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WPreface to the Second Edition

Writing the second edition to a text book incurs the same risk as building the second version of a
software system. It is difficult to make substantive improvements, while avoiding the temptation
to overburden and undermine the foundation on which one is building. With the hope of avoiding
the second system effect, I have sought to make corrections, revisions, expansions, and deletions
that improve the coherence of the development, remove some topics that distract from the main
themes, add new topics that were omitted from the first edition, and include exercises for almost
every chapter.

The revision removes a number of typographical errors, corrects a few material errors (espe-
cially the formulation of the parallel abstract machine and of concurrency in Algol), and improves
the writing throughout. Some chapters have been deleted (general pattern matching and polar-
ization, restricted forms of polymorphism), some have been completely rewritten (the chapter
on higher kinds), some have been substantially revised (general and parametric inductive defi-
nitions, concurrent and distributed Algol), several have been reorganized (to better distinguish
partial from total type theories), and a new chapter has been added (on type refinements). Titular
attributions on several chapters have been removed, not to diminish credit, but to avoid confusion
between the present and the original formulations of several topics. A new system of (pronounce-
able!) language names has been introduced throughout. The exercises generally seek to expand
on the ideas in the main text, and their solutions often involve significant technical ideas that merit
study. Routine exercises of the kind one might include in a homework assignment are deliberately
few.

My purpose in writing this book is to establish a comprehensive framework for formulating
and analyzing a broad range of ideas in programming languages. If language design and pro-
gramming methodology are to advance from a trade-craft to a rigorous discipline, it is essential
that we first get the definitions right. Then, and only then, can there be meaningful analysis and
consolidation of ideas. My hope is that I have helped to build such a foundation.

I am grateful to Stephen Brookes, Evan Cavallo, Karl Crary, Jon Sterling, James R. Wilcox,
and Todd Wilson for their help in critiquing drafts of this edition and for their suggestions for
modification and revision. I thank my department head, Frank Pfenning, for his support of my
work on the completion of this edition. Thanks also to my editors, Ada Brunstein and Lauren
Cowles, for their guidance and assistance. And thanks to Evan Cavallo and Andrew Shulaev for
corrections to the draft.

Neither the author nor the publisher make any warranty, express or implied, that the defi-
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nitions, theorems, and proofs contained in this volume are free of error, or are consistent with
any particular standard of merchantability, or that they will meet requirements for any particular
application. They should not be relied on for solving a problem whose incorrect solution could
result in injury to a person or loss of property. If you do use this material in such a manner, it is at
your own risk. The author and publisher disclaim all liability for direct or consequential damage
resulting from its use.

Pittsburgh
July, 2015
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Types are the central organizing principle of the theory of programming languages. Language fea-
tures are manifestations of type structure. The syntax of a language is governed by the constructs
that define its types, and its semantics is determined by the interactions among those constructs.
The soundness of a language design—the absence of ill-defined programs—follows naturally.

The purpose of this book is to explain this remark. A variety of programming language features
are analyzed in the unifying framework of type theory. A language feature is defined by its statics,
the rules governing the use of the feature in a program, and its dynamics, the rules defining how
programs using this feature are to be executed. The concept of safety emerges as the coherence of
the statics and the dynamics of a language.

In this way we establish a foundation for the study of programming languages. But why these
particular methods? The main justification is provided by the book itself. The methods we use are
both precise and intuitive, providing a uniform framework for explaining programming language
concepts. Importantly, these methods scale to a wide range of programming language concepts,
supporting rigorous analysis of their properties. Although it would require another book in itself
to justify this assertion, these methods are also practical in that they are directly applicable to imple-
mentation and uniquely effective as a basis for mechanized reasoning. No other framework offers
as much.

Being a consolidation and distillation of decades of research, this book does not provide an
exhaustive account of the history of the ideas that inform it. Suffice it to say that much of the de-
velopment is not original, but rather is largely a reformulation of what has gone before. The notes
at the end of each chapter signpost the major developments, but are not intended as a complete
guide to the literature. For further information and alternative perspectives, the reader is referred
to such excellent sources as Constable (1986), Constable (1998), Girard (1989), Martin-Löf (1984),
Mitchell (1996), Pierce (2002, 2004), and Reynolds (1998).

The book is divided into parts that are, in the main, independent of one another. Parts I and II,
however, provide the foundation for the rest of the book, and must therefore be considered prior
to all other parts. On first reading it may be best to skim Part I, and begin in earnest with Part II,
returning to Part I for clarification of the logical framework in which the rest of the book is cast.

Numerous people have read and commented on earlier editions of this book, and have sug-
gested corrections and improvements to it. I am particularly grateful to Umut Acar, Jesper Louis
Andersen, Carlo Angiuli, Andrew Appel, Stephanie Balzer, Eric Bergstrom, Guy E. Blelloch, Il-
iano Cervesato, Lin Chase, Karl Crary, Rowan Davies, Derek Dreyer, Dan Licata, Zhong Shao,



PREVIE
W

Rob Simmons, and Todd Wilson for their extensive efforts in reading and criticizing the book. I
also thank the following people for their suggestions: Joseph Abrahamson, Arbob Ahmad, Zena
Ariola, Eric Bergstrome, William Byrd, Alejandro Cabrera, Luis Caires, Luca Cardelli, Manuel
Chakravarty, Richard C. Cobbe, James Cooper, Yi Dai, Daniel Dantas, Anupam Datta, Jake Don-
ham, Bill Duff, Matthias Felleisen, Kathleen Fisher, Dan Friedman, Peter Gammie, Maia Gins-
burg, Byron Hawkins, Kevin Hely, Kuen-Bang Hou (Favonia), Justin Hsu, Wojciech Jedynak, Cao
Jing, Salil Joshi, Gabriele Keller, Scott Kilpatrick, Danielle Kramer, Dan Kreysa, Akiva Leffert,
Ruy Ley-Wild, Karen Liu, Dave MacQueen, Chris Martens, Greg Morrisett, Stefan Muller, Tom
Murphy, Aleksandar Nanevski, Georg Neis, David Neville, Adrian Trejo Nuñez, Cyrus Omar,
Doug Perkins, Frank Pfenning, Jean Pichon, Benjamin Pierce, Andrew M. Pitts, Gordon Plotkin,
David Renshaw, John Reynolds, Andreas Rossberg, Carter Schonwald, Dale Schumacher, Dana
Scott, Shayak Sen, Pawel Sobocinski, Kristina Sojakova, Daniel Spoonhower, Paulo Tanimoto, Joe
Tassarotti, Peter Thiemann, Bernardo Toninho, Michael Tschantz, Kami Vaniea, Carsten Varming,
David Walker, Dan Wang, Jack Wileden, Sergei Winitzki, Roger Wolff, Omer Zach, Luke Zarko,
and Yu Zhang. I am very grateful to the students of 15–312 and 15–814 at Carnegie Mellon who
have provided the impetus for the preparation of this book and who have endured the many
revisions to it over the last ten years.

I thank the Max Planck Institute for Software Systems for its hospitality and support. I also
thank Espresso a Mano in Pittsburgh, CB2 Cafe in Cambridge, and Thonet Cafe in Saarbrücken
for providing a steady supply of coffee and a conducive atmosphere for writing.

This material is, in part, based on work supported by the National Science Foundation under
Grant Nos. 0702381 and 0716469. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

Robert Harper
Pittsburgh

March, 2012
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Abstract Syntax

Programming languages express computations in a form comprehensible to both people and ma-
chines. The syntax of a language specifies how various sorts of phrases (expressions, commands,
declarations, and so forth) may be combined to form programs. But what are these phrases? What
is a program made of?

The informal concept of syntax involves several distinct concepts. The surface, or concrete, syn-
tax is concerned with how phrases are entered and displayed on a computer. The surface syntax
is usually thought of as given by strings of characters from some alphabet (say, ASCII or Uni-
code). The structural, or abstract, syntax is concerned with the structure of phrases, specifically
how they are composed from other phrases. At this level a phrase is a tree, called an abstract
syntax tree, whose nodes are operators that combine several phrases to form another phrase. The
binding structure of syntax is concerned with the introduction and use of identifiers: how they are
declared, and how declared identifiers can be used. At this level phrases are abstract binding trees,
which enrich abstract syntax trees with the concepts of binding and scope.

We will not concern ourselves in this book with concrete syntax, but will instead consider
pieces of syntax to be finite trees augmented with a means of expressing the binding and scope
of identifiers within a syntax tree. To prepare the ground for the rest of the book, we define in
this chapter what is a “piece of syntax” in two stages. First, we define abstract syntax trees, or
ast’s, which capture the hierarchical structure of a piece of syntax, while avoiding commitment
to their concrete representation as a string. Second, we augment abstract syntax trees with the
means of specifying the binding (declaration) and scope (range of significance) of an identifier.
Such enriched forms of abstract syntax are called abstract binding trees, or abt’s for short.

Several functions and relations on abt’s are defined that give precise meaning to the informal
ideas of binding and scope of identifiers. The concepts are infamously difficult to define properly,
and are the mother lode of bugs for language implementors. Consequently, precise definitions are
essential, but they are also fairly technical and take some getting used to. It is probably best to skim
this chapter on first reading to get the main ideas, and return to it for clarification as necessary.



PREVIE
W

4 1.1 Abstract Syntax Trees

1.1 Abstract Syntax Trees

An abstract syntax tree, or ast for short, is an ordered tree whose leaves are variables, and whose in-
terior nodes are operators whose arguments are its children. Ast’s are classified into a variety of sorts
corresponding to different forms of syntax. A variable stands for an unspecified, or generic, piece
of syntax of a specified sort. Ast’s can be combined by an operator, which has an arity specifying
the sort of the operator and the number and sorts of its arguments. An operator of sort s and arity
s1, . . . , sn combines n ≥ 0 ast’s of sort s1, . . . , sn, respectively, into a compound ast of sort s.

The concept of a variable is central, and therefore deserves special emphasis. A variable is
an unknown object drawn from some domain. The unknown can become known by substitution
of a particular object for all occurrences of a variable in a formula, thereby specializing a general
formula to a particular instance. For example, in school algebra variables range over real numbers,
and we may form polynomials, such as x2 + 2 x + 1, that can be specialized by substitution of, say,
7 for x to obtain 72 + (2× 7) + 1, which can be simplified according to the laws of arithmetic to
obtain 64, which is (7 + 1)2.

Abstract syntax trees are classified by sorts that divide ast’s into syntactic categories. For exam-
ple, familiar programming languages often have a syntactic distinction between expressions and
commands; these are two sorts of abstract syntax trees. Variables in abstract syntax trees range
over sorts in the sense that only ast’s of the specified sort of the variable can be plugged in for
that variable. Thus it would make no sense to replace an expression variable by a command, nor
a command variable by an expression, the two being different sorts of things. But the core idea
carries over from school mathematics, namely that a variable is an unknown, or a place-holder, whose
meaning is given by substitution.

As an example, consider a language of arithmetic expressions built from numbers, addition,
and multiplication. The abstract syntax of such a language consists of a single sort Exp generated
by these operators:

1. An operator num[n] of sort Exp for each n ∈N;

2. Two operators, plus and times, of sort Exp, each with two arguments of sort Exp.

The expression 2 + (3× x), which involves a variable, x, would be represented by the ast

plus(num[2]; times(num[3]; x))

of sort Exp, under the assumption that x is also of this sort. Because, say, num[4], is an ast of sort
Exp, we may plug it in for x in the above ast to obtain the ast

plus(num[2]; times(num[3]; num[4])),

which is written informally as 2 + (3× 4). We may, of course, plug in more complex ast’s of sort
Exp for x to obtain other ast’s as result.

The tree structure of ast’s provides a very useful principle of reasoning, called structural induc-
tion. Suppose that we wish to prove that some property P(a) holds of all ast’s a of a given sort.
To show this it is enough to consider all the ways in which a can be generated, and show that the
property holds in each case under the assumption that it holds for its constituent ast’s (if any). So,
in the case of the sort Exp just described, we must show
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1. The property holds for any variable x of sort Exp: prove that P(x).

2. The property holds for any number, num[n]: for every n ∈N, prove that P(num[n]).

3. Assuming that the property holds for a1 and a2, prove that it holds for plus(a1; a2) and
times(a1; a2): if P(a1) and P(a2), then P(plus(a1; a2)) and P(times(a1; a2)).

Because these cases exhaust all possibilities for the formation of a, we are assured that P(a) holds
for any ast a of sort Exp.

It is common to apply the principle of structural induction in a form that takes account of the
interpretation of variables as place-holders for ast’s of the appropriate sort. Informally, it is often
useful to prove a property of an ast involving variables in a form that is conditional on the property
holding for the variables. Doing so anticipates that the variables will be replaced with ast’s that
ought to have the property assumed for them, so that the result of the replacement will have the
property as well. This amounts to applying the principle of structural induction to properties P(a)
of the form “if a involves variables x1, . . . , xk, and Q holds of each xi, then Q holds of a”, so that
a proof of P(a) for all ast’s a by structural induction is just a proof that Q(a) holds for all ast’s
a under the assumption that Q holds for its variables. When there are no variables, there are no
assumptions, and the proof of P is a proof that Q holds for all closed ast’s. On the other hand if x
is a variable in a, and we replace it by an ast b for whichQ holds, thenQwill hold for the result of
replacing x by b in a.

For the sake of precision, we now give precise definitions of these concepts. Let S be a finite set
of sorts. For a given set S of sorts, an arity has the form (s1, . . . , sn)s, which specifies the sort s ∈ S
of an operator taking n ≥ 0 arguments, each of sort si ∈ S . Let O = {Oα } be an arity-indexed
family of disjoint sets of operators Oα of arity α. If o is an operator of arity (s1, . . . , sn)s, we say that
o has sort s and has n arguments of sorts s1, . . . , sn.

Fix a set S of sorts and an arity-indexed family O of sets of operators of each arity. Let X =
{ Xs }s∈S be a sort-indexed family of disjoint finite sets Xs of variables x of sort s. When X is clear
from context, we say that a variable x is of sort s if x ∈ Xs, and we say that x is fresh for X , or just
fresh when X is understood, if x /∈ Xs for any sort s. If x is fresh for X and s is a sort, then X , x is
the family of sets of variables obtained by adding x to Xs. The notation is ambiguous in that the
sort s is not explicitly stated, but determined from context.

The family A[X ] = {A[X ]s }s∈S of abstract syntax trees, or ast’s, of sort s is the smallest family
satisfying the following conditions:

1. A variable of sort s is an ast of sort s: if x ∈ Xs, then x ∈ A[X ]s.

2. Operators combine ast’s: if o is an operator of arity (s1, . . . , sn)s, and if a1 ∈ A[X ]s1 , . . . ,
an ∈ A[X ]sn , then o(a1; . . . ;an) ∈ A[X ]s.

It follows from this definition that the principle of structural induction can be used to prove that
some property P holds of every ast. To show P(a) holds for every a ∈ A[X ], it is enough to show:

1. If x ∈ Xs, then Ps(x).

2. If o has arity (s1, . . . , sn)s and Ps1(a1) and . . . and Psn(an), then Ps(o(a1; . . . ;an)).
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For example, it is easy to prove by structural induction that A[X ] ⊆ A[Y ] whenever X ⊆ Y .
Variables are given meaning by substitution. If a ∈ A[X , x]s′ , and b ∈ A[X ]s, then [b/x]a ∈

A[X ]s′ is the result of substituting b for every occurrence of x in a. The ast a is called the target,
and x is called the subject, of the substitution. Substitution is defined by the following equations:

1. [b/x]x = b and [b/x]y = y if x 6= y.

2. [b/x]o(a1; . . . ;an) = o([b/x]a1; . . . ;[b/x]an).

For example, we may check that

[num[2]/x]plus(x; num[3]) = plus(num[2]; num[3]).

We may prove by structural induction that substitution on ast’s is well-defined.

Theorem 1.1. If a ∈ A[X , x], then for every b ∈ A[X ] there exists a unique c ∈ A[X ] such that
[b/x]a = c

Proof. By structural induction on a. If a = x, then c = b by definition, otherwise if a = y 6= x,
then c = y, also by definition. Otherwise, a = o(a1; . . . ;an), and we have by induction unique
c1, . . . , cn such that [b/x]a1 = c1 and . . . [b/x]an = cn, and so c is c = o(c1; . . . ;cn), by definition of
substitution.

1.2 Abstract Binding Trees

Abstract binding trees, or abt’s, enrich ast’s with the means to introduce new variables and symbols,
called a binding, with a specified range of significance, called its scope. The scope of a binding is an
abt within which the bound identifier can be used, either as a place-holder (in the case of a variable
declaration) or as the index of some operator (in the case of a symbol declaration). Thus the set
of active identifiers can be larger within a subtree of an abt than it is within the surrounding tree.
Moreover, different subtrees may introduce identifiers with disjoint scopes. The crucial principle is
that any use of an identifier should be understood as a reference, or abstract pointer, to its binding.
One consequence is that the choice of identifiers is immaterial, so long as we can always associate
a unique binding with each use of an identifier.

As a motivating example, consider the expression let x be a1 in a2, which introduces a variable
x for use within the expression a2 to stand for the expression a1. The variable x is bound by the
let expression for use within a2; any use of x within a1 refers to a different variable that happens
to have the same name. For example, in the expression let x be 7 in x + x occurrences of x in
the addition refer to the variable introduced by the let. On the other hand in the expression
let x be x ∗ x in x + x, occurrences of x within the multiplication refer to a different variable than
those occurring within the addition. The latter occurrences refer to the binding introduced by the
let, whereas the former refer to some outer binding not displayed here.

The names of bound variables are immaterial insofar as they determine the same binding.
So, for example, let x be x ∗ x in x + x could just as well have been written let y be x ∗ x in y + y,
without changing its meaning. In the former case the variable x is bound within the addition, and
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in the latter it is the variable y, but the “pointer structure” remains the same. On the other hand the
expression let x be y ∗ y in x + x has a different meaning to these two expressions, because now
the variable y within the multiplication refers to a different surrounding variable. Renaming of
bound variables is constrained to the extent that it must not alter the reference structure of the
expression. For example, the expression

let x be 2 in let y be 3 in x + x

has a different meaning than the expression

let y be 2 in let y be 3 in y + y,

because the y in the expression y + y in the second case refers to the inner declaration, not the
outer one as before.

The concept of an ast can be enriched to account for binding and scope of a variable. These
enriched ast’s are called abstract binding trees, or abt’s for short. Abt’s generalize ast’s by allowing
an operator to bind any finite number (possibly zero) of variables in each argument. An argu-
ment to an operator is called an abstractor, and has the form x1, . . . , xk.a. The sequence of variables
x1, . . . , xk are bound within the abt a. (When k is zero, we elide the distinction between .a and a
itself.) Written in the form of an abt, the expression let x be a1 in a2 has the form let(a1; x.a2),
which more clearly specifies that the variable x is bound within a2, and not within a1. We of-
ten write ~x to stand for a finite sequence x1, . . . , xn of distinct variables, and write ~x.a to mean
x1, . . . , xn.a.

To account for binding, operators are assigned generalized arities of the form (υ1, . . . , υn)s, which
specifies operators of sort s with n arguments of valence υ1, . . . , υn. In general a valence υ has the
form s1, . . . , sk.s, which specifies the sort of an argument as well as the number and sorts of the
variables bound within it. We say that a sequence ~x of variables is of sort~s to mean that the two
sequences have the same length k and that the variable xi is of sort si for each 1 ≤ i ≤ k.

Thus, to specify that the operator let has arity (Exp, Exp.Exp)Exp indicates that it is of sort
Exp whose first argument is of sort Exp and binds no variables, and whose second argument is
also of sort Exp and within which is bound one variable of sort Exp. The informal expression
let x be 2 + 2 in x× x may then be written as the abt

let(plus(num[2]; num[2]); x.times(x; x))

in which the operator let has two arguments, the first of which is an expression, and the second
of which is an abstractor that binds one expression variable.

Fix a set S of sorts, and a family O of disjoint sets of operators indexed by their generalized
arities. For a given family of disjoint sets of variables X , the family of abstract binding trees, or abt’s
B[X ] is defined similarly to A[X ], except that X is not fixed throughout the definition, but rather
changes as we enter the scopes of abstractors.

This simple idea is surprisingly hard to make precise. A first attempt at the definition is as the
least family of sets closed under the following conditions:

1. If x ∈ Xs, then x ∈ B[X ]s.
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2. For each operator o of arity (~s1.s1, . . . ,~sn.sn)s, if a1 ∈ B[X ,~x1]s1 , . . . , and an ∈ B[X ,~xn]sn ,
then o(~x1.a1; . . . ;~xn.an) ∈ B[X ]s.

The bound variables are adjoined to the set of active variables within each argument, with the sort
of each variable determined by the valence of the operator.

This definition is almost correct, but fails to properly account for renaming of bound variables.
An abt of the form let(a1; x.let(a2; x.a3)) is ill-formed according to this definition, because the
first binding adds x to X , which implies that the second cannot also add x to X , x, because it is not
fresh for X , x. The solution is to ensure that each of the arguments is well-formed regardless of
the choice of bound variable names, which is achieved using fresh renamings, which are bijections
between sequences of variables. Specifically, a fresh renaming (relative to X ) of a finite sequence
of variables ~x is a bijection ρ : ~x ↔ ~x′ between ~x and ~x′, where ~x′ is fresh for X . We write ρ̂(a) for
the result of replacing each occurrence of xi in a by ρ(xi), its fresh counterpart.

This is achieved by altering the second clause of the definition of abt’s using fresh renamings
as follows:

For each operator o of arity (~s1.s1, . . . ,~sn.sn)s, if for each 1 ≤ i ≤ n and each fresh
renaming ρi : ~xi ↔ ~x′i , we have ρ̂i(ai) ∈ B[X ,~x′i ], then o(~x1.a1; . . . ;~xn.an) ∈ B[X ]s.

The renaming, ρ̂i(ai), of each ai ensures that collisions cannot occur, and that the abt is valid for
almost all renamings of any bound variables that occur within it.

The principle of structural induction extends to abt’s, and is called structural induction modulo
fresh renaming. It states that to show that P [X ](a) holds for every a ∈ B[X ], it is enough to show
the following:

1. if x ∈ Xs, then P [X ]s(x).

2. For every o of arity (~s1.s1, . . . ,~sn.sn)s, if for each 1 ≤ i ≤ n, P [X ,~x′i ]si (ρ̂i(ai)) holds for every
ρi : ~xi ↔ ~x′i with ~x′i /∈ X , then P [X ]s(o(~x1.a1; . . . ;~xn.an)).

The second condition ensures that the inductive hypothesis holds for all fresh choices of bound
variable names, and not just the ones actually given in the abt.

As an example let us define the judgment x ∈ a, where a ∈ B[X , x], to mean that x occurs free
in a. Informally, this means that x is bound somewhere outside of a, rather than within a itself.
If x is bound within a, then those occurrences of x are different from those occurring outside the
binding. The following definition ensures that this is the case:

1. x ∈ x.

2. x ∈ o(~x1.a1; . . . ;~xn.an) if there exists 1 ≤ i ≤ n such that for every fresh renaming ρ : ~xi ↔ ~zi
we have x ∈ ρ̂(ai).

The first condition states that x is free in x, but not free in y for any variable y other than x. The
second condition states that if x is free in some argument, independently of the choice of bound
variable names in that argument, then it is free in the overall abt.

The relation a =α b of α-equivalence (so-called for historical reasons), means that a and b are
identical up to the choice of bound variable names. The α-equivalence relation is the strongest
congruence containing the following two conditions:
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1. x =α x.

2. o(~x1.a1; . . . ;~xn.an) =α o(~x′1.a′1; . . . ;~x′n.a′n) if for every 1 ≤ i ≤ n, ρ̂i(ai) =α ρ̂′i(a′i) for all fresh
renamings ρi : ~xi ↔ ~zi and ρ′i : ~x′i ↔ ~zi.

The idea is that we rename ~xi and ~x′i consistently, avoiding confusion, and check that ai and a′i are
α-equivalent. If a =α b, then a and b are α-variants of each other.

Some care is required in the definition of substitution of an abt b of sort s for free occurrences of
a variable x of sort s in some abt a of some sort, written [b/x]a. Substitution is partially defined by
the following conditions:

1. [b/x]x = b, and [b/x]y = y if x 6= y.

2. [b/x]o(~x1.a1; . . . ;~xn.an) = o(~x1.a′1; . . . ;~xn.a′n), where, for each 1 ≤ i ≤ n, we require that
~xi /∈ b, and we set a′i = [b/x]ai if x /∈ ~xi, and a′i = ai otherwise.

The definition of [b/x]a is quite delicate, and merits careful consideration.
One trouble spot for substitution is to notice that if x is bound by an abstractor within a, then

x does not occur free within the abstractor, and hence is unchanged by substitution. For exam-
ple, [b/x]let(a1; x.a2) = let([b/x]a1; x.a2), there being no free occurrences of x in x.a2. Another
trouble spot is the capture of a free variable of b during substitution. For example, if y ∈ b, and
x 6= y, then [b/x]let(a1; y.a2) is undefined, rather than being let([b/x]a1; y.[b/x]a2), as one might
at first suspect. For example, provided that x 6= y, [y/x]let(num[0]; y.plus(x; y)) is undefined, not
let(num[0]; y.plus(y; y)), which confuses two different variables named y.

Although capture avoidance is an essential characteristic of substitution, it is, in a sense, merely
a technical nuisance. If the names of bound variables have no significance, then capture can always
be avoided by first renaming the bound variables in a to avoid any free variables in b. In the fore-
going example if we rename the bound variable y to y′ to obtain a′ , let(num[0]; y′.plus(x; y′)),
then [b/x]a′ is defined, and is equal to let(num[0]; y′.plus(b; y′)). The price for avoiding capture
in this way is that substitution is only determined up to α-equivalence, and so we may no longer
think of substitution as a function, but only as a proper relation.

To restore the functional character of substitution, it is sufficient to adopt the identification con-
vention, which is stated as follows:

Abstract binding trees are always identified up to α-equivalence.

That is, α-equivalent abt’s are regarded as identical. Substitution can be extended to α-equivalence
classes of abt’s to avoid capture by choosing representatives of the equivalence classes of b and a
in such a way that substitution is defined, then forming the equivalence class of the result. Any
two choices of representatives for which substitution is defined gives α-equivalent results, so that
substitution becomes a well-defined total function. We will adopt the identification convention for abt’s
throughout this book.

It will often be necessary to consider languages whose abstract syntax cannot be specified by a
fixed set of operators, but rather requires that the available operators be sensitive to the context in
which they occur. For our purposes it will suffice to consider a set of symbolic parameters, or symbols,
that index families of operators so that as the set of symbols varies, so does the set of operators. An
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indexed operator o is a family of operators indexed by symbols u, so that o[u] is an operator when
u is an available symbol. If U is a finite set of symbols, then B[U ;X ] is the sort-indexed family
of abt’s that are generated by operators and variables as before, admitting all indexed operator
instances by symbols u ∈ U . Whereas a variable is a place-holder that stands for an unknown abt
of its sort, a symbol does not stand for anything, and is not, itself, an abt. The only significance of
symbol is whether it is the same as or differs from another symbol; the operator instances o[u] and
o[u′] are the same exactly when u is u′, and are the same symbol.

The set of symbols is extended by introducing a new, or fresh, symbol within a scope using
the abstractor u.a, which binds the symbol u within the abt a. An abstracted symbol is “new”
in the same sense as for an abstracted variable: the name of the bound symbol can be varied at
will provided that no conflicts arise. This renaming property ensures that an abstracted symbol
is distinct from all others in scope. The only difference between symbols and variables is that the
only operation on symbols is renaming; there is no notion of substitution for a symbol.

Finally, a word about notation: to help improve the readability we often “group” and “stage”
the arguments to an operator, using round brackets and braces to show grouping, and generally
regarding stages to progress from right to left. All arguments in a group are considered to occur
at the same stage, though their order is significant, and successive groups are considered to occur
in sequential stages. Staging and grouping is often a helpful mnemonic device, but has no funda-
mental significance. For example, the abt o{a1; a2}(a3; x.a4) is the same as the abt o(a1; a2; a3; x.a4),
as would be any other order-preserving grouping or staging of its arguments.

1.3 Notes

The concept of abstract syntax has its origins in the pioneering work of Church, Turing, and Gödel,
who first considered writing programs that act on representations of programs. Originally pro-
grams were represented by natural numbers, using encodings, now called Gödel-numberings, based
on the prime factorization theorem. Any standard text on mathematical logic, such as Kleene
(1952), has a thorough account of such representations. The Lisp language (McCarthy, 1965; Allen,
1978) introduced a much more practical and direct representation of syntax as symbolic expressions.
These ideas were developed further in the language ML (Gordon et al., 1979), which featured
a type system capable of expressing abstract syntax trees. The AUTOMATH project (Nederpelt
et al., 1994) introduced the idea of using Church’s λ notation (Church, 1941) to account for the
binding and scope of variables. These ideas were developed further in LF (Harper et al., 1993).

The concept of abstract binding trees presented here was inspired by the system of notation
developed in the NuPRL Project, which is described in Constable (1986) and from Martin-Löf’s
system of arities, which is described in Nordstrom et al. (1990). Their enrichment with symbol
binders is influenced by Pitts and Stark (1993).

Exercises

1.1. Prove by structural induction on abstract syntax trees that if X ⊆ Y , then A[X ] ⊆ A[Y ].
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1.2. Prove by structural induction modulo renaming on abstract binding trees that if X ⊆ Y ,
then B[X ] ⊆ B[Y ].

1.3. Show that if a =α a′ and b =α b′ and both [b/x]a and [b′/x]a′ are defined, then [b/x]a =α

[b′/x]a′.

1.4. Bound variables can be seen as the formal analogs of pronouns in natural languages. The
binding occurrence of a variable at an abstractor fixes a “fresh” pronoun for use within its
body that refers unambiguously to that variable (in contrast to English, in which the referent
of a pronoun can often be ambiguous). This observation suggests an alternative representa-
tion of abt’s, called abstract binding graphs, or abg’s for short, as directed graphs constructed
as follows:

(a) Free variables are atomic nodes with no outgoing edges.

(b) Operators with n arguments are n-ary nodes, with one outgoing edge directed at each
of their children.

(c) Abstractors are nodes with one edge directed to the scope of the abstracted variable.

(d) Bound variables are back edges directed at the abstractor that introduced it.

Notice that ast’s, thought of as abt’s with no abstractors, are acyclic directed graphs (more
precisely, variadic trees), whereas general abt’s can be cyclic. Draw a few examples of abg’s
corresponding to the example abt’s given in this chapter. Give a precise definition of the
sort-indexed family G[X ] of abstract binding graphs. What representation would you use
for bound variables (back edges)?
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Chapter 2

Inductive Definitions

Inductive definitions are an indispensable tool in the study of programming languages. In this
chapter we will develop the basic framework of inductive definitions, and give some examples of
their use. An inductive definition consists of a set of rules for deriving judgments, or assertions, of a
variety of forms. Judgments are statements about one or more abstract binding trees of some sort.
The rules specify necessary and sufficient conditions for the validity of a judgment, and hence
fully determine its meaning.

2.1 Judgments

We start with the notion of a judgment, or assertion, about an abstract binding tree. We shall make
use of many forms of judgment, including examples such as these:

n nat n is a natural number
n1 + n2 = n n is the sum of n1 and n2
τ type τ is a type
e : τ expression e has type τ
e ⇓ v expression e has value v

A judgment states that one or more abstract binding trees have a property or stand in some
relation to one another. The property or relation itself is called a judgment form, and the judgment
that an object or objects have that property or stand in that relation is said to be an instance of
that judgment form. A judgment form is also called a predicate, and the objects constituting an
instance are its subjects. We write a J or J a, for the judgment asserting that J holds of the abt
a. Correspondingly, we sometimes notate the judgment form J by − J, or J −, using a dash to
indicate the absence of an argument to J. When it is not important to stress the subject of the
judgment, we write J to stand for an unspecified judgment, that is, an instance of some judgment
form. For particular judgment forms, we freely use prefix, infix, or mix-fix notation, as illustrated
by the above examples, in order to enhance readability.
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2.2 Inference Rules

An inductive definition of a judgment form consists of a collection of rules of the form

J1 . . . Jk
J

(2.1)

in which J and J1, . . . , Jk are all judgments of the form being defined. The judgments above the
horizontal line are called the premises of the rule, and the judgment below the line is called its
conclusion. If a rule has no premises (that is, when k is zero), the rule is called an axiom; otherwise
it is called a proper rule.

An inference rule can be read as stating that the premises are sufficient for the conclusion: to
show J, it is enough to show J1, . . . , Jk. When k is zero, a rule states that its conclusion holds
unconditionally. Bear in mind that there may be, in general, many rules with the same conclusion,
each specifying sufficient conditions for the conclusion. Consequently, if the conclusion of a rule
holds, then it is not necessary that the premises hold, for it might have been derived by another
rule.

For example, the following rules form an inductive definition of the judgment form − nat:

zero nat
(2.2a)

a nat
succ(a) nat

(2.2b)

These rules specify that a nat holds whenever either a is zero, or a is succ(b) where b nat for some
b. Taking these rules to be exhaustive, it follows that a nat iff a is a natural number.

Similarly, the following rules constitute an inductive definition of the judgment form − tree:

empty tree
(2.3a)

a1 tree a2 tree

node(a1;a2) tree
(2.3b)

These rules specify that a tree holds if either a is empty, or a is node(a1;a2), where a1 tree and
a2 tree. Taking these to be exhaustive, these rules state that a is a binary tree, which is to say it is
either empty, or a node consisting of two children, each of which is also a binary tree.

The judgment form a is b expressing the equality of two abt’s a and b such that a nat and b nat
is inductively defined by the following rules:

zero is zero
(2.4a)

a is b
succ(a) is succ(b) (2.4b)
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In each of the preceding examples we have made use of a notational convention for specifying
an infinite family of rules by a finite number of patterns, or rule schemes. For example, rule (2.2b)
is a rule scheme that determines one rule, called an instance of the rule scheme, for each choice of
object a in the rule. We will rely on context to determine whether a rule is stated for a specific object
a or is instead intended as a rule scheme specifying a rule for each choice of objects in the rule.

A collection of rules is considered to define the strongest judgment form that is closed under, or
respects, those rules. To be closed under the rules simply means that the rules are sufficient to show
the validity of a judgment: J holds if there is a way to obtain it using the given rules. To be the
strongest judgment form closed under the rules means that the rules are also necessary: J holds only
if there is a way to obtain it by applying the rules. The sufficiency of the rules means that we may
show that J holds by deriving it by composing rules. Their necessity means that we may reason
about it using rule induction.

2.3 Derivations

To show that an inductively defined judgment holds, it is enough to exhibit a derivation of it. A
derivation of a judgment is a finite composition of rules, starting with axioms and ending with
that judgment. It can be thought of as a tree in which each node is a rule whose children are
derivations of its premises. We sometimes say that a derivation of J is evidence for the validity of
an inductively defined judgment J.

We usually depict derivations as trees with the conclusion at the bottom, and with the children
of a node corresponding to a rule appearing above it as evidence for the premises of that rule.
Thus, if

J1 . . . Jk
J

is an inference rule and
`

1, . . . ,
`

k are derivations of its premises, then

`
1 . . .

`
k

J

is a derivation of its conclusion. In particular, if k = 0, then the node has no children.
For example, this is a derivation of succ(succ(succ(zero))) nat:

zero nat
succ(zero) nat

succ(succ(zero)) nat

succ(succ(succ(zero))) nat
.

(2.5)
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Similarly, here is a derivation of node(node(empty;empty);empty) tree:

empty tree empty tree

node(empty;empty) tree empty tree

node(node(empty;empty);empty) tree
.

(2.6)

To show that an inductively defined judgment is derivable we need only find a derivation
for it. There are two main methods for finding derivations, called forward chaining, or bottom-
up construction, and backward chaining, or top-down construction. Forward chaining starts with the
axioms and works forward towards the desired conclusion, whereas backward chaining starts
with the desired conclusion and works backwards towards the axioms.

More precisely, forward chaining search maintains a set of derivable judgments, and continu-
ally extends this set by adding to it the conclusion of any rule all of whose premises are in that
set. Initially, the set is empty; the process terminates when the desired judgment occurs in the
set. Assuming that all rules are considered at every stage, forward chaining will eventually find
a derivation of any derivable judgment, but it is impossible (in general) to decide algorithmically
when to stop extending the set and conclude that the desired judgment is not derivable. We may
go on and on adding more judgments to the derivable set without ever achieving the intended
goal. It is a matter of understanding the global properties of the rules to determine that a given
judgment is not derivable.

Forward chaining is undirected in the sense that it does not take account of the end goal when
deciding how to proceed at each step. In contrast, backward chaining is goal-directed. Back-
ward chaining search maintains a queue of current goals, judgments whose derivations are to be
sought. Initially, this set consists solely of the judgment we wish to derive. At each stage, we
remove a judgment from the queue, and consider all rules whose conclusion is that judgment.
For each such rule, we add the premises of that rule to the back of the queue, and continue. If
there is more than one such rule, this process must be repeated, with the same starting queue, for
each candidate rule. The process terminates whenever the queue is empty, all goals having been
achieved; any pending consideration of candidate rules along the way can be discarded. As with
forward chaining, backward chaining will eventually find a derivation of any derivable judgment,
but there is, in general, no algorithmic method for determining in general whether the current
goal is derivable. If it is not, we may futilely add more and more judgments to the goal set, never
reaching a point at which all goals have been satisfied.

