Allegories and bicategories of relations

Definition 1 ([CW87]). A (locally ordered) cartesian bicategory is a locally
partially ordered 2-category C satisfying the following:

1. C is symmetric monoidal: there is a pseudofunctor ®: C x C — C together
with natural isomorphisms a, A, p and o satisfying the usual coherence
conditions;

2. every object of C is a commutative comonoid, that is, comes equipped
with maps
AxtX—)X®X txiX*)[

whose right adjoints we write A%, t%, where [ is the tensor unit, satisfying
the obvious associativity, symmetry and unitality axioms, and this is the
only such comonoid structure on X;

3. every morphism r: X & Y is a lax comonoid morphism:

Ayor<(r®r)oAx ty or <tx
Proposition 2 ([CW87, theorem 1.6]). A bicategory C is cartesian if and only
if the following hold:
1. Map(B) has finite 2-products (given by ® and I).

2. The hom-posets of B have finite products, and 1 is the terminal object of
B(I,1).

3. The tensor product defined as
r® s = (myrm) N (75sms)
where the m; are the product projections, is functorial.

Definition 3 ([CW87, def. 2.1]). An object X in a cartesian bicategory is called
Frobenius (Carboni-Walters say discrete) if it satisfies

AoA* = (A" ®1)o(1®A) (1)

A bicategory of relations is a cartesian bicategory in which every object is Frobe-
nius.

Proposition 4. A bicategory of relations B is compact closed, that is, there is
an identity-on-objects involution (—)°: B°® — B and a natural isomorphism

BX®Y,Z2)=2B(X,ZQY)
Lemma 5 ([CW87, corollary 2.6]). In a bicategory of relations
1. If f is a map then f* = f°.
2. If f and g are maps and f < g then f = g.

Proposition 6. A bicategory of relations is the same thing as a unitary tabular
allegory.



Only one part of the proof is non-trivial, but we postpone the whole thing
until after the necessary lemmas.

Freyd and Scedrov give a construction [FS90, B.3] of the free allegory on a
regular theory, which allows us to interpret any formula of regular logic in a
unitary pre-tabular allegory (relative to some given interpretation of the basic
sorts, terms and predicates). Suppose we have predicates R(z,y) and S(y, z),
interpreted as r: X & Y and s: Y 9 Z respectively. Then their relational
composite is given by the formula

SR(x,z) = Jv.2"R(z,v) N z*S(v, z)

This can be interpreted in two different ways: as the composite sr: X & Z, or
more ‘literally’ as

//ZXraY\\;
T T

X xxz-".7 Y Y xY Y

where parallel morphisms are combined with N.

Proposition 7. In a unitary pre-tabular allegory, the two interpretations above
of a relational composite are equal; that is,

sr = (r°mA°(m{rm Nw5s°me) N wo) Ty

Proof. First note that on the left-hand side sr = sr N T = sr N men], and that
on the right

(o A° (mirmy Nwgs®me) Nwe)w) = (Tyz(rm N s°m) N )7y

where Tyz =7°7m: Y & U § Z is the top element. In one direction we have

srNmomy = (srmy Nmwe)wy modular law
= (srm Nmg Nwe)7y]
< (s(rm N s°me) N )y modular law
< (Tyz(rm Ns®me) N o)y

In the other,

(Tyz(rm N s°m) Nme)wy < (Tyzs®(srmy Nwg) Nmwe)wy modular law
(Tyy(srm Nme) Nmwo)wy

= (momy (srm Nmwe) N o)y T = mom]
= (ma(mysrm Naime) Nme)wy  maps distribute
= mo(wysrm N wime N wome)my modular law

™
= mo(mwysrm N (w] N75)me)w;  maps distribute
™

= mo(mysrm N Amg)m] see below
= moA(A ] srm N )Ty modular law
= (srm N o)y Am =Amg =1
= sr N mamy modular law



In the fourth last line we used the fact that 71 N w9 = A°, which follows from
lemma 8 below and the fact that A = (1,1). O

Lemma 8. Let A be a unitary pre-tabular allegory. If A eJ—c— X - Bin
Map(A), then (f,g) = w7 f Nw5g in A.

Proof. Write r = 77 f N75g. From the modular law and the fact that product
cones tabulate top morphisms it follows that mir = f and wer = ¢g. Thus
r = (f,g) if and only if r is a map.

