1I is the terminal object of
B(I, I).

3. The tensor product defined as

r ⊗ s = (π∗1rπ1) ∩ (π∗2sπ2)

where the πi are the product projections, is functorial.

Definition 3 ([CW87, def. 2.1]). An object X in a cartesian bicategory is called
Frobenius (Carboni–Walters say discrete) if it satisfies

∆ ◦∆∗ = (∆∗ ⊗ 1) ◦ (1⊗∆) (1)

A bicategory of relations is a cartesian bicategory in which every object is Frobe-
nius.

Proposition 4. A bicategory of relations B is compact closed, that is, there is
an identity-on-objects involution (−)◦ : Bop → B and a natural isomorphism

B(X ⊗ Y,Z) ∼= B(X,Z ⊗ Y )

Lemma 5 ([CW87, corollary 2.6]). In a bicategory of relations

1. If f is a map then f∗ = f◦.

2. If f and g are maps and f ≤ g then f = g.

Proposition 6. A bicategory of relations is the same thing as a unitary tabular
allegory.
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Only one part of the proof is non-trivial, but we postpone the whole thing
until after the necessary lemmas.

Freyd and Ščedrov give a construction [FŠ90, B.3] of the free allegory on a
regular theory, which allows us to interpret any formula of regular logic in a
unitary pre-tabular allegory (relative to some given interpretation of the basic
sorts, terms and predicates). Suppose we have predicates R(x, y) and S(y, z),
interpreted as r : X # Y and s : Y # Z respectively. Then their relational
composite is given by the formula

SR(x, z) = ∃υ.z∗R(x, υ) ∧ x∗S(υ, z)

This can be interpreted in two different ways: as the composite sr : X # Z, or
more ‘literally’ as

X
r // Y

π◦1
''

X
π◦1 // X × Z

π1
77

π2 //

π2

55Z
s◦
// Y

π◦2

// Y × Y ∆◦ // Y
π // U

π◦ // Z

where parallel morphisms are combined with ∩.

Proposition 7. In a unitary pre-tabular allegory, the two interpretations above
of a relational composite are equal; that is,

sr = (π◦π∆◦(π◦1rπ1 ∩ π◦2s◦π2) ∩ π2)π◦1

Proof. First note that on the left-hand side sr = sr ∩ > = sr ∩ π2π
◦
1 , and that

on the right

(π◦π∆◦(π◦1rπ1 ∩ π◦2s◦π2) ∩ π2)π◦1 = (>Y Z(rπ1 ∩ s◦π2) ∩ π2)π◦1

where >Y Z = π◦π : Y # U # Z is the top element. In one direction we have

sr ∩ π2π
◦
1 = (srπ1 ∩ π2)π◦1 modular law

= (srπ1 ∩ π2 ∩ π2)π◦1

≤ (s(rπ1 ∩ s◦π2) ∩ π2)π◦1 modular law

≤ (>Y Z(rπ1 ∩ s◦π2) ∩ π2)π◦1

In the other,

(>Y Z(rπ1 ∩ s◦π2) ∩ π2)π◦1 ≤ (>Y Zs◦(srπ1 ∩ π2) ∩ π2)π◦1 modular law

≤ (>Y Y (srπ1 ∩ π2) ∩ π2)π◦1

= (π2π
◦
1(srπ1 ∩ π2) ∩ π2)π◦1 > = π2π

◦
1

= (π2(π◦1srπ1 ∩ π◦1π2) ∩ π2)π◦1 maps distribute

= π2(π◦1srπ1 ∩ π◦1π2 ∩ π◦2π2)π◦1 modular law

= π2(π◦1srπ1 ∩ (π◦1 ∩ π◦2)π2)π◦1 maps distribute

= π2(π◦1srπ1 ∩∆π2)π◦1 see below

= π2∆(∆◦π◦1srπ1 ∩ π2)π◦1 modular law

= (srπ1 ∩ π2)π◦1 ∆π1 = ∆π2 = 1

= sr ∩ π2π
◦
1 modular law
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In the fourth last line we used the fact that π1 ∩ π2 = ∆◦, which follows from
lemma 8 below and the fact that ∆ = 〈1, 1〉.

Lemma 8. Let A be a unitary pre-tabular allegory. If A
f

L99 X
g

99K B in
Map(A), then 〈f, g〉 = π◦1f ∩ π◦2g in A.

Proof. Write r = π◦1f ∩ π◦2g. From the modular law and the fact that product
cones tabulate top morphisms it follows that π1r = f and π2r = g. Thus
r = 〈f, g〉 if and only if r is a map.

For the counit inequality,

rr◦ = (π◦1f ∩ π◦2g)(f◦π1 ∩ g◦π2)

≤ π◦1ff◦π1 ∩ π◦2gg◦π2 distrib.

≤ π◦1π1 ∩ π◦2π2

= 1 proj’ns tabulate

For the unit,

r◦r = (f◦π1 ∩ g◦π2)(π◦1f ∩ π◦2g)

= (f◦π1 ∩ g◦π2)π◦1f ∩ (f◦π1 ∩ g◦π2)π◦2g distrib.

= (f◦ ∩ g◦π2π
◦
1)f ∩ (f◦π1π

◦
2 ∩ g◦)g modular law

= f◦f ∩ g◦g g◦π2π
◦
1 = >, etc.