2.4 Rule Induction

Because an inductive definition specifies the strongest judgment form closed under a collection of
rules, we may reason about them by rule induction. The principle of rule induction states that to
show that a property a P holds whenever a J is derivable, it is enough to show that P is closed
under, or respects, the rules defining the judgment form J. More precisely, the property P respects
the rule

a1 J . . . ak J

a J
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if P(a) holds whenever P(a1), . . . ,P(ak) do. The assumptions P(a1), . . . ,P(ak) are called the
inductive hypotheses, and P(a) is called the inductive conclusion of the inference.

The principle of rule induction is simply the expression of the definition of an inductively
defined judgment form as the strongest judgment form closed under the rules comprising the def-
inition. Thus, the judgment form defined by a set of rules is both (a) closed under those rules,
and (b) sufficient for any other property also closed under those rules. The former means that a
derivation is evidence for the validity of a judgment; the latter means that we may reason about
an inductively defined judgment form by rule induction.

When specialized to rules (2.2), the principle of rule induction states that to show P(a) when-
ever a nat, it is enough to show:

1. P(zero).

2. for every a, if P(a), then P(succ(a)).

The sufficiency of these conditions is the familiar principle of mathematical induction.
Similarly, rule induction for rules (2.3) states that to show P(a) whenever a tree, it is enough to

show

1. P(empty).

2. for every a1 and a2, if P(a1), and if P(a2), then P(node(a1;a2)).

The sufficiency of these conditions is called the principle of tree induction.
We may also show by rule induction that the predecessor of a natural number is also a natural

number. Although this may seem self-evident, the point of the example is to show how to derive
this from first principles.

Lemma 2.1. If succ(a) nat, then a nat.

Proof. It suffices to show that the property P(a) stating that a nat and that a = succ(b) implies
b nat is closed under rules (2.2).

Rule (2.2a) Clearly zero nat, and the second condition holds vacuously, because zero is not of the
form succ(−).

Rule (2.2b) Inductively we know that a nat and that if a is of the form succ(b), then b nat. We
are to show that succ(a) nat, which is immediate, and that if succ(a) is of the form succ(b),
then b nat, and we have b nat by the inductive hypothesis.

Using rule induction we may show that equality, as defined by rules (2.4) is reflexive.

Lemma 2.2. If a nat, then a is a.

Proof. By rule induction on rules (2.2):

Rule (2.2a) Applying rule (2.4a) we obtain zero is zero.
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Rule (2.2b) Assume that a is a. It follows that succ(a) is succ(a) by an application of rule (2.4b).

Similarly, we may show that the successor operation is injective.

Lemma 2.3. If succ(a1) is succ(a2), then a1 is a2.

Proof. Similar to the proof of Lemma 2.1.

2.5 Iterated and Simultaneous Inductive Definitions

Inductive definitions are often iterated, meaning that one inductive definition builds on top of
another. In an iterated inductive definition the premises of a rule

J1 . . . Jk
J

may be instances of either a previously defined judgment form, or the judgment form being de-
fined. For example, the following rules define the judgment form− list, which states that a is a list
of natural numbers:

nil list
(2.7a)

a nat b list
cons(a;b) list

(2.7b)

The first premise of rule (2.7b) is an instance of the judgment form a nat, which was defined
previously, whereas the premise b list is an instance of the judgment form being defined by these
rules.

Frequently two or more judgments are defined at once by a simultaneous inductive definition.
A simultaneous inductive definition consists of a set of rules for deriving instances of several
different judgment forms, any of which may appear as the premise of any rule. Because the rules
defining each judgment form may involve any of the others, none of the judgment forms can be
taken to be defined prior to the others. Instead we must understand that all of the judgment forms
are being defined at once by the entire collection of rules. The judgment forms defined by these
rules are, as before, the strongest judgment forms that are closed under the rules. Therefore the
principle of proof by rule induction continues to apply, albeit in a form that requires us to prove a
property of each of the defined judgment forms simultaneously.

For example, consider the following rules, which constitute a simultaneous inductive defini-
tion of the judgments a even, stating that a is an even natural number, and a odd, stating that a is
an odd natural number:

zero even
(2.8a)

b odd
succ(b) even

(2.8b)
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a even
succ(a) odd (2.8c)

The principle of rule induction for these rules states that to show simultaneously that P(a)
whenever a even and Q(b) whenever b odd, it is enough to show the following:

1. P(zero);

2. if Q(b), then P(succ(b));

3. if P(a), then Q(succ(a)).

As an example, we may use simultaneous rule induction to prove that (1) if a even, then either
a is zero or a is succ(b) with b odd, and (2) if a odd, then a is succ(b) with b even. We define P(a)
to hold iff a is zero or a is succ(b) for some b with b odd, and define Q(b) to hold iff b is succ(a)
for some a with a even. The desired result follows by rule induction, because we can prove the
following facts:

1. P(zero), which holds because zero is zero.

2. If Q(b), then succ(b) is succ(b′) for some b′ with Q(b′). Take b′ to be b and apply the
inductive assumption.

3. If P(a), then succ(a) is succ(a′) for some a′ with P(a′). Take a′ to be a and apply the
inductive assumption.

2.6 Defining Functions by Rules

A common use of inductive definitions is to define a function by giving an inductive definition of
its graph relating inputs to outputs, and then showing that the relation uniquely determines the
outputs for given inputs. For example, we may define the addition function on natural numbers
as the relation sum(a;b;c), with the intended meaning that c is the sum of a and b, as follows:

b nat
sum(zero;b;b) (2.9a)

sum(a;b;c)
sum(succ(a);b;succ(c))

(2.9b)

The rules define a ternary (three-place) relation sum(a;b;c) among natural numbers a, b, and c. We
may show that c is determined by a and b in this relation.

Theorem 2.4. For every a nat and b nat, there exists a unique c nat such that sum(a;b;c).

Proof. The proof decomposes into two parts:

1. (Existence) If a nat and b nat, then there exists c nat such that sum(a;b;c).

2. (Uniqueness) If sum(a;b;c), and sum(a;b;c′), then c is c′.
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For existence, let P(a) be the proposition if b nat then there exists c nat such that sum(a;b;c). We
prove that if a nat then P(a) by rule induction on rules (2.2). We have two cases to consider:

Rule (2.2a) We are to show P(zero). Assuming b nat and taking c to be b, we obtain sum(zero;b;c)
by rule (2.9a).

Rule (2.2b) Assuming P(a), we are to show P(succ(a)). That is, we assume that if b nat then
there exists c such that sum(a;b;c), and are to show that if b′ nat, then there exists c′ such that
sum(succ(a);b′;c′). To this end, suppose that b′ nat. Then by induction there exists c such that
sum(a;b′;c). Taking c′ to be succ(c), and applying rule (2.9b), we obtain sum(succ(a);b′;c′),
as required.

For uniqueness, we prove that if sum(a;b;c1), then if sum(a;b;c2), then c1 is c2 by rule induction based
on rules (2.9).

Rule (2.9a) We have a is zero and c1 is b. By an inner induction on the same rules, we may show
that if sum(zero;b;c2), then c2 is b. By Lemma 2.2 we obtain b is b.

Rule (2.9b) We have that a is succ(a′) and c1 is succ(c′1), where sum(a′;b;c′1). By an inner induction
on the same rules, we may show that if sum(a;b;c2), then c2 is succ(c′2) where sum(a′;b;c′2). By
the outer inductive hypothesis c′1 is c′2 and so c1 is c2.

2.7 Notes

Aczel (1977) provides a thorough account of the theory of inductive definitions on which the
present account is based. A significant difference is that we consider inductive definitions of judg-
ments over abt’s as defined in Chapter 1, rather than with natural numbers. The emphasis on
judgments is inspired by Martin-Löf’s logic of judgments (Martin-Löf, 1983, 1987).

Exercises

2.1. Give an inductive definition of the judgment max(m;n;p), where m nat, n nat, and p nat, with
the meaning that p is the larger of m and n. Prove that every m and n are related to a unique
p by this judgment.

2.2. Consider the following rules, which define the judgment hgt(t;n) stating that the binary tree
t has height n.

hgt(empty;zero)
(2.10a)

hgt(t1;n1) hgt(t2;n2) max(n1;n2;n)
hgt(node(t1;t2);succ(n))

(2.10b)

Prove that the judgment hgt defines a function from trees to natural numbers.
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2.3. Given an inductive definition of ordered variadic trees whose nodes have a finite, but variable,
number of children with a specified left-to-right ordering among them. Your solution should
consist of a simultaneous definition of two judgments, t tree, stating that t is a variadic tree,
and f forest, stating that f is a “forest” (finite sequence) of variadic trees.

2.4. Give an inductive definition of the height of a variadic tree of the kind defined in Exercise 2.3.
Your definition should make use of an auxiliary judgment defining the height of a forest of
variadic trees, and will be defined simultaneously with the height of a variadic tree. Show
that the two judgments so defined each define a function.

2.5. Give an inductive definition of the binary natural numbers, which are either zero, twice a
binary number, or one more than twice a binary number. The size of such a representation is
logarithmic, rather than linear, in the natural number it represents.

2.6. Give an inductive definition of addition of binary natural numbers as defined in Exercise 2.5.
Hint: Proceed by analyzing both arguments to the addition, and make use of an auxiliary
function to compute the successor of a binary number. Hint: Alternatively, define both the
sum and the sum-plus-one of two binary numbers mutually recursively.
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Chapter 3

Hypothetical and General Judgments

A hypothetical judgment expresses an entailment between one or more hypotheses and a conclusion.
We will consider two notions of entailment, called derivability and admissibility. Both express a
form of entailment, but they differ in that derivability is stable under extension with new rules,
admissibility is not. A general judgment expresses the universality, or genericity, of a judgment.
There are two forms of general judgment, the generic and the parametric. The generic judgment
expresses generality with respect to all substitution instances for variables in a judgment. The
parametric judgment expresses generality with respect to renamings of symbols.

3.1 Hypothetical Judgments

The hypothetical judgment codifies the rules for expressing the validity of a conclusion conditional
on the validity of one or more hypotheses. There are two forms of hypothetical judgment that
differ according to the sense in which the conclusion is conditional on the hypotheses. One is
stable under extension with more rules, and the other is not.

3.1.1 Derivability

For a given setR of rules, we define the derivability judgment, written J1, . . . , Jk `R K, where each
Ji and K are basic judgments, to mean that we may derive K from the expansionR∪ { J1, . . . , Jk } of
the rulesR with the axioms

J1
. . .

Jk
.

We treat the hypotheses, or antecedents, of the judgment, J1, . . . , Jk as “temporary axioms”, and de-
rive the conclusion, or consequent, by composing rules in R. Thus, evidence for a hypothetical
judgment consists of a derivation of the conclusion from the hypotheses using the rules inR.

We use capital Greek letters, usually Γ or ∆, to stand for a finite set of basic judgments, and
write R ∪ Γ for the expansion of R with an axiom corresponding to each judgment in Γ. The
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judgment Γ `R K means that K is derivable from rules R∪ Γ, and the judgment `R Γ means that
`R J for each J in Γ. An equivalent way of defining J1, . . . , Jn `R J is to say that the rule

J1 . . . Jn

J
(3.1)

is derivable from R, which means that there is a derivation of J composed of the rules in R aug-
mented by treating J1, . . . , Jn as axioms.

For example, consider the derivability judgment

a nat `(2.2) succ(succ(a)) nat (3.2)

relative to rules (2.2). This judgment is valid for any choice of object a, as shown by the derivation

a nat
succ(a) nat

succ(succ(a)) nat

(3.3)

which composes rules (2.2), starting with a nat as an axiom, and ending with succ(succ(a)) nat.
Equivalently, the validity of (3.2) may also be expressed by stating that the rule

a nat
succ(succ(a)) nat

(3.4)

is derivable from rules (2.2).

It follows directly from the definition of derivability that it is stable under extension with new
rules.

Theorem 3.1 (Stability). If Γ `R J, then Γ `R∪R′ J.

Proof. Any derivation of J from R∪ Γ is also a derivation from (R∪R′) ∪ Γ, because any rule in
R is also a rule inR∪R′.

Derivability enjoys a number of structural properties that follow from its definition, indepen-
dently of the rulesR in question.

Reflexivity Every judgment is a consequence of itself: Γ, J `R J. Each hypothesis justifies itself as
conclusion.

Weakening If Γ `R J, then Γ, K `R J. Entailment is not influenced by un-exercised options.

Transitivity If Γ, K `R J and Γ `R K, then Γ `R J. If we replace an axiom by a derivation of it,
the result is a derivation of its consequent without that hypothesis.

Reflexivity follows directly from the meaning of derivability. Weakening follows directly from the
definition of derivability. Transitivity is proved by rule induction on the first premise.
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3.1.2 Admissibility

Admissibility, written Γ |=R J, is a weaker form of hypothetical judgment stating that `R Γ implies
`R J. That is, the conclusion J is derivable from rulesR when the assumptions Γ are all derivable
from rules R. In particular if any of the hypotheses are not derivable relative to R, then the
judgment is vacuously true. An equivalent way to define the judgment J1, . . . , Jn |=R J is to state
that the rule

J1 . . . Jn

J (3.5)

is admissible relative to the rules in R. Given any derivations of J1, . . . , Jn using the rules in R, we
may build a derivation of J using the rules inR.

For example, the admissibility judgment

succ(a) even |=(2.8) a odd (3.6)

is valid, because any derivation of succ(a) even from rules (2.2) must contain a sub-derivation of
a odd from the same rules, which justifies the conclusion. This fact can be proved by induction on
rules (2.8). That judgment (3.6) is valid may also be expressed by saying that the rule

succ(a) even

a odd (3.7)

is admissible relative to rules (2.8).
In contrast to derivability the admissibility judgment is not stable under extension to the rules.

For example, if we enrich rules (2.8) with the axiom

succ(zero) even
, (3.8)

then rule (3.6) is inadmissible, because there is no composition of rules deriving zero odd. Admis-
sibility is as sensitive to which rules are absent from an inductive definition as it is to which rules
are present in it.

The structural properties of derivability ensure that derivability is stronger than admissibility.

Theorem 3.2. If Γ `R J, then Γ |=R J.

Proof. Repeated application of the transitivity of derivability shows that if Γ `R J and `R Γ, then
`R J.

To see that the converse fails, note that

succ(zero) even 6`(2.8) zero odd,

because there is no derivation of the right-hand side when the left-hand side is added as an axiom
to rules (2.8). Yet the corresponding admissibility judgment

succ(zero) even |=(2.8) zero odd
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is valid, because the hypothesis is false: there is no derivation of succ(zero) even from rules (2.8).
Even so, the derivability

succ(zero) even `(2.8) succ(succ(zero)) odd

is valid, because we may derive the right-hand side from the left-hand side by composing rules (2.8).

Evidence for admissibility can be thought of as a mathematical function transforming deriva-
tions O1, . . . ,On of the hypotheses into a derivation O of the consequent. Therefore, the admissi-
bility judgment enjoys the same structural properties as derivability, and hence is a form of hypo-
thetical judgment:

Reflexivity If J is derivable from the original rules, then J is derivable from the original rules:
J |=R J.

Weakening If J is derivable from the original rules assuming that each of the judgments in Γ are
derivable from these rules, then J must also be derivable assuming that Γ and K are derivable
from the original rules: if Γ |=R J, then Γ, K |=R J.

Transitivity If Γ, K |=R J and Γ |=R K, then Γ |=R J. If the judgments in Γ are derivable, so is K,
by assumption, and hence so are the judgments in Γ, K, and hence so is J.

Theorem 3.3. The admissibility judgment Γ |=R J enjoys the structural properties of entailment.

Proof. Follows immediately from the definition of admissibility as stating that if the hypotheses
are derivable relative toR, then so is the conclusion.

If a rule r is admissible with respect to a rule set R, then `R,r J is equivalent to `R J. For if
`R J, then obviously `R,r J, by simply disregarding r. Conversely, if `R,r J, then we may replace
any use of r by its expansion in terms of the rules in R. It follows by rule induction on R, r that
every derivation from the expanded set of rules R, r can be transformed into a derivation from R
alone. Consequently, if we wish to prove a property of the judgments derivable from R, r, when
r is admissible with respect to R, it suffices show that the property is closed under rules R alone,
because its admissibility states that the consequences of rule r are implicit in those of rulesR.

3.2 Hypothetical Inductive Definitions

It is useful to enrich the concept of an inductive definition to allow rules with derivability judg-
ments as premises and conclusions. Doing so lets us introduce local hypotheses that apply only
in the derivation of a particular premise, and also allows us to constrain inferences based on the
global hypotheses in effect at the point where the rule is applied.

A hypothetical inductive definition consists of a set of hypothetical rules of the following form:

Γ Γ1 ` J1 . . . Γ Γn ` Jn

Γ ` J
. (3.9)
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The hypotheses Γ are the global hypotheses of the rule, and the hypotheses Γi are the local hypotheses
of the ith premise of the rule. Informally, this rule states that J is a derivable consequence of Γ when
each Ji is a derivable consequence of Γ, augmented with the hypotheses Γi. Thus, one way to show
that J is derivable from Γ is to show, in turn, that each Ji is derivable from Γ Γi. The derivation
of each premise involves a “context switch” in which we extend the global hypotheses with the
local hypotheses of that premise, establishing a new set of global hypotheses for use within that
derivation.

We require that all rules in a hypothetical inductive definition be uniform in the sense that they
are applicable in all global contexts. Uniformity ensures that a rule can be presented in implicit, or
local form,

Γ1 ` J1 . . . Γn ` Jn

J
, (3.10)

in which the global context has been suppressed with the understanding that the rule applies for
any choice of global hypotheses.

A hypothetical inductive definition is to be regarded as an ordinary inductive definition of a
formal derivability judgment Γ ` J consisting of a finite set of basic judgments Γ and a basic judgment
J. A set of hypothetical rulesR defines the strongest formal derivability judgment that is structural
and closed under uniform rulesR. Structurality means that the formal derivability judgment must
be closed under the following rules:

Γ, J ` J
(3.11a)

Γ ` J
Γ, K ` J

(3.11b)

Γ ` K Γ, K ` J
Γ ` J

(3.11c)

These rules ensure that formal derivability behaves like a hypothetical judgment. We write Γ `R J
to mean that Γ ` J is derivable from rulesR.

The principle of hypothetical rule induction is just the principle of rule induction applied to the
formal hypothetical judgment. So to show that P(Γ ` J) when Γ `R J, it is enough to show that P
is closed under the rules ofR and under the structural rules.1 Thus, for each rule of the form (3.9),
whether structural or inR, we must show that

if P(Γ Γ1 ` J1) and . . . and P(Γ Γn ` Jn), then P(Γ ` J).

But this is just a restatement of the principle of rule induction given in Chapter 2, specialized to
the formal derivability judgment Γ ` J.

In practice we usually dispense with the structural rules by the method described in Sec-
tion 3.1.2. By proving that the structural rules are admissible any proof by rule induction may
restrict attention to the rules in R alone. If all rules of a hypothetical inductive definition are uni-
form, the structural rules (3.11b) and (3.11c) are clearly admissible. Usually, rule (3.11a) must be
postulated explicitly as a rule, rather than shown to be admissible on the basis of the other rules.

1Writing P(Γ ` J) is a mild abuse of notation in which the turnstile is used to separate the two arguments to P for the
sake of readability.
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3.3 General Judgments

General judgments codify the rules for handling variables in a judgment. As in mathematics in
general, a variable is treated as an unknown ranging over a specified set of objects. A generic judg-
ment states that a judgment holds for any choice of objects replacing designated variables in the
judgment. Another form of general judgment codifies the handling of symbolic parameters. A
parametric judgment expresses generality over any choice of fresh renamings of designated sym-
bols of a judgment. To keep track of the active variables and symbols in a derivation, we write
Γ `U ;X
R J to say that J is derivable from Γ according to rulesR, with objects consisting of abt’s over

symbols U and variables X .
The concept of uniformity of a rule must be extended to require that rules be closed under renam-

ing and substitution for variables and closed under renaming for parameters. More precisely, ifR is a
set of rules containing a free variable x of sort s then it must also contain all possible substitution
instances of abt’s a of sort s for x, including those that contain other free variables. Similarly, if
R contains rules with a parameter u, then it must contain all instances of that rule obtained by
renaming u of a sort to any u′ of the same sort. Uniformity rules out stating a rule for a variable,
without also stating it all instances of that variable. It also rules out stating a rule for a parameter
without stating it for all possible renamings of that parameter.

Generic derivability judgment is defined by

Y | Γ `XR J iff Γ `X YR J,

where Y ∩X = ∅. Evidence for generic derivability consists of a generic derivation O involving the
variables X Y . So long as the rules are uniform, the choice of Y does not matter, in a sense to be
explained shortly.

For example, the generic derivation O,

x nat
succ(x) nat

succ(succ(x)) nat
,

is evidence for the judgment

x | x nat `X(2.2) succ(succ(x)) nat

provided x /∈ X . Any other choice of x would work just as well, as long as all rules are uniform.
The generic derivability judgment enjoys the following structural properties governing the be-

havior of variables, provided thatR is uniform.

Proliferation If Y | Γ `XR J, then Y , y | Γ `XR J.

Renaming If Y , y | Γ `XR J, then Y , y′ | [y↔ y′]Γ `XR [y↔ y′]J for any y′ /∈ X Y .

Substitution If Y , y | Γ `XR J and a ∈ B[X Y ], then Y | [a/y]Γ `XR [a/y]J.
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Proliferation is guaranteed by the interpretation of rule schemes as ranging over all expansions of
the universe. Renaming is built into the meaning of the generic judgment. It is left implicit in the
principle of substitution that the substituting abt is of the same sort as the substituted variable.

Parametric derivability is defined analogously to generic derivability, albeit by generalizing
over symbols, rather than variables. Parametric derivability is defined by

V ‖ Y | Γ `U ;X
R J iff Y | Γ `U V ;X

R J,

where V ∩ U = ∅. Evidence for parametric derivability consists of a derivation O involving the
symbols V . Uniformity of R ensures that any choice of parameter names is as good as any other;
derivability is stable under renaming.

3.4 Generic Inductive Definitions

A generic inductive definition admits generic hypothetical judgments in the premises of rules, with
the effect of augmenting the variables, as well as the rules, within those premises. A generic rule
has the form

Y Y1 | Γ Γ1 ` J1 . . . Y Yn | Γ Γn ` Jn

Y | Γ ` J
. (3.12)

The variables Y are the global variables of the inference, and, for each 1 ≤ i ≤ n, the variables Yi are
the local variables of the ith premise. In most cases a rule is stated for all choices of global variables
and global hypotheses. Such rules can be given in implicit form,

Y1 | Γ1 ` J1 . . . Yn | Γn ` Jn

J
. (3.13)

A generic inductive definition is just an ordinary inductive definition of a family of formal
generic judgments of the form Y | Γ ` J. Formal generic judgments are identified up to renaming
of variables, so that the latter judgment is treated as identical to the judgment Y ′ | ρ̂(Γ) ` ρ̂(J) for
any renaming ρ : Y ↔ Y ′. If R is a collection of generic rules, we write Y | Γ `R J to mean that
the formal generic judgment Y | Γ ` J is derivable from rulesR.

When specialized to a set of generic rules, the principle of rule induction states that to show
P(Y | Γ ` J) when Y | Γ `R J, it is enough to show that P is closed under the rulesR. Specifically,
for each rule inR of the form (3.12), we must show that

if P(Y Y1 | Γ Γ1 ` J1) . . . P(Y Yn | Γ Γn ` Jn) then P(Y | Γ ` J).

By the identification convention (stated in Chapter 1) the property P must respect renamings of
the variables in a formal generic judgment.

To ensure that the formal generic judgment behaves like a generic judgment, we must always
ensure that the following structural rules are admissible:

Y | Γ, J ` J
(3.14a)
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Y | Γ ` J
Y | Γ, J′ ` J

(3.14b)

Y | Γ ` J
Y , x | Γ ` J

(3.14c)

Y , x′ | [x ↔ x′]Γ ` [x ↔ x′]J
Y , x | Γ ` J

(3.14d)

Y | Γ ` J Y | Γ, J ` J′

Y | Γ ` J′
(3.14e)

Y , x | Γ ` J a ∈ B[Y ]
Y | [a/x]Γ ` [a/x]J

(3.14f)

The admissibility of rule (3.14a) is, in practice, ensured by explicitly including it. The admissibility
of rules (3.14b) and (3.14c) is assured if each of the generic rules is uniform, because we may
assimilate the added variable x to the global variables, and the added hypothesis J, to the global
hypotheses. The admissibility of rule (3.14d) is ensured by the identification convention for the
formal generic judgment. Rule (3.14f) must be verified explicitly for each inductive definition.

The concept of a generic inductive definition extends to parametric judgments as well. Briefly,
rules are defined on formal parametric judgments of the form V ‖ Y | Γ ` J, with symbols V , as
well as variables, Y . Such formal judgments are identified up to renaming of its variables and its
symbols to ensure that the meaning is independent of the choice of variable and symbol names.

3.5 Notes

The concepts of entailment and generality are fundamental to logic and programming languages.
The formulation given here builds on Martin-Löf (1983, 1987) and Avron (1991). Hypothetical and
general reasoning are consolidated into a single concept in the AUTOMATH languages (Nederpelt
et al., 1994) and in the LF Logical Framework (Harper et al., 1993). These systems allow arbitrarily
nested combinations of hypothetical and general judgments, whereas the present account con-
siders only general hypothetical judgments over basic judgment forms. On the other hand we
consider here symbols, as well as variables, which are not present in these previous accounts.
Parametric judgments are required for specifying languages that admit the dynamic creation of
“new” objects (see Chapter 34).

Exercises

3.1. Combinators are inductively defined by the rule set C given as follows:

s comb
(3.15a)
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k comb
(3.15b)

a1 comb a2 comb

ap(a1;a2) comb
(3.15c)

Give an inductive definition of the length of a combinator defined as the number of occur-
rences of S and K within it.

3.2. The general judgment

x1, . . . , xn | x1 comb, . . . , xn comb `C A comb

states that A is a combinator that may involve the variables x1, . . . , xn. Prove that if x |
x comb `C a2 comb and a1 comb, then [a1/x]a2 comb by induction on the derivation of the
first hypothesis of the implication.

3.3. Conversion, or equivalence, of combinators is expressed by the judgment A ≡ B defined by
the rule set E extending C as follows:2

a comb
a ≡ a (3.16a)

a2 ≡ a1
a1 ≡ a2

(3.16b)

a1 ≡ a2 a2 ≡ a3
a1 ≡ a3

(3.16c)

a1 ≡ a′1 a2 ≡ a′2
a1 a2 ≡ a′1 a′2

(3.16d)

a1 comb a2 comb
k a1 a2 ≡ a1

(3.16e)

a1 comb a2 comb a3 comb

s a1 a2 a3 ≡ (a1 a3) (a2 a3)
(3.16f)

The no-doubt mysterious motivation for the last two equations will become clearer in a mo-
ment. For now, show that

x | x comb `C∪E s k k x ≡ x.

3.4. Show that if x | x comb `C a comb, then there is a combinator a′, written [x] a and called
bracket abstraction, such that

x | x comb `C∪E a′ x ≡ a.

Consequently, by Exercise 3.2, if a′′ comb, then

([x] a) a′′ ≡ [a′′/x]a.

2The combinator ap(a1;a2) is written a1 a2 for short, left-associatively when used in succession.
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Hint: Inductively define the judgment

x | x comb ` absx a is a′,

where x | x comb ` a comb. Then argue that it defines a′ as a binary function of x and
a. The motivation for the conversion axioms governing k and s should become clear while
developing the proof of the desired equivalence.

3.5. Prove that bracket abstraction, as defined in Exercise 3.4, is non-compositional by exhibiting a
and b such that a comb and

x y | x comb y comb `C b comb

such that [a/y]([x] b) 6= [x] ([a/y]b). Hint: Consider the case that b is y.

Suggest a modification to the definition of bracket abstraction that is compositional by show-
ing under the same conditions given above that

[a/y]([x] b) = [x] ([a/y]b).

3.6. Consider the set B[X ] of abt’s generated by the operators ap, with arity (Exp, Exp)Exp, and
λ, with arity (Exp.Exp)Exp, and possibly involving variables in X , all of which are of sort
Exp. Give an inductive definition of the judgment b closed, which specifies that b has no free
occurrences of the variables in X . Hint: it is essential to give an inductive definition of the
hypothetical, general judgment

x1, . . . , xn | x1 closed, . . . , xn closed ` b closed

in order to account for the binding of a variable by the λ operator. The hypothesis that a
variable is closed seems self-contradictory in that a variable obviously occurs free in itself.
Explain why this is not the case by examining carefully the meaning of the hypothetical and
general judgments.
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Statics

Most programming languages exhibit a phase distinction between the static and dynamic phases of
processing. The static phase consists of parsing and type checking to ensure that the program is
well-formed; the dynamic phase consists of execution of well-formed programs. A language is
said to be safe exactly when well-formed programs are well-behaved when executed.

The static phase is specified by a statics comprising a set of rules for deriving typing judgments
stating that an expression is well-formed of a certain type. Types mediate the interaction between
the constituent parts of a program by “predicting” some aspects of the execution behavior of the
parts so that we may ensure they fit together properly at run-time. Type safety tells us that these
predictions are correct; if not, the statics is considered to be improperly defined, and the language
is deemed unsafe for execution.

In this chapter we present the statics of a simple expression language, E, as an illustration of
the method that we will employ throughout this book.

4.1 Syntax

When defining a language we shall be primarily concerned with its abstract syntax, specified by a
collection of operators and their arities. The abstract syntax provides a systematic, unambiguous
account of the hierarchical and binding structure of the language, and is considered the official
presentation of the language. However, for the sake of clarity, it is also useful to specify minimal
concrete syntax conventions, without going through the trouble to set up a fully precise grammar
for it.

We will accomplish both of these purposes with a syntax chart, whose meaning is best illus-
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trated by example. The following chart summarizes the abstract and concrete syntax of E.

Typ τ ::= num num numbers
str str strings

Exp e ::= x x variable
num[n] n numeral
str[s] ”s” literal
plus(e1; e2) e1 + e2 addition
times(e1; e2) e1 ∗ e2 multiplication
cat(e1; e2) e1 ^ e2 concatenation
len(e) |e| length
let(e1; x.e2) let x be e1 in e2 definition

This chart defines two sorts, Typ, ranged over by τ, and Exp, ranged over by e. The chart de-
fines a set of operators and their arities. For example, it specifies that the operator let has arity
(Exp, Exp.Exp)Exp, which specifies that it has two arguments of sort Exp, and binds a variable of
sort Exp in the second argument.

4.2 Type System

The role of a type system is to impose constraints on the formations of phrases that are sensitive to
the context in which they occur. For example, whether the expression plus(x; num[n]) is sensible
depends on whether the variable x is restricted to have type num in the surrounding context of
the expression. This example is, in fact, illustrative of the general case, in that the only informa-
tion required about the context of an expression is the type of the variables within whose scope
the expression lies. Consequently, the statics of E consists of an inductive definition of generic
hypothetical judgments of the form

X | Γ ` e : τ,

where X is a finite set of variables, and Γ is a typing context consisting of hypotheses of the form
x : τ, one for each x ∈ X . We rely on typographical conventions to determine the set of variables,
using the letters x and y to stand for them. We write x /∈ dom(Γ) to say that there is no assumption
in Γ of the form x : τ for any type τ, in which case we say that the variable x is fresh for Γ.

The rules defining the statics of E are as follows:

Γ, x : τ ` x : τ (4.1a)

Γ ` str[s] : str (4.1b)

Γ ` num[n] : num (4.1c)

Γ ` e1 : num Γ ` e2 : num
Γ ` plus(e1; e2) : num

(4.1d)

Γ ` e1 : num Γ ` e2 : num
Γ ` times(e1; e2) : num

(4.1e)



PREVIE
W

4.3 Structural Properties 37

Γ ` e1 : str Γ ` e2 : str
Γ ` cat(e1; e2) : str

(4.1f)

Γ ` e : str
Γ ` len(e) : num (4.1g)

Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2

Γ ` let(e1; x.e2) : τ2
(4.1h)

In rule (4.1h) we tacitly assume that the variable x is not already declared in Γ. This condition
may always be met by choosing a suitable representative of the α-equivalence class of the let

expression.
It is easy to check that every expression has at most one type by induction on typing, which is

rule induction applied to rules (4.1).

Lemma 4.1 (Unicity of Typing). For every typing context Γ and expression e, there exists at most one τ
such that Γ ` e : τ.

Proof. By rule induction on rules (4.1), making use of the fact that variables have at most one type
in any typing context.

The typing rules are syntax-directed in the sense that there is exactly one rule for each form
of expression. Consequently it is easy to give necessary conditions for typing an expression that
invert the sufficient conditions expressed by the corresponding typing rule.

Lemma 4.2 (Inversion for Typing). Suppose that Γ ` e : τ. If e = plus(e1; e2), then τ = num,
Γ ` e1 : num, and Γ ` e2 : num, and similarly for the other constructs of the language.

Proof. These may all be proved by induction on the derivation of the typing judgment Γ ` e : τ.

In richer languages such inversion principles are more difficult to state and to prove.

4.3 Structural Properties

The statics enjoys the structural properties of the generic hypothetical judgment.

Lemma 4.3 (Weakening). If Γ ` e′ : τ′, then Γ, x : τ ` e′ : τ′ for any x /∈ dom(Γ) and any type τ.

Proof. By induction on the derivation of Γ ` e′ : τ′. We will give one case here, for rule (4.1h).
We have that e′ = let(e1; z.e2), where by the conventions on variables we may assume z is chosen
such that z /∈ dom(Γ) and z 6= x. By induction we have

1. Γ, x : τ ` e1 : τ1,

2. Γ, x : τ, z : τ1 ` e2 : τ′,

from which the result follows by rule (4.1h).



PREVIE
W

38 4.3 Structural Properties

Lemma 4.4 (Substitution). If Γ, x : τ ` e′ : τ′ and Γ ` e : τ, then Γ ` [e/x]e′ : τ′.

Proof. By induction on the derivation of Γ, x : τ ` e′ : τ′. We again consider only rule (4.1h). As in
the preceding case, e′ = let(e1; z.e2), where z is chosen so that z 6= x and z /∈ dom(Γ). We have by
induction and Lemma 4.3 that

1. Γ ` [e/x]e1 : τ1,

2. Γ, z : τ1 ` [e/x]e2 : τ′.

By the choice of z we have

[e/x]let(e1; z.e2) = let([e/x]e1; z.[e/x]e2).

It follows by rule (4.1h) that Γ ` [e/x]let(e1; z.e2) : τ′, as desired.

From a programming point of view, Lemma 4.3 allows us to use an expression in any context
that binds its free variables: if e is well-typed in a context Γ, then we may “import” it into any
context that includes the assumptions Γ. In other words introducing new variables beyond those
required by an expression e does not invalidate e itself; it remains well-formed, with the same
type.1 More importantly, Lemma 4.4 expresses the important concepts of modularity and linking.
We may think of the expressions e and e′ as two components of a larger system in which e′ is a client
of the implementation e. The client declares a variable specifying the type of the implementation,
and is type checked knowing only this information. The implementation must be of the specified
type to satisfy the assumptions of the client. If so, then we may link them to form the composite
system [e/x]e′. This implementation may itself be the client of another component, represented by
a variable y that is replaced by that component during linking. When all such variables have been
implemented, the result is a closed expression that is ready for execution (evaluation).

The converse of Lemma 4.4 is called decomposition. It states that any (large) expression can be
decomposed into a client and implementor by introducing a variable to mediate their interaction.

Lemma 4.5 (Decomposition). If Γ ` [e/x]e′ : τ′, then for every type τ such that Γ ` e : τ, we have
Γ, x : τ ` e′ : τ′.

Proof. The typing of [e/x]e′ depends only on the type of e wherever it occurs, if at all.

Lemma 4.5 tells us that any sub-expression can be isolated as a separate module of a larger
system. This property is especially useful when the variable x occurs more than once in e′, because
then one copy of e suffices for all occurrences of x in e′.

The statics of E given by rules (4.1) exemplifies a recurrent pattern. The constructs of a language
are classified into one of two forms, the introduction and the elimination. The introduction forms
for a type determine the values, or canonical forms, of that type. The elimination forms determine
how to manipulate the values of a type to form a computation of another (possibly the same) type.

1This point may seem so obvious that it is not worthy of mention, but, surprisingly, there are useful type systems that
lack this property. Because they do not validate the structural principle of weakening, they are called substructural type
systems.
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In the language E the introduction forms for the type num are the numerals, and those for the type
str are the literals. The elimination forms for the type num are addition and multiplication, and
those for the type str are concatenation and length.

The importance of this classification will become clear once we have defined the dynamics
of the language in Chapter 5. Then we will see that the elimination forms are inverse to the in-
troduction forms in that they “take apart” what the introduction forms have “put together.” The
coherence of the statics and dynamics of a language expresses the concept of type safety, the subject
of Chapter 6.