For the counit inequality,

rr = (mf N mag)(fom N gom)
< m ffom Nmgg9°ms distrib.
< mim N 7wy

=1 proj’ns tabulate

For the unit,

ror = (f°m N g°me)(w] f N73g)

= (f°m Ng°ma)mi f N (f°m N g°ma)m5g distrib.
= (f°Ng°mem)f N (fomimg Ng°)g modular law
=f°fnNg°g g°momy =T, etc.
>1nl=1

Lemma 9. Let t,u: Ax B B. Then
(tNme)mi N (uNme)my = (ENuNm)ny]
Proof. By the modular law, the left-hand side is
((me Nu)mim NEN mo)7y
It therefore suffices to show that
(my Nu)wim Ny = u Ny

By lemma 10 below, we have that m{m = w1375, so the left-hand side above is

(mo Nu)mismyy N = (2 N )3 N T2m12) Ty modular law
= (mam13 Numiz N Tam12) Ty maps distribute
= (U7T13 ﬂﬂ'Q(A X AB)O)TF?Q lemma 11
= (ums X Ap) Ny X Ag) w™ modular [aw
(ums(A x Ap) N7m)(A X Ap)°rs, dular 1
= u Mo
O

Lemma 10. Let m1: A X B --» B and take
12 = <7T1,7T2>,7T13 = <7'&'1,7T3>: AxBxB--s AxB

Then miT1 = T1377,.



Proof. By prop. 7, the left-hand side is

Ax B

AXxB—>AXxBxAxB'* AxB—>A—>AxB
T -7

T34

Factoring the double (co)projections through the canonical isomorphism A x
BxAxBX=AxAXxBXx B, we get

(w7 (m1 Nwe) Nmog)myy = (7771 (A X B X B)° Nag)mys lemma 11
= (wym N T13)7 Ty mod., TA =1
= (w]m N7yT3) 7oy lemma 8
== 7T137T(1)2 idem
O

Lemma 11. Let mo, 3: AXBxB — B, and write w9 = (w1, T2), T3 = {71, T2)
as before. Then

T M3 = 7T2(7T12 ﬁ7r13) = 7T2(].A X AB)O
where in the middle and on the right mo: A X B — B.

Proof. For the left-hand equality we have

mo(ma Nm3) = mo(wim N wome N WyT3) lemma 8
= ma(wym Nwgme) Ny modular law
= momym N e N3 modular law
=T NmyNmsg
=T N T3

For the right, 14 x Ap = (71, (1, 1)m2), which is
Ty N wem N T e
by lemma 8, the opposite of which composed with 5 is the first line above. [
Now we may proceed with our postponed proof.

Proof of prop. 6. Both allegories and bicategories of relations are locally par-
tially ordered 2-categories equipped with an identity-on-objects involution.

Suppose B is a bicategory of relations. The Frobenius law implies the mod-
ular law [CW87, remark 2.9(ii)]. The tensor unit I, the terminal object of
Map(B), is a unit: there is a unique map X — [ for any X, and 1; is the
top element of B(I,I) by prop. 2. The product projections tabulate the top
elements, so B is pre-tabular.

Conversely, let A be a unitary pre-tabular allegory, and refer to prop. 2.
Map(A) has finite products, and local finite products are given by the defini-
tion of an allegory and the presence of the unit; the identity on the unit is by
definition the top element of the relevant hom set.



The functoriality of the tensor product
* *
r® s =mrm N Ty8mT
is the only difficult part. Firstly, on identities we have
1@l=nm Nmymy =1
because the projections are a tabulation. Now consider
sr @ s'r" = wisrmy N wss'r' mo

as in

X'y *-7

X x X' N Zx 7

\ /

X/H/Y/H/Z/

By prop. 7, this is equal to

/\

XxX'xZxZ U
/ \
X x X' Zx7Z
\ ’
XXX xZxZ Xy U/
\2/41

where unlabelled arrows are the obvious projections, and parallel arrows are to
be combined with N as before. By lemma 9 this is the result of precomposing
with the coprojection X x X’ & X x X' x Z x Z' the meet of the following
morphism with 7s:

\

X><X/><Z><Z’ U*>Z><Z/

*>Y/

L

We may use the modular law at U, then the equality

Y - U Y=Y Y xY --»Y



and then the modular law again to turn the above into
X—->Y

7= sY

N
Ny

XxX'xZx2Z

T

X/;Yl

XY —=U——-7Zx27

Z/ L Y/
But now we may use the symmetry of N to swap the morphism containing
s° with that containing r': the resulting morphism (after Ning with w5 and
composing with the coprojection out of X x X') is exactly the interpretation
after prop. 7 of
(rysm Nwss'my) o (nirm Nwsr'ms)

Thus ® is functorial. O
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