≥ 1 ∩ 1 = 1

Lemma 9. Let t, u : A×B # B. Then

(t ∩ π2)π◦1 ∩ (u ∩ π2)π◦1 = (t ∩ u ∩ π2)π◦1

Proof. By the modular law, the left-hand side is

((π2 ∩ u)π◦1π1 ∩ t ∩ π2)π◦1

It therefore suffices to show that

(π2 ∩ u)π◦1π1 ∩ π2 = u ∩ π2

By lemma 10 below, we have that π◦1π1 = π13π
◦
12, so the left-hand side above is

(π2 ∩ u)π13π
◦
12 ∩ π2 = ((π2 ∩ u)π13 ∩ π2π12)π◦12 modular law

= (π2π13 ∩ uπ13 ∩ π2π12)π◦12 maps distribute

= (uπ13 ∩ π2(A×∆B)◦)π◦12 lemma 11

= (uπ13(A×∆B) ∩ π2)(A×∆B)◦π◦12 modular law

= u ∩ π2

Lemma 10. Let π1 : A×B 99K B and take

π12 = 〈π1, π2〉, π13 = 〈π1, π3〉 : A×B ×B 99K A×B

Then π◦1π1 = π13π
◦
12.
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Proof. By prop. 7, the left-hand side is

A×B

&&
A×B

π◦12

// A×B ×A×B π34 //

π12
44

π34

33A×B // A // A×B

Factoring the double (co)projections through the canonical isomorphism A ×
B ×A×B ∼= A×A×B ×B, we get

(π◦1(π1 ∩ π2) ∩ π24)π◦13 = (π◦1π1(∆×B ×B)◦ ∩ π24)π◦13 lemma 11

= (π◦1π1 ∩ π13)π◦12 mod., π∆ = 1

= (π◦1π1 ∩ π◦2π3)π◦12 lemma 8

= π13π
◦
12 idem

Lemma 11. Let π2, π3 : A×B×B → B, and write π12 = 〈π1, π2〉, π13 = 〈π1, π2〉
as before. Then

π2 ∩ π3 = π2(π12 ∩ π13) = π2(1A ×∆B)◦

where in the middle and on the right π2 : A×B → B.

Proof. For the left-hand equality we have

π2(π12 ∩ π13) = π2(π◦1π1 ∩ π◦2π2 ∩ π◦2π3) lemma 8

= π2(π◦1π1 ∩ π◦2π2) ∩ π3 modular law

= π2π
◦
1π1 ∩ π2 ∩ π3 modular law

= > ∩ π2 ∩ π3

= π2 ∩ π3

For the right, 1A ×∆B = 〈π1, 〈1, 1〉π2〉, which is

π◦1π1 ∩ π◦2π2 ∩ π◦3π2

by lemma 8, the opposite of which composed with π2 is the first line above.

Now we may proceed with our postponed proof.

Proof of prop. 6. Both allegories and bicategories of relations are locally par-
tially ordered 2-categories equipped with an identity-on-objects involution.

Suppose B is a bicategory of relations. The Frobenius law implies the mod-
ular law [CW87, remark 2.9(ii)]. The tensor unit I, the terminal object of
Map(B), is a unit: there is a unique map X → I for any X, and 1I is the
top element of B(I, I) by prop. 2. The product projections tabulate the top
elements, so B is pre-tabular.

Conversely, let A be a unitary pre-tabular allegory, and refer to prop. 2.
Map(A) has finite products, and local finite products are given by the defini-
tion of an allegory and the presence of the unit; the identity on the unit is by
definition the top element of the relevant hom set.
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The functoriality of the tensor product

r ⊗ s = π∗1rπ1 ∩ π∗2sπ2

is the only difficult part. Firstly, on identities we have

1⊗ 1 = π∗1π1 ∩ π∗2π2 = 1

because the projections are a tabulation. Now consider

sr ⊗ s′r′ = π∗1srπ1 ∩ π∗2s′r′π2

as in
X

r // Y
s //

∩

Z

''
X ×X ′

77

''

Z × Z ′

X ′
r′
// Y ′

s′
// Z ′

77

By prop. 7, this is equal to

X
r

%%
X ×X ′ × Z × Z ′ //

55

..

Z
s◦
// Y // U

&&
X ×X ′

44

**

Z × Z ′

X ×X ′ × Z × Z ′ //

))

00

X ′
r′ // Y ′ // U

88

Z ′
s′◦

99

where unlabelled arrows are the obvious projections, and parallel arrows are to
be combined with ∩ as before. By lemma 9 this is the result of precomposing
with the coprojection X × X ′ # X × X ′ × Z × Z ′ the meet of the following
morphism with π2:

X
r

%%
Z

s◦
// Y

%%
X ×X ′ × Z × Z ′

::

55

))

$$

U // Z × Z ′

X ′
r′ // Y ′

::

Z ′
s′◦

99

We may use the modular law at U , then the equality

Y ′ 99K U # Y = Y ′ # Y × Y ′ 99K Y
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and then the modular law again to turn the above into

X
r // Y

��

Z
s◦ // Y

''
X ×X ′ × Z × Z ′

::

55

))

$$

Y × Y ′ // U // Z × Z ′

X ′
r′ // Y ′

77

Z ′
s′◦ // Y ′

??

But now we may use the symmetry of ∩ to swap the morphism containing
s◦ with that containing r′: the resulting morphism (after ∩ing with π2 and
composing with the coprojection out of X × X ′) is exactly the interpretation
after prop. 7 of

(π◦1sπ1 ∩ π◦2s′π1) ◦ (π◦1rπ1 ∩ π◦2r′π2)

Thus ⊗ is functorial.
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