4.4 Notes

The concept of the static semantics of a programming language was historically slow to develop,
perhaps because the earliest languages had relatively few features and only very weak type sys-
tems. The concept of a static semantics in the sense considered here was introduced in the defini-
tion of the Standard ML programming language (Milner et al., 1997), building on earlier work by
Church and others on the typed λ-calculus (Barendregt, 1992). The concept of introduction and
elimination, and the associated inversion principle, was introduced by Gentzen in his pioneer-
ing work on natural deduction (Gentzen, 1969). These principles were applied to the structure of
programming languages by Martin-Löf (1984, 1980).

Exercises

4.1. It is sometimes useful to give the typing judgment Γ ` e : τ an “operational” reading that
specifies more precisely the flow of information required to derive a typing judgment (or
determine that it is not derivable). The analytic mode corresponds to the context, expression,
and type being given, with the goal to determine whether the typing judgment is derivable.
The synthetic mode corresponds to the context and expression being given, with the goal
to find the unique type τ, if any, possessed by the expression in that context. These two
readings can be made explicit as judgments of the form e ↓ τ, corresponding to the analytic
mode, and e ↑ τ, corresponding to the synthetic mode.

Give a simultaneous inductive definition of these two judgments according to the following
guidelines:

(a) Variables are introduced in synthetic form.

(b) If we can synthesize a unique type for an expression, then we can analyze it with respect
to a given type by checking type equality.

(c) Definitions need care, because the type of the defined expression is not given, even
when the type of the result is given.

There is room for variation; the point of the exercise is to explore the possibilities.
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4.2. One way to limit the range of possibilities in the solution to Exercise 4.1 is to restrict and
extend the syntax of the language so that every expression is either synthetic or analytic
according to the following suggestions:

(a) Variables are analytic.

(b) Introduction forms are analytic, elimination forms are synthetic.

(c) An analytic expression can be made synthetic by introducing a type cast of the form
cast{τ}(e) specifying that e must check against the specified type τ, which is synthe-
sized for the whole expression.

(d) The defining expression of a definition must be synthetic, but the scope of the definition
can be either synthetic or analytic.

Reformulate your solution to Exercise 4.1 to take account of these guidelines.
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Chapter 5

Dynamics

The dynamics of a language describes how programs are executed. The most important way to de-
fine the dynamics of a language is by the method of structural dynamics, which defines a transition
system that inductively specifies the step-by-step process of executing a program. Another method
for presenting dynamics, called contextual dynamics, is a variation of structural dynamics in which
the transition rules are specified in a slightly different way. An equational dynamics presents the dy-
namics of a language by a collection of rules defining when one program is definitionally equivalent
to another.

5.1 Transition Systems

A transition system is specified by the following four forms of judgment:

1. s state, asserting that s is a state of the transition system.

2. s final, where s state, asserting that s is a final state.

3. s initial, where s state, asserting that s is an initial state.

4. s 7−→ s′, where s state and s′ state, asserting that state s may transition to state s′.

In practice we always arrange things so that no transition is possible from a final state: if s final,
then there is no s′ state such that s 7−→ s′. A state from which no transition is possible is stuck.
Whereas all final states are, by convention, stuck, there may be stuck states in a transition system
that are not final. A transition system is deterministic iff for every state s there exists at most one
state s′ such that s 7−→ s′, otherwise it is non-deterministic.

A transition sequence is a sequence of states s0, . . . , sn such that s0 initial, and si 7−→ si+1 for
every 0 ≤ i < n. A transition sequence is maximal iff there is no s such that sn 7−→ s, and it is
complete iff it is maximal and sn final. Thus every complete transition sequence is maximal, but
maximal sequences are not necessarily complete. The judgment s ↓means that there is a complete
transition sequence starting from s, which is to say that there exists s′ final such that s 7−→∗ s′.
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The iteration of transition judgment s 7−→∗ s′ is inductively defined by the following rules:

s 7−→∗ s (5.1a)

s 7−→ s′ s′ 7−→∗ s′′

s 7−→∗ s′′
(5.1b)

When applied to the definition of iterated transition, the principle of rule induction states that
to show that P(s, s′) holds when s 7−→∗ s′, it is enough to show these two properties of P:

1. P(s, s).

2. if s 7−→ s′ and P(s′, s′′), then P(s, s′′).

The first requirement is to show that P is reflexive. The second is to show that P is closed under
head expansion, or closed under inverse evaluation. Using this principle, it is easy to prove that 7−→∗
is reflexive and transitive.

The n-times iterated transition judgment s 7−→n s′, where n ≥ 0, is inductively defined by the
following rules.

s 7−→0 s (5.2a)

s 7−→ s′ s′ 7−→n s′′

s 7−→n+1 s′′
(5.2b)

Theorem 5.1. For all states s and s′, s 7−→∗ s′ iff s 7−→k s′ for some k ≥ 0.

Proof. From left to right, by induction on the definition of multi-step transition. From right to left,
by mathematical induction on k ≥ 0.

5.2 Structural Dynamics

A structural dynamics for the language E is given by a transition system whose states are closed
expressions. All states are initial. The final states are the (closed) values, which represent the com-
pleted computations. The judgment e val, which states that e is a value, is inductively defined by
the following rules:

num[n] val (5.3a)

str[s] val (5.3b)

The transition judgment e 7−→ e′ between states is inductively defined by the following rules:

n1 + n2 = n
plus(num[n1]; num[n2]) 7−→ num[n]

(5.4a)

e1 7−→ e′1
plus(e1; e2) 7−→ plus(e′1; e2)

(5.4b)
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e1 val e2 7−→ e′2
plus(e1; e2) 7−→ plus(e1; e′2)

(5.4c)

s1 ˆ s2 = s
cat(str[s1]; str[s2]) 7−→ str[s]

(5.4d)

e1 7−→ e′1
cat(e1; e2) 7−→ cat(e′1; e2)

(5.4e)

e1 val e2 7−→ e′2
cat(e1; e2) 7−→ cat(e1; e′2)

(5.4f)[
e1 7−→ e′1

let(e1; x.e2) 7−→ let(e′1; x.e2)

]
(5.4g)

[e1 val]

let(e1; x.e2) 7−→ [e1/x]e2
(5.4h)

We have omitted rules for multiplication and computing the length of a string, which follow a
similar pattern. Rules (5.4a), (5.4d), and (5.4h) are instruction transitions, because they correspond
to the primitive steps of evaluation. The remaining rules are search transitions that determine the
order of execution of instructions.

The bracketed rule, rule (5.4g), and bracketed premise on rule (5.4h), are included for a by-
value interpretation of let, and omitted for a by-name interpretation. The by-value interpretation
evaluates an expression before binding it to the defined variable, whereas the by-name interpreta-
tion binds it in unevaluated form. The by-value interpretation saves work if the defined variable
is used more than once, but wastes work if it is not used at all. Conversely, the by-name inter-
pretation saves work if the defined variable is not used, and wastes work if it is used more than
once.

A derivation sequence in a structural dynamics has a two-dimensional structure, with the
number of steps in the sequence being its “width” and the derivation tree for each step being
its “height.” For example, consider the following evaluation sequence.

let(plus(num[1]; num[2]); x.plus(plus(x; num[3]); num[4]))
7−→ let(num[3]; x.plus(plus(x; num[3]); num[4]))
7−→ plus(plus(num[3]; num[3]); num[4])
7−→ plus(num[6]; num[4])
7−→ num[10]

Each step in this sequence of transitions is justified by a derivation according to rules (5.4). For
example, the third transition in the preceding example is justified by the following derivation:

plus(num[3]; num[3]) 7−→ num[6]
(5.4a)

plus(plus(num[3]; num[3]); num[4]) 7−→ plus(num[6]; num[4])
(5.4b)

The other steps are similarly justified by composing rules.
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The principle of rule induction for the structural dynamics of E states that to show P(e 7−→ e′)
when e 7−→ e′, it is enough to show that P is closed under rules (5.4). For example, we may show
by rule induction that the structural dynamics of E is determinate, which means that an expres-
sion may transition to at most one other expression. The proof requires a simple lemma relating
transition to values.

Lemma 5.2 (Finality of Values). For no expression e do we have both e val and e 7−→ e′ for some e′.

Proof. By rule induction on rules (5.3) and (5.4).

Lemma 5.3 (Determinacy). If e 7−→ e′ and e 7−→ e′′, then e′ and e′′ are α-equivalent.

Proof. By rule induction on the premises e 7−→ e′ and e 7−→ e′′, carried out either simultaneously
or in either order. The primitive operators, such as addition, are assumed to have a unique value
when applied to values.

Rules (5.4) exemplify the inversion principle of language design, which states that the elimina-
tion forms are inverse to the introduction forms of a language. The search rules determine the
principal arguments of each elimination form, and the instruction rules specify how to evaluate
an elimination form when all of its principal arguments are in introduction form. For example,
rules (5.4) specify that both arguments of addition are principal, and specify how to evaluate an
addition once its principal arguments are evaluated to numerals. The inversion principle is cen-
tral to ensuring that a programming language is properly defined, the exact statement of which is
given in Chapter 6.

5.3 Contextual Dynamics

A variant of structural dynamics, called contextual dynamics, is sometimes useful. There is no
fundamental difference between contextual and structural dynamics, rather one of style. The main
idea is to isolate instruction steps as a special form of judgment, called instruction transition, and
to formalize the process of locating the next instruction using a device called an evaluation context.
The judgment e val, defining whether an expression is a value, remains unchanged.

The instruction transition judgment e1 → e2 for E is defined by the following rules, together
with similar rules for multiplication of numbers and the length of a string.

m + n = p
plus(num[m]; num[n])→ num[p]

(5.5a)

s ˆ t = u
cat(str[s]; str[t])→ str[u] (5.5b)

let(e1; x.e2)→ [e1/x]e2 (5.5c)

The judgment E ectxt determines the location of the next instruction to execute in a larger
expression. The position of the next instruction step is specified by a “hole”, written ◦, into which
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the next instruction is placed, as we shall detail shortly. (The rules for multiplication and length
are omitted for concision, as they are handled similarly.)

◦ ectxt (5.6a)

E1 ectxt

plus(E1; e2) ectxt
(5.6b)

e1 val E2 ectxt

plus(e1; E2) ectxt
(5.6c)

The first rule for evaluation contexts specifies that the next instruction may occur “here”, at the
occurrence of the hole. The remaining rules correspond one-for-one to the search rules of the
structural dynamics. For example, rule (5.6c) states that in an expression plus(e1; e2), if the first
argument, e1, is a value, then the next instruction step, if any, lies at or within the second argument,
e2.

An evaluation context is a template that is instantiated by replacing the hole with an instruction
to be executed. The judgment e′ = E{e} states that the expression e′ is the result of filling the hole
in the evaluation context E with the expression e. It is inductively defined by the following rules:

e = ◦{e} (5.7a)

e1 = E1{e}
plus(e1; e2) = plus(E1; e2){e}

(5.7b)

e1 val e2 = E2{e}
plus(e1; e2) = plus(e1; E2){e}

(5.7c)

There is one rule for each form of evaluation context. Filling the hole with e results in e; otherwise
we proceed inductively over the structure of the evaluation context.

Finally, the contextual dynamics for E is defined by a single rule:

e = E{e0} e0 → e′0 e′ = E{e′0}
e 7−→ e′

(5.8)

Thus, a transition from e to e′ consists of (1) decomposing e into an evaluation context and an
instruction, (2) execution of that instruction, and (3) replacing the instruction by the result of its
execution in the same spot within e to obtain e′.

The structural and contextual dynamics define the same transition relation. For the sake of
the proof, let us write e 7−→s e′ for the transition relation defined by the structural dynam-
ics (rules (5.4)), and e 7−→c e′ for the transition relation defined by the contextual dynamics
(rules (5.8)).

Theorem 5.4. e 7−→s e′ if, and only if, e 7−→c e′.
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Proof. From left to right, proceed by rule induction on rules (5.4). It is enough in each case to
exhibit an evaluation context E such that e = E{e0}, e′ = E{e′0}, and e0 → e′0. For example, for
rule (5.4a), take E = ◦, and note that e→ e′. For rule (5.4b), we have by induction that there exists
an evaluation context E1 such that e1 = E1{e0}, e′1 = E1{e′0}, and e0 → e′0. Take E = plus(E1; e2),
and note that e = plus(E1; e2){e0} and e′ = plus(E1; e2){e′0} with e0 → e′0.

From right to left, note that if e 7−→c e′, then there exists an evaluation context E such that
e = E{e0}, e′ = E{e′0}, and e0 → e′0. We prove by induction on rules (5.7) that e 7−→s e′. For
example, for rule (5.7a), e0 is e, e′0 is e′, and e → e′. Hence e 7−→s e′. For rule (5.7b), we have
that E = plus(E1; e2), e1 = E1{e0}, e′1 = E1{e′0}, and e1 7−→s e′1. Therefore e is plus(e1; e2), e′ is
plus(e′1; e2), and therefore by rule (5.4b), e 7−→s e′.

Because the two transition judgments coincide, contextual dynamics can be considered an al-
ternative presentation of a structural dynamics. It has two advantages over structural dynam-
ics, one relatively superficial, one rather less so. The superficial advantage stems from writing
rule (5.8) in the simpler form

e0 → e′0
E{e0} 7−→ E{e′0}

. (5.9)

This formulation is superficially simpler in that it does not make explicit how an expression is
decomposed into an evaluation context and a reducible expression. The deeper advantage of con-
textual dynamics is that all transitions are between complete programs. One need never consider a
transition between expressions of any type other than the observable type, which simplifies certain
arguments, such as the proof of Lemma 47.16.

5.4 Equational Dynamics

Another formulation of the dynamics of a language regards computation as a form of equational
deduction, much in the style of elementary algebra. For example, in algebra we may show that
the polynomials x2 + 2 x + 1 and (x + 1)2 are equivalent by a simple process of calculation and
re-organization using the familiar laws of addition and multiplication. The same laws are enough
to determine the value of any polynomial, given the values of its variables. So, for example, we
may plug in 2 for x in the polynomial x2 + 2 x + 1 and calculate that 22 + 2× 2 + 1 = 9, which is
indeed (2 + 1)2. We thus obtain a model of computation in which the value of a polynomial for a
given value of its variable is determined by substitution and simplification.

Very similar ideas give rise to the concept of definitional, or computational, equivalence of expres-
sions in E, which we write as X | Γ ` e ≡ e′ : τ, where Γ consists of one assumption of the form
x : τ for each x ∈ X . We only consider definitional equality of well-typed expressions, so that
when considering the judgment Γ ` e ≡ e′ : τ, we tacitly assume that Γ ` e : τ and Γ ` e′ : τ.
Here, as usual, we omit explicit mention of the variables X when they can be determined from the
forms of the assumptions Γ.

Definitional equality of expressions in E under the by-name interpretation of let is inductively
defined by the following rules:

Γ ` e ≡ e : τ (5.10a)
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Γ ` e′ ≡ e : τ
Γ ` e ≡ e′ : τ

(5.10b)

Γ ` e ≡ e′ : τ Γ ` e′ ≡ e′′ : τ
Γ ` e ≡ e′′ : τ

(5.10c)

Γ ` e1 ≡ e′1 : num Γ ` e2 ≡ e′2 : num

Γ ` plus(e1; e2) ≡ plus(e′1; e′2) : num
(5.10d)

Γ ` e1 ≡ e′1 : str Γ ` e2 ≡ e′2 : str

Γ ` cat(e1; e2) ≡ cat(e′1; e′2) : str
(5.10e)

Γ ` e1 ≡ e′1 : τ1 Γ, x : τ1 ` e2 ≡ e′2 : τ2

Γ ` let(e1; x.e2) ≡ let(e′1; x.e′2) : τ2
(5.10f)

n1 + n2 = n
Γ ` plus(num[n1]; num[n2]) ≡ num[n] : num

(5.10g)

s1 ˆ s2 = s
Γ ` cat(str[s1]; str[s2]) ≡ str[s] : str

(5.10h)

Γ ` let(e1; x.e2) ≡ [e1/x]e2 : τ (5.10i)

Rules (5.10a) through (5.10c) state that definitional equality is an equivalence relation. Rules (5.10d)
through (5.10f) state that it is a congruence relation, which means that it is compatible with all
expression-forming constructs in the language. Rules (5.10g) through (5.10i) specify the meanings
of the primitive constructs of E. We say that rules (5.10) define the strongest congruence closed
under rules (5.10g), (5.10h), and (5.10i).

Rules (5.10) suffice to calculate the value of an expression by a deduction similar to that used
in high school algebra. For example, we may derive the equation

let x be 1 + 2 in x + 3 + 4 ≡ 10 : num

by applying rules (5.10). Here, as in general, there may be many different ways to derive the same
equation, but we need find only one derivation in order to carry out an evaluation.

Definitional equality is rather weak in that many equivalences that we might intuitively think
are true are not derivable from rules (5.10). A prototypical example is the putative equivalence

x1 : num, x2 : num ` x1 + x2 ≡ x2 + x1 : num, (5.11)

which, intuitively, expresses the commutativity of addition. Although we shall not prove this here,
this equivalence is not derivable from rules (5.10). And yet we may derive all of its closed instances,

n1 + n2 ≡ n2 + n1 : num, (5.12)

where n1 nat and n2 nat are particular numbers.
The “gap” between a general law, such as Equation (5.11), and all of its instances, given by

Equation (5.12), may be filled by enriching the notion of equivalence to include a principle of proof
by mathematical induction. Such a notion of equivalence is sometimes called semantic equivalence,
because it expresses relationships that hold by virtue of the dynamics of the expressions involved.
(Semantic equivalence is developed rigorously for a related language in Chapter 46.)
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Theorem 5.5. For the expression language E, the relation e ≡ e′ : τ holds iff there exists e0 val such that
e 7−→∗ e0 and e′ 7−→∗ e0.

Proof. The proof from right to left is direct, because every transition step is a valid equation. The
converse follows from the following, more general, proposition, which is proved by induction on
rules (5.10): if x1 : τ1, . . . , xn : τn ` e ≡ e′ : τ, then when e1 : τ1, e′1 : τ1, . . . , en : τn, e′n : τn, if for each
1 ≤ i ≤ n the expressions ei and e′i evaluate to a common value vi, then there exists e0 val such that

[e1, . . . , en/x1, . . . , xn]e 7−→∗ e0

and
[e′1, . . . , e′n/x1, . . . , xn]e′ 7−→∗ e0.

5.5 Notes

The use of transition systems to specify the behavior of programs goes back to the early work of
Church and Turing on computability. Turing’s approach emphasized the concept of an abstract
machine consisting of a finite program together with unbounded memory. Computation proceeds
by changing the memory in accordance with the instructions in the program. Much early work on
the operational semantics of programming languages, such as the SECD machine (Landin, 1965),
emphasized machine models. Church’s approach emphasized the language for expressing com-
putations, and defined execution in terms of the programs themselves, rather than in terms of aux-
iliary concepts such as memories or tapes. Plotkin’s elegant formulation of structural operational
semantics (Plotkin, 1981), which we use heavily throughout this book, was inspired by Church’s
and Landin’s ideas (Plotkin, 2004). Contextual semantics, which was introduced by Felleisen and
Hieb (1992), may be seen as an alternative formulation of structural semantics in which “search
rules” are replaced by “context matching”. Computation viewed as equational deduction goes
back to the early work of Herbrand, Gödel, and Church.

Exercises

5.1. Prove that if s 7−→∗ s′ and s′ 7−→∗ s′′, then s 7−→∗ s′′.

5.2. Complete the proof of Theorem 5.1 along the lines suggested there.

5.3. Complete the proof of Theorem 5.5 along the lines suggested there.
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Chapter 6

Type Safety

Most programming languages are safe (or, type safe, or strongly typed). Informally, this means that
certain kinds of mismatches cannot arise during execution. For example, type safety for E states
that it will never arise that a number is added to a string, or that two numbers are concatenated,
neither of which is meaningful.

In general type safety expresses the coherence between the statics and the dynamics. The statics
may be seen as predicting that the value of an expression will have a certain form so that the
dynamics of that expression is well-defined. Consequently, evaluation cannot “get stuck” in a
state for which no transition is possible, corresponding in implementation terms to the absence
of “illegal instruction” errors at execution time. Safety is proved by showing that each step of
transition preserves typability and by showing that typable states are well-defined. Consequently,
evaluation can never “go off into the weeds,” and hence can never encounter an illegal instruction.

Type safety for the language E is stated precisely as follows:

Theorem 6.1 (Type Safety).

1. If e : τ and e 7−→ e′, then e′ : τ.

2. If e : τ, then either e val, or there exists e′ such that e 7−→ e′.

The first part, called preservation, says that the steps of evaluation preserve typing; the second,
called progress, ensures that well-typed expressions are either values or can be further evaluated.
Safety is the conjunction of preservation and progress.

We say that an expression e is stuck iff it is not a value, yet there is no e′ such that e 7−→ e′. It
follows from the safety theorem that a stuck state is necessarily ill-typed. Or, putting it the other
way around, that well-typed states do not get stuck.

6.1 Preservation

The preservation theorem for E defined in Chapters 4 and 5 is proved by rule induction on the
transition system (rules (5.4)).
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Theorem 6.2 (Preservation). If e : τ and e 7−→ e′, then e′ : τ.

Proof. We will give the proof in two cases, leaving the rest to the reader. Consider rule (5.4b),

e1 7−→ e′1
plus(e1; e2) 7−→ plus(e′1; e2)

.

Assume that plus(e1; e2) : τ. By inversion for typing, we have that τ = num, e1 : num, and e2 : num.
By induction we have that e′1 : num, and hence plus(e′1; e2) : num. The case for concatenation is
handled similarly.

Now consider rule (5.4h),

let(e1; x.e2) 7−→ [e1/x]e2
.

Assume that let(e1; x.e2) : τ2. By the inversion lemma 4.2, e1 : τ1 for some τ1 such that x : τ1 ` e2 :
τ2. By the substitution lemma 4.4 [e1/x]e2 : τ2, as desired.

It is easy to check that the primitive operations are all type-preserving; for example, if a nat
and b nat and a + b = c, then c nat.

The proof of preservation is naturally structured as an induction on the transition judgment,
because the argument hinges on examining all possible transitions from a given expression. In
some cases we may manage to carry out a proof by structural induction on e, or by an induction on
typing, but experience shows that this often leads to awkward arguments, or, sometimes, cannot
be made to work at all.

6.2 Progress

The progress theorem captures the idea that well-typed programs cannot “get stuck”. The proof
depends crucially on the following lemma, which characterizes the values of each type.

Lemma 6.3 (Canonical Forms). If e val and e : τ, then

1. If τ = num, then e = num[n] for some number n.

2. If τ = str, then e = str[s] for some string s.

Proof. By induction on rules (4.1) and (5.3).

Progress is proved by rule induction on rules (4.1) defining the statics of the language.

Theorem 6.4 (Progress). If e : τ, then either e val, or there exists e′ such that e 7−→ e′.

Proof. The proof proceeds by induction on the typing derivation. We will consider only one case,
for rule (4.1d),

e1 : num e2 : num
plus(e1; e2) : num

,
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where the context is empty because we are considering only closed terms.
By induction we have that either e1 val, or there exists e′1 such that e1 7−→ e′1. In the latter case it

follows that plus(e1; e2) 7−→ plus(e′1; e2), as required. In the former we also have by induction that
either e2 val, or there exists e′2 such that e2 7−→ e′2. In the latter case we have that plus(e1; e2) 7−→
plus(e1; e′2), as required. In the former, we have, by the Canonical Forms Lemma 6.3, e1 = num[n1]
and e2 = num[n2], and hence

plus(num[n1]; num[n2]) 7−→ num[n1 + n2].

Because the typing rules for expressions are syntax-directed, the progress theorem could equally
well be proved by induction on the structure of e, appealing to the inversion theorem at each step
to characterize the types of the parts of e. But this approach breaks down when the typing rules
are not syntax-directed, that is, when there is more than one rule for a given expression form. Such
rules present no difficulites, so long as the proof proceeds by induction on the typing rules, and
not on the structure of the expression.

Summing up, the combination of preservation and progress together constitute the proof of
safety. The progress theorem ensures that well-typed expressions do not “get stuck” in an ill-
defined state, and the preservation theorem ensures that if a step is taken, the result remains
well-typed (with the same type). Thus the two parts work together to ensure that the statics and
dynamics are coherent, and that no ill-defined states can ever be encountered while evaluating a
well-typed expression.

6.3 Run-Time Errors

Suppose that we wish to extend E with, say, a quotient operation that is undefined for a zero
divisor. The natural typing rule for quotients is given by the following rule:

e1 : num e2 : num
div(e1; e2) : num

.

But the expression div(num[3]; num[0]) is well-typed, yet stuck! We have two options to correct this
situation:

1. Enhance the type system, so that no well-typed program may divide by zero.

2. Add dynamic checks, so that division by zero signals an error as the outcome of evaluation.

Either option is, in principle, practical, but the most common approach is the second. The first
requires that the type checker prove that an expression be non-zero before permitting it to be used
in the denominator of a quotient. It is difficult to do this without ruling out too many programs as
ill-formed. We cannot predict statically whether an expression will be non-zero when evaluated,
so the second approach is most often used in practice.

The overall idea is to distinguish checked from unchecked errors. An unchecked error is one
that is ruled out by the type system. No run-time checking is performed to ensure that such an
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error does not occur, because the type system rules out the possibility of it arising. For example,
the dynamics need not check, when performing an addition, that its two arguments are, in fact,
numbers, as opposed to strings, because the type system ensures that this is the case. On the other
hand the dynamics for quotient must check for a zero divisor, because the type system does not
rule out the possibility.

One approach to modeling checked errors is to give an inductive definition of the judgment
e err stating that the expression e incurs a checked run-time error, such as division by zero. Here
are some representative rules that would be present in a full inductive definition of this judgment:

e1 val

div(e1; num[0]) err
(6.1a)

e1 err

div(e1; e2) err
(6.1b)

e1 val e2 err

div(e1; e2) err
(6.1c)

Rule (6.1a) signals an error condition for division by zero. The other rules propagate this error
upwards: if an evaluated sub-expression is a checked error, then so is the overall expression.

Once the error judgment is available, we may also consider an expression, error, which forcibly
induces an error, with the following static and dynamic semantics:

Γ ` error : τ
(6.2a)

error err
(6.2b)

The preservation theorem is not affected by checked errors. However, the statement (and proof)
of progress is modified to account for checked errors.

Theorem 6.5 (Progress With Error). If e : τ, then either e err, or e val, or there exists e′ such that
e 7−→ e′.

Proof. The proof is by induction on typing, and proceeds similarly to the proof given earlier, except
that there are now three cases to consider at each point in the proof.

6.4 Notes

The concept of type safety was first formulated by Milner (1978), who invented the slogan “well-
typed programs do not go wrong.” Whereas Milner relied on an explicit notion of “going wrong”
to express the concept of a type error, Wright and Felleisen (1994) observed that we can instead
show that ill-defined states cannot arise in a well-typed program, giving rise to the slogan “well-
typed programs do not get stuck.” However, their formulation relied on an analysis showing
that no stuck state is well-typed. The progress theorem, which relies on the characterization of
canonical forms in the style of Martin-Löf (1980), eliminates this analysis.
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Exercises

6.1. Complete the proof of Theorem 6.2 in full detail.

6.2. Complete the proof of Theorem 6.4 in full detail.

6.3. Give several cases of the proof of Theorem 6.5 to illustrate how checked errors are handled
in type safety proofs.
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Chapter 7

Evaluation Dynamics

In Chapter 5 we defined evaluation of expressions in E using a structural dynamics. Structural
dynamics is very useful for proving safety, but for some purposes, such as writing a user manual,
another formulation, called evaluation dynamics is preferable. An evaluation dynamics is a relation
between a phrase and its value that is defined without detailing the step-by-step process of evalu-
ation. A cost dynamics enriches an evaluation dynamics with a cost measure specifying the resource
usage of evaluation. A prime example is time, measured as the number of transition steps required
to evaluate an expression according to its structural dynamics.

7.1 Evaluation Dynamics

An evaluation dynamics, consists of an inductive definition of the evaluation judgment e ⇓ v stating
that the closed expression e evaluates to the value v. The evaluation dynamics of E is defined by
the following rules:

num[n] ⇓ num[n] (7.1a)

str[s] ⇓ str[s] (7.1b)

e1 ⇓ num[n1] e2 ⇓ num[n2] n1 + n2 = n
plus(e1; e2) ⇓ num[n]

(7.1c)

e1 ⇓ str[s1] e2 ⇓ str[s2] s1 ˆ s2 = s
cat(e1; e2) ⇓ str[s]

(7.1d)

e ⇓ str[s] |s| = n
len(e) ⇓ num[n]

(7.1e)

[e1/x]e2 ⇓ v2

let(e1; x.e2) ⇓ v2
(7.1f)
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The value of a let expression is determined by substitution of the binding into the body. The rules
are not syntax-directed, because the premise of rule (7.1f) is not a sub-expression of the expression
in the conclusion of that rule.

Rule (7.1f) specifies a by-name interpretation of definitions. For a by-value interpretation the
following rule should be used instead:

e1 ⇓ v1 [v1/x]e2 ⇓ v2

let(e1; x.e2) ⇓ v2
(7.2)

Because the evaluation judgment is inductively defined, we prove properties of it by rule in-
duction. Specifically, to show that the property P(e ⇓ v) holds, it is enough to show that P is
closed under rules (7.1):

1. Show that P(num[n] ⇓ num[n]).

2. Show that P(str[s] ⇓ str[s]).

3. Show that P(plus(e1; e2) ⇓ num[n]), if P(e1 ⇓ num[n1]), P(e2 ⇓ num[n2]), and n1 + n2 = n.

4. Show that P(cat(e1; e2) ⇓ str[s]), if P(e1 ⇓ str[s1]), P(e2 ⇓ str[s2]), and s1 ˆ s2 = s.

5. Show that P(let(e1; x.e2) ⇓ v2), if P([e1/x]e2 ⇓ v2).

This induction principle is not the same as structural induction on e itself, because the evaluation
rules are not syntax-directed.

Lemma 7.1. If e ⇓ v, then v val.

Proof. By induction on rules (7.1). All cases except rule (7.1f) are immediate. For the latter case, the
result follows directly by an appeal to the inductive hypothesis for the premise of the evaluation
rule.

7.2 Relating Structural and Evaluation Dynamics

We have given two different forms of dynamics for E. It is natural to ask whether they are equiv-
alent, but to do so first requires that we consider carefully what we mean by equivalence. The
structural dynamics describes a step-by-step process of execution, whereas the evaluation dynam-
ics suppresses the intermediate states, focusing attention on the initial and final states alone. This
remark suggests that the right correspondence is between complete execution sequences in the
structural dynamics and the evaluation judgment in the evaluation dynamics.

Theorem 7.2. For all closed expressions e and values v, e 7−→∗ v iff e ⇓ v.

How might we prove such a theorem? We will consider each direction separately. We consider
the easier case first.

Lemma 7.3. If e ⇓ v, then e 7−→∗ v.
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Proof. By induction on the definition of the evaluation judgment. For example, suppose that
plus(e1; e2) ⇓ num[n] by the rule for evaluating additions. By induction we know that e1 7−→∗
num[n1] and e2 7−→∗ num[n2]. We reason as follows:

plus(e1; e2) 7−→∗ plus(num[n1]; e2)
7−→∗ plus(num[n1]; num[n2])
7−→ num[n1 + n2]

Therefore plus(e1; e2) 7−→∗ num[n1 + n2], as required. The other cases are handled similarly.

For the converse, recall from Chapter 5 the definitions of multi-step evaluation and complete
evaluation. Because v ⇓ v when v val, it suffices to show that evaluation is closed under converse
evaluation:1

Lemma 7.4. If e 7−→ e′ and e′ ⇓ v, then e ⇓ v.

Proof. By induction on the definition of the transition judgment. For example, suppose that plus(e1; e2) 7−→
plus(e′1; e2), where e1 7−→ e′1. Suppose further that plus(e′1; e2) ⇓ v, so that e′1 ⇓ num[n1], and
e2 ⇓ num[n2], and n1 + n2 = n, and v is num[n]. By induction e1 ⇓ num[n1], and hence plus(e1; e2) ⇓
num[n], as required.

7.3 Type Safety, Revisited

Type safety is defined in Chapter 6 as preservation and progress (Theorem 6.1). These concepts are
meaningful when applied to a dynamics given by a transition system, as we shall do throughout
this book. But what if we had instead given the dynamics as an evaluation relation? How is type
safety proved in that case?

The answer, unfortunately, is that we cannot. Although there is an analog of the preservation
property for an evaluation dynamics, there is no clear analog of the progress property. Preser-
vation may be stated as saying that if e ⇓ v and e : τ, then v : τ. It can be readily proved by
induction on the evaluation rules. But what is the analog of progress? We might be tempted to
phrase progress as saying that if e : τ, then e ⇓ v for some v. Although this property is true for E,
it demands much more than just progress — it requires that every expression evaluate to a value!
If E were extended to admit operations that may result in an error (as discussed in Section 6.3), or
to admit non-terminating expressions, then this property would fail, even though progress would
remain valid.

One possible attitude towards this situation is to conclude that type safety cannot be properly
discussed in the context of an evaluation dynamics, but only by reference to a structural dynamics.
Another point of view is to instrument the dynamics with explicit checks for dynamic type errors,
and to show that any expression with a dynamic type fault must be statically ill-typed. Re-stated
in the contrapositive, this means that a statically well-typed program cannot incur a dynamic type
error. A difficulty with this point of view is that we must explicitly account for a form of error

1Converse evaluation is also known as head expansion.
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solely to prove that it cannot arise! Nevertheless, a semblance of type safety can be established
using evaluation dynamics.

We define a judgment e ?? stating that the expression e goes wrong when executed. The exact
definition of “going wrong” is given by a set of rules, but the intention is that it should cover all
situations that correspond to type errors. The following rules are representative of the general
case:

plus(str[s]; e2) ?? (7.3a)

e1 val

plus(e1; str[s]) ??
(7.3b)

These rules explicitly check for the misapplication of addition to a string; similar rules govern each
of the primitive constructs of the language.

Theorem 7.5. If e ??, then there is no τ such that e : τ.

Proof. By rule induction on rules (7.3). For example, for rule (7.3a), we note that str[s] : str, and
hence plus(str[s]; e2) is ill-typed.

Corollary 7.6. If e : τ, then ¬(e ??).

Apart from the inconvenience of having to define the judgment e ?? only to show that it is irrel-
evant for well-typed programs, this approach suffers a very significant methodological weakness.
If we should omit one or more rules defining the judgment e ??, the proof of Theorem 7.5 remains
valid; there is nothing to ensure that we have included sufficiently many checks for run-time type
errors. We can prove that the ones we define cannot arise in a well-typed program, but we cannot
prove that we have covered all possible cases. By contrast the structural dynamics does not spec-
ify any behavior for ill-typed expressions. Consequently, any ill-typed expression will “get stuck”
without our explicit intervention, and the progress theorem rules out all such cases. Moreover,
the transition system corresponds more closely to implementation—a compiler need not make
any provisions for checking for run-time type errors. Instead, it relies on the statics to ensure that
these cannot arise, and assigns no meaning to any ill-typed program. Therefore, execution is more
efficient, and the language definition is simpler.

7.4 Cost Dynamics

A structural dynamics provides a natural notion of time complexity for programs, namely the num-
ber of steps required to reach a final state. An evaluation dynamics, however, does not provide
such a direct notion of time. Because the individual steps required to complete an evaluation
are suppressed, we cannot directly read off the number of steps required to evaluate to a value.
Instead we must augment the evaluation relation with a cost measure, resulting in a cost dynamics.

Evaluation judgments have the form e ⇓k v, with the meaning that e evaluates to v in k steps.

num[n] ⇓0 num[n] (7.4a)
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e1 ⇓k1 num[n1] e2 ⇓k2 num[n2]

plus(e1; e2) ⇓k1+k2+1 num[n1 + n2]
(7.4b)

str[s] ⇓0 str[s] (7.4c)

e1 ⇓k1 s1 e2 ⇓k2 s2

cat(e1; e2) ⇓k1+k2+1 str[s1 ˆ s2]
(7.4d)

[e1/x]e2 ⇓k2 v2

let(e1; x.e2) ⇓k2+1 v2
(7.4e)

For a by-value interpretation of let, rule (7.4e) is replaced by the following rule:

e1 ⇓k1 v1 [v1/x]e2 ⇓k2 v2

let(e1; x.e2) ⇓k1+k2+1 v2
(7.5)

Theorem 7.7. For any closed expression e and closed value v of the same type, e ⇓k v iff e 7−→k v.

Proof. From left to right proceed by rule induction on the definition of the cost dynamics. From
right to left proceed by induction on k, with an inner rule induction on the definition of the struc-
tural dynamics.

7.5 Notes

The structural similarity between evaluation dynamics and typing rules was first developed in
The Definition of Standard ML (Milner et al., 1997). The advantage of evaluation semantics is its
directness; its disadvantage is that it is not well-suited to proving properties such as type safety.
Robin Milner introduced the apt phrase “going wrong” as a description of a type error. Cost
dynamics was introduced by Blelloch and Greiner (1996) in a study of parallel computation (see
Chapter 37).

Exercises

7.1. Show that evaluation is deterministic: if e ⇓ v1 and e ⇓ v2, then v1 = v2.

7.2. Complete the proof of Lemma 7.3.

7.3. Complete the proof of Lemma 7.4. Then show that if e 7−→∗ e′ with e′ val, then e ⇓ e′.

7.4. Augment the evaluation dynamics with checked errors, along the lines sketched in Chap-
ter 5, using e ?? to say that e incurs a checked (or an unchecked) error. What remains unsat-
isfactory about the type safety proof? Can you think of a better alternative?
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7.5. Consider generic hypothetical judgments of the form

x1 ⇓ v1, . . . , xn ⇓ vn ` e ⇓ v

where v1 val, . . . , vn val, and v val. The hypotheses, written ∆, are called the environment of
the evaluation; they provide the values of the free variables in e. The hypothetical judgment
∆ ` e ⇓ v is called an environmental evaluation dynamics.

Give a hypothetical inductive definition of the environmental evaluation dynamics without
making any use of substitution. In particular, you should include the rule

∆, x ⇓ v ` x ⇓ v

defining the evaluation of a free variable.

Show that x1 ⇓ v1, . . . , xn ⇓ vn ` e ⇓ v iff [v1, . . . , vn/x1, . . . , xn]e ⇓ v (using the by-value
form of evaluation).
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Chapter 9

System T of Higher-Order Recursion

System T, well-known as Gödel’s T, is the combination of function types with the type of natural
numbers. In contrast to E, which equips the naturals with some arbitrarily chosen arithmetic
operations, the language T provides a general mechanism, called primitive recursion, from which
these primitives may be defined. Primitive recursion captures the essential inductive character of
the natural numbers, and hence may be seen as an intrinsic termination proof for each program in
the language. Consequently, we may only define total functions in the language, those that always
return a value for each argument. In essence every program in T “comes equipped” with a proof
of its termination. Although this may seem like a shield against infinite loops, it is also a weapon
that can be used to show that some programs cannot be written in T. To do so would demand
a master termination proof for every possible program in the language, something that we shall
prove does not exist.

9.1 Statics

The syntax of T is given by the following grammar:

Typ τ ::= nat nat naturals
arr(τ1; τ2) τ1 → τ2 function

Exp e ::= x x variable
z z zero
s(e) s(e) successor
rec{e0; x.y.e1}(e) rec e {z ↪→ e0 | s(x) with y ↪→ e1}

recursion
lam{τ}(x.e) λ (x : τ) e abstraction
ap(e1; e2) e1(e2) application

We write n for the expression s(. . . s(z)), in which the successor is applied n ≥ 0 times to zero.
The expression rec{e0; x.y.e1}(e) is called the recursor. It represents the e-fold iteration of the
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transformation x.y.e1 starting from e0. The bound variable x represents the predecessor and the
bound variable y represents the result of the x-fold iteration. The “with” clause in the concrete
syntax for the recursor binds the variable y to the result of the recursive call, as will become clear
shortly.

Sometimes the iterator, iter{e0; y.e1}(e), is considered as an alternative to the recursor. It has
essentially the same meaning as the recursor, except that only the result of the recursive call is
bound to y in e1, and no binding is made for the predecessor. Clearly the iterator is a special case
of the recursor, because we can always ignore the predecessor binding. Conversely, the recursor is
definable from the iterator, provided that we have product types (Chapter 10) at our disposal. To
define the recursor from the iterator, we simultaneously compute the predecessor while iterating
the specified computation.

The statics of T is given by the following typing rules:

Γ, x : τ ` x : τ
(9.1a)

Γ ` z : nat
(9.1b)

Γ ` e : nat
Γ ` s(e) : nat (9.1c)

Γ ` e : nat Γ ` e0 : τ Γ, x : nat, y : τ ` e1 : τ

Γ ` rec{e0; x.y.e1}(e) : τ
(9.1d)

Γ, x : τ1 ` e : τ2

Γ ` lam{τ1}(x.e) : arr(τ1; τ2)
(9.1e)

Γ ` e1 : arr(τ2; τ) Γ ` e2 : τ2

Γ ` ap(e1; e2) : τ
(9.1f)

As usual, admissibility of the structural rule of substitution is crucially important.

Lemma 9.1. If Γ ` e : τ and Γ, x : τ ` e′ : τ′, then Γ ` [e/x]e′ : τ′.

9.2 Dynamics

The closed values of T are defined by the following rules:

z val
(9.2a)

[e val]

s(e) val
(9.2b)

lam{τ}(x.e) val
(9.2c)
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The premise of rule (9.2b) is included for an eager interpretation of successor, and excluded for a
lazy interpretation.

The transition rules for the dynamics of T are as follows:[
e 7−→ e′

s(e) 7−→ s(e′)

]
(9.3a)

e1 7−→ e′1
ap(e1; e2) 7−→ ap(e′1; e2)

(9.3b)

[
e1 val e2 7−→ e′2

ap(e1; e2) 7−→ ap(e1; e′2)

]
(9.3c)

[e2 val]

ap(lam{τ}(x.e); e2) 7−→ [e2/x]e
(9.3d)

e 7−→ e′

rec{e0; x.y.e1}(e) 7−→ rec{e0; x.y.e1}(e′)
(9.3e)

rec{e0; x.y.e1}(z) 7−→ e0
(9.3f)

s(e) val

rec{e0; x.y.e1}(s(e)) 7−→ [e, rec{e0; x.y.e1}(e)/x, y]e1
(9.3g)

The bracketed rules and premises are included for an eager successor and call-by-value applica-
tion, and omitted for a lazy successor and call-by-name application. Rules (9.3f) and (9.3g) specify
the behavior of the recursor on z and s(e). In the former case the recursor reduces to e0, and in
the latter case the variable x is bound to the predecessor e and y is bound to the (unevaluated)
recursion on e. If the value of y is not required in the rest of the computation, the recursive call is
not evaluated.

Lemma 9.2 (Canonical Forms). If e : τ and e val, then

1. If τ = nat, then either e = z or e = s(e′) for some e′.

2. If τ = τ1 → τ2, then e = λ (x : τ1) e2 for some e2.

Theorem 9.3 (Safety). 1. If e : τ and e 7−→ e′, then e′ : τ.

2. If e : τ, then either e val or e 7−→ e′ for some e′.
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9.3 Definability

A mathematical function f : N → N on the natural numbers is definable in T iff there exists an
expression e f of type nat→ nat such that for every n ∈N,

e f (n) ≡ f (n) : nat. (9.4)

That is, the numeric function f : N→N is definable iff there is an expression e f of type nat→ nat

such that, when applied to the numeral representing the argument n ∈ N, the application is
definitionally equal to the numeral corresponding to f (n) ∈N.

Definitional equality for T, written Γ ` e ≡ e′ : τ, is the strongest congruence containing these
axioms:

Γ, x : τ1 ` e2 : τ2 Γ ` e1 : τ1

Γ ` ap(lam{τ1}(x.e2); e1) ≡ [e1/x]e2 : τ2
(9.5a)

Γ ` e0 : τ Γ, x : τ ` e1 : τ

Γ ` rec{e0; x.y.e1}(z) ≡ e0 : τ
(9.5b)

Γ ` e0 : τ Γ, x : τ ` e1 : τ

Γ ` rec{e0; x.y.e1}(s(e)) ≡ [e, rec{e0; x.y.e1}(e)/x, y]e1 : τ
(9.5c)

For example, the doubling function, d(n) = 2 × n, is definable in T by the expression ed :
nat→ nat given by

λ (x : nat) rec x {z ↪→ z | s(u) with v ↪→ s(s(v))}.

To check that this defines the doubling function, we proceed by induction on n ∈N. For the basis,
it is easy to check that

ed(0) ≡ 0 : nat.

For the induction, assume that
ed(n) ≡ d(n) : nat.

Then calculate using the rules of definitional equality:

ed(n + 1) ≡ s(s(ed(n)))

≡ s(s(2× n))

= 2× (n + 1)

= d(n + 1).

As another example, consider the following function, called Ackermann’s function, defined by
the following equations:

A(0, n) = n + 1
A(m + 1, 0) = A(m, 1)

A(m + 1, n + 1) = A(m, A(m + 1, n)).
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The Ackermann function grows very quickly. For example, A(4, 2) ≈ 265,536, which is often cited
as being larger than the number of atoms in the universe! Yet we can show that the Ackermann
function is total by a lexicographic induction on the pair of arguments (m, n). On each recursive
call, either m decreases, or else m remains the same, and n decreases, so inductively the recursive
calls are well-defined, and hence so is A(m, n).

A first-order primitive recursive function is a function of type nat→ nat that is defined using the
recursor, but without using any higher order functions. Ackermann’s function is defined so that it
is not first-order primitive recursive, but is higher-order primitive recursive. The key to showing
that it is definable in T is to note that A(m + 1, n) iterates n times the function A(m,−), starting
with A(m, 1). As an auxiliary, let us define the higher-order function

it : (nat→ nat)→ nat→ nat→ nat

to be the λ-abstraction

λ ( f : nat→ nat) λ (n : nat) rec n {z ↪→ id | s( ) with g ↪→ f ◦ g},

where id = λ (x : nat) x is the identity, and f ◦ g = λ (x : nat) f (g(x)) is the composition of f and
g. It is easy to check that

it( f )(n)(m) ≡ f (n)(m) : nat,

where the latter expression is the n-fold composition of f starting with m. We may then define the
Ackermann function

ea : nat→ nat→ nat

to be the expression

λ (m : nat) recm {z ↪→ s | s( ) with f ↪→ λ (n : nat) it( f )(n)( f (1))}.

It is instructive to check that the following equivalences are valid:

ea(0)(n) ≡ s(n) (9.6)

ea(m + 1)(0) ≡ ea(m)(1) (9.7)

ea(m + 1)(n + 1) ≡ ea(m)(ea(s(m))(n)). (9.8)

That is, the Ackermann function is definable in T.

9.4 Undefinability

It is impossible to define an infinite loop in T.

Theorem 9.4. If e : τ, then there exists v val such that e ≡ v : τ.

Proof. See Corollary 46.15.
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Consequently, values of function type in T behave like mathematical functions: if e : τ1 → τ2
and e1 : τ1, then e(e1) evaluates to a value of type τ2. Moreover, if e : nat, then there exists a natural
number n such that e ≡ n : nat.

Using this, we can show, using a technique called diagonalization, that there are functions on the
natural numbers that are not definable in T. We make use of a technique, called Gödel-numbering,
that assigns a unique natural number to each closed expression of T. By assigning a unique num-
ber to each expression, we may manipulate expressions as data values in T so that T is able to
compute with its own programs.1

The essence of Gödel-numbering is captured by the following simple construction on abstract
syntax trees. (The generalization to abstract binding trees is slightly more difficult, the main com-
plication being to ensure that all α-equivalent expressions are assigned the same Gödel number.)
Recall that a general ast a has the form o(a1, . . . , ak), where o is an operator of arity k. Enumer-
ate the operators so that every operator has an index i ∈ N, and let m be the index of o in this
enumeration. Define the Gödel number paq of a to be the number

2m 3n1 5n2 . . . pnk
k ,

where pk is the kth prime number (so that p0 = 2, p1 = 3, and so on), and n1, . . . , nk are the
Gödel numbers of a1, . . . , ak, respectively. This procedure assigns a natural number to each ast.
Conversely, given a natural number, n, we may apply the prime factorization theorem to “parse”
n as a unique abstract syntax tree. (If the factorization is not of the right form, which can only be
because the arity of the operator does not match the number of factors, then n does not code any
ast.)

Now, using this representation, we may define a (mathematical) function funiv : N→ N→ N

such that, for any e : nat→ nat, funiv(peq)(m) = n iff e(m) ≡ n : nat.2 The determinacy of the
dynamics, together with Theorem 9.4, ensure that funiv is a well-defined function. It is called the
universal function for T because it specifies the behavior of any expression e of type nat → nat.
Using the universal function, let us define an auxiliary mathematical function, called the diagonal
function δ : N → N, by the equation δ(m) = funiv(m)(m). The δ function is chosen so that
δ(peq) = n iff e(peq) ≡ n : nat. (The motivation for its definition will become clear in a moment.)

The function funiv is not definable in T. Suppose that it were definable by the expression euniv,
then the diagonal function δ would be definable by the expression

eδ = λ (m : nat) euniv(m)(m).

But in that case we would have the equations

eδ(peq) ≡ euniv(peq)(peq)

≡ e(peq).

Now let e∆ be the function expression

λ (x : nat) s(eδ(x)),
1The same technique lies at the heart of the proof of Gödel’s celebrated incompleteness theorem. The undefinability of

certain functions on the natural numbers within T may be seen as a form of incompleteness like that considered by Gödel.
2The value of funiv(k)(m) may be chosen arbitrarily to be zero when k is not the code of any expression e.
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so that we may deduce

e∆(pe∆q) ≡ s(eδ(pe∆q))

≡ s(e∆(pe∆q)).

But the termination theorem implies that there exists n such that e∆(pe∆q) ≡ n, and hence we have
n ≡ s(n), which is impossible.

We say that a language L is universal if it is possible to write an interpreter for L in L itself.
It is intuitively clear that funiv is computable in the sense that we can define it in some sufficiently
powerful programming language. But the preceding argument shows that T is not up to the
task; it is not a universal programming language. Examination of the foregoing proof reveals an
inescapable tradeoff: by insisting that all expressions terminate, we necessarily lose universality—
there are computable functions that are not definable in the language.

9.5 Notes

System T was introduced by Gödel in his study of the consistency of arithmetic (Gödel, 1980). He
showed how to “compile” proofs in arithmetic into well-typed terms of system T, and to reduce
the consistency problem for arithmetic to the termination of programs in T. It was perhaps the first
programming language whose design was directly influenced by the verification (of termination)
of its programs.

Exercises

9.1. Prove Lemma 9.2.

9.2. Prove Theorem 9.3.

9.3. Attempt to prove that if e : nat is closed, then there exists n such that e 7−→∗ n under the
eager dynamics. Where does the proof break down?

9.4. Attempt to prove termination for all well-typed closed terms: if e : τ, then there exists e′ val
such that e 7−→∗ e′. You are free to appeal to Lemma 9.2 and Theorem 9.3 as necessary.
Where does the attempt break down? Can you think of a stronger inductive hypothesis that
might evade the difficulty?

9.5. Define a closed term e of type τ in T to be hereditarily terminating at type τ by induction on
the structure of τ as follows:

(a) If τ = nat, then e is hereditarily terminating at type τ iff e is terminating (that is, iff
e 7−→∗ n for some n.)

(b) If τ = τ1 → τ2, then e is hereditarily terminating iff when e1 is hereditarily terminating
at type τ1, then e(e1) is hereditarily terminating at type τ2.
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Attempt to prove hereditary termination for well-typed terms: if e : τ, then e is hereditarily
terminating at type τ. The stronger inductive hypothesis bypasses the difficulty that arose
in Exercise 9.4, but introduces another obstacle. What is the complication? Can you think of
an even stronger inductive hypothesis that would suffice for the proof?

9.6. Show that if e is hereditarily terminating at type τ, e′ : τ, and e′ 7−→ e, then e is also hered-
itarily terminating at type τ. (The need for this result will become clear in the solution to
Exercise 9.5.)

9.7. Define an open, well-typed term

x1 : τ1, . . . , xn : τn ` e : τ

to be open hereditarily terminating iff every substitution instance

[e1, . . . , en/x1, . . . , xn]e

is closed hereditarily terminating at type τ when each ei is closed hereditarily terminating at
type τi for each 1 ≤ i ≤ n. Derive Exercise 9.3 from this result.
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Chapter 10

Product Types

The binary product of two types consists of ordered pairs of values, one from each type in the or-
der specified. The associated elimination forms are projections, which select the first and second
component of a pair. The nullary product, or unit, type consists solely of the unique “null tuple”
of no values, and has no associated elimination form. The product type admits both a lazy and an
eager dynamics. According to the lazy dynamics, a pair is a value without regard to whether its
components are values; they are not evaluated until (if ever) they are accessed and used in another
computation. According to the eager dynamics, a pair is a value only if its components are values;
they are evaluated when the pair is created.

More generally, we may consider the finite product, 〈τi〉i∈I , indexed by a finite set of indices I.
The elements of the finite product type are I-indexed tuples whose ith component is an element
of the type τi, for each i ∈ I. The components are accessed by I-indexed projection operations,
generalizing the binary case. Special cases of the finite product include n-tuples, indexed by sets
of the form I = { 0, . . . , n − 1 }, and labeled tuples, or records, indexed by finite sets of symbols.
Similarly to binary products, finite products admit both an eager and a lazy interpretation.

10.1 Nullary and Binary Products

The abstract syntax of products is given by the following grammar:

Typ τ ::= unit unit nullary product
prod(τ1; τ2) τ1 × τ2 binary product

Exp e ::= triv 〈〉 null tuple
pair(e1; e2) 〈e1, e2〉 ordered pair
pr[l](e) e · l left projection
pr[r](e) e · r right projection

There is no elimination form for the unit type, there being nothing to extract from the null tuple.



PREVIE
W

82 10.1 Nullary and Binary Products

The statics of product types is given by the following rules.

Γ ` 〈〉 : unit
(10.1a)

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` 〈e1, e2〉 : τ1 × τ2
(10.1b)

Γ ` e : τ1 × τ2

Γ ` e · l : τ1
(10.1c)

Γ ` e : τ1 × τ2

Γ ` e · r : τ2
(10.1d)

The dynamics of product types is defined by the following rules:

〈〉 val
(10.2a)

[e1 val] [e2 val]

〈e1, e2〉 val
(10.2b)[

e1 7−→ e′1
〈e1, e2〉 7−→ 〈e′1, e2〉

]
(10.2c)[

e1 val e2 7−→ e′2
〈e1, e2〉 7−→ 〈e1, e′2〉

]
(10.2d)

e 7−→ e′

e · l 7−→ e′ · l
(10.2e)

e 7−→ e′

e · r 7−→ e′ · r
(10.2f)

[e1 val] [e2 val]

〈e1, e2〉 · l 7−→ e1
(10.2g)

[e1 val] [e2 val]

〈e1, e2〉 · r 7−→ e2
(10.2h)

The bracketed rules and premises are omitted for a lazy dynamics, and included for an eager
dynamics of pairing.

The safety theorem applies to both the eager and the lazy dynamics, with the proof proceeding
along similar lines in each case.

Theorem 10.1 (Safety). 1. If e : τ and e 7−→ e′, then e′ : τ.

2. If e : τ then either e val or there exists e′ such that e 7−→ e′.

Proof. Preservation is proved by induction on transition defined by rules (10.2). Progress is proved
by induction on typing defined by rules (10.1).
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10.2 Finite Products

The syntax of finite product types is given by the following grammar:

Typ τ ::= prod({i ↪→ τi}i∈I) 〈τi〉i∈I product
Exp e ::= tpl({i ↪→ ei}i∈I) 〈ei〉i∈I tuple

pr[i](e) e · i projection

The variable I stands for a finite index set over which products are formed. The type prod({i ↪→ τi}i∈I),
or ∏i∈I τi for short, is the type of I-tuples of expressions ei of type τi, one for each i ∈ I. An I-tuple
has the form tpl({i ↪→ ei}i∈I), or 〈ei〉i∈I for short, and for each i ∈ I the ith projection from an
I-tuple e is written pr[i](e), or e · i for short.

When I = { i1, . . . , in }, the I-tuple type may be written in the form

〈i1 ↪→ τ1, . . . , in ↪→ τn〉

where we make explicit the association of a type to each index i ∈ I. Similarly, we may write

〈i1 ↪→ e1, . . . , in ↪→ en〉

for the I-tuple whose ith component is ei.
Finite products generalize empty and binary products by choosing I to be empty or the two-

element set { l, r }, respectively. In practice I is often chosen to be a finite set of symbols that serve
as labels for the components of the tuple to enhance readability.

The statics of finite products is given by the following rules:

Γ ` e1 : τ1 . . . Γ ` en : τn

Γ ` 〈i1 ↪→ e1, . . . , in ↪→ en〉 : 〈i1 ↪→ τ1, . . . , in ↪→ τn〉
(10.3a)

Γ ` e : 〈i1 ↪→ τ1, . . . , in ↪→ τn〉 (1 ≤ k ≤ n)
Γ ` e · ik : τk

(10.3b)

In rule (10.3b) the index ik ∈ I is a particular element of the index set I, whereas in rule (10.3a), the
indices i1, . . . , in range over the entire index set I.

The dynamics of finite products is given by the following rules:

[e1 val . . . en val]

〈i1 ↪→ e1, . . . , in ↪→ en〉 val
(10.4a)


{

e1 val . . . ej−1 val e′1 = e1 . . . e′j−1 = ej−1

ej 7−→ e′j e′j+1 = ej+1 . . . e′n = en

}
〈i1 ↪→ e1, . . . , in ↪→ en〉 7−→ 〈i1 ↪→ e′1, . . . , in ↪→ e′n〉

 (10.4b)

e 7−→ e′

e · i 7−→ e′ · i
(10.4c)
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[〈i1 ↪→ e1, . . . , in ↪→ en〉 val]

〈i1 ↪→ e1, . . . , in ↪→ en〉 · ik 7−→ ek
(10.4d)

As formulated, rule (10.4b) specifies that the components of a tuple are evaluated in some sequen-
tial order, without specifying the order in which the components are considered. It is not hard, but
a bit technically complicated, to impose an evaluation order by imposing a total ordering on the
index set and evaluating components according to this ordering.

Theorem 10.2 (Safety). If e : τ, then either e val or there exists e′ such that e′ : τ and e 7−→ e′.

Proof. The safety theorem is decomposed into progress and preservation lemmas, which are proved
as in Section 10.1.

10.3 Primitive Mutual Recursion

Using products we may simplify the primitive recursion construct of T so that only the recursive
result on the predecessor, and not the predecessor itself, is passed to the successor branch. Writing
this as iter{e0; x.e1}(e), we may define rec{e0; x.y.e1}(e) to be e′ · r, where e’ is the expression

iter{〈z, e0〉; x′.〈s(x′ · l), [x′ · r/x]e1〉}(e).

The idea is to compute inductively both the number n and the result of the recursive call on n,
from which we can compute both n + 1 and the result of another recursion using e1. The base case
is computed directly as the pair of zero and e0. It is easy to check that the statics and dynamics of
the recursor are preserved by this definition.

We may also use product types to implement mutual primitive recursion, in which we define two
functions simultaneously by primitive recursion. For example, consider the following recursion
equations defining two mathematical functions on the natural numbers:

e(0) = 1
o(0) = 0

e(n + 1) = o(n)
o(n + 1) = e(n)

Intuitively, e(n) is non-zero if and only if n is even, and o(n) is non-zero if and only if n is odd.
To define these functions in T enriched with products, we first define an auxiliary function eeo

of type
nat→ (nat× nat)

that computes both results simultaneously by swapping back and forth on recursive calls:

λ (n : nat× nat) iter n {z ↪→ 〈1, 0〉 | s(b) ↪→ 〈b · r, b · l〉}.

We may then define eev and eod as follows:

eev , λ (n : nat) eeo(n) · l
eod , λ (n : nat) eeo(n) · r.
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10.4 Notes

Product types are the most basic form of structured data. All languages have some form of product
type, but often in a form that is combined with other, separable, concepts. Common manifestations
of products include: (1) functions with “multiple arguments” or “multiple results”; (2) “objects”
represented as tuples of mutually recursive functions; (3) “structures,” which are tuples with mu-
table components. There are many papers on finite product types, which include record types
as a special case. Pierce (2002) provides a thorough account of record types, and their subtyping
properties (for which, see Chapter 24). Allen et al. (2006) analyzes many of the key ideas in the
framework of dependent type theory.

Exercises

10.1. A database schema may be thought of as a finite product type ∏i∈I τ, in which the columns, or
attributes. are labeled by the indices I whose values are restricted to atomic types, such as nat
and str. A value of a schema type is called a tuple, or instance, of that schema. A database
may be thought of as a finite sequence of such tuples, called the rows of the database. Give a
representation of a database using function, product, and natural numbers types, and define
the project operation that sends a database with columns I to a database with columns I′ ⊆ I
by restricting each row to the specified columns.

10.2. Rather than choose between a lazy and an eager dynamics for products, we can instead
distinguish two forms of product type, called the positive and the negative. The statics of the
negative product is given by rules (10.1), and the dynamics is lazy. The statics of the positive
product, written τ1 ⊗ τ2, is given by the following rules:

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` fuse(e1; e2) : τ1 ⊗ τ2
(10.5a)

Γ ` e0 : τ1 ⊗ τ2 Γ x1 : τ1 x2 : τ2 ` e : τ

Γ ` split(e0; x1, x2.e) : τ
(10.5b)

The dynamics of fuse, the introduction form for the positive pair, is eager, essentially be-
cause the elimination form, split, extracts both components simultaneously.

Show that the negative product is definable in terms of the positive product using the unit
and function types to express the lazy semantics of negative pairing. Show that the positive
product is definable in terms of the negative product, provided that we have at our disposal a
let expression with a by-value dynamics so that we may enforce eager evaluation of positive
pairs.

10.3. Specializing Exercise 10.2 to nullary products, we obtain a positive and a negative unit type.
The negative unit type is given by rules (10.1), with no elimination forms and one introduc-
tion form. Give the statics and dynamics for a positive unit type, and show that the positive
and negative unit types are inter-definable without any further assumptions.
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Chapter 11

Sum Types

Most data structures involve alternatives such as the distinction between a leaf and an interior
node in a tree, or a choice in the outermost form of a piece of abstract syntax. Importantly, the
choice determines the structure of the value. For example, nodes have children, but leaves do not,
and so forth. These concepts are expressed by sum types, specifically the binary sum, which offers a
choice of two things, and the nullary sum, which offers a choice of no things. Finite sums generalize
nullary and binary sums to allow an arbitrary number of cases indexed by a finite index set. As
with products, sums come in both eager and lazy variants, differing in how values of sum type are
defined.

11.1 Nullary and Binary Sums

The abstract syntax of sums is given by the following grammar:

Typ τ ::= void void nullary sum
sum(τ1; τ2) τ1 + τ2 binary sum

Exp e ::= abort{τ}(e) abort(e) abort
in[l]{τ1; τ2}(e) l · e left injection
in[r]{τ1; τ2}(e) r · e right injection
case(e; x1.e1; x2.e2) case e {l · x1 ↪→ e1 | r · x2 ↪→ e2} case analysis

The nullary sum represents a choice of zero alternatives, and hence admits no introduction form.
The elimination form, abort(e), aborts the computation in the event that e evaluates to a value,
which it cannot do. The elements of the binary sum type are labeled to show whether they are
drawn from the left or the right summand, either l · e or r · e. A value of the sum type is eliminated
by case analysis.

The statics of sum types is given by the following rules.

Γ ` e : void
Γ ` abort(e) : τ

(11.1a)
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Γ ` e : τ1

Γ ` l · e : τ1 + τ2
(11.1b)

Γ ` e : τ2

Γ ` r · e : τ1 + τ2
(11.1c)

Γ ` e : τ1 + τ2 Γ, x1 : τ1 ` e1 : τ Γ, x2 : τ2 ` e2 : τ

Γ ` case e {l · x1 ↪→ e1 | r · x2 ↪→ e2} : τ
(11.1d)

For the sake of readability, in rules (11.1b) and (11.1c) we have written l · e and r · e in place
of the abstract syntax in[l]{τ1; τ2}(e) and in[r]{τ1; τ2}(e), which includes the types τ1 and τ2
explicitly. In rule (11.1d) both branches of the case analysis must have the same type. Because
a type expresses a static “prediction” on the form of the value of an expression, and because an
expression of sum type could evaluate to either form at run-time, we must insist that both branches
yield the same type.

The dynamics of sums is given by the following rules:

e 7−→ e′

abort(e) 7−→ abort(e′)
(11.2a)

[e val]

l · e val
(11.2b)

[e val]

r · e val
(11.2c)[

e 7−→ e′

l · e 7−→ l · e′
]

(11.2d)[
e 7−→ e′

r · e 7−→ r · e′
]

(11.2e)

e 7−→ e′

case e {l · x1 ↪→ e1 | r · x2 ↪→ e2} 7−→ case e′ {l · x1 ↪→ e1 | r · x2 ↪→ e2}
(11.2f)

[e val]

case l · e {l · x1 ↪→ e1 | r · x2 ↪→ e2} 7−→ [e/x1]e1
(11.2g)

[e val]

case r · e {l · x1 ↪→ e1 | r · x2 ↪→ e2} 7−→ [e/x2]e2
(11.2h)

The bracketed premises and rules are included for an eager dynamics, and excluded for a lazy
dynamics.

The coherence of the statics and dynamics is stated and proved as usual.

Theorem 11.1 (Safety). 1. If e : τ and e 7−→ e′, then e′ : τ.

2. If e : τ, then either e val or e 7−→ e′ for some e′.

Proof. The proof proceeds by induction on rules (11.2) for preservation, and by induction on
rules (11.1) for progress.
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11.2 Finite Sums

Just as we may generalize nullary and binary products to finite products, so may we also gener-
alize nullary and binary sums to finite sums. The syntax for finite sums is given by the following
grammar:

Typ τ ::= sum({i ↪→ τi}i∈I) [τi]i∈I sum
Exp e ::= in[i]{~τ}(e) i · e injection

case(e; {i ↪→ xi.ei}i∈I) case e {i · xi ↪→ ei}i∈I case analysis

The variable I stands for a finite index set over which sums are formed. The notation ~τ stands for
a finite function {i ↪→ τi}i∈I for some index set I. The type sum({i ↪→ τi}i∈I), or ∑i∈I τi for short,
is the type of I-classified values of the form in[i]{I}(ei), or i · ei for short, where i ∈ I and ei is
an expression of type τi. An I-classified value is analyzed by an I-way case analysis of the form
case(e; {i ↪→ xi.ei}i∈I).

When I = { i1, . . . , in }, the type of I-classified values may be written

[i1 ↪→ τ1, . . . , in ↪→ τn]

specifying the type associated with each class li ∈ I. Correspondingly, the I-way case analysis has
the form

case e {i1 · x1 ↪→ e1 | . . . | in · xn ↪→ en}.
Finite sums generalize empty and binary sums by choosing I to be empty or the two-element set
{ l, r }, respectively. In practice I is often chosen to be a finite set of symbols that serve as names
for the classes so as to enhance readability.

The statics of finite sums is defined by the following rules:

Γ ` e : τk (1 ≤ k ≤ n)
Γ ` ik · e : [i1 ↪→ τ1, . . . , in ↪→ τn]

(11.3a)

Γ ` e : [i1 ↪→ τ1, . . . , in ↪→ τn] Γ, x1 : τ1 ` e1 : τ . . . Γ, xn : τn ` en : τ

Γ ` case e {i1 · x1 ↪→ e1 | . . . | in · xn ↪→ en} : τ
(11.3b)

These rules generalize the statics for nullary and binary sums given in Section 11.1.
The dynamics of finite sums is defined by the following rules:

[e val]

i · e val
(11.4a)[

e 7−→ e′

i · e 7−→ i · e′
]

(11.4b)

e 7−→ e′

case e {i · xi ↪→ ei}i∈I 7−→ case e′ {i · xi ↪→ ei}i∈I
(11.4c)

i · e val
case i · e {i · xi ↪→ ei}i∈I 7−→ [e/xi]ei

(11.4d)

These again generalize the dynamics of binary sums given in Section 11.1.
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Theorem 11.2 (Safety). If e : τ, then either e val or there exists e′ : τ such that e 7−→ e′.

Proof. The proof is like that for the binary case, as described in Section 11.1.

11.3 Applications of Sum Types

Sum types have many uses, several of which we outline here. More interesting examples arise
once we also have induction and recursive types, which are introduced in Parts VI and Part VIII.

11.3.1 Void and Unit

It is instructive to compare the types unit and void, which are often confused with one another.
The type unit has exactly one element, 〈〉, whereas the type void has no elements at all. Con-
sequently, if e : unit, then if e evaluates to a value, that value is 〈〉 — in other words, e has no
interesting value. On the other hand, if e : void, then e must not yield a value; if it were to have a
value, it would have to be a value of type void, of which there are none. Thus what is called the
void type in many languages is really the type unit because it indicates that an expression has no
interesting value, not that it has no value at all!

11.3.2 Booleans

Perhaps the simplest example of a sum type is the familiar type of Booleans, whose syntax is given
by the following grammar:

Typ τ ::= bool bool booleans
Exp e ::= true true truth

false false falsity
if(e; e1; e2) if e then e1 else e2 conditional

The expression if(e; e1; e2) branches on the value of e : bool.
The statics of Booleans is given by the following typing rules:

Γ ` true : bool
(11.5a)

Γ ` false : bool
(11.5b)

Γ ` e : bool Γ ` e1 : τ Γ ` e2 : τ

Γ ` if e then e1 else e2 : τ
(11.5c)

The dynamics is given by the following value and transition rules:

true val
(11.6a)
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false val
(11.6b)

if true then e1 else e2 7−→ e1
(11.6c)

if false then e1 else e2 7−→ e2
(11.6d)

e 7−→ e′

if e then e1 else e2 7−→ if e′ then e1 else e2
(11.6e)

The type bool is definable in terms of binary sums and nullary products:

bool = unit+ unit (11.7a)
true = l · 〈〉 (11.7b)
false = r · 〈〉 (11.7c)

if e then e1 else e2 = case e {l · x1 ↪→ e1 | r · x2 ↪→ e2} (11.7d)

In the last equation above the variables x1 and x2 are chosen arbitrarily such that x1 /∈ e1 and
x2 /∈ e2. It is a simple matter to check that the readily-defined statics and dynamics of the type
bool are engendered by these definitions.

11.3.3 Enumerations

More generally, sum types can be used to define finite enumeration types, those whose values are
one of an explicitly given finite set, and whose elimination form is a case analysis on the elements
of that set. For example, the type suit, whose elements are ♣, ♦, ♥, and ♠, has as elimination
form the case analysis

case e {♣ ↪→ e0 | ♦ ↪→ e1 | ♥ ↪→ e2 | ♠ ↪→ e3},

which distinguishes among the four suits. Such finite enumerations are easily representable as
sums. For example, we may define suit = [unit] ∈I , where I = {♣,♦,♥,♠} and the type family
is constant over this set. The case analysis form for a labeled sum is almost literally the desired
case analysis for the given enumeration, the only difference being the binding for the uninteresting
value associated with each summand, which we may ignore.

Other examples of enumeration types abound. For example, most languages have a type char

of characters, which is a large enumeration type containing all possible Unicode (or other such
standard classification) characters. Each character is assigned a code (such as UTF-8) used for in-
terchange among programs. The type char is equipped with operations such as chcode(n) that
yield the char associated to the code n, and codech(c) that yield the code of character c. Using the
linear ordering on codes we may define a total ordering of characters, called the collating sequence
determined by that code.
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11.3.4 Options

Another use of sums is to define the option types, which have the following syntax:

Typ τ ::= opt(τ) τ opt option
Exp e ::= null null nothing

just(e) just(e) something
ifnull{τ}{e1; x.e2}(e) which e {null ↪→ e1 | just(x) ↪→ e2}

null test

The type opt(τ) represents the type of “optional” values of type τ. The introduction forms are
null, corresponding to “no value”, and just(e), corresponding to a specified value of type τ. The
elimination form discriminates between the two possibilities.

The option type is definable from sums and nullary products according to the following equa-
tions:1

τ opt = unit+ τ (11.8a)
null = l · 〈〉 (11.8b)

just(e) = r · e (11.8c)
which e {null ↪→ e1 | just(x2) ↪→ e2} = case e {l · ↪→ e1 | r · x2 ↪→ e2} (11.8d)

We leave it to the reader to check the statics and dynamics implied by these definitions.
The option type is the key to understanding a common misconception, the null pointer fallacy.

This fallacy arises from two related errors. The first error is to deem values of certain types to
be mysterious entities called pointers. This terminology arises from suppositions about how these
values might be represented at run-time, rather than on their semantic role in the language. The
second error compounds the first. A particular value of a pointer type is distinguished as the null
pointer, which, unlike the other elements of that type, does not stand for a value of that type at all,
but rather rejects all attempts to use it.

To help avoid such failures, such languages usually include a function, say null : τ → bool,
that yields true if its argument is null, and false otherwise. Such a test allows the programmer to
take steps to avoid using null as a value of the type it purports to inhabit. Consequently, programs
are riddled with conditionals of the form

if null(e) then . . . error . . . else . . . proceed . . . . (11.9)

Despite this, “null pointer” exceptions at run-time are rampant, in part because it is quite easy
to overlook the need for such a test, and in part because detection of a null pointer leaves little
recourse other than abortion of the program.

The underlying problem is the failure to distinguish the type τ from the type τ opt. Rather than
think of the elements of type τ as pointers, and thereby have to worry about the null pointer, we
instead distinguish between a genuine value of type τ and an optional value of type τ. An optional

1We often write an underscore in place of a bound variable that is not used within its scope.
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value of type τ may or may not be present, but, if it is, the underlying value is truly a value of type
τ (and cannot be null). The elimination form for the option type,

which e {null ↪→ eerror | just(x) ↪→ eok}, (11.10)

propagates the information that e is present into the non-null branch by binding a genuine value
of type τ to the variable x. The case analysis effects a change of type from “optional value of type
τ” to “genuine value of type τ”, so that within the non-null branch no further null checks, explicit
or implicit, are necessary. Note that such a change of type is not achieved by the simple Boolean-
valued test exemplified by expression (11.9); the advantage of option types is precisely that they
do so.

11.4 Notes

Heterogeneous data structures are ubiquitous. Sums codify heterogeneity, yet few languages sup-
port them in the form given here. The best approximation in commercial languages is the concept
of a class in object-oriented programming. A class is an injection into a sum type, and dispatch is
case analysis on the class of the data object. (See Chapter 26 for more on this correspondence.) The
absence of sums is the origin of C.A.R. Hoare’s self-described “billion dollar mistake,” the null
pointer (Hoare, 2009). Bad language designs put the burden of managing “null” values entirely at
run-time, instead of making the possibility or the impossibility of “null” apparent at compile time.

Exercises

11.1. Complete the definition of a finite enumeration type sketched in Section 11.3.3. Derive enu-
meration types from finite sum types.

11.2. The essence of Hoare’s mistake is the misidentification of the type τ opt with the type bool×
τ. Values of the latter type are pairs consisting of a boolean “flag” and a value of type τ. The
idea is that the flag indicates whether the associated value is “present”. When the flag is
true, the second component is present, and, when the flag is false, the second component
is absent.

Analyze Hoare’s mistake by attempting to define τ opt to be the type bool× τ by filling in
the following chart:

null , ?

just(e) , ?

which e {null ↪→ e1 | just(x) ↪→ e2} , ?

Argue that even if we adopt Hoare’s convention of admitting a “null” value of every type,
the chart cannot be properly filled.
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11.3. Databases have a version of the “null pointer” problem that arises when not every tuple
provides a value for every attribute (such as a person’s middle name). More generally, many
commercial databases are limited to a single atomic type for each attribute, presenting prob-
lems when the value of that attribute may have several types (for example, one may have
different sorts of postal codes depending on the country). Consider how to address these
problems using the methods discussed in Exercise 10.1. Suggest how to handle null val-
ues and heterogeneous values that avoids some of the complications that arise in traditional
formulations of databases.

11.4. A combinational circuit is an open expression of type

x1 : bool, . . . , xn : bool ` e : bool,

which computes a boolean value from n boolean inputs. Define a NOR and a NAND gate as
boolean circuits with two inputs and one output. There is no reason to restrict to a single
output. For example, define an HALF-ADDER that takes two boolean inputs, but produces
two boolean outputs, the sum and the carry outputs of the HALF-ADDER. Then define a
FULL-ADDER that takes three inputs, the addends and an incoming carry, and produces two
outputs, the sum and the outgoing carry. Define the type NYBBLE to be the product bool×
bool× bool× bool. Define the combinational circuit NYBBLE-ADDER that takes two nybbles
as input and produces a nybble and a carry-out bit as output.

11.5. A signal is a time-varying sequence of booleans, representing the status of the signal at each
time instant. An RS latch is a fundamental digital circuit with two input signals and two
output signals. Define the type signal of signals to be the function type nat → bool of
infinite sequences of booleans. Define an RS latch as a function of type

(signal× signal)→ (signal× signal).
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System F of Polymorphic Types

The languages we have considered so far are all monomorphic in that every expression has a unique
type, given the types of its free variables, if it has a type at all. Yet it is often the case that essentially
the same behavior is required, albeit at several different types. For example, in T there is a distinct
identity function for each type τ, namely λ (x : τ) x, even though the behavior is the same for each
choice of τ. Similarly, there is a distinct composition operator for each triple of types, namely

◦τ1,τ2,τ3 = λ ( f : τ2 → τ3) λ (g : τ1 → τ2) λ (x : τ1) f (g(x)).

Each choice of the three types requires a different program, even though they all have the same
behavior when executed.

Obviously it would be useful to capture the pattern once and for all, and to instantiate this
pattern each time we need it. The expression patterns codify generic (type-independent) behaviors
that are shared by all instances of the pattern. Such generic expressions are polymorphic. In this
chapter we will study the language F, which was introduced by Girard under the name System F
and by Reynolds under the name polymorphic typed λ-calculus. Although motivated by a simple
practical problem (how to avoid writing redundant code), the concept of polymorphism is central
to an impressive variety of seemingly disparate concepts, including the concept of data abstraction
(the subject of Chapter 17), and the definability of product, sum, inductive, and coinductive types
considered in the preceding chapters. (Only general recursive types extend the expressive power
of the language.)
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16.1 Polymorphic Abstraction

The language F is a variant of T in which we eliminate the type of natural numbers, but add, in
compensation, polymorphic types:1

Typ τ ::= t t variable
arr(τ1; τ2) τ1 → τ2 function
all(t.τ) ∀(t.τ) polymorphic

Exp e ::= x x
lam{τ}(x.e) λ (x : τ) e abstraction
ap(e1; e2) e1(e2) application
Lam(t.e) Λ(t) e type abstraction
App{τ}(e) e[τ] type application

A type abstraction Lam(t.e) defines a generic, or polymorphic, function with type variable t standing for
an unspecified type within e. A type application, or instantiation App{τ}(e) applies a polymorphic
function to a specified type, which is plugged in for the type variable to obtain the result. The
universal type, all(t.τ), classifies polymorphic functions.

The statics of F consists of two judgment forms, the type formation judgment,

∆ ` τ type,

and the typing judgment,
∆ Γ ` e : τ.

The hypotheses ∆ have the form t type, where t is a variable of sort Typ, and the hypotheses Γ have
the form x : τ, where x is a variable of sort Exp.

The rules defining the type formation judgment are as follows:

∆, t type ` t type (16.1a)

∆ ` τ1 type ∆ ` τ2 type

∆ ` arr(τ1; τ2) type
(16.1b)

∆, t type ` τ type

∆ ` all(t.τ) type
(16.1c)

The rules defining the typing judgment are as follows:

∆ Γ, x : τ ` x : τ (16.2a)

∆ ` τ1 type ∆ Γ, x : τ1 ` e : τ2

∆ Γ ` lam{τ1}(x.e) : arr(τ1; τ2)
(16.2b)

∆ Γ ` e1 : arr(τ2; τ) ∆ Γ ` e2 : τ2

∆ Γ ` ap(e1; e2) : τ
(16.2c)

1Girard’s original version of System F included the natural numbers as a basic type.
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∆, t type Γ ` e : τ

∆ Γ ` Lam(t.e) : all(t.τ)
(16.2d)

∆ Γ ` e : all(t.τ′) ∆ ` τ type

∆ Γ ` App{τ}(e) : [τ/t]τ′
(16.2e)

Lemma 16.1 (Regularity). If ∆ Γ ` e : τ, and if ∆ ` τi type for each assumption xi : τi in Γ, then
∆ ` τ type.

Proof. By induction on rules (16.2).

The statics admits the structural rules for a general hypothetical judgment. In particular, we
have the following critical substitution property for type formation and expression typing.

Lemma 16.2 (Substitution). 1. If ∆, t type ` τ′ type and ∆ ` τ type, then ∆ ` [τ/t]τ′ type.

2. If ∆, t type Γ ` e′ : τ′ and ∆ ` τ type, then ∆ [τ/t]Γ ` [τ/t]e′ : [τ/t]τ′.

3. If ∆ Γ, x : τ ` e′ : τ′ and ∆ Γ ` e : τ, then ∆ Γ ` [e/x]e′ : τ′.

The second part of the lemma requires substitution into the context Γ as well as into the term
and its type, because the type variable t may occur freely in any of these positions.

Returning to the motivating examples from the introduction, the polymorphic identity func-
tion, I, is written

Λ(t) λ (x : t) x;

it has the polymorphic type

∀(t.t→ t).

Instances of the polymorphic identity are written I[τ], where τ is some type, and have the type
τ → τ.

Similarly, the polymorphic composition function, C, is written

Λ(t1)Λ(t2)Λ(t3) λ ( f : t2 → t3) λ (g : t1 → t2) λ (x : t1) f (g(x)).

The function C has the polymorphic type

∀(t1.∀(t2.∀(t3.(t2 → t3)→ (t1 → t2)→ (t1 → t3)))).

Instances of C are obtained by applying it to a triple of types, written C[τ1][τ2][τ3]. Each such
instance has the type

(τ2 → τ3)→ (τ1 → τ2)→ (τ1 → τ3).
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Dynamics

The dynamics of F is given as follows:

lam{τ}(x.e) val
(16.3a)

Lam(t.e) val
(16.3b)

[e2 val]

ap(lam{τ1}(x.e); e2) 7−→ [e2/x]e
(16.3c)

e1 7−→ e′1
ap(e1; e2) 7−→ ap(e′1; e2)

(16.3d)

[
e1 val e2 7−→ e′2

ap(e1; e2) 7−→ ap(e1; e′2)

]
(16.3e)

App{τ}(Lam(t.e)) 7−→ [τ/t]e
(16.3f)

e 7−→ e′

App{τ}(e) 7−→ App{τ}(e′) (16.3g)

The bracketed premises and rule are included for a call-by-value interpretation, and omitted for a
call-by-name interpretation of F.

It is a simple matter to prove safety for F, using familiar methods.

Lemma 16.3 (Canonical Forms). Suppose that e : τ and e val, then

1. If τ = arr(τ1; τ2), then e = lam{τ1}(x.e2) with x : τ1 ` e2 : τ2.

2. If τ = all(t.τ′), then e = Lam(t.e′) with t type ` e′ : τ′.

Proof. By rule induction on the statics.

Theorem 16.4 (Preservation). If e : τ and e 7−→ e′, then e′ : τ.

Proof. By rule induction on the dynamics.

Theorem 16.5 (Progress). If e : τ, then either e val or there exists e′ such that e 7−→ e′.

Proof. By rule induction on the statics.
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16.2 Polymorphic Definability

The language F is astonishingly expressive. Not only are all (lazy) finite products and sums de-
finable in the language, but so are all (lazy) inductive and coinductive types. Their definability is
most naturally expressed using definitional equality, which is the least congruence containing the
following two axioms:

∆ Γ, x : τ1 ` e2 : τ2 ∆ Γ ` e1 : τ1

∆ Γ ` (λ (x : τ) e2)(e1) ≡ [e1/x]e2 : τ2
(16.4a)

∆, t type Γ ` e : τ ∆ ` ρ type

∆ Γ ` Λ(t) e[ρ] ≡ [ρ/t]e : [ρ/t]τ
(16.4b)

In addition there are rules omitted here specifying that definitional equality is a congruence rela-
tion (that is, an equivalence relation respected by all expression-forming operations).

16.2.1 Products and Sums

The nullary product, or unit, type is definable in F as follows:

unit , ∀(r.r → r)

〈〉 , Λ(r) λ (x : r) x

The identity function plays the role of the null tuple, because it is the only closed value of this
type.

Binary products are definable in F by using encoding tricks similar to those described in Chap-
ter 21 for the untyped λ-calculus:

τ1 × τ2 , ∀(r.(τ1 → τ2 → r)→ r)

〈e1, e2〉 , Λ(r) λ (x : τ1 → τ2 → r) x(e1)(e2)

e · l , e[τ1](λ (x : τ1) λ (y : τ2) x)

e · r , e[τ2](λ (x : τ1) λ (y : τ2) y)

The statics given in Chapter 10 is derivable according to these definitions. Moreover, the following
definitional equalities are derivable in F from these definitions:

〈e1, e2〉 · l ≡ e1 : τ1

and
〈e1, e2〉 · r ≡ e2 : τ2.

The nullary sum, or void, type is definable in F:

void , ∀(r.r)

abort{ρ}(e) , e[ρ]
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Binary sums are also definable in F:

τ1 + τ2 , ∀(r.(τ1 → r)→ (τ2 → r)→ r)

l · e , Λ(r) λ (x : τ1 → r) λ (y : τ2 → r) x(e)

r · e , Λ(r) λ (x : τ1 → r) λ (y : τ2 → r) y(e)

case e {l · x1 ↪→ e1 | r · x2 ↪→ e2} ,
e[ρ](λ (x1 : τ1) e1)(λ (x2 : τ2) e2)

provided that the types make sense. It is easy to check that the following equivalences are deriv-
able in F:

case l · d1 {l · x1 ↪→ e1 | r · x2 ↪→ e2} ≡ [d1/x1]e1 : ρ

and
case r · d2 {l · x1 ↪→ e1 | r · x2 ↪→ e2} ≡ [d2/x2]e2 : ρ.

Thus the dynamic behavior specified in Chapter 11 is correctly implemented by these definitions.

16.2.2 Natural Numbers

As we remarked above, the natural numbers (under a lazy interpretation) are also definable in F.
The key is the iterator, whose typing rule we recall here for reference:

e0 : nat e1 : τ x : τ ` e2 : τ

iter{e1; x.e2}(e0) : τ
.

Because the result type τ is arbitrary, this means that if we have an iterator, then we can use it to
define a function of type

nat→ ∀(t.t→ (t→ t)→ t).

This function, when applied to an argument n, yields a polymorphic function that, for any result
type, t, given the initial result for z and a transformation from the result for x into the result for
s(x), yields the result of iterating the transformation n times, starting with the initial result.

Because the only operation we can perform on a natural number is to iterate up to it, we may
simply identify a natural number, n, with the polymorphic iterate-up-to-n function just described.
Thus we may define the type of natural numbers in F by the following equations:

nat , ∀(t.t→ (t→ t)→ t)

z , Λ(t) λ (z : t) λ (s : t→ t) z

s(e) , Λ(t) λ (z : t) λ (s : t→ t) s(e[t](z)(s))

iter{e1; x.e2}(e0) , e0[τ](e1)(λ (x : τ) e2)

It is easy to check that the statics and dynamics of the natural numbers type given in Chapter 9
are derivable in F under these definitions. The representations of the numerals in F are called the
polymorphic Church numerals.
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The encodability of the natural numbers shows that F is at least as expressive as T. But is it more
expressive? Yes! It is possible to show that the evaluation function for T is definable in F, even
though it is not definable in T itself. However, the same diagonal argument given in Chapter 9
applies here, showing that the evaluation function for F is not definable in F. We may enrich F a bit
more to define the evaluator for F, but as long as all programs in the enriched language terminate,
we will once again have an undefinable function, the evaluation function for that extension.

16.3 Parametricity Overview

A remarkable property of F is that polymorphic types severely constrain the behavior of their
elements. We may prove useful theorems about an expression knowing only its type—that is,
without ever looking at the code. For example, if i is any expression of type ∀(t.t→ t), then it
is the identity function. Informally, when i is applied to a type, τ, and an argument of type τ, it
returns a value of type τ. But because τ is not specified until i is called, the function has no choice
but to return its argument, which is to say that it is essentially the identity function. Similarly, if
b is any expression of type ∀(t.t→ t→ t), then b is equivalent to either Λ(t) λ (x : t) λ (y : t) x or
Λ(t) λ (x : t) λ (y : t) y. Intuitively, when b is applied to two arguments of a given type, the only
value it can return is one of the givens.

Properties of a program in F that can be proved knowing only its type are called parametricity
properties. The facts about the functions i and b stated above are examples of parametricity prop-
erties. Such properties are sometimes called “free theorems,” because they come from typing “for
free”, without any knowledge of the code itself. It bears repeating that in F we prove non-trivial
behavioral properties of programs without ever examining the program text. The key to this in-
credible fact is that we are able to prove a deep property, called parametricity, about the language F,
that then applies to every program written in F. One may say that the type system “pre-verifies”
programs with respect to a broad range of useful properties, eliminating the need to prove those
properties about every program separately. The parametricity theorem for F explains the remark-
able experience that if a piece of code type checks, then it “just works.” Parametricity narrows the
space of well-typed programs sufficiently that the opportunities for programmer error are reduced
to almost nothing.

So how does the parametricity theorem work? Without getting into too many technical details
(but see Chapter 48 for a full treatment), we can give a brief summary of the main idea. Any
function i : ∀(t.t→ t) in F enjoys the following property:

For any type τ and any property P of the type τ, then if P holds of x : τ, then P holds of
i[τ](x).

To show that for any type τ, and any x of type τ, the expression i[τ](x) is equivalent to x, it suffices
to fix x0 : τ, and consider the property Px0 that holds of y : τ iff y is equivalent to x0. Obviously P
holds of x0 itself, and hence by the above-displayed property of i, it sends any argument satisfying
Px0 to a result satisfying Px0 , which is to say that it sends x0 to x0. Because x0 is an arbitrary
element of τ, it follows that i[τ] is the identity function, λ (x : τ) x, on the type τ, and because τ is
itself arbitrary, i is the polymorphic identity function, Λ(t) λ (x : t) x.
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A similar argument suffices to show that the function b, defined above, is either Λ(t) λ (x : t) λ (y : t) x
or Λ(t) λ (x : t) λ (y : t) y. By virtue of its type the function b enjoys the parametricity property

For any type τ and any property P of τ, if P holds of x : τ and of y : τ, then P holds of
b[τ](x)(y).

Choose an arbitrary type τ and two arbitrary elements x0 and y0 of type τ. Define Qx0,y0 to hold
of z : τ iff either z is equivalent to x0 or z is equivalent to y0. Clearly Qx0,y0 holds of both x0
and y0 themselves, so by the quoted parametricity property of b, it follows that Qx0,y0 holds of
b[τ](x0)(y0), which is to say that it is equivalent to either x0 or y0. Since τ, x0, and y0 are arbitrary,
it follows that b is equivalent to either Λ(t) λ (x : t) λ (y : t) x or Λ(t) λ (x : t) λ (y : t) y.

The parametricity theorem for F implies even stronger properties of functions such as i and
b considered above. For example, the function i of type ∀(t.t→ t) also satisfies the following
condition:

If τ and τ′ are any two types, and R is a binary relation between τ and τ′, then for any x : τ
and x′ : τ′, ifR relates x to x′, thenR relates i[τ](x) to i[τ′](x′).

Using this property we may again prove that i is equivalent to the polymorphic identity function.
Specifically, if τ is any type and g : τ → τ is any function on that type, then it follows from the
type of i alone that i[τ](g(x)) is equivalent to g(i[τ](x)) for any x : τ. To prove this, simply choose
R to the be graph of the function g, the relation Rg that holds of x and x′ iff x′ is equivalent to
g(x). The parametricity property of i, when specialized toRg, states that if x′ is equivalent to g(x),
then i[τ](x′) is equivalent to g(i[τ](x)), which is to say that i[τ](g(x)) is equivalent to g(i[τ](x)).
To show that i is equivalent to the identity function, choose x0 : τ arbitrarily, and consider the
constant function g0 on τ that always returns x0. Because x0 is equivalent to g0(x0), it follows that
i[τ](x0) is equivalent to x0, which is to say that i behaves like the polymorphic identity function.

16.4 Notes

System F was introduced by Girard (1972) in the context of proof theory and by Reynolds (1974)
in the context of programming languages. The concept of parametricity was originally isolated
by Strachey, but was not fully developed until the work of Reynolds (1983). The phrase “free
theorems” for parametricity theorems was introduced by Wadler (1989).

Exercises

16.1. Give polymorphic definitions and types to the s and k combinators defined in Exercise 3.1.

16.2. Define in F the type bool of Church booleans. Define the type bool, and define true and false

of this type, and the conditional if e then e0 else e1, where e is of this type.

16.3. Define in F the inductive type of lists of natural numbers as defined in Chapter 15. Hint:
Define the representation in terms of the recursor (elimination form) for lists, following the
pattern for defining the type of natural numbers.
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16.4. Define in F an arbitrary inductive type, µ(t.τ). Hint: generalize your answer to Exercise 16.3.

16.5. Define the type t list as in Exercise 16.3, with the element type, t, unspecified. Define the
finite set of elements of a list l to be those x given by the head of some number of tails of l.
Now suppose that f : ∀(t.t list→ t list) is an arbitrary function of the stated type. Show
that the elements of f [τ](l) are a subset of those of l. Thus f may only permute, replicate, or
drop elements from its input list to obtain its output list.
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Chapter 17

Abstract Types

Data abstraction is perhaps the most important technique for structuring programs. The main
idea is to introduce an interface that serves as a contract between the client and the implementor
of an abstract type. The interface specifies what the client may rely on for its own work, and,
simultaneously, what the implementor must provide to satisfy the contract. The interface serves to
isolate the client from the implementor so that each may be developed in isolation from the other.
In particular one implementation can be replaced by another without affecting the behavior of the
client, provided that the two implementations meet the same interface and that each simulates
the other with respect to the operations of the interface. This property is called representation
independence for an abstract type.

Data abstraction is formalized by extending the language F with existential types. Interfaces
are existential types that provide a collection of operations acting on an unspecified, or abstract,
type. Implementations are packages, the introduction form for existential types, and clients are
uses of the corresponding elimination form. It is remarkable that the programming concept of
data abstraction is captured so naturally and directly by the logical concept of existential type
quantification. Existential types are closely connected with universal types, and hence are often
treated together. The superficial reason is that both are forms of type quantification, and hence
both require the machinery of type variables. The deeper reason is that existential types are de-
finable from universals — surprisingly, data abstraction is actually just a form of polymorphism!
Consequently, representation independence is an application of the parametricity properties of
polymorphic functions discussed in Chapter 16.

17.1 Existential Types

The syntax of FE extends F with the following constructs:

Typ τ ::= some(t.τ) ∃(t.τ) interface
Exp e ::= pack{t.τ}{ρ}(e) pack ρ with e as ∃(t.τ) implementation

open{t.τ}{ρ}(e1; t, x.e2) open e1 as t with x:τ in e2 client



PREVIE
W

150 17.1 Existential Types

The introduction form ∃(t.τ) is a package of the form pack ρ with e as ∃(t.τ), where ρ is a type
and e is an expression of type [ρ/t]τ. The type ρ is the representation type of the package, and
the expression e is the implementation of the package. The elimination form is the expression
open e1 as t with x:τ in e2, which opens the package e1 for use within the client e2 by binding its
representation type to t and its implementation to x for use within e2. Crucially, the typing rules
ensure that the client is type-correct independently of the actual representation type used by the
implementor, so that it can be varied without affecting the type correctness of the client.

The abstract syntax of the open construct specifies that the type variable t and the expression
variable x are bound within the client. They may be renamed at will by α-equivalence without
affecting the meaning of the construct, provided, of course, that the names do not conflict with
any others in scope. In other words the type t is a “new” type, one that is distinct from all other
types, when it is introduced. This principle is sometimes called generativity of abstract types: the
use of an abstract type by a client “generates” a “new” type within that client. This behavior relies
on the identification covnention stated in Chapter 1.

17.1.1 Statics

The statics of FE is given by these rules:

∆, t type ` τ type

∆ ` some(t.τ) type
(17.1a)

∆ ` ρ type ∆, t type ` τ type ∆ Γ ` e : [ρ/t]τ
∆ Γ ` pack{t.τ}{ρ}(e) : some(t.τ)

(17.1b)

∆ Γ ` e1 : some(t.τ) ∆, t type Γ, x : τ ` e2 : τ2 ∆ ` τ2 type

∆ Γ ` open{t.τ}{τ2}(e1; t, x.e2) : τ2
(17.1c)

Rule (17.1c) is complex, so study it carefully! There are two important things to notice:

1. The type of the client, τ2, must not involve the abstract type t. This restriction prevents
the client from attempting to export a value of the abstract type outside of the scope of its
definition.

2. The body of the client, e2, is type checked without knowledge of the representation type, t.
The client is, in effect, polymorphic in the type variable t.

Lemma 17.1 (Regularity). Suppose that ∆ Γ ` e : τ. If ∆ ` τi type for each xi : τi in Γ, then ∆ ` τ type.

Proof. By induction on rules (17.1), using substitution for expressions and types.

17.1.2 Dynamics

The dynamics of FE is defined by the following rules (including the bracketed material for an
eager interpretation, and omitting it for a lazy interpretation):

[e val]

pack{t.τ}{ρ}(e) val
(17.2a)
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[
e 7−→ e′

pack{t.τ}{ρ}(e) 7−→ pack{t.τ}{ρ}(e′)

]
(17.2b)

e1 7−→ e′1
open{t.τ}{τ2}(e1; t, x.e2) 7−→ open{t.τ}{τ2}(e′1; t, x.e2)

(17.2c)

[e val]

open{t.τ}{τ2}(pack{t.τ}{ρ}(e); t, x.e2) 7−→ [ρ, e/t, x]e2
(17.2d)

It is important to see that, according to these rules, there are no abstract types at run time! The rep-
resentation type is propagated to the client by substitution when the package is opened, thereby
eliminating the abstraction boundary between the client and the implementor. Thus, data abstrac-
tion is a compile-time discipline that leaves no traces of its presence at execution time.

17.1.3 Safety

Safety of FE is stated and proved by decomposing it into progress and preservation.

Theorem 17.2 (Preservation). If e : τ and e 7−→ e′, then e′ : τ.

Proof. By rule induction on e 7−→ e′, using substitution for both expression- and type variables.

Lemma 17.3 (Canonical Forms). If e : some(t.τ) and e val, then e = pack{t.τ}{ρ}(e′) for some type ρ
and some e′ such that e′ : [ρ/t]τ.

Proof. By rule induction on the statics, using the definition of closed values.

Theorem 17.4 (Progress). If e : τ then either e val or there exists e′ such that e 7−→ e′.

Proof. By rule induction on e : τ, using the canonical forms lemma.

17.2 Data Abstraction

To illustrate the use of FE, we consider an abstract type of queues of natural numbers supporting
three operations:

1. Forming the empty queue.

2. Inserting an element at the tail of the queue.

3. Removing the head of the queue, which is assumed non-empty.

This is clearly a bare-bones interface, but suffices to illustrate the main ideas of data abstraction.
Queue elements are natural numbers, but nothing depends on this choice.

The crucial property of this description is that nowhere do we specify what queues actually
are, only what we can do with them. The behavior of a queue is expressed by the existential type
∃(t.τ) which serves as the interface of the queue abstraction:

∃(t.〈emp ↪→ t, ins ↪→ nat× t→ t, rem ↪→ t→ (nat× t) opt〉).
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The representation type t of queues is abstract — all that is known about it is that it supports the
operations emp, ins, and rem, with the given types.

An implementation of queues consists of a package specifying the representation type, together
with the implementation of the associated operations in terms of that representation. Internally
to the implementation, the representation of queues is known and relied upon by the operations.
Here is a very simple implementation el in which queues are represented as lists:

pack natlist with 〈emp ↪→ nil, ins ↪→ ei, rem ↪→ er〉 as ∃(t.τ),

where
ei : nat× natlist→ natlist = λ (x : nat× natlist) . . .,

and
er : natlist→ nat× natlist = λ (x : natlist) . . ..

The elided body of ei conses the first component of x, the element, onto the second component of
x, the queue, and the elided body of er reverses its argument, and returns the head element paired
with the reversal of the tail. Both of these operations “know” that queues are represented as values
of type natlist, and are programmed accordingly.

It is also possible to give another implementation ep of the same interface ∃(t.τ), but in which
queues are represented as pairs of lists, consisting of the “back half” of the queue paired with the
reversal of the “front half”. This two-part representation avoids the need for reversals on each call,
and, as a result, achieves amortized constant-time behavior:

pack natlist× natlist with 〈emp ↪→ 〈nil, nil〉, ins ↪→ ei, rem ↪→ er〉 as ∃(t.τ).

In this case ei has type

nat× (natlist× natlist)→ (natlist× natlist),

and er has type
(natlist× natlist)→ nat× (natlist× natlist).

These operations “know” that queues are represented as values of type natlist× natlist, and
are implemented accordingly.

The important point is that the same client type checks regardless of which implementation
of queues we choose, because the representation type is hidden, or held abstract, from the client
during type checking. Consequently, it cannot rely on whether it is natlist or natlist× natlist

or some other type. That is, the client is independent of the representation of the abstract type.

17.3 Definability of Existential Types

The language FE is not a proper extension of F, because existential types (under a lazy dynamics)
are definable in terms of universal types. Why should this be possible? Note that the client of an
abstract type is polymorphic in the representation type. The typing rule for

open e1 as t with x:τ in e2 : τ2,
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where e1 : ∃(t.τ), specifies that e2 : τ2 under the assumptions t type and x : τ. In essence, the client
is a polymorphic function of type

∀(t.τ → τ2),

where t may occur in τ (the type of the operations), but not in τ2 (the type of the result).
This suggests the following encoding of existential types:

∃(t.τ) , ∀(u.∀(t.τ → u)→ u)

pack ρ with e as ∃(t.τ) , Λ(u) λ (x : ∀(t.τ → u)) x[ρ](e)

open e1 as t with x:τ in e2 , e1[τ2](Λ(t) λ (x : τ) e2)

An existential is encoded as a polymorphic function taking the overall result type u as argument,
followed by a polymorphic function representing the client with result type u, and yielding a
value of type u as overall result. Consequently, the open construct simply packages the client as
such a polymorphic function, instantiates the existential at the result type, τ2, and applies it to the
polymorphic client. (The translation therefore depends on knowing the overall result type τ2 of
the open construct.) Finally, a package consisting of a representation type ρ and an implementation
e is a polymorphic function that, when given the result type u and the client x instantiates x with
ρ and passes to it the implementation e.

17.4 Representation Independence

An important consequence of parametricity is that it ensures that clients are insensitive to the
representations of abstract types. More precisely, there is a criterion, bisimilarity, for relating two
implementations of an abstract type such that the behavior of a client is unaffected by swapping
one implementation by another that is bisimilar to it. This principle leads to a simple method for
proving the correctness of candidate implementation of an abstract type, which is to show that it
is bisimilar to an obviously correct reference implementation of it. Because the candidate and the
reference implementations are bisimilar, no client may distinguish them from one another, and
hence if the client behaves properly with the reference implementation, then it must also behave
properly with the candidate.

To derive the definition of bisimilarity of implementations, it is helpful to examine the defini-
tion of existential types in terms of universals given in Section 17.3. It is immediately clear that
the client of an abstract type is polymorphic in the representation of the abstract type. A client
c of an abstract type ∃(t.τ) has type ∀(t.τ → τ2), where t does not occur free in τ2 (but may, of
course, occur in τ). Applying the parametricity property described informally in Chapter 16 (and
developed rigorously in Chapter 48), this says that if R is a bisimulation relation between any two
implementations of the abstract type, then the client behaves identically on them. The fact that t
does not occur in the result type ensures that the behavior of the client is independent of the choice
of relation between the implementations, provided that this relation is preserved by the operations
that implement it.
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Explaining what is a bisimulation is best done by example. Consider the existential type ∃(t.τ),
where τ is the labeled tuple type

〈emp ↪→ t, ins ↪→ nat× t→ t, rem ↪→ t→ (nat× t) opt〉.

This specifies an abstract type of queues. The operations emp, ins, and rem specify, respectively, the
empty queue, an insert operation, and a remove operation. For the sake of simplicity the element
type is the type of natural numbers. The result of removal is an optional pair, according to whether
the queue is empty or not.

Theorem 48.12 ensures that if ρ and ρ′ are any two closed types, and if R is a relation between
expressions of these two types, then if the implementations e : [ρ/x]τ and e′ : [ρ′/x]τ respect R,
then c[ρ]e behaves the same as c[ρ′]e′. It remains to define when two implementations respect the
relation R. Let

e , 〈emp ↪→ em, ins ↪→ ei, rem ↪→ er〉
and

e′ , 〈emp ↪→ e′m, ins ↪→ e′i , rem ↪→ e′r〉.
For these implementations to respect R means that the following three conditions hold:

1. The empty queues are related: R(em, e′m).

2. Inserting the same element on each of two related queues yields related queues: if d : τ and
R(q, q′), then R(ei(d)(q), e′i(d)(q

′)).

3. If two queues are related, then either they are both empty, or their front elements are the
same and their back elements are related: if R(q, q′), then either

(a) er(q) ∼= null ∼= e′r(q′), or

(b) er(q) ∼= just(〈d, r〉) and e′r(q′) ∼= just(〈d′, r′〉), with d ∼= d′ and R(r, r′).

If such a relation R exists, then the implementations e and e′ are bisimilar. The terminology stems
from the requirement that the operations of the abstract type preserve the relation: if it holds
before an operation is performed, then it must also hold afterwards, and the relation must hold for
the initial state of the queue. Thus each implementation simulates the other up to the relationship
specified by R.

To see how this works in practice, let us consider informally two implementations of the ab-
stract type of queues defined earlier. For the reference implementation we choose ρ to be the type
natlist, and define the empty queue to be the empty list, define insert to add the given element
to the head of the list, and define remove to remove the last element of the list. The code is as
follows:

t , natlist

emp , nil

ins , λ (x : nat) λ (q : t) cons(x; q)

rem , λ (q : t) case rev(q) {nil ↪→ null | cons( f ; qr) ↪→ just(〈 f , rev(qr)〉)}.
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Removing an element takes time linear in the length of the list, because of the reversal.
For the candidate implementation we choose ρ′ to be the type natlist× natlist of pairs of

lists 〈b, f 〉 in which b is the “back half” of the queue, and f is the reversal of the “front half” of the
queue. For this representation we define the empty queue to be a pair of empty lists, define insert
to extend the back with that element at the head, and define remove based on whether the front
is empty or not. If it is non-empty, the head element is removed from it, and returned along with
the pair consisting of the back and the tail of the front. If it is empty, and the back is not, then we
reverse the back, remove the head element, and return the pair consisting of the empty list and the
tail of the now-reversed back. The code is as follows:

t , natlist× natlist

emp , 〈nil, nil〉
ins , λ (x : nat) λ (〈bs, f s〉 : t) 〈cons(x; bs), f s〉
rem , λ (〈bs, f s〉 : t) case f s {nil ↪→ e | cons( f ; f s′) ↪→ 〈bs, f s′〉}, where

e , case rev(bs) {nil ↪→ null | cons(b; bs′) ↪→ just(〈b, 〈nil, bs′〉〉)}.

The cost of the occasional reversal is amortized across the sequence of inserts and removes to show
that each operation in a sequence costs unit time overall.

To show that the candidate implementation is correct, we show that it is bisimilar to the
reference implementation. To do so, we specify a relation R between the types natlist and
natlist × natlist such that the two implementations satisfy the three simulation conditions
given earlier. The required relation states that R(l, 〈b, f 〉) iff the list l is the list app(b)(rev( f )),
where app is the evident append function on lists. That is, thinking of l as the reference represen-
tation of the queue, the candidate must ensure that the elements of b followed by the elements of f
in reverse order form precisely the list l. It is easy to check that the implementations just described
preserve this relation. Having done so, we are assured that the client c behaves the same regard-
less of whether we use the reference or the candidate. Because the reference implementation is
obviously correct (albeit inefficient), the candidate must also be correct in that the behavior of any
client is not affected by using it instead of the reference.

17.5 Notes

The connection between abstract types in programming languages and existential types in logic
was made by Mitchell and Plotkin (1988). Closely related ideas were already present in Reynolds
(1974), but the connection with existential types was not explicitly drawn there. The present for-
mulation of representation independence follows closely Mitchell (1986).

Exercises

17.1. Show that the statics and dynamics of existential types are correctly simulated using the
interpretation given in Section 17.3.
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17.2. Define in FE of the coinductive type of streams of natural numbers as defined in Chapter 15.
Hint: Define the representation in terms of the generator (introduction form) for streams.

17.3. Define in FE an arbitrary coinductive type ν(t.τ). Hint: generalize your answer to Exer-
cise 17.2.

17.4. Representation independence for abstract types is a corollary of the parametricity theorem
for polymorphic types, using the interpretation of FE in F given in Section 17.3. Recast
the proof of equivalence of the two implementations of queues given in Section 17.4 as an
instance of parametricity as defined informally in Chapter 16.
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Chapter 19

System PCF of Recursive Functions

We introduced the language T as a basis for discussing total computations, those for which the
type system guarantees termination. The language M generalizes T to admit inductive and coin-
ductive types, while preserving totality. In this chapter we introduce PCF as a basis for discussing
partial computations, those that may not terminate when evaluated, even when they are well-
typed. At first blush this may seem like a disadvantage, but as we shall see in Chapter 20 it admits
greater expressive power than is possible in T.

The source of partiality in PCF is the concept of general recursion, which permits the solution
of equations between expressions. The price for admitting solutions to all such equations is that
computations may not terminate—the solution to some equations might be undefined (divergent).
In PCF the programmer must make sure that a computation terminates; the type system does not
guarantee it. The advantage is that the termination proof need not be embedded into the code
itself, resulting in shorter programs.

For example, consider the equations

f (0) , 1

f (n + 1) , (n + 1)× f (n).

Intuitively, these equations define the factorial function. They form a system of simultaneous
equations in the unknown f which ranges over functions on the natural numbers. The function
we seek is a solution to these equations—a specific function f : N → N such that the above
conditions are satisfied.

A solution to such a system of equations is a fixed point of an associated functional (higher-
order function). To see this, let us re-write these equations in another form:

f (n) ,

{
1 if n = 0
n× f (n′) if n = n′ + 1.
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Re-writing yet again, we seek f given by

n 7→
{

1 if n = 0
n× f (n′) if n = n′ + 1.

Now define the functional F by the equation F( f ) = f ′, where f ′ is given by

n 7→
{

1 if n = 0
n× f (n′) if n = n′ + 1.

Note well that the condition on f ′ is expressed in terms of f , the argument to the functional F, and
not in terms of f ′ itself! The function f we seek is a fixed point of F, a function f : N → N such
that f = F( f ). In other words e is defined to be fix(F), where fix is a higher-order operator on
functionals F that computes a fixed point for it.

Why should an operator such as F have a fixed point? The key is that functions in PCF are
partial, which means that they may diverge on some (or even all) inputs. Consequently, a fixed
point of a functional F is the limit of a series of approximations of the desired solution obtained
by iterating F. Let us say that a partial function φ on the natural numbers, is an approximation to
a total function f if φ(m) = n implies that f (m) = n. Let ⊥: N ⇀ N be the totally undefined
partial function—⊥(n) is undefined for every n ∈ N. This is the “worst” approximation to the
desired solution f of the recursion equations given above. Given any approximation φ of f , we
may “improve” it to φ′ = F(φ). The partial function φ′ is defined on 0 and on m + 1 for every
m ≥ 0 on which φ is defined. Continuing, φ′′ = F(φ′) = F(F(φ)) is an improvement on φ′, and
hence a further improvement on φ. If we start with ⊥ as the initial approximation to f , then pass
to the limit

lim
i≥0

F(i)(⊥),

we will obtain the least approximation to f that is defined for every m ∈ N, and hence is the
function f itself. Turning this around, if the limit exists, it is the solution we seek.

Because this construction works for any functional F, we conclude that all such operators have
fixed points, and hence that all systems of equations such as the one given above have solutions.
The solution is given by general recursion, but there is no guarantee that it is a total function
(defined on all elements of its domain). For the above example it happens to be true, because we
can prove by induction that this is so, but in general the solution is a partial function that may
diverge on some inputs. It is our task as programmers to ensure that the functions defined by
general recursion are total, or at least that we have a grasp of those inputs for which it is well-
defined.
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19.1 Statics

The syntax of PCF is given by the following grammar:

Typ τ ::= nat nat naturals
parr(τ1; τ2) τ1 ⇀ τ2 partial function

Exp e ::= x x variable
z z zero
s(e) s(e) successor
ifz{e0; x.e1}(e) ifz e {z ↪→ e0 | s(x) ↪→ e1} zero test
lam{τ}(x.e) λ (x : τ) e abstraction
ap(e1; e2) e1(e2) application
fix{τ}(x.e) fix x : τ is e recursion

The expression fix{τ}(x.e) is general recursion; it is discussed in more detail below. The expression
ifz{e0; x.e1}(e) branches according to whether e evaluates to z or not, binding the predecessor to
x in the case that it is not.

The statics of PCF is inductively defined by the following rules:

Γ, x : τ ` x : τ
(19.1a)

Γ ` z : nat
(19.1b)

Γ ` e : nat
Γ ` s(e) : nat (19.1c)

Γ ` e : nat Γ ` e0 : τ Γ, x : nat ` e1 : τ

Γ ` ifz{e0; x.e1}(e) : τ
(19.1d)

Γ, x : τ1 ` e : τ2

Γ ` lam{τ1}(x.e) : parr(τ1; τ2)
(19.1e)

Γ ` e1 : parr(τ2; τ) Γ ` e2 : τ2

Γ ` ap(e1; e2) : τ
(19.1f)

Γ, x : τ ` e : τ

Γ ` fix{τ}(x.e) : τ
(19.1g)

Rule (19.1g) reflects the self-referential nature of general recursion. To show that fix{τ}(x.e) has
type τ, we assume that it is the case by assigning that type to the variable x, which stands for the
recursive expression itself, and checking that the body, e, has type τ under this very assumption.

The structural rules, including in particular substitution, are admissible for the static semantics.

Lemma 19.1. If Γ, x : τ ` e′ : τ′, Γ ` e : τ, then Γ ` [e/x]e′ : τ′.
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19.2 Dynamics

The dynamic semantics of PCF is defined by the judgments e val, specifying the closed values, and
e 7−→ e′, specifying the steps of evaluation.

The judgment e val is defined by the following rules:

z val
(19.2a)

[e val]

s(e) val
(19.2b)

lam{τ}(x.e) val
(19.2c)

The bracketed premise on rule (19.2b) is included for the eager interpretation of the successor oper-
ation, and omitted for the lazy interpretation. (See Chapter 36 for a further discussion of laziness.)

The transition judgment e 7−→ e′ is defined by the following rules:[
e 7−→ e′

s(e) 7−→ s(e′)

]
(19.3a)

e 7−→ e′

ifz{e0; x.e1}(e) 7−→ ifz{e0; x.e1}(e′)
(19.3b)

ifz{e0; x.e1}(z) 7−→ e0
(19.3c)

s(e) val

ifz{e0; x.e1}(s(e)) 7−→ [e/x]e1
(19.3d)

e1 7−→ e′1
ap(e1; e2) 7−→ ap(e′1; e2)

(19.3e)[
e1 val e2 7−→ e′2

ap(e1; e2) 7−→ ap(e1; e′2)

]
(19.3f)

[e2 val]

ap(lam{τ}(x.e); e2) 7−→ [e2/x]e
(19.3g)

fix{τ}(x.e) 7−→ [fix{τ}(x.e)/x]e
(19.3h)

The bracketed rule (19.3a) is included for an eager interpretation of the successor, and omitted
otherwise. Bracketed rule (19.3f) and the bracketed premise on rule (19.3g) are included for a
call-by-value interpretation, and omitted for a call-by-name interpretation, of function applica-
tion. Rule (19.3h) implements self-reference by substituting the recursive expression itself for the
variable x in its body; this is called unwinding the recursion.
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Theorem 19.2 (Safety).

1. If e : τ and e 7−→ e′, then e′ : τ.

2. If e : τ, then either e val or there exists e′ such that e 7−→ e′.

Proof. The proof of preservation is by induction on the derivation of the transition judgment.
Consider rule (19.3h). Suppose that fix{τ}(x.e) : τ. By inversion and substitution we have
[fix{τ}(x.e)/x]e : τ, as required. The proof of progress proceeds by induction on the deriva-
tion of the typing judgment. For example, for rule (19.1g) the result follows because we may make
progress by unwinding the recursion.

It is easy to check that if e val, then e is irreducible in that there is no e′ such that e 7−→ e′. The
safety theorem implies the converse, that an irreducible expression is a value, provided that it is
closed and well-typed.

Definitional equality for the call-by-name variant of PCF, written Γ ` e1 ≡ e2 : τ, is the
strongest congruence containing the following axioms:

Γ ` ifz{e0; x.e1}(z) ≡ e0 : τ
(19.4a)

Γ ` ifz{e0; x.e1}(s(e)) ≡ [e/x]e1 : τ
(19.4b)

Γ ` fix{τ}(x.e) ≡ [fix{τ}(x.e)/x]e : τ
(19.4c)

Γ ` ap(lam{τ1}(x.e2); e1) ≡ [e1/x]e2 : τ
(19.4d)

These rules suffice to calculate the value of any closed expression of type nat: if e : nat, then
e ≡ n : nat iff e 7−→∗ n.

19.3 Definability

Let us write fun x(y:τ1):τ2 is e for a recursive function within whose body, e : τ2, are bound two
variables, y : τ1 standing for the argument and x : τ1 ⇀ τ2 standing for the function itself. The
dynamic semantics of this construct is given by the axiom

(fun x(y:τ1):τ2 is e)(e1) 7−→ [fun x(y:τ1):τ2 is e, e1/x, y]e
.

That is, to apply a recursive function, we substitute the recursive function itself for x and the
argument for y in its body.
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Recursive functions are defined in PCF using recursive functions, writing

fix x : τ1 ⇀ τ2 isλ (y : τ1) e

for fun x(y:τ1):τ2 is e. We may easily check that the static and dynamic semantics of recursive
functions are derivable from this definition.

The primitive recursion construct of T is defined in PCF using recursive functions by taking
the expression

rec e {z ↪→ e0 | s(x) with y ↪→ e1}
to stand for the application e′(e), where e′ is the general recursive function

fun f (u:nat):τ is ifz u {z ↪→ e0 | s(x) ↪→ [ f (x)/y]e1}.

The static and dynamic semantics of primitive recursion are derivable in PCF using this expansion.
In general, functions definable in PCF are partial in that they may be undefined for some

arguments. A partial (mathematical) function, φ : N ⇀ N, is definable in PCF iff there is an
expression eφ : nat⇀ nat such that φ(m) = n iff eφ(m) ≡ n : nat. So, for example, if φ is the
totally undefined function, then eφ is any function that loops without returning when it is applied.

It is informative to classify those partial functions φ that are definable in PCF. The partial re-
cursive functions are defined to be the primitive recursive functions extended with the minimization
operation: given φ(m, n), define ψ(n) to be the least m ≥ 0 such that (1) for m′ < m, φ(m′, n) is
defined and non-zero, and (2) φ(m, n) = 0. If no such m exists, then ψ(n) is undefined.

Theorem 19.3. A partial function φ on the natural numbers is definable in PCF iff it is partial recursive.

Proof sketch. Minimization is definable in PCF, so it is at least as powerful as the set of partial
recursive functions. Conversely, we may, with some tedium, define an evaluator for expressions of
PCF as a partial recursive function, using Gödel-numbering to represent expressions as numbers.
Therefore PCF does not exceed the power of the set of partial recursive functions.

Church’s Law states that the partial recursive functions coincide with the set of effectively
computable functions on the natural numbers—those that can be carried out by a program written
in any programming language that is or will ever be defined.1 Therefore PCF is as powerful as
any other programming language with respect to the set of definable functions on the natural
numbers.

The universal function φuniv for PCF is the partial function on the natural numbers defined by

φuniv(peq)(m) = n iff e(m) ≡ n : nat.

In contrast to T, the universal function φuniv for PCF is partial (might be undefined for some
inputs). It is, in essence, an interpreter that, given the code peq of a closed expression of type
nat⇀ nat, simulates the dynamic semantics to calculate the result, if any, of applying it to the m,
obtaining n. Because this process may fail to terminate, the universal function is not defined for
all inputs.

1See Chapter 21 for further discussion of Church’s Law.
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By Church’s Law the universal function is definable in PCF. In contrast, we proved in Chap-
ter 9 that the analogous function is not definable in T using the technique of diagonalization. It is
instructive to examine why that argument does not apply in the present setting. As in Section 9.4,
we may derive the equivalence

e∆(pe∆q) ≡ s(e∆(pe∆q))

for PCF. But now, instead of concluding that the universal function, euniv, does not exist as we did
for T, we instead conclude for PCF that euniv diverges on the code for e∆ applied to its own code.

19.4 Finite and Infinite Data Structures

Finite data types (products and sums), including their use in pattern matching and generic pro-
gramming, carry over verbatim to PCF. However, the distinction between the eager and lazy
dynamics for these constructs becomes more important. Rather than being a matter of preference,
the decision to use an eager or lazy dynamics affects the meaning of a program: the “same” types
mean different things in a lazy dynamics than in an eager dynamics. For example, the elements of
a product type in an eager language are pairs of values of the component types. In a lazy language
they are instead pairs of unevaluated, possibly divergent, computations of the component types,
a very different thing indeed. And similarly for sums.

The situation grows more acute for infinite types such as the type nat of “natural numbers.”
The scare quotes are warranted, because the “same” type has a very different meaning under
an eager dynamics than under a lazy dynamics. In the former case the type nat is, indeed, the
authentic type of natural numbers—the least type containing zero and closed under successor.
The principle of mathematical induction is valid for reasoning about the type nat in an eager
dynamics. It corresponds to the inductive type nat defined in Chapter 15.

On the other hand, under a lazy dynamics the type nat is no longer the type of natural numbers
at all. For example, it includes the value

ω , fix x : nat is s(x),

which has itself as predecessor! It is, intuitively, an “infinite stack of successors”, growing without
end. It is clearly not a natural number (it is larger than all of them), so the principle of mathemat-
ical induction does not apply. In a lazy setting nat could be renamed lnat to remind us of the
distinction; it corresponds to the type conat defined in Chapter 15.

19.5 Totality and Partiality

The advantage of a total programming language such as T is that it ensures, by type checking,
that every program terminates, and that every function is total. There is no way to have a well-
typed program that goes into an infinite loop. This prohibition may seem appealing, until one
considers that the upper bound on the time to termination may be large, so large that it might
as well diverge for all practical purposes. But let us grant for the moment that it is a virtue of T
that it precludes divergence. Why, then, bother with a language such as PCF that does not rule
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out divergence? After all, infinite loops are invariably bugs, so why not rule them out by type
checking? The notion seems appealing until one tries to write a program in a language such as T.

Consider the computation of the greatest common divisor (gcd) of two natural numbers. It can
be programmed in PCF by solving the following equations using general recursion:

gcd(m, 0) = m
gcd(0, n) = n

gcd(m, n) = gcd(m− n, n) if m > n
gcd(m, n) = gcd(m, n−m) if m < n

The type of gcd defined this way is (nat× nat)⇀ nat, which suggests that it may not terminate
for some inputs. But we may prove by induction on the sum of the pair of arguments that it is, in
fact, a total function.

Now consider programming this function in T. It is, in fact, programmable using only primi-
tive recursion, but the code to do it is rather painful (try it!). One way to see the problem is that
in T the only form of looping is one that reduces a natural number by one on each recursive call;
it is not (directly) possible to make a recursive call on a smaller number other than the immedi-
ate predecessor. In fact one may code up more general patterns of terminating recursion using
only primitive recursion as a primitive, but if you check the details, you will see that doing so
comes at a price in performance and program complexity. Program complexity can be mitigated
by building libraries that codify standard patterns of reasoning whose cost of development should
be amortized over all programs, not just one in particular. But there is still the problem of perfor-
mance. Indeed, the encoding of more general forms of recursion into primitive recursion means
that, deep within the encoding, there must be a “timer” that goes down by ones to ensure that the
program terminates. The result will be that programs written with such libraries will be slower
than necessary.

But, one may argue, T is simply not a serious language. A more serious total programming
language would admit sophisticated patterns of control without performance penalty. Indeed, one
could easily envision representing the natural numbers in binary, rather than unary, and allowing
recursive calls by halving to get logarithmic complexity. Such a formulation is possible, as would
be quite a number of analogous ideas that avoid the awkwardness of programming in T. Could
we not then have a practical language that rules out divergence?

We can, but at a cost. We have already seen one limitation of total programming languages:
they are not universal. You cannot write an interpreter for T within T, and this limitation extends
to any total language whatever. If this does not seem important, then consider the Blum Size
Theorem (BST), which places another limitation on total languages. Fix any total language L that
permits writing functions on the natural numbers. Pick any blowup factor, say 22n

. The BST states
that there is a total function on the natural numbers that is programmable in L, but whose shortest
program in L is larger by the given blowup factor than its shortest program in PCF!

The underlying idea of the proof is that in a total language the proof of termination of a program must
be baked into the code itself, whereas in a partial language the termination proof is an external verification
condition left to the programmer. There are, and always will be, programs whose termination proof
is rather complicated to express, if you fix in advance the means of proving it total. (In T it was
primitive recursion, but one can be more ambitious, yet still get caught by the BST.) But if you



PREVIE
W

19.6 Notes 173

leave room for ingenuity, then programs can be short, because they do not have to embed the
proof of their termination in their own running code.

19.6 Notes

The solution to recursion equations described here is based on Kleene’s fixed point theorem for
complete partial orders, specialized to the approximation ordering of partial functions. The lan-
guage PCF is derived from Plotkin (1977) as a laboratory for the study of semantics of program-
ming languages. Many authors have used PCF as the subject of study of many problems in se-
mantics. It has thereby become the E. coli of programming languages.

Exercises

19.1. Consider the problem considered in Section 10.3 of how to define the mutually recursive
“even” and “odd” functions. There we gave a solution in terms of primitive recursion. You
are, instead, to give a solution in terms of general recursion. Hint: consider that a pair of
mutually recursive functions is a recursive pair of functions.

19.2. Show that minimization, as explained before the statement of Theorem 19.3, is definable in
PCF.

19.3. Consider the partial function φhalts such that if e : nat⇀ nat, then φhalts(peq) evaluates to
zero iff e(peq) converges, and evaluates to one otherwise. Prove that φhalts is not definable in
PCF.

19.4. Suppose that we changed the specification of minimization given prior to Theorem 19.3 so
that ψ(n) is the least m such that φ(m, n) = 0, and is undefined if no such m exists. Is this
“simplified” form of minimization definable in PCF?

19.5. Suppose that we wished to define, in the lazy variant of PCF, a version of the parallel or
function specified a function of two arguments that returns z if either of its arguments is
z, and s(z) otherwise. That is, we wish to find an expression e satisfying the following
properties:

e(e1)(e2) 7−→∗ z if e1 7−→∗ z
e(e1)(e2) 7−→∗ z if e2 7−→∗ z
e(e1)(e2) 7−→∗ s(z) otherwise

Thus, e defines a total function of its two arguments, even if one of the arguments diverges.
Clearly such a function cannot be defined in the call-by-value variant of PCF, but can it be
defined in the call-by-name variant? If so, show how; if not, prove that it cannot be, and
suggest an extension of PCF that would allow it to be defined.
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19.6. We appealed to Church’s Law to argue that the universal function for PCF is definable in
PCF. See what is behind this claim by considering two aspects of the problem: (1) Gödel-
numbering, the representation of abstract syntax by a number; (2) evaluation, the process of
interpreting a function on its inputs. Part (1) is a technical issue arising from the limited data
structures available in PCF. Part (2) is the heart of the matter; explore its implementation in
terms of a solution to Part (1).
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Chapter 20

System FPC of Recursive Types

In this chapter we study FPC, a language with products, sums, partial fucntions, and recursive
types. Recursive types are solutions to type equations t ∼= τ where there is no restriction on where
t may occur in τ. Equivalently, a recursive type is a fixed point up to isomorphism of the associated
unrestricted type operator t.τ. By removing the restrictions on the type operator we may consider
the solution of a type equation such as t ∼= t ⇀ t, which describes a type that is isomorphic to the
type of partial functions defined on itself. If types were sets, such an equation could not be solved,
because there are more partial functions on a set than there are elements of that set. But types are
not sets: they classify computable functions, not arbitrary functions. With types we may solve such
“dubious” type equations, even though we cannot expect to do so with sets. The penalty is that
we must admit non-termination. For one thing, type equations involving functions have solutions
only if the functions involved are partial.

A benefit of working in the setting of partial functions is that type equations have unique so-
lutions (up to isomorphism). Therefore it makes sense, as we shall do in this chapter, to speak of
the solution to a type equation. But what about the distinct solutions to a type equation given in
Chapter 15? These turn out to coincide for any fixed dynamics, but give rise to different solutions
according to whether the dynamics is eager or lazy (as illustrated in Section 19.4 for the special
case of the natural numbers). Under a lazy dynamics (where all constructs are evaluated lazily),
recursive types have a coinductive flavor, and the inductive analogs are inaccessible. Under an
eager dynamics (where all constructs are evaluated eagerly), recursive types have an inductive
flavor. But the coinductive analogs are accessible as well, using function types to selectively im-
pose laziness. It follows that the eager dynamics is more expressive than the lazy dynamics, because
it is impossible to go the other way around (one cannot define inductive types in a lazy language).

20.1 Solving Type Equations

The language FPC has products, sums, and partial functions inherited from the preceding de-
velopment, extended with the new concept of recursive types. The syntax of recursive types is
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defined as follows:

Typ τ ::= t t self-reference
rec(t.τ) rec t is τ recursive type

Exp e ::= fold{t.τ}(e) fold(e) fold
unfold(e) unfold(e) unfold

The subscript on the concrete syntax of fold is often omitted when it is clear from context.
Recursive types have the same general form as the inductive and coinductive types discussed

in Chapter 15, but without restriction on the type operator involved. Recursive type are formed
according to the rule:

∆, t type ` τ type

∆ ` rec(t.τ) type
(20.1)

The statics of folding and unfolding is given by the following rules:

Γ ` e : [rec(t.τ)/t]τ
Γ ` fold{t.τ}(e) : rec(t.τ)

(20.2a)

Γ ` e : rec(t.τ)
Γ ` unfold(e) : [rec(t.τ)/t]τ

(20.2b)

The dynamics of folding and unfolding is given by these rules:

[e val]

fold{t.τ}(e) val
(20.3a)

[
e 7−→ e′

fold{t.τ}(e) 7−→ fold{t.τ}(e′)

]
(20.3b)

e 7−→ e′

unfold(e) 7−→ unfold(e′)
(20.3c)

fold{t.τ}(e) val

unfold(fold{t.τ}(e)) 7−→ e
(20.3d)

The bracketed premise and rule are included for an eager interpretation of the introduction form,
and omitted for a lazy interpretation. As mentioned in the introduction, the choice of eager or lazy
dynamics affects the meaning of recursive types.

Theorem 20.1 (Safety). 1. If e : τ and e 7−→ e′, then e′ : τ.

2. If e : τ, then either e val, or there exists e′ such that e 7−→ e′.
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20.2 Inductive and Coinductive Types

Recursive types may be used to represent inductive types such as the natural numbers. Using an
eager dynamics for FPC, the recursive type

ρ = rec t is [z ↪→ unit, s ↪→ t]

satisfies the type equation
ρ ∼= [z ↪→ unit, s ↪→ ρ],

and is isomorphic to the type of eager natural numbers. The introduction and elimination forms
are defined on ρ by the following equations:1

z , fold(z · 〈〉)
s(e) , fold(s · e)

ifz e {z ↪→ e0 | s(x) ↪→ e1} , case unfold(e) {z · ↪→ e0 | s · x ↪→ e1}.

It is a good exercise to check that the eager dynamics of natural numbers in PCF is correctly
simulated by these definitions.

On the other hand, under a lazy dynamics for FPC, the same recursive type ρ′,

rec t is [z ↪→ unit, s ↪→ t],

satisfies the same type equation,

ρ′ ∼= [z ↪→ unit, s ↪→ ρ′],

but is not the type of natural numbers! Rather, it is the type lnat of lazy natural numbers intro-
duced in Section 19.4. As discussed there, the type ρ′ contains the “infinite number” ω, which is
of course not a natural number.

Similarly, using an eager dynamics for FPC, the type natlist of lists of natural numbers is
defined by the recursive type

rec t is [n ↪→ unit, c ↪→ nat× t],

which satisfies the type equation

natlist ∼= [n ↪→ unit, c ↪→ nat× natlist].

The list introduction operations are given by the following equations:

nil , fold(n · 〈〉)
cons(e1; e2) , fold(c · 〈e1, e2〉).

1The “underscore” stands for a variable that does not occur free in e0.
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A conditional list elimination form is given by the following equation:

case e {nil ↪→ e0 | cons(x; y) ↪→ e1} , case unfold(e) {n · ↪→ e0 | c · 〈x, y〉 ↪→ e1},

where we have used pattern-matching syntax to bind the components of a pair for the sake of
clarity.

Now consider the same recursive type, but in the context of a lazy dynamics for FPC. What
type is it? If all constructs are lazy, then a value of the recursive type

rec t is [n ↪→ unit, c ↪→ nat× t],

has the form fold(e), where e is an unevaluated computation of the sum type, whose values are
injections of unevaluated computations of either the unit type or of the product type nat× t. And
the latter consists of pairs of an unevaluated computation of a (lazy!) natural number, and an
unevaluated computation of another value of this type. In particular, this type contains infinite
lists whose tails go on without end, as well as finite lists that eventually reach an end. The type is,
in fact, a version of the type of infinite streams defined in Chapter 15, rather than a type of finite
lists as is the case under an eager dynamics.

It is common in textbooks to depict data structures using “box-and-pointer” diagrams. These
work well in the eager setting, provided that no functions are involved. For example, an eager list
of eager natural numbers may be depicted using this notation. We may think of fold as an abstract
pointer to a tagged cell consisting of either (a) the tag n with no associated data, or (b) the tag c

attached to a pair consisting of an authentic natural number and another list, which is an abstract
pointer of the same type. But this notation does not scale well to types involving functions, or to
languages with a lazy dynamics. For example, the recursive type of “lists” in lazy FPC cannot be
depicted using boxes and pointers, because of the unevaluated computations occurring in values
of this type. It is a mistake to limit one’s conception of data structures to those that can be drawn
on the blackboard using boxes and pointers or similar informal notations. There is no substitute
for a programming language to express data structures fully and accurately.

It is deceiving that the “same” recursive type can have two different meanings according to
whether the underlying dynamics is eager or lazy. For example, it is common for lazy languages
to use the name “list” for the recursive type of streams, or the name “nat” for the type of lazy
natural numbers. This terminology is misleading, considering that such languages do not (and
can not) have a proper type of finite lists or a type of natural numbers. Caveat emptor!

20.3 Self-Reference

In the general recursive expression fix{τ}(x.e) the variable x stands for the expression itself. Self-
reference is effected by the unrolling transition

fix{τ}(x.e) 7−→ [fix{τ}(x.e)/x]e,

which substitutes the expression itself for x in its body during execution. It is useful to think of x
as an implicit argument to e that is instantiated to itself when the expression is used. In many well-
known languages this implicit argument has a special name, such as this or self, to emphasize
its self-referential interpretation.
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Using this intuition as a guide, we may derive general recursion from recursive types. This
derivation shows that general recursion may, like other language features, be seen as a manifes-
tation of type structure, instead of as an ad hoc language feature. The derivation isolates a type of
self-referential expressions given by the following grammar:

Typ τ ::= self(τ) τ self self-referential type
Exp e ::= self{τ}(x.e) self x is e self-referential expression

unroll(e) unroll(e) unroll self-reference

The statics of these constructs is given by the following rules:

Γ, x : self(τ) ` e : τ

Γ ` self{τ}(x.e) : self(τ)
(20.4a)

Γ ` e : self(τ)
Γ ` unroll(e) : τ

(20.4b)

The dynamics is given by the following rule for unrolling the self-reference:

self{τ}(x.e) val
(20.5a)

e 7−→ e′

unroll(e) 7−→ unroll(e′)
(20.5b)

unroll(self{τ}(x.e)) 7−→ [self{τ}(x.e)/x]e
(20.5c)

The main difference, compared to general recursion, is that we distinguish a type of self-referential
expressions, instead of having self-reference at every type. However, as we shall see, the self-
referential type suffices to implement general recursion, so the difference is a matter of taste.

The type self(τ) is definable from recursive types. As suggested earlier, the key is to consider
a self-referential expression of type τ to depend on the expression itself. That is, we seek to define
the type self(τ) so that it satisfies the isomorphism

self(τ) ∼= self(τ)⇀ τ.

We seek a fixed point of the type operator t.t ⇀ τ, where t /∈ τ is a type variable standing for the
type in question. The required fixed point is just the recursive type

rec(t.t ⇀ τ),

which we take as the definition of self(τ).
The self-referential expression self{τ}(x.e) is the expression

fold(λ (x : self(τ)) e).
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We may check that rule (20.4a) is derivable according to this definition. The expression unroll(e)
is correspondingly the expression

unfold(e)(e).

It is easy to check that rule (20.4b) is derivable from this definition. Moreover, we may check that

unroll(self{τ}(y.e)) 7−→∗ [self{τ}(y.e)/y]e.

This completes the derivation of the type self(τ) of self-referential expressions of type τ.
The self-referential type self(τ) can be used to define general recursion for any type. We may

define fix{τ}(x.e) to stand for the expression

unroll(self{τ}(y.[unroll(y)/x]e))

where the recursion at each occurrence of x is unrolled within e. It is easy to check that this verifies
the statics of general recursion given in Chapter 19. Moreover, it also validates the dynamics, as
shown by the following derivation:

fix{τ}(x.e) = unroll(self{τ}(y.[unroll(y)/x]e))
7−→∗ [unroll(self{τ}(y.[unroll(y)/x]e))/x]e
= [fix{τ}(x.e)/x]e.

It follows that recursive types can be used to define a non-terminating expression of every type,
fix{τ}(x.x).

20.4 The Origin of State

The concept of state in a computation—which will be discussed in Part XIV—has its origins in
the concept of recursion, or self-reference, which, as we have just seen, arises from the concept of
recursive types. For example, the concept of a flip-flop or a latch is a circuit built from combinational
logic elements (typically, nor or nand gates) that have the characteristic that they maintain an
alterable state over time. An RS latch, for example, maintains its output at the logical level of zero
or one in response to a signal on the R or S inputs, respectively, after a brief settling delay. This
behavior is achieved using feedback, which is just a form of self-reference, or recursion: the output
of the gate feeds back into its input so as to convey the current state of the gate to the logic that
determines its next state.

We can implement an RS latch using recursive types. The idea is to use self-reference to model
the passage of time, with the current output being computed from its input and its previous out-
puts. Specifically, an RS latch is a value of type τrsl given by

rec t is 〈X ↪→ bool, Q ↪→ bool, N ↪→ t〉.

The X and Q components of the latch represent its current outputs (of which Q represents the current
state of the latch), and the N component represents the next state of the latch. If e is of type τrsl,
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then we define e @ X to mean unfold(e) · X, and define e @ Q and e @ N similarly. The expressions
e @ X and e @ Q evaluate to the boolean outputs of the latch e, and e @ N evaluates to another latch
representing its evolution over time based on these inputs.

For given values r and s, a new latch is computed from an old latch by the recursive function
rsl defined as follows:2

fix rsl isλ (l : τrsl) ersl,

where ersl is the expression

fix this is fold(〈X ↪→ enor(〈s, l @ Q〉), Q ↪→ enor(〈r, l @ X〉), N ↪→ rsl(this)〉),

where enor is the obvious binary function on booleans. The outputs of the latch are computed in
terms of the r and s inputs and the outputs of the previous state of the latch. To get the construction
started, we define an initial state of the latch in which the outputs are arbitrarily set to false, and
whose next state is determined by applying the recursive function rsl to that state:

fix this is fold(〈X ↪→ false, Q ↪→ false, N ↪→ rsl(this)〉).

Selection of the N component causes the outputs to be recalculated based on their current values.
Notice the role of self-reference in maintaining the state of the latch.

20.5 Notes

The systematic study of recursive types in programming was initiated by Scott (1976, 1982) to give
a mathematical model of the untyped λ-calculus. The derivation of recursion from recursive types
is an application of Scott’s theory. The category-theoretic view of recursive types was developed
by Wand (1979) and Smyth and Plotkin (1982). Implementing state using self-reference is funda-
mental to digital logic (Ward and Halstead, 1990). The example given in Section 20.4 is inspired
by Cook (2009) and Abadi and Cardelli (1996). The account of signals as streams (explored in the
exercises) is inspired by the pioneering work of Kahn (MacQueen, 2009). The language name FPC
is taken from Gunter (1992).

Exercises

20.1. Show that the recursive type D , rec tis t ⇀ t is non-trivial by interpreting the sk-combinators
defined in Exercise 3.1 into it. Specifically, define elements k : D and s : D and a (left-
associative) “application” function

x : D y : D ` x · y : D

such that
2For convenience we assume that fold is evaluated lazily.
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(a) k · x · y 7−→∗ x;

(b) s · x · y · z 7−→∗ (x · z) · (y · z).

20.2. Recursive types admit the structure of both inductive and coinductive types. Consider the
recursive type τ , rec t is τ′ and the associated inductive and coinductive types µ(t.τ′) and
ν(t.τ′). Complete the following chart consistently with the statics of inductive and coinduc-
tive types on the left-hand side and with the statics of recursive types on the right:

foldt.t opt(e) , fold(e)

rec(x.e′; e) , ?

unfoldt.t opt(e) , unfold(e)

gen(x.e′; e) , ?

Check that the statics is derivable under these definitions. Hint: you will need to use general
recursion on the right to fill in the missing cases. You may also find it useful to use generic
programming.

Now consider the dynamics of these definitions, under both an eager and a lazy interpreta-
tion. What happens in each case?

20.3. Define the type signal of signals to be the coinductive type of infinite streams of booleans
(bits). Define a signal transducer to be a function of type signal⇀ signal. Combinational
logic gates, such as the NOR gate, can be defined as signal transducers. Give a coinductive
definition of the type signal, and define NOR as a signal transducer. Be sure to take account
of the underlying dynamics of PCF.

The passage from combinational to digital logic (circuit elements that maintain state) relies
on self-reference. For example, an RS latch can be built from NOR two nor gates in this way.
Define an RS latch using general recursion and two of the NOR gates just defined.

20.4. The type τrsl given in Section 20.4 above is the type of streams of pairs of booleans. Give
another formulation of an RS latch as a value of type τrsl, but this time using the coinductive
interpretation of the recursive type proposed in Exercise 20.2 (using the lazy dynamics for
FPC). Expand and simplify this definition using your solution to Exercise 20.2, and compare
it with the formulation given in Section 20.4. Hint: the internal state of the stream is a pair of
booleans corresponding to the X and Q outputs of the latch.
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Chapter 21

The Untyped λ-Calculus

In this chapter we study the premier example of a uni-typed programming language, the (untyped)
λ-calculus. This formalism was introduced by Church in the 1930’s as a universal language of com-
putable functions. It is distinctive for its austere elegance. The λ-calculus has but one “feature”,
the higher-order function. Everything is a function, hence every expression may be applied to an
argument, which must itself be a function, with the result also being a function. To borrow a turn
of phrase, in the λ-calculus it’s functions all the way down.

21.1 The λ-Calculus

The abstract syntax of the untyped λ-calculus, called Λ, is given by the following grammar:

Exp u ::= x x variable
λ(x.u) λ (x) u λ-abstraction
ap(u1; u2) u1(u2) application

The statics of Λ is defined by general hypothetical judgments of the form x1 ok, . . . , xn ok `
u ok, stating that u is a well-formed expression involving the variables x1, . . . , xn. (As usual, we
omit explicit mention of the variables when they can be determined from the form of the hypothe-
ses.) This relation is inductively defined by the following rules:

Γ, x ok ` x ok
(21.1a)

Γ ` u1 ok Γ ` u2 ok

Γ ` u1(u2) ok
(21.1b)

Γ, x ok ` u ok

Γ ` λ (x) u ok
(21.1c)
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The dynamics of Λ is given equationally, rather than via a transition system. Definitional equal-
ity for Λ is a judgment of the form Γ ` u ≡ u′, where Γ = x1 ok, . . . , xn ok for some n ≥ 0, and
u and u′ are terms having at most the variables x1, . . . , xn free. It is inductively defined by the
following rules:

Γ, u ok ` u ≡ u
(21.2a)

Γ ` u ≡ u′

Γ ` u′ ≡ u
(21.2b)

Γ ` u ≡ u′ Γ ` u′ ≡ u′′

Γ ` u ≡ u′′
(21.2c)

Γ ` u1 ≡ u′1 Γ ` u2 ≡ u′2
Γ ` u1(u2) ≡ u′1(u

′
2)

(21.2d)

Γ, x ok ` u ≡ u′

Γ ` λ (x) u ≡ λ (x) u′
(21.2e)

Γ, x ok ` u2 ok Γ ` u1 ok

Γ ` (λ (x) u2)(u1) ≡ [u1/x]u2
(21.2f)

We often write just u ≡ u′ when the variables involved need not be emphasized or are clear from
context.

21.2 Definability

Interest in the untyped λ-calculus stems from its surprising expressiveness. It is a Turing-complete
language in the sense that it has the same capability to express computations on the natural num-
bers as does any other known programming language. Church’s Law states that any conceivable
notion of computable function on the natural numbers is equivalent to the λ-calculus. This asser-
tion is true for all known means of defining computable functions on the natural numbers. The
force of Church’s Law is that it postulates that all future notions of computation will be equiv-
alent in expressive power (measured by definability of functions on the natural numbers) to the
λ-calculus. Church’s Law is therefore a scientific law in the same sense as, say, Newton’s Law of
Universal Gravitation, which predicts the outcome of all future measurements of the acceleration
in a gravitational field.1

We will sketch a proof that the untyped λ-calculus is as powerful as the language PCF de-
scribed in Chapter 19. The main idea is to show that the PCF primitives for manipulating the
natural numbers are definable in the untyped λ-calculus. In particular, we must show that the
natural numbers are definable as λ-terms in such a way that case analysis, which discriminates
between zero and non-zero numbers, is definable. The principal difficulty is with computing the
predecessor of a number, which requires a bit of cleverness. Finally, we show how to represent
general recursion, completing the proof.

1It is debatable whether there are any scientific laws in Computer Science. In the opinion of the author, Church’s Law,
which is usually called Church’s Thesis, is a strong candidate for being a scientific law.



PREVIE
W

21.2 Definability 187

The first task is to represent the natural numbers as certain λ-terms, called the Church numerals.

0 , λ (b) λ (s) b (21.3a)

n + 1 , λ (b) λ (s) s(n(b)(s)) (21.3b)

It follows that
n(u1)(u2) ≡ u2(. . . (u2(u1))),

the n-fold application of u2 to u1. That is, n iterates its second argument (the induction step) n
times, starting with its first argument (the basis).

Using this definition it is not difficult to define the basic functions of arithmetic. For example,
successor, addition, and multiplication are defined by the following untyped λ-terms:

succ , λ (x) λ (b) λ (s) s(x(b)(s)) (21.4)

plus , λ (x) λ (y) y(x)(succ) (21.5)

times , λ (x) λ (y) y(0)(plus(x)) (21.6)

It is easy to check that succ(n) ≡ n + 1, and that similar correctness conditions hold for the repre-
sentations of addition and multiplication.

To define ifz{u0; x.u1}(u) requires a bit of ingenuity. The key is to define the “cut-off prede-
cessor”, pred, such that

pred(0) ≡ 0 (21.7)

pred(n + 1) ≡ n. (21.8)

To compute the predecessor using Church numerals, we must show how to compute the result
for n + 1 in terms of its value for n. At first glance this seems simple—just take the successor—
until we consider the base case, in which we define the predecessor of 0 to be 0. This formulation
invalidates the obvious strategy of taking successors at inductive steps, and necessitates some
other approach.

What to do? A useful intuition is to think of the computation in terms of a pair of “shift
registers” satisfying the invariant that on the nth iteration the registers contain the predecessor of
n and n itself, respectively. Given the result for n, namely the pair (n− 1, n), we pass to the result
for n + 1 by shifting left and incrementing to obtain (n, n + 1). For the base case, we initialize the
registers with (0, 0), reflecting the stipulation that the predecessor of zero be zero. To compute the
predecessor of n we compute the pair (n− 1, n) by this method, and return the first component.

To make this precise, we must first define a Church-style representation of ordered pairs.

〈u1, u2〉 , λ ( f ) f (u1)(u2) (21.9)

u · l , u(λ (x) λ (y) x) (21.10)

u · r , u(λ (x) λ (y) y) (21.11)
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It is easy to check that under this encoding 〈u1, u2〉 · l ≡ u1, and that a similar equivalence holds
for the second projection. We may now define the required representation, up, of the predecessor
function:

u′p , λ (x) x(〈0, 0〉)(λ (y) 〈y · r, succ (y · r)〉) (21.12)

up , λ (x) u′p(x) · l (21.13)

It is easy to check that this gives us the required behavior. Finally, define ifz{u0; x.u1}(u) to be
the untyped term

u(u0)(λ ( ) [up(u)/x]u1).

This definition gives us all the apparatus of PCF, apart from general recursion. But general
recursion is also definable in Λ using a fixed point combinator. There are many choices of fixed
point combinator, of which the best known is the Y combinator:

Y , λ (F) (λ ( f ) F( f ( f )))(λ ( f ) F( f ( f ))).

It is easy to check that
Y(F) ≡ F(Y(F)).

Using the Y combinator, we may define general recursion by writing Y(λ (x) u), where x stands for
the recursive expression itself.

Although it is clear that Y as just defined computes a fixed point of its argument, it is probably
less clear why it works or how we might have invented it in the first place. The main idea is quite
simple. If a function is recursive, it is given an extra first argument, which is arranged at call sites
to be the function itself. Whenever we wish to call a self-referential function with an argument,
we apply the function first to itself and then to its argument; this protocol is imposed on both the
“external” calls to the function and on the “internal” calls that the function may make to itself.
For this reason the first argument is often called this or self, to remind you that it will be, by
convention, bound to the function itself.

With this in mind, it is easy to see how to derive the definition of Y. If F is the function whose
fixed point we seek, then the function F′ = λ ( f ) F( f ( f )) is a variant of F in which the self-
application convention has been imposed internally by substituting for each occurrence of f in
F( f ) the self-application f ( f ). Now check that F′(F′) ≡ F(F′(F′)), so that F′(F′) is the desired
fixed point of F. Expanding the definition of F′, we have derived that the desired fixed point of F
is

λ ( f ) F( f ( f ))(λ ( f ) F( f ( f ))).

To finish the derivation, we need only note that nothing depends on the particular choice of F,
which means that we can compute a fixed point for F uniformly in F. That is, we may define a
single function, the term Y as defined above, that computes the fixed point of any F.

21.3 Scott’s Theorem

Scott’s Theorem states that definitional equality for the untyped λ-calculus is undecidable: there is
no algorithm to determine whether or not two untyped terms are definitionally equal. The proof
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uses the concept of inseparability. Any two properties,A0 andA1, of λ-terms are inseparable if there
is no decidable property, B, such that A0 u implies that B u holds, and A1 u implies that B u does
not hold. We say that a property, A, of untyped terms is behavioral iff whenever u ≡ u′, then A u
iff A u′.

The proof of Scott’s Theorem decomposes into two parts:

1. For any untyped λ-term u, we may find an untyped term v such that u(pvq) ≡ v, where pvq
is the Gödel number of v, and pvq is its representation as a Church numeral. (See Chapter 9
for a discussion of Gödel-numbering.)

2. Any two non-trivial2 behavioral properties A0 and A1 of untyped terms are inseparable.

Lemma 21.1. For any u there exists v such that u(pvq) ≡ v.

Proof Sketch. The proof relies on the definability of the following two operations in the untyped
λ-calculus:

1. ap(pu1q)(pu2q) ≡ pu1(u2)q.

2. nm(n) ≡ pnq.

Intuitively, the first takes the representations of two untyped terms, and builds the representation
of the application of one to the other. The second takes a numeral for n, and yields the repre-
sentation of the Church numeral n. Given these, we may find the required term v by defining
v , w(pwq), where w , λ (x) u(ap(x)(nm(x))). We have

v = w(pwq)

≡ u(ap(pwq)(nm(pwq)))

≡ u(pw(pwq)q)

≡ u(pvq).

The definition is very similar to that of Y(u), except that u takes as input the representation of
a term, and we find a v such that, when applied to the representation of v, the term u yields v
itself.

Lemma 21.2. Suppose that A0 and A1 are two non-trivial behavioral properties of untyped terms. Then
there is no untyped term w such that

1. For every u either w(puq) ≡ 0 or w(puq) ≡ 1.

2. If A0 u, then w(puq) ≡ 0.

3. If A1 u, then w(puq) ≡ 1.
2A property of untyped terms is trivial if it either holds for all untyped terms or never holds for any untyped term.
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Proof. Suppose there is such an untyped term w. Let v be the untyped term

λ (x) ifz{u1; .u0}(w(x)),

where u0 and u1 are chosen such that A0 u0 and A1 u1. (Such a choice must exist by non-triviality
of the properties.) By Lemma 21.1 there is an untyped term t such that v(ptq) ≡ t. If w(ptq) ≡ 0,
then t ≡ v(ptq) ≡ u1, and soA1 t, becauseA1 is behavioral andA1 u1. But then w(ptq) ≡ 1 by the
defining properties of w, which is a contradiction. Similarly, if w(ptq) ≡ 1, then A0 t, and hence
w(ptq) ≡ 0, again a contradiction.

Corollary 21.3. There is no algorithm to decide whether u ≡ u′.

Proof. For fixed u, the property Eu u′ defined by u′ ≡ u is a non-trivial behavioral property of
untyped terms. So it is inseparable from its negation, and hence is undecidable.

21.4 Untyped Means Uni-Typed

The untyped λ-calculus can be faithfully embedded in a typed language with recursive types.
Thus every untyped λ-term has a representation as a typed expression in such a way that execution
of the representation of a λ-term corresponds to execution of the term itself. This embedding is
not a matter of writing an interpreter for the λ-calculus in FPC, but rather a direct representation
of untyped λ-terms as typed expressions in a language with recursive types.

The key observation is that the untyped λ-calculus is really the uni-typed λ-calculus. It is not the
absence of types that gives it its power, but rather that it has only one type, the recursive type

D , rec t is t ⇀ t.

A value of type D is of the form fold(e) where e is a value of type D ⇀ D — a function whose do-
main and range are both D. Any such function can be regarded as a value of type D by “folding”,
and any value of type D can be turned into a function by “unfolding”. As usual, a recursive type
is a solution to a type equation, which in the present case is the equation

D ∼= D ⇀ D.

This isomorphism specifies that D is a type that is isomorphic to the space of partial functions on
D itself, which is impossible if types are just sets.

This isomorphism leads to the following translation, of Λ into FPC:

x† , x (21.14a)

λ (x) u† , fold(λ (x : D) u†) (21.14b)

u1(u2)
† , unfold(u†

1)(u
†
2) (21.14c)
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Note that the embedding of a λ-abstraction is a value, and that the embedding of an application
exposes the function being applied by unfolding the recursive type. And so we have

λ (x) u1(u2)
† = unfold(fold(λ (x : D) u†

1))(u
†
2)

≡ λ (x : D) u†
1(u

†
2)

≡ [u†
2/x]u†

1

= ([u2/x]u1)
†.

The last step, stating that the embedding commutes with substitution, is proved by induction on
the structure of u1. Thus β-reduction is implemented by evaluation of the embedded terms.

Thus we see that the canonical untyped language, Λ, which by dint of terminology stands in
opposition to typed languages, turns out to be but a typed language after all. Rather than eliminat-
ing types, an untyped language consolidates an infinite collection of types into a single recursive
type. Doing so renders static type checking trivial, at the cost of incurring dynamic overhead to
coerce values to and from the recursive type. In Chapter 22 we will take this a step further by
admitting many different types of data values (not just functions), each of which is a component
of a “master” recursive type. This generalization shows that so-called dynamically typed languages
are, in fact, statically typed. Thus this traditional distinction cannot be considered an opposition,
because dynamic languages are but particular forms of static languages in which undue emphasis
is placed on a single recursive type.

21.5 Notes

The untyped λ-calculus was introduced by Church (1941) as a formalization of the informal con-
cept of a computable function. Unlike the well-known machine models, such as the Turing ma-
chine or the random access machine, the λ-calculus codifies mathematical and programming prac-
tice. Barendregt (1984) is the definitive reference for all aspects of the untyped λ-calculus; the proof
of Scott’s theorem is adapted from Barendregt’s account. Scott (1980a) gave the first model of the
untyped λ-calculus in terms of an elegant theory of recursive types. This construction underlies
Scott’s apt description of the λ-calculus as “uni-typed”, rather than “untyped.” The idea to char-
acterize Church’s Law as such was communicated to the author, independently of each other, by
Robert L. Constable and Mark Lillibridge.

Exercises

21.1. Define an encoding of finite products as defined in Chapter 10 in Λ.

21.2. Define the factorial function in Λ two ways, one without using Y, and one using Y. In both
cases show that your solution, u, has the property that u(n) ≡ n!.

21.3. Define the “Church booleans” in Λ by defining terms true and false such that
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(a) true(u1)(u2) ≡ u1.

(b) false(u1)(u2) ≡ u2.

What is the encoding of if u then u1 else u2?

21.4. Define an encoding of finite sums as defined in Chapter 11 in Λ.

21.5. Define an encoding of finite lists of natural numbers as defined in Chapter 15 in Λ.

21.6. Define an encoding of the infinite streams of natural numbers as defined in Chapter 15 in Λ.

21.7. Show that Λ can be “compiled” to sk-combinators using bracket abstraction (see Exercises 3.4
and 3.5. Define a translation u∗ from Λ into sk combinators such that

if u1 ≡ u2, then u∗1 ≡ u∗2 .

Hint: Define u∗ by induction on the structure of u, using the compositional form of bracket
abstraction considered in Exercise 3.5. Show that the translation is itself compositional in
that it commutes with substitution:

([u2/x]u1)
∗ = [u∗2/x]u∗.

Then proceed by rule induction on rules (21.2) to show the required correctness condition.
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Dynamic Typing

We saw in Chapter 21 that an untyped language is a uni-typed language in which “untyped”
terms are just terms of single recursive type. Because all expressions of Λ are well-typed, type
safety ensures that no misinterpretation of a value is possible. When spelled out for Λ, type safety
follows from there being exactly one class of values, that of functions on values. No application
can get stuck, because every value is a function that may be applied to an argument.

This safety property breaks down once more than one class of value is admitted. For example,
if the natural numbers are added as a primitive to Λ, then it is possible to incur a run-time error
by attempting to apply a number to an argument. One way to manage this is to embrace the
possibility, treating class mismatches as checked errors, and weakening the progress theorem as
outlined in Chapter 6. Such languages are called dynamic languages because an error such as the
one described is postponed to run time, rather than precluded at compile time by type checking.
Languages of the latter sort are called static languages.

Dynamic languages are often considered in opposition to static languages, but the opposition
is illusory. Just as the untyped λ-calculus is uni-typed, so dynamic languages are but special cases
of static languages in which there is only one recursive type (albeit with multiple classes of value).



PREVIE
W

194 22.1 Dynamically Typed PCF

22.1 Dynamically Typed PCF

To illustrate dynamic typing we formulate a dynamically typed version of PCF, called DPCF. The
abstract syntax of DPCF is given by the following grammar:

Exp d ::= x x variable
num[n] n numeral
zero zero zero
succ(d) succ(d) successor
ifz{d0; x.d1}(d) ifz d {zero ↪→ d0 | succ(x) ↪→ d1}

zero test
fun(x.d) λ (x) d abstraction
ap(d1; d2) d1(d2) application
fix(x.d) fix x is d recursion

There are two classes of values in DPCF, the numbers, which have the form num[n], and the func-
tions, which have the form fun(x.d). The expressions zero and succ(d) are not themselves values,
but rather are constructors that evaluate to values. General recursion is definable using a fixed point
combinator, but is taken as primitive here to simplify the analysis of the dynamics in Section 22.3.

As usual, the abstract syntax of DPCF is what matters, but we use the concrete syntax to im-
prove readability. However, notational conveniences can obscure important details, such as the
tagging of values with their class and the checking of these tags at run-time. For example, the
concrete syntax for a number, n, suggests a “bare” representation, the abstract syntax reveals that
the number is labeled with the class num to distinguish it from a function. Correspondingly, the
concrete syntax for a function is λ (x) d, but its abstract syntax, fun(x.d), shows that it also sports
a class label. The class labels are required to ensure safety by run-time checking, and must not be
overlooked when comparing static with dynamic languages.

The statics of DPCF is like that of Λ; it merely checks that there are no free variables in the
expression. The judgment

x1 ok, . . . xn ok ` d ok

states that d is a well-formed expression with free variables among those in the hypotheses. If the
assumptions are empty, then we write just d ok to mean that d is a closed expression of DPCF.

The dynamics of DPCF must check for errors that would never arise in a language such as
PCF. For example, evaluation of a function application must ensure that the value being applied
is indeed a function, signaling an error if it is not. Similarly the conditional branch must ensure that
its principal argument is a number, signaling an error if it is not. To account for these possibilities,
the dynamics is given by several judgment forms, as summarized in the following chart:

d val d is a (closed) value
d 7−→ d′ d evaluates in one step to d′

d err d incurs a run-time error
d is num n d is of class num with value n
d isnt num d is not of class num
d is fun x.d d is of class fun with body x.d
d isnt fun d is not of class fun
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The last four judgment forms implement dynamic class checking. They are only relevant when d is
already a value. The affirmative class-checking judgments have a second argument that represents
the underlying structure of a value; this argument is not itself an expression of DPCF.

The value judgment d val states that d is a evaluated (closed) expression:

num[n] val (22.1a)

fun(x.d) val (22.1b)

The affirmative class-checking judgments are defined by the following rules:

num[n] is num n (22.2a)

fun(x.d) is fun x.d (22.2b)

The negative class-checking judgments are correspondingly defined by these rules:

num[n] isnt fun (22.3a)

fun(x.d) isnt num (22.3b)

The transition judgment d 7−→ d′ and the error judgment d err are defined simultaneously by
the following rules:

zero 7−→ num[z] (22.4a)

d 7−→ d′

succ(d) 7−→ succ(d′)
(22.4b)

d err
succ(d) err

(22.4c)

d is num n
succ(d) 7−→ num[s(n)] (22.4d)

d isnt num
succ(d) err

(22.4e)

d 7−→ d′

ifz{d0; x.d1}(d) 7−→ ifz{d0; x.d1}(d′)
(22.4f)

d err
ifz{d0; x.d1}(d) err

(22.4g)

d is num 0
ifz{d0; x.d1}(d) 7−→ d0

(22.4h)

d is num n + 1
ifz{d0; x.d1}(d) 7−→ [num[n]/x]d1

(22.4i)
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d isnt num
ifz{d0; x.d1}(d) err

(22.4j)

d1 7−→ d′1
ap(d1; d2) 7−→ ap(d′1; d2)

(22.4k)

d1 err

ap(d1; d2) err
(22.4l)

d1 is fun x.d
ap(d1; d2) 7−→ [d2/x]d

(22.4m)

d1 isnt fun

ap(d1; d2) err
(22.4n)

fix(x.d) 7−→ [fix(x.d)/x]d (22.4o)

Rule (22.4i) labels the predecessor with the class num to maintain the invariant that variables are
bound to expressions of DPCF.

Lemma 22.1 (Class Checking). If d val, then

1. either d is num n for some n, or d isnt num;

2. either d is fun x.d′ for some x and d′, or d isnt fun.

Proof. By inspection of the rules defining the class-checking judgments.

Theorem 22.2 (Progress). If d ok, then either d val, or d err, or there exists d′ such that d 7−→ d′.

Proof. By induction on the structure of d. For example, if d = succ(d′), then we have by induction
either d′ val, or d′ err, or d′ 7−→ d′′ for some d′′. In the last case we have by rule (22.4b) that
succ(d′) 7−→ succ(d′′), and in the second-to-last case we have by rule (22.4c) that succ(d′) err.
If d′ val, then by Lemma 22.1, either d′ is num n or d′ isnt num. In the former case succ(d′) 7−→
num[s(n)], and in the latter succ(d′) err. The other cases are handled similarly.

Lemma 22.3 (Exclusivity). For any d in DPCF, exactly one of the following holds: d val, or d err, or
d 7−→ d′ for some d′.

Proof. By induction on the structure of d, making reference to rules (22.4).

22.2 Variations and Extensions

The dynamic language DPCF defined in Section 22.1 parallels the static language PCF defined
in Chapter 19. One discrepancy, however, is in the treatment of natural numbers. Whereas in
PCF the zero and successor operations are introduction forms for the type nat, in DPCF they are
elimination forms that act on specially defined numerals. The present formulation uses only a
single class of numbers.
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One could instead treat zero and succ(d) as values of separate classes, and introduce the obvi-
ous class checking judgments for them. When written in this style, the dynamics of the conditional
branch is given as follows:

d 7−→ d′

ifz{d0; x.d1}(d) 7−→ ifz{d0; x.d1}(d′)
(22.5a)

d is zero
ifz{d0; x.d1}(d) 7−→ d0

(22.5b)

d is succ d′

ifz{d0; x.d1}(d) 7−→ [d′/x]d1
(22.5c)

d isnt zero d isnt succ
ifz{d0; x.d1}(d) err

(22.5d)

Notice that the predecessor of a value of the successor class need not be a number, whereas in the
previous formulation this possibility does not arise.

DPCF can be extended with structured data similarly. A classic example is to consider a class
nil, consisting of a “null” value, and a class cons, consisting of pairs of values.

Exp d ::= nil nil null
cons(d1; d2) cons(d1; d2) pair
ifnil(d; d0; x, y.d1) ifnil d {nil ↪→ d0 | cons(x; y) ↪→ d1}

conditional

The expression ifnil(d; d0; x, y.d1) distinguishes the null value from a pair, and signals an error
on any other class of value.

Lists (finite sequences) can be encoded using null and pairing. For example, the list consisting
of three zeros can berepresented by the value

cons(zero; cons(zero; cons(zero; nil))).

But what to make of the following value?

cons(zero; cons(zero; cons(zero; λ (x) x)))

It is not a list, because it does not end with nil, but it is a permissible value in the enriched
language.

A difficulty with encoding lists using null and pair emerges when defining functions on them.
For example, here is a definition of the function append that concatenates two lists:

fix a isλ (x) λ (y) ifnil(x; y; x1, x2.cons(x1; a(x2)(y)))

Nothing prevents us from applying this function to any two values, regardless of whether they
are lists. If the first argument is not a list, then execution aborts with an error. But because the
function does not traverse its second argument, it can be any value at all. For example, we may
apply append with a list and a function to obtain the “list” that ends with a λ given above.
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It might be argued that the conditional branch that distinguishes null from a pair is inappro-
priate in DPCF, because there are more than just these two classes in the language. One approach
that avoids this criticism is to abandon pattern matching on the class of data, replacing it by a gen-
eral conditional branch that distinguishes null from all other values, and adding to the language
predicates1 that test the class of a value and destructors that invert the constructors of each class.

We could instead reformulate null and and pairing as follows:

Exp d ::= cond(d; d0; d1) cond(d; d0; d1) conditional
nil?(d) nil?(d) nil test
cons?(d) cons?(d) pair test
car(d) car(d) first projection
cdr(d) cdr(d) second projection

The conditional cond(d; d0; d1) distinguishes d between nil and all other values. If d is not nil, the
conditional evaluates to d0, and otherwise evaluates to d1. In other words the value nil repre-
sents boolean falsehood, and all other values represent boolean truth. The predicates nil?(d) and
cons?(d) test the class of their argument, yielding nil if the argument is not of the specified class,
and yielding some non-nil if so. The destructors car(d) and cdr(d) decompose cons(d1; d2) into
d1 and d2, respectively.2

Written in this form, the function append is given by the expression

fix a isλ (x) λ (y) cond(x; cons(car(x); a(cdr(x))(y)); y).

The behavior of this formulation of append is no different from the earlier one; the only differ-
ence is that instead of dispatching on whether a value is either null or a pair, we instead allow
discrimination on any predicate of the value, which includes such checks as special cases.

An alternative, which is not widely used, is to enhance, and not restrict, the conditional branch
so that it includes cases for each possible class of value in the language. So in a language with num-
bers, functions, null, and pairing, the conditional would have four branches. The fourth branch,
for pairing, would deconstruct the pair into its constituent parts. The difficulty with this approach
is that in realistic languages there are many classes of data, and such a conditional would be rather
unwieldy. Moreover, even once we have dispatched on the class of a value, it is nevertheless neces-
sary for the primitive operations associated with that class to admit run-time checks. For example,
we may determine that a value d is of the numeric class, but there is no way to propagate this in-
formation into the branch of the conditional that then adds d to some other number. The addition
operation must still check the class of d, recover the underlying number, and create a new value
of numeric class. It is an inherent limitation of dynamic languages that they do not allow values
other than classified values.

1Predicates evaluate to the null value to mean that a condition is false, and some non-null value to mean that it is true.
2The terminology for the projections is archaic, but well-established. It is said that car originally stood for “contents of

the address register” and that cdr stood for “contents of the data register”, referring to the details of the original imple-
mentation of Lisp.
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22.3 Critique of Dynamic Typing

The safety theorem for DPCF is an advantage of dynamic over static typing. Unlike static lan-
guages, which rule out some candidate programs as ill-typed, every piece of abstract syntax in
DPCF is well-formed, and hence, by Theorem 22.2, has a well-defined dynamics (albeit one with
checked errors). But this convenience is also a disadvantage, because errors that could be ruled
out at compile time by type checking are not signaled until run time.

Consider, for example, the addition function in DPCF, whose specification is that, when passed
two values of class num, returns their sum, which is also of class num:3

fun(x.fix(p.fun(y.ifz{x; y′.succ(p(y′))}(y)))).

The addition function may, deceptively, be written in concrete syntax as follows:

λ (x) fix p isλ (y) ifz y {zero ↪→ x | succ(y′) ↪→ succ(p(y′))}.

It is deceptive, because it obscures the class tags on values, and the operations that check the
validity of those tags. Let us now examine the costs of these operations in a bit more detail.

First, note that the body of the fixed point expression is labeled with class fun. The dynamics of
the fixed point construct binds p to this function. Consequently, the dynamic class check incurred
by the application of p in the recursive call is guaranteed to succeed. But DPCF offers no means of
suppressing the redundant check, because it cannot express the invariant that p is always bound
to a value of class fun.

Second, note that the result of applying the inner λ-abstraction is either x, the argument of
the outer λ-abstraction, or the successor of a recursive call to the function itself. The successor
operation checks that its argument is of class num, even though this condition is guaranteed to
hold for all but the base case, which returns the given x, which can be of any class at all. In
principle we can check that x is of class num once, and note that it is otherwise a loop invariant
that the result of applying the inner function is of this class. However, DPCF gives us no way
to express this invariant; the repeated, redundant tag checks imposed by the successor operation
cannot be avoided.

Third, the argument y to the inner function is either the original argument to the addition
function, or is the predecessor of some earlier recursive call. But as long as the original call is to
a value of class num, then the dynamics of the conditional will ensure that all recursive calls have
this class. And again there is no way to express this invariant in DPCF, and hence there is no way
to avoid the class check imposed by the conditional branch.

Classification is not free—storage is required for the class label, and it takes time to detach the
class from a value each time it is used and to attach a class to a value when it is created. Although
the overhead of classification is not asymptotically significant (it slows down the program only by
a constant factor), it is nevertheless non-negligible, and should be eliminated when possible. But
this is impossible within DPCF, because it cannot enforce the restrictions required to express the
required invariants. For that we need a static type system.

3This specification imposes no restrictions on the behavior of addition on arguments that are not classified as numbers,
but we could make the further demand that the function abort when applied to arguments that are not classified by num.
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22.4 Notes

The earliest dynamically typed language is Lisp (McCarthy, 1965), which continues to influence
language design a half century after its invention. Dynamic PCF is the core of Lisp, but with a
proper treatment of variable binding, correcting what McCarthy himself has described as an error
in the original design. Informal discussions of dynamic languages are often complicated by the
elision of the dynamic checks that are made explicit here. Although the surface syntax of dynamic
PCF is almost the same as that for PCF, minus the type annotations, the underlying dynamics is
different. It is for this reason that static PCF cannot be seen as a restriction of dynamic PCF by the
imposition of a type system.

Exercises

22.1. Surface syntax can be deceiving; even simple arithmetic expressions do not have the same
meaning in DPCF that they do in PCF. To see why, define the addition function, plus,
in DPCF, and examine the dynamics of evaluating expressions such as plus(5)(7). Even
though this expression might be written as “5 + 7” in both static and dynamic languages,
they have different meanings.

22.2. Give a precise dynamics to the data structuring primitives described informally in Sec-
tion 22.2. What class restrictions should cons impose on its arguments? Check the dynamics
of the append function when called with two lists as arguments.

22.3. To avoid the difficulties with the representation of lists using cons and nil, introduce a class
of lists that are constructed using revised versions of nil and cons that operate on the class
of lists. Revisit the dynamics of the append function when redefined using the class of lists.

22.4. Allowing multiple arguments to, and multiple results from, functions is a notorious source
of trouble in dynamic languages. The restriction to a single type makes it impossible even
to distinguish n things from m things, let alone express more subtle properties of a program.
Numerous workarounds have been proposed. Explore the problem yourself by enriching
DPCF with multi-argument and multi-result functions. Be sure to consider these questions:

(a) If a function is defined with n parameters, what should happen if it is called with more
or fewer than n arguments?

(b) What happens if one were to admit functions with a varying number of arguments?
How would you refer to these arguments within the body of such a function? How
does this relate to pattern matching?

(c) What if one wished to admit keyword parameter passing by giving names to the ar-
guments, and allowing them to be passed in any order by associating them with their
names?

(d) What notation would you suggest for functions returning multiple results? For exam-
ple, a division function might return the quotient and the remainder. How might one
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notate this in the function body? How would a caller access the results individually or
collectively?

(e) How would one define the composition of two functions when either or both can take
multiple arguments or return multiple results?
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Chapter 24

Structural Subtyping

A subtype relation is a pre-order (reflexive and transitive relation) on types that validates the sub-
sumption principle:

if τ′ is a subtype of τ, then a value of type τ′ may be provided when a value of type τ is required.

The subsumption principle relaxes the strictures of a type system to allow values of one type to be
treated as values of another.

Experience shows that the subsumption principle, although useful as a general guide, can be
tricky to apply correctly in practice. The key to getting it right is the principle of introduction and
elimination. To see whether a candidate subtyping relationship is sensible, it suffices to consider
whether every introduction form of the subtype can be safely manipulated by every elimination
form of the supertype. A subtyping principle makes sense only if it passes this test; the proof of
the type safety theorem for a given subtyping relation ensures that this is the case.

A good way to get a subtyping principle wrong is to think of a type merely as a set of values
(generated by introduction forms), and to consider whether every value of the subtype can also
be considered to be a value of the supertype. The intuition behind this approach is to think of
subtyping as akin to the subset relation in ordinary mathematics. But, as we shall see, this can
lead to serious errors, because it fails to take account of the elimination forms that are applicable
to the supertype. It is not enough to think only of the introduction forms; subtyping is a matter of
behavior, and not containment.

24.1 Subsumption

A subtyping judgment has the form τ′ <: τ, and states that τ′ is a subtype of τ. At the least we
demand that the following structural rules of subtyping be admissible:

τ <: τ (24.1a)

τ′′ <: τ′ τ′ <: τ

τ′′ <: τ
(24.1b)
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In practice we either tacitly include these rules as primitive, or prove that they are admissible for
a given set of subtyping rules.

The point of a subtyping relation is to enlarge the set of well-typed programs, which is accom-
plished by the subsumption rule:

Γ ` e : τ′ τ′ <: τ
Γ ` e : τ

(24.2)

In contrast to most other typing rules, the rule of subsumption is not syntax-directed, because
it does not constrain the form of e. That is, the subsumption rule can be applied to any form of
expression. In particular, to show that e : τ, we have two choices: either apply the rule appropriate
to the particular form of e, or apply the subsumption rule, checking that e : τ′ and τ′ <: τ.

24.2 Varieties of Subtyping

In this section we will informally explore several different forms of subtyping in the context of
extensions of the language FPC introduced in Chapter 20.

Numeric Types

We begin with an informal discussion of numeric types such as are common in many programming
languages. Our mathematical experience suggests subtyping relationships among numeric types.
For example, in a language with types int, rat, and real, representing the integers, the rationals,
and the reals, it is tempting to postulate the subtyping relationships

int <: rat <: real

by analogy with the set containments
Z ⊆ Q ⊆ R.

But are these subtyping relationships sensible? The answer depends on the representations
and interpretations of these types. Even in mathematics, the containments just mentioned are
usually not true—or are true only in a rough sense. For example, the set of rational numbers can
be considered to consist of ordered pairs (m, n), with n 6= 0 and gcd(m, n) = 1, representing the
ratio m/n. The set Z of integers can be isomorphically embedded within Q by identifying n ∈ Z

with the ratio n/1. Similarly, the real numbers are often represented as convergent sequences of
rationals, so that strictly speaking the rationals are not a subset of the reals, but rather can be
embedded in them by choosing a canonical representative (a particular convergent sequence) of
each rational.

For mathematical purposes it is entirely reasonable to overlook fine distinctions such as that
between Z and its embedding within Q. Ignoring the difference is justified because the operations
on rationals restrict to the embedding in the expected way: if we add two integers thought of
as rationals in the canonical way, then the result is the rational associated with their sum. And
similarly for the other operations, provided that we take some care in defining them to ensure that
it all works out properly. For the purposes of computing, however, we must also take account of
algorithmic efficiency and the finiteness of machine representations. For example, what are often
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called “real numbers” in a programming language are, of course, floating point numbers, a finite
subset of the rational numbers. Not every rational can be exactly represented as a floating point
number, nor does floating point arithmetic restrict to rational arithmetic, even when its arguments
are exactly represented as floating point numbers.

Product Types

Product types give rise to a form of subtyping based on the subsumption principle. The only
elimination form applicable to a value of product type is a projection. Under mild assumptions
about the dynamics of projections, we may consider one product type to be a subtype of another by
considering whether the projections applicable to the supertype can be validly applied to values
of the subtype.

Consider a context in which a value of type τ = 〈τj〉j∈J is required. The statics of finite products
(rules (10.3)) ensures that the only operation we may perform on a value of type τ, other than to
bind it to a variable, is to take the jth projection from it for some j ∈ J to obtain a value of type
τj. Now suppose that e is of type τ′. For the projection e · j to be well-formed, then τ′ is a finite
product type 〈τ′i 〉i∈I such that j ∈ I. Moreover, for the projection to be of type τj, it is enough to
require that τ′j = τj. Because j ∈ J is arbitrary, we arrive at the following subtyping rule for finite
product types:

J ⊆ I
∏i∈I τi <: ∏j∈J τj

. (24.3)

This rule sufices for the required subtyping, but not necessary; we will consider a more liberal form
of this rule in Section 24.3. The justification for rule (24.3) is that we may evaluate e · i regardless
of the actual form of e, provided only that it has a field indexed by i ∈ I.

Sum Types

By an argument dual to the one given for finite product types we may derive a related subtyping
rule for finite sum types. If a value of type ∑j∈J τj is required, the statics of sums (rules (11.3))
ensures that the only non-trivial operation that we may perform on that value is a J-indexed case
analysis. If we provide a value of type ∑i∈I τ′i instead, no difficulty will arise so long as I ⊆ J and
each τ′i is equal to τi. If the containment is strict, some cases cannot arise, but this does not disrupt
safety.

I ⊆ J
∑i∈I τi <: ∑j∈J τj

. (24.4)

Note well the reversal of the containment as compared to rule (24.3).

Dynamic Types

A popular form of subtyping is associated with the type dyn introduced in Chapter 23. The type
dyn provides no information about the class of a value of this type. One might argue that it is
whole the point of dynamic typing to suppress this information statically, making it available only
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dynamically. On the other hand, it is not much trouble to introduce subtypes of dyn that specify
the class of a value, relying on subsumption to “forget” the class when it cannot be determined
statically.

Working in the context of Chapter 23 this amounts to introduce two new types, dyn[num] and
dyn[fun], governed by the following two subtyping axioms:

dyn[num] <: dyn
(24.5a)

dyn[fun] <: dyn
(24.5b)

Of course, in a richer language with more classes of dynamic values one would correspondingly
introduce more such subtypes of dyn, one for each additional class. As a matter of notation, the
type dyn is frequently spelled object, and its class-specific subtypes dyn[num] and dyn[fun], are
often written as num and fun, respectively. But doing so invites confusion between the separate
concepts of class and type, as discussed in detail in Chapters 22 and 23.

The class-specific subtypes of dyn come into play by reformulating the typing rules for intro-
ducing values of type dyn to note the class of the created value:

Γ ` e : nat
Γ ` new[num](e) : dyn[num] (24.6a)

Γ ` e : dyn⇀ dyn

Γ ` new[fun](e) : dyn[fun]
(24.6b)

Thus, in this formulation, classified values “start life” with class-specific types, because in those
cases it is statically apparent what is the class of the introduced value. Subsumption is used to
weaken the type to dyn in those cases where no static prediction can be made—for example, when
the branches of a conditional evaluate to dynamic values of different classes it is necessary to
weaken the type of the branches to dyn.

The advantage of such a subtyping mechanism is that we can express more precise types, such
as the type dyn[num]⇀ dyn[num] of functions mapping a value of type dyn with class num to another
such value. This typing is more precise than, say, dyn⇀ dyn, which merely classifies functions that
act on dynamically typed values. In this way weak invariants can be expressed and enforced, but
only insofar as it is possible to track the classes of the values involved in a computation. Subtyp-
ing is not nearly a powerful enough mechanism for practical situations, rendering the additional
specificity not worth the effort of including it. (A more powerful approach is developed in Chap-
ter 25.)

24.3 Variance

In addition to basic subtyping principles such as those considered in Section 24.2, it is also impor-
tant to consider the effect of subtyping on type constructors. A type constructor covariant in an
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argument if subtyping in that argument is preserved by the constructor. It is contravariant if sub-
typing in that argument is reversed by the constructor. It is invariant in an argument if subtyping
for the constructed type is not affected by subtyping in that argument.

Product and Sum Types

Finite product types are covariant in each field. For if e is of type ∏i∈I τ′i , and the projection e · j is
to be of type τj, then it suffices to require that j ∈ I and τ′j <: τj.

(∀i ∈ I) τ′i <: τi

∏i∈I τ′i <: ∏i∈I τi
(24.7)

It is implicit in this rule that the dynamics of projection cannot be sensitive to the precise type of
any of the fields of a value of finite product type.

Finite sum types are also covariant, because each branch of a case analysis on a value of the
supertype expects a value of the corresponding summand, for which it suffices to provide a value
of the corresponding subtype summand:

(∀i ∈ I) τ′i <: τi

∑i∈I τ′i <: ∑i∈I τi
(24.8)

Partial Function Types

The variance of the function type constructors is a bit more subtle. Let us consider first the variance
of the function type in its range. Suppose that e : τ1 ⇀ τ′2. Then if e1 : τ1, then e(e1) : τ′2, and if
τ′2 <: τ2, then e(e1) : τ2 as well.

τ′2 <: τ2

τ1 ⇀ τ′2 <: τ1 ⇀ τ2
(24.9)

Every function that delivers a value of type τ′2 also delivers a value of type τ2, provided that
τ′2 <: τ2. Thus the function type constructor is covariant in its range.

Now let us consider the variance of the function type in its domain. Suppose again that e :
τ1 ⇀ τ2. Then e can be applied to any value of type τ1 to obtain a value of type τ2. Hence, by the
subsumption principle, it can be applied to any value of a subtype τ′1 of τ1, and it will still deliver
a value of type τ2. Consequently, we may just as well think of e as having type τ′1 ⇀ τ2.

τ′1 <: τ1

τ1 ⇀ τ2 <: τ′1 ⇀ τ2
(24.10)

The function type is contravariant in its domain position. Note well the reversal of the subtyping
relation in the premise as compared to the conclusion of the rule!

Combining these rules we obtain the following general principle of contra- and covariance for
function types:

τ′1 <: τ1 τ′2 <: τ2

τ1 ⇀ τ′2 <: τ′1 ⇀ τ2
(24.11)
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Beware of the reversal of the ordering in the domain!

Recursive Types

The language FPC has a partial function types, which behave the same under subtyping as total
function types, sums and products, which behave as described above, and recursive types, which
introduce some subtleties that have been the source of error in language design. To gain some
intuition, consider the type of labeled binary trees with natural numbers at each node,

rec t is [empty ↪→ unit, binode ↪→ 〈data ↪→ nat, lft ↪→ t, rht ↪→ t〉],

and the type of “bare” binary trees, without data attached to the nodes,

rec t is [empty ↪→ unit, binode ↪→ 〈lft ↪→ t, rht ↪→ t〉].

Is either a subtype of the other? Intuitively, we might expect the type of labeled binary trees to be
a subtype of the type of bare binary trees, because any use of a bare binary tree can simply ignore
the presence of the label.

Now consider the type of bare “two-three” trees with two sorts of nodes, those with two chil-
dren, and those with three:

rec t is [empty ↪→ unit, binode ↪→ τ2, trinode ↪→ τ3],

where

τ2 , 〈lft ↪→ t, rht ↪→ t〉, and

τ3 , 〈lft ↪→ t, mid ↪→ t, rht ↪→ t〉.

What subtype relationships should hold between this type and the preceding two tree types? In-
tuitively the type of bare two-three trees should be a supertype of the type of bare binary trees,
because any use of a two-three tree proceeds by three-way case analysis, which covers both forms
of binary tree.

To capture the pattern illustrated by these examples, we need a subtyping rule for recursive
types. It is tempting to consider the following rule:

t type ` τ′ <: τ

rec t is τ′ <: rec t is τ
?? (24.12)

That is, to check whether one recursive type is a subtype of the other, we simply compare their
bodies, with the bound variable treated as an argument. Notice that by reflexivity of subtyping,
we have t <: t, and hence we may use this fact in the derivation of τ′ <: τ.

Rule (24.12) validates the intuitively plausible subtyping between labeled binary tree and bare
binary trees just described. Deriving this requires checking that the subtyping relationship

〈data ↪→ nat, lft ↪→ t, rht ↪→ t〉 <: 〈lft ↪→ t, rht ↪→ t〉,
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holds generically in t, which is evidently the case.
Unfortunately, Rule (24.12) also underwrites incorrect subtyping relationships, as well as some

correct ones. As an example of what goes wrong, consider the recursive types

τ′ = rec t is 〈a ↪→ t ⇀ nat, b ↪→ t ⇀ int〉

and
τ = rec t is 〈a ↪→ t ⇀ int, b ↪→ t ⇀ int〉.

We assume for the sake of the example that nat <: int, so that by using rule (24.12) we may derive
τ′ <: τ, which is incorrect. Let e : τ′ be the expression

fold(〈a ↪→ λ (x : τ′) 4, b ↪→ λ (x : τ′) q((unfold(x) · a)(x))〉),

where q : nat⇀ nat is the discrete square root function. Because τ′ <: τ, it follows that e : τ as
well, and hence

unfold(e) : 〈a ↪→ τ ⇀ int, b ↪→ τ ⇀ int〉.
Now let e′ : τ be the expression

fold(〈a ↪→ λ (x : τ) -4, b ↪→ λ (x : τ) 0〉).

(The important point about e′ is that the a method returns a negative number; the b method is of
no significance.) To finish the proof, observe that

(unfold(e) · b)(e′) 7−→∗ q(-4),

which is a stuck state. We have derived a well-typed program that “gets stuck”, refuting type
safety!

Rule (24.12) is therefore incorrect. But what has gone wrong? The error lies in the choice of a
single variable to stand for both recursive types, which does not correctly model self-reference. In
effect we are treating two distinct recursive types as if they were equal while checking their bodies
for a subtyping relationship. But this is clearly wrong! It fails to take account of the self-referential
nature of recursive types. On the left side the bound variable stands for the subtype, whereas on
the right the bound variable stands for the super-type. Confusing them leads to the unsoundness
just illustrated.

As is often the case with self-reference, the solution is to assume what we are trying to prove,
and check that this assumption can be maintained by examining the bodies of the recursive types.
To do so we use hypothetical judgments of the form ∆ ` τ′ <: τ, where ∆ consists of hypotheses
t type and t <: τ that declares a fresh type variable t that is not otherwise declared in ∆. Using such
hypothetical judgments we may state the correct rule for subtyping recursive types as follows:

∆, t type, t′ type, t′ <: t ` τ′ <: τ ∆, t′ type ` τ′ type ∆, t type ` τ type

∆ ` rec t′ is τ′ <: rec t is τ
. (24.13)

That is, to check whether rec t′ is τ′ <: rec t is τ, we assume that t′ <: t, because t′ and t stand for
the corresponding recursive types, and check that τ′ <: τ under this assumption. It is instructive
to check that the unsound subtyping example given above is not derivable using this rule: the
subtyping assumption is at odds with the contravariance of the function type in its domain.
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Quantified Types

Consider extending FPC with the universal and existential quantified types discussed in Chap-
ters 16 and 17. The variance principles for the quantifiers state that they are uniformly covariant
in the quantified types:

∆, t type ` τ′ <: τ

∆ ` ∀(t.τ′) <: ∀(t.τ)
(24.14a)

∆, t type ` τ′ <: τ

∆ ` ∃(t.τ′) <: ∃(t.τ)
(24.14b)

Consequently, we may derive the principle of substitution:

Lemma 24.1. If ∆, t type ` τ1 <: τ2, and ∆ ` τ type, then ∆ ` [τ/t]τ1 <: [τ/t]τ2.

Proof. By induction on the subtyping derivation.

It is easy to check that the above variance principles for the quantifiers are consistent with the
principle of subsumption. For example, a package of the subtype ∃(t.τ′) consists of a representa-
tion type ρ and an implementation e of type [ρ/t]τ′. But if t type ` τ′<: τ, we have by substitution
that [ρ/t]τ′ <: [ρ/t]τ, and hence e is also an implementation of type [ρ/t]τ. So the package is also
of the supertype.

It is natural to extend subtyping to the quantifiers by allowing quantification over all subtypes
of a specified type; this is called bounded quantification.

∆, t type, t <: τ ` t <: τ
(24.15a)

∆ ` τ :: T
∆ ` τ <: τ

(24.15b)

∆ ` τ′′ <: τ′ ∆ ` τ′ <: τ

∆ ` τ′′ <: τ
(24.15c)

∆ ` τ′1 <: τ1 ∆, t type, t <: τ′1 ` τ2 <: τ′2
∆ ` ∀ t <: τ1.τ2 <: ∀ t <: τ′1.τ′2

(24.15d)

∆ ` τ1 <: τ′1 ∆, t type, t <: τ1 ` τ2 <: τ′2
∆ ` ∃ t <: τ1.τ2 <: ∃ t <: τ′1.τ′2

(24.15e)

Rule (24.15d) states that the universal quantifier is contravariant in its bound, whereas rule (24.15e)
states that the existential quantifier is covariant in its bound.
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24.4 Dynamics and Safety

There is a subtle assumption in the definition of product subtyping in Section 24.2, namely that the
same projection operation from an I-tuple applies also to a J-tuple, provided J ⊇ I. But this need
not be the case. One could represent I-tuples differently from J-tuples at will, so that the meaning
of the projection at position i ∈ I ⊆ J is different in the two cases. Nothing rules out this possibility,
yet product subtyping relies on it not being the case. From this point of view product subtyping
is not well-justified, but one may instead consider that subtyping limits possible implementations
to ensure that it makes sense.

Similar considerations apply to sum types. An J-way case analysis need not be applicable to
an I-way value of sum type, even when I ⊆ J and all the types in common agree. For example,
one might represent values of a sum type with a “small” index set in a way that is not applicable
for a “large” index set. In that case the “large” case analysis would not make sense on a value
of “small” sum type. Here again we may consider either that subtyping is not justified, or that it
imposes limitations on the implementation that are not otherwise forced.

These considerations merit careful consideration of the safety of languages with subtyping. As
an illustrative case we consider the safety of FPC enriched with product subtyping. The main con-
cern is that the subsumption rule obscures the “true” type of a value, complicating the canonical
forms lemma. Moreover, we assume that the same projection makes sense for a wider tuple than
a narrower one, provided that it is within range.

Lemma 24.2 (Structurality).

1. The tuple subtyping relation is reflexive and transitive.

2. The typing judgment Γ ` e : τ is closed under weakening and substitution.

Proof.

1. Reflexivity is proved by induction on the structure of types. Transitivity is proved by in-
duction on the derivations of the judgments τ′′ <: τ′ and τ′ <: τ to obtain a derivation of
τ′′ <: τ.

2. By induction on rules (10.3), augmented by rule (24.2).

Lemma 24.3 (Inversion).

1. If e · j : τ, then e : ∏i∈I τi, j ∈ I, and τj <: τ.

2. If 〈ei〉i∈I : τ, then ∏i∈I τ′i <: τ where ei : τ′i for each i ∈ I.

3. If τ′ <: ∏j∈J τj, then τ′ = ∏i∈I τ′i for some I and some types τ′i for i ∈ I.

4. If ∏i∈I τ′i <: ∏j∈J τj, then J ⊆ I and τ′j <: τj for each j ∈ J.

Proof. By induction on the subtyping and typing rules, paying special attention to rule (24.2).
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Theorem 24.4 (Preservation). If e : τ and e 7−→ e′, then e′ : τ.

Proof. By induction on rules (10.4). For example, consider rule (10.4d), so that e = 〈ei〉i∈I · k and
e′ = ek. By Lemma 24.3 we have 〈ei〉i∈I : ∏j∈J τj, with k ∈ J and τk <: τ. By another application of
Lemma 24.3 for each i ∈ I there exists τ′i such that ei : τ′i and ∏i∈I τ′i <: ∏j∈J τj. By Lemma 24.3
again, we have J ⊆ I and τ′j <: τj for each j ∈ J. But then ek : τk, as desired. The remaining cases
are similar.

Lemma 24.5 (Canonical Forms). If e val and e : ∏j∈J τj, then e is of the form 〈ei〉i∈I , where J ⊆ I, and
ej : τj for each j ∈ J.

Proof. By induction on rules (10.3) augmented by rule (24.2).

Theorem 24.6 (Progress). If e : τ, then either e val or there exists e′ such that e 7−→ e′.

Proof. By induction on rules (10.3) augmented by rule (24.2). The rule of subsumption is han-
dled by appeal to the inductive hypothesis on the premise of the rule. rule (10.4d) follows from
Lemma 24.5.

24.5 Notes

Subtyping is perhaps the most widely misunderstood concept in programming languages. Sub-
typing is principally a convenience, akin to type inference, that makes some programs simpler to
write. But the subsumption rule cuts both ways. Inasmuch as it allows the implicit passage from
τ′ to τ when τ′ is a subtype of τ, it also weakens the meaning of a type assertion e : τ to mean
that e has some type contained in the type τ. Subsumption precludes expressing the requirement
that e has exactly the type τ, or that two expressions jointly have the same type. And it is just this
weakness that creates so many of the difficulties with subtyping.

Much has been written about subtyping, often in relation to object-oriented programming.
Standard ML (Milner et al., 1997) is one of the first languages to make use of subtyping, in two
forms, called enrichment and realization. The former corresponds to product subtyping, and the
latter to the “forgetful” subtyping associated with type definitions (see Chapter 43). The first sys-
tematic studies of subtyping include those by Mitchell (1984); Reynolds (1980), and Cardelli (1988).
Pierce (2002) give a thorough account of subtyping, especially of recursive and polymorphic types,
and proves that subtyping for bounded impredicative universal quantification is undecidable.

Exercises

24.1. Check the variance of the type

(unit⇀ τ)× (τ ⇀ unit).

When viewed as a constructor with argument τ, is it covariant or contravariant? Give a
precise proof or counterexample in each case.
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24.2. Consider the two recursive types,

ρ1 , rec t is 〈eq ↪→ (t ⇀ bool)〉,

and
ρ2 , rec t is 〈eq ↪→ (t ⇀ bool), f ↪→ bool〉.

It is clear that ρ1 could not be a subtype of ρ2, because, viewed as a product after unrolling,
a value of the former type lacks a component that a value of the latter has. But is ρ2 a
subtype of ρ1? If so, prove it by exhibiting a derivation of this fact using the rules given
in Section 24.3. If not, give a counterexample showing that the suggested subtyping would
violate type safety.

24.3. Another approach to the dynamics of subtyping that ensures safety, but gives subsumption
dynamic significance, associates a witness, called a coercion, to each subtyping relation, and
inserts a coercion wherever subsumption is used. More precisely,

(a) Assign to each valid subtyping τ <: τ′ a coercion function χ : τ ⇀ τ′ that transforms a
value of type τ into a value of type τ′.

(b) Interpret the subsumption rule as implicit coercion. Specifically, when τ <: τ′ is wit-
nessed by χ : τ ⇀ τ′, applying subsumption to e : τ inserts an application of χ to obtain
χ(e) : τ′.

Formulate this idea precisely for the case of a subtype relation generated by “width” sub-
typing for products, and the variance principles for product, sum and function types. Your
solution should make clear that it evades the tacit projection assumption mentioned above.

But there may be more than one coercion χ : τ ⇀ τ′ corresponding to the subtyping τ <: τ′.
The meaning of a program would then depend on which coercion is chosen when subsump-
tion is used. If there is exactly one coercion for each subtyping relation, it is said to be
coherent. Is your coercion interpretation of product subtyping coherent? (A proper treatment
of coherence requires expression equivalence, which is discussed in Chapter 47.)
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Chapter 27

Inheritance

In this chapter we build on Chapter 26 and consider the process of defining the dispatch matrix
that determines the behavior of each method on each class. A common strategy is to build the
dispatch matrix incrementally by adding new classes or methods to an existing dispatch matrix.
To add a class requires that we define the behavior of each method on objects of that class, and to
define a method requires that we define the behavior of that method on objects of the classes. The
definition of these behaviors can be given by any means available in the language. However, it is
often suggested that a useful means of defining a new class is to inherit the behavior of another
class on some methods, and to override its behavior on others, resulting in an amalgam of the old
and new behaviors. The new class is often called a subclass of the old class, which is then called the
superclass. Similarly, a new method can be defined by inheriting the behavior of another method
on some classes, and overriding the behavior on others. By analogy we may call the new method
a sub-method of a given super-method. For the sake of clarity we restrict attention to the non-self-
referential case in the following development.

27.1 Class and Method Extension

We begin by extending a given dispatch matrix, edm, of type

∏
c∈C

∏
d∈D

(τc → ρd)

with a new class c∗ /∈ C and a new method d∗ /∈ D to obtain a new dispatch matrix e∗dm of type

∏
c∈C∗

∏
d∈D∗

(τc → ρd),

where C∗ = C ∪ { c∗ } and D∗ = D ∪ { d∗ }.
To add a new class c∗ to the dispatch matrix, we must specify the following information:1

1The extension with a new method will be considered separately for the sake of clarity.
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1. The instance type τc∗ of the new class c∗.

2. The behavior ec∗
d of each method d ∈ D on an object of the new class c∗, a function of type

τc∗ → ρd.

This data determines a new dispatch matrix e∗dm such that the following conditions are satisfied:

1. For each c ∈ C and d ∈ D, the behavior e∗dm · c · d is the same as the behavior edm · c · d.

2. For each d ∈ D, the behavior e∗dm · c
∗ · d is given by ec∗

d .

To define c∗ as a subclass of some class c ∈ C means to define the behavior ec∗
d to be ec

d for some
(perhaps many) d ∈ D. It is sensible to inherit a method d in this way only if the subtype relation-
ship

τc → ρd <: τc∗ → ρd

is valid, which will be the case if τc∗ <: τc. This subtyping condition ensures that the inherited
behavior can be invoked on the instance data of the new class.

Similarly, to add a new method d∗ to the dispatch matrix, we must specify the following infor-
mation:

1. The result type ρd∗ of the new method d∗.

2. The behavior ec
d∗ of the new method d∗ on an object of each class c ∈ C, a function of type

τc → ρd∗ .

This data determines a new dispatch matrix e∗dm such that the following conditions are satisfied:

1. For each c ∈ C and d ∈ D, the behavior e∗dm · c · d is the same as edm · c · d.

2. The behavior e∗dm · c · d
∗ is given by ec

d∗ .

To define d∗ as a sub-method of some d ∈ D means to define the behavior ec
d∗ to be ec

d for some
(perhaps many) classes c ∈ C. This definition is only sensible if the subtype relationship

τc → ρd <: τc → ρd∗

holds, which is the case if ρd <: ρd∗ . This subtyping relationship ensures that the result of the old
behavior suffices for the new behavior.

We will now consider how inheritance relates to the method- and class-based organizations of
dynamic dispatch considered in Chapter 26.

27.2 Class-Based Inheritance

Recall that the class-based organization given in Chapter 26 consists of a class vector ecv of type

τcv , ∏
c∈C

(τc → ρ),
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where the object type ρ is the finite product type ∏d∈D ρd. The class vector consists of a tuple of
constructors that specialize the methods to a given object of each class.

Let us consider the effect of adding a new class c∗ as described in Section 27.1. The new class
vector e∗cv has type

τ∗cv , ∏
c∈C∗

(τc → ρ).

There is an isomorphism, written ( )†, between τ∗cv and the type

τcv × (τc∗ → ρ),

which can be used to define the new class vector e∗cv as follows:

〈ecv, λ (u : τc∗) 〈d ↪→ ec∗
d (u)〉d∈D〉

†
.

This definition makes clear that the old class vector ecv is reused intact in the new class vector,
which extends the old class vector with a new constructor.

Although the object type ρ is the same both before and after the extension with the new class,
the behavior of an object of class c∗ may differ arbitrarily from that of any other object, even that
of the superclass from which it inherits its behavior. So, knowing that c∗ inherits from c tells us
nothing about the behavior of its objects, but only about the means by which the class is defined.
Inheritance carries no semantic significance, but is only a record of the history of how a class is
defined.

Now let us consider the effect of adding a new method d∗ as described in Section 27.1. The
new class vector e∗cv has type

τ∗cv , ∏
c∈C

(τc → ρ∗),

where ρ∗ is the product type ∏d∈D∗ ρd. There is an isomorphism, written ( )‡, between ρ∗ and the
type ρ× ρd∗ , where ρ is the old object type. Using this the new class vector e∗cv is defined by

〈c ↪→ λ (u : τc) 〈〈d ↪→ ((ecv · c)(u)) · d〉d∈D, ec
d∗(u)〉

‡〉c∈C.

Observe that each constructor must be re-defined to account for the new method, but the definition
makes use of the old class vector for the definitions of the old methods.

By this construction the new object type ρ∗ is a subtype of the old object type ρ. Consequently,
any objects with the new method can be used in situations expecting an object without the new
method, as might be expected. To avoid redefining old classes when a new method is introduced,
we may restrict inheritance so that new methods are only added to new subclasses. Subclasses
may then have more methods than super-classes, and objects of the subclass can be provided
when an object of the superclass is required.
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27.3 Method-Based Inheritance

The method-based organization is dual to that of the class-based organization. Recall that the
method-based organization given in Chapter 26 consists of a method vector emv of type

τmv , ∏
d∈D

τ → ρd,

where the instance type τ is the sum type ∑c∈C τc. The method vector consists of a tuple of func-
tions that dispatch on the class of the object to determine their behavior.

Let us consider the effect of adding a new method d∗ as described in Section 27.1. The new
method vector e∗mv has type

τ∗mv , ∏
d∈D∗

τ → ρd.

There is an isomorphism, written ( )‡, between τ∗mv and the type

τmv × (τ → ρd∗).

Using this isomorphism, the new method vector e∗mv is defined as

〈emv, λ (this : τ) case this {c · u ↪→ ec
d∗(u)}c∈C〉‡.

The old method vector is re-used intact, extended with a dispatch function for the new method.
The object type does not change under the extension with a new method, but because ρ∗ <: ρ,

there is no difficulty using a new object in a context expecting an old object—the added method is
ignored.

Finally, let us consider the effect of adding a new class c∗ as described in Section 27.1. The new
method vector, e∗mv, has the type

τ∗mv , ∏
d∈D

τ∗ → ρd,

where τ∗ is the new object type ∑c∈C∗ τc, which is a super-type of the old object type τ. There is
an isomorphism, written ( )†, between τ∗ and the sum type τ + τc∗ , which we may use to define
the new method vector e∗mv as follows:

〈d ↪→ λ (this : τ∗) case this† {l · u ↪→ (emv · d)(u) | r · u ↪→ ec∗
d (u)}〉d∈D.

Every method must be redefined to account for the new class, but the old method vector is reused.

27.4 Notes

Abadi and Cardelli (1996) and Pierce (2002) provide thorough accounts of the interaction of in-
heritance and subtyping. Liskov and Wing (1994) discuss it from a behavioral perspective. They
propose to require that subclasses respect the behavior of the superclass when inheritance is used.
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Exercises

27.1. Consider the case of extending a dispatch matrix with self-reference by a new class c∗ in
which a method d is inherited from an existing class c. What requirements ensure that such
an inheritance is properly defined? What happens if we extend a self-referential dispatch
matrix with a new method, d∗ that inherits its behavior on class c from another method d?

27.2. Consider the example of two mutually recursive methods given in Exercise 26.3. Suppose
that num∗ is a new class with instance type τnum∗ <: τnum that inherits the ev method from
num, but defines its own version of the od method. What happens when message ev is sent
to an instance of num∗? Will the revised od method ever be invoked?

27.3. Method specialization consists of defining a new class by inheriting methods from another
class or classes, while redefining some of the methods that the inherited methods might
invoke. The behavior of the inherited methods on instances of the new class is altered to the
extent that they invoke a method that is specialized to the new class. Reconsider Exercise 26.3
in light of Exercise 27.2, seeking to ensure that the specialization of od is invoked when the
inherited method ev is invoked on instances of the new class.

(a) Redefine the class num along the following lines. The instance data of num is an object
admitting methods ev and od. The class num admits these methods, and simply hands
them off to the instance object.

(b) The classes zero or of succ admit both the ev and od methods, and are defined using
message send to effect mutual recursion as necessary.

(c) Define a subclass succ∗ of succ that overrides the od method. Show that ev on an
instance of succ∗ correctly invokes the overridden od method.
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Chapter 28

Control Stacks

Structural dynamics is convenient for proving properties of languages, such as a type safety the-
orem, but is less convenient as a guide for implementation. A structural dynamics defines a tran-
sition relation using rules that determine where to apply the next instruction without spelling out
how to find where the instruction lies within an expression. To make this process explicit we in-
troduce a mechanism, called a control stack, that records the work that remains to be done after an
instruction is executed. Using a stack eliminates the need for premises on the transition rules so
that the transition system defines an abstract machine whose steps are determined by information
explicit in its state, much as a concrete computer does.

In this chapter we develop an abstract machine K for evaluating expressions in PCF. The
machine makes explicit the context in which primitive instruction steps are executed, and the
process by which the results are propagated to determine the next step of execution. We prove
that K and PCF are equivalent in the sense that both achieve the same outcomes for the same
expressions.

28.1 Machine Definition

A state s of the stack machine K for PCF consists of a control stack k and a closed expression e.
States take one of two forms:

1. An evaluation state of the form k . e corresponds to the evaluation of a closed expression e on
a control stack k.

2. A return state of the form k / e, where e val, corresponds to the evaluation of a stack k on a
closed value e.

As an aid to memory, note that the separator “points to” the focal entity of the state, the expression
in an evaluation state and the stack in a return state.

The control stack represents the context of evaluation. It records the “current location” of eval-
uation, the context into which the value of the current expression is returned. Formally, a control
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stack is a list of frames:
ε stack (28.1a)

f frame k stack

k; f stack
(28.1b)

The frames of the K machine are inductively defined by the following rules:

s(−) frame
(28.2a)

ifz{e0; x.e1}(−) frame
(28.2b)

ap(−; e2) frame
(28.2c)

The frames correspond to search rules in the dynamics of PCF. Thus, instead of relying on the
structure of the transition derivation to keep a record of pending computations, we make an ex-
plicit record of them in the form of a frame on the control stack.

The transition judgment between states of the PCF machine is inductively defined by a set of
inference rules. We begin with the rules for natural numbers, using an eager semantics for the
successor.

k . z 7−→ k / z
(28.3a)

k . s(e) 7−→ k;s(−) . e
(28.3b)

k;s(−) / e 7−→ k / s(e)
(28.3c)

To evaluate z we simply return it. To evaluate s(e), we push a frame on the stack to record the
pending successor, and evaluate e; when that returns with e′, we return s(e′) to the stack.

Next, we consider the rules for case analysis.

k . ifz{e0; x.e1}(e) 7−→ k;ifz{e0; x.e1}(−) . e
(28.4a)

k;ifz{e0; x.e1}(−) / z 7−→ k . e0
(28.4b)

k;ifz{e0; x.e1}(−) / s(e) 7−→ k . [e/x]e1
(28.4c)

The test expression is evaluated, recording the pending case analysis on the stack. Once the value
of the test expression is determined, the zero or non-zero branch of the condition is evaluated,
substituting the predecessor in the latter case.
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Finally, we give the rules for functions, which are evaluated by-name, and the rule for general
recursion.

k . lam{τ}(x.e) 7−→ k / lam{τ}(x.e)
(28.5a)

k . ap(e1; e2) 7−→ k;ap(−; e2) . e1
(28.5b)

k;ap(−; e2) / lam{τ}(x.e) 7−→ k . [e2/x]e
(28.5c)

k . fix{τ}(x.e) 7−→ k . [fix{τ}(x.e)/x]e
(28.5d)

It is important that evaluation of a general recursion requires no stack space.
The initial and final states of the K machine are defined by the following rules:

ε . e initial
(28.6a)

e val
ε / e final

(28.6b)

28.2 Safety

To define and prove safety for the PCF machine requires that we introduce a new typing judgment,
k /: τ, which states that the stack k expects a value of type τ. This judgment is inductively defined
by the following rules:

ε /: τ
(28.7a)

k /: τ′ f : τ τ′

k; f /: τ
(28.7b)

This definition makes use of an auxiliary judgment, f : τ τ′, stating that a frame f transforms a
value of type τ to a value of type τ′.

s(−) : nat nat
(28.8a)

e0 : τ x : nat ` e1 : τ

ifz{e0; x.e1}(−) : nat τ
(28.8b)

e2 : τ2

ap(−; e2) : parr(τ2; τ) τ
(28.8c)
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The states of the PCF machine are well-formed if their stack and expression components match:

k /: τ e : τ
k . e ok

(28.9a)

k /: τ e : τ e val
k / e ok

(28.9b)

We leave the proof of safety of the PCF machine as an exercise.

Theorem 28.1 (Safety). 1. If s ok and s 7−→ s′, then s′ ok.

2. If s ok, then either s final or there exists s′ such that s 7−→ s′.

28.3 Correctness of the K Machine

Does evaluation of an expression e using the K machine yield the same result as does the structural
dynamics of PCF? The answer to this question can be derived from the following facts.

Completeness If e 7−→∗ e′, where e′ val, then ε . e 7−→∗ ε / e′.

Soundness If ε . e 7−→∗ ε / e′, then e 7−→∗ e′ with e′ val.

To prove completeness a plausible first step is to consider a proof by induction on the definition
of multi-step transition, which reduces the theorem to the following two lemmas:

1. If e val, then ε . e 7−→∗ ε / e.

2. If e 7−→ e′, then, for every v val, if ε . e′ 7−→∗ ε / v, then ε . e 7−→∗ ε / v.

The first can be proved easily by induction on the structure of e. The second requires an inductive
analysis of the derivation of e 7−→ e′ that gives rise to two complications. The first complication is
that we cannot restrict attention to the empty stack, for if e is, say, ap(e1; e2), then the first step of
the K machine is

ε . ap(e1; e2) 7−→ ε;ap(−; e2) . e1.

To handle such situations we consider the evaluation of e1 on any stack, not just the empty stack.
Specifically, we prove that if e 7−→ e′ and k . e′ 7−→∗ k / v, then k . e 7−→∗ k / v. Reconsider

the case e = ap(e1; e2), e′ = ap(e′1; e2), with e1 7−→ e′1. We are given that k . ap(e′1; e2) 7−→∗ k / v,
and we are to show that k . ap(e1; e2) 7−→∗ k / v. It is easy to show that the first step of the former
derivation is

k . ap(e′1; e2) 7−→ k;ap(−; e2) . e′1.

We would like to apply induction to the derivation of e1 7−→ e′1, but to do so we need a value v1
such that e′1 7−→∗ v1, which is not at hand.

We therefore consider the value of each sub-expression of an expression. This information is
given by the evaluation dynamics described in Chapter 7, which has the property that e ⇓ e′ iff
e 7−→∗ e′ and e′ val.

Lemma 28.2. If e ⇓ v, then for every k stack, k . e 7−→∗ k / v.
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The desired result follows by the analog of Theorem 7.2 for PCF, which states that e ⇓ v iff
e 7−→∗ v.

To prove soundness, we note that it is awkward to reason inductively about a multi-step tran-
sition from ε . e 7−→∗ ε / v. The intermediate steps could involve alternations of evaluation and
return states. Instead we consider a K machine state to encode an expression, and show that the
machine transitions are simulated by the transitions of the structural dynamics.

To do so we define a judgment, s # e, stating that state s “unravels to” expression e. It will
turn out that for initial states, s = ε . e, and final states, s = ε / e, we have s # e. Then we show
that if s 7−→∗ s′, where s′ final, s# e, and s′ # e′, then e′ val and e 7−→∗ e′. For this it is enough to
show the following two facts:

1. If s# e and s final, then e val.

2. If s 7−→ s′, s# e, s′ # e′, and e′ 7−→∗ v, where v val, then e 7−→∗ v.

The first is quite simple, we need only note that the unraveling of a final state is a value. For the
second, it is enough to prove the following lemma.

Lemma 28.3. If s 7−→ s′, s# e, and s′ # e′, then e 7−→∗ e′.

Corollary 28.4. e 7−→∗ n iff ε . e 7−→∗ ε / n.

28.3.1 Completeness

Proof of Lemma 28.2. The proof is by induction on an evaluation dynamics for PCF.
Consider the evaluation rule

e1 ⇓ lam{τ2}(x.e) [e2/x]e ⇓ v
ap(e1; e2) ⇓ v

(28.10)

For an arbitrary control stack k we are to show that k . ap(e1; e2) 7−→∗ k / v. Applying both of the
inductive hypotheses in succession, interleaved with steps of the K machine, we obtain

k . ap(e1; e2) 7−→ k;ap(−; e2) . e1

7−→∗ k;ap(−; e2) / lam{τ2}(x.e)
7−→ k . [e2/x]e
7−→∗ k / v.

The other cases of the proof are handled similarly.

28.3.2 Soundness

The judgment s# e′, where s is either k . e or k / e, is defined in terms of the auxiliary judgment
k ./ e = e′ by the following rules:

k ./ e = e′

k . e# e′
(28.11a)
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k ./ e = e′

k / e# e′
(28.11b)

In words, to unravel a state we wrap the stack around the expression to form a complete program.
The unraveling relation is inductively defined by the following rules:

ε ./ e = e
(28.12a)

k ./ s(e) = e′

k;s(−) ./ e = e′
(28.12b)

k ./ ifz{e0; x.e1}(e) = e′

k;ifz{e0; x.e1}(−) ./ e = e′
(28.12c)

k ./ ap(e1; e2) = e
k;ap(−; e2) ./ e1 = e

(28.12d)

These judgments both define total functions.

Lemma 28.5. The judgment s# e relates every state s to a unique expression e, and the judgment k ./ e =
e′ relates every stack k and expression e to a unique expression e′.

We are therefore justified in writing k ./ e for the unique e′ such that k ./ e = e′.
The following lemma is crucial. It states that unraveling preserves the transition relation.

Lemma 28.6. If e 7−→ e′, k ./ e = d, k ./ e′ = d′, then d 7−→ d′.

Proof. The proof is by rule induction on the transition e 7−→ e′. The inductive cases, where the
transition rule has a premise, follow easily by induction. The base cases, where the transition is an
axiom, are proved by an inductive analysis of the stack k.

For an example of an inductive case, suppose that e = ap(e1; e2), e′ = ap(e′1; e2), and e1 7−→ e′1.
We have k ./ e = d and k ./ e′ = d′. It follows from rules (28.12) that k;ap(−; e2) ./ e1 = d and
k;ap(−; e2) ./ e′1 = d′. So by induction d 7−→ d′, as desired.

For an example of a base case, suppose that e = ap(lam{τ2}(x.e); e2) and e′ = [e2/x]e with
e 7−→ e′ directly. Assume that k ./ e = d and k ./ e′ = d′; we are to show that d 7−→ d′. We
proceed by an inner induction on the structure of k. If k = ε, the result follows immediately.
Consider, say, the stack k = k′;ap(−; c2). It follows from rules (28.12) that k′ ./ ap(e; c2) = d
and k′ ./ ap(e′; c2) = d′. But by the structural dynamics ap(e; c2) 7−→ ap(e′; c2), so by the inner
inductive hypothesis we have d 7−→ d′, as desired.

We may now complete the proof of Lemma 28.3.

Proof of Lemma 28.3. The proof is by case analysis on the transitions of the K machine. In each case,
after unraveling, the transition will correspond to zero or one transitions of the PCF structural
dynamics.

Suppose that s = k . s(e) and s′ = k;s(−) . e. Note that k ./ s(e) = e′ iff k;s(−) ./ e = e′, from
which the result follows immediately.
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Suppose that s = k;ap(lam{τ}(x.e1);−) / e2 and s′ = k . [e2/x]e1. Let e′ be such that
k;ap(lam{τ}(x.e1);−) ./ e2 = e′ and let e′′ be such that k ./ [e2/x]e1 = e′′. Observe that k ./
ap(lam{τ}(x.e1); e2) = e′. The result follows from Lemma 28.6.

28.4 Notes

The abstract machine considered here is typical of a wide class of machines that make control flow
explicit in the state. The prototype is the SECD machine (Landin, 1965), which is a linearization of
a structural operational semantics (Plotkin, 1981). The advantage of a machine model is that the
explicit treatment of control is needed for languages that allow the control state to be manipulated
(see Chapter 30 for a prime example). The disadvantage is that the control state of the computation
must be made explicit, necessitating rules for manipulating it that are left implicit in a structural
dynamics.

Exercises

28.1. Give the proof of Theorem 28.1 for conditional expressions.

28.2. Formulate a call-by-value variant of the PCF machine.

28.3. Analyze the worst-case asymptotic complexity of executing each instruction of the K ma-
chine.

28.4. Refine the proof of Lemma 28.2 by bounding the number of machine steps taken for each
step of the PCF dynamics.
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Chapter 29

Exceptions

Exceptions effect a non-local transfer of control from the point at which the exception is raised
to an enclosing handler for that exception. This transfer interrupts the normal flow of control in
a program in response to unusual conditions. For example, exceptions can be used to signal an
error condition, or to signal the need for special handling in unusual circumstances. We could
use conditionals to check for and process errors or unusual conditions, but using exceptions is
often more convenient, particularly because the transfer to the handler is conceptually direct and
immediate, rather than indirect via explicit checks.

In this chapter we will consider two extensions of PCF with exceptions. The first, FPCF, en-
riches PCF with the simplest form of exception, called a failure, with no associated data. A failure
can be intercepted, and turned into a success (or another failure!) by transferring control to an-
other expression. The second, XPCF, enriches PCF with exceptions, with associated data that is
passed to an exception handler that intercepts it. The handler may analyze the associated data to
determine how to recover from the exceptional condition. A key choice is to decide on the type of
the data associated to an exception.

29.1 Failures

The syntax of FPCF is defined by the following extension of the grammar of PCF:

Exp e ::= fail fail signal a failure
catch(e1; e2) catch e1 ow e2 catch a failure

The expression fail aborts the current evaluation, and the expression catch(e1; e2) catches any
failure in e1 by evaluating e2 instead. Either e1 or e2 may themselves abort, or they may diverge or
return a value as usual in PCF.

The statics of FPCF is given by these rules:

Γ ` fail : τ
(29.1a)
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Γ ` e1 : τ Γ ` e2 : τ

Γ ` catch(e1; e2) : τ
(29.1b)

A failure can have any type, because it never returns. The two expressions in a catch expression
must have the same type, because either might determine the value of that expression.

The dynamics of FPCF is given using a technique called stack unwinding. Evaluation of a catch

pushes a frame of the form catch(−; e) onto the control stack that awaits the arrival of a failure.
Evaluation of a fail expression pops frames from the control stack until it reaches a frame of
the form catch(−; e), at which point the frame is removed from the stack and the expression e is
evaluated. Failure propagation is expressed by a state of the form k J , which extends the two
forms of state considered in Chapter 28 to express failure propagation.

The FPCF machine extends the PCF machine with the following additional rules:

k . fail 7−→ k J
(29.2a)

k . catch(e1; e2) 7−→ k;catch(−; e2) . e1
(29.2b)

k;catch(−; e2) / v 7−→ k / v
(29.2c)

k;catch(−; e2) J 7−→ k . e2
(29.2d)

( f 6= catch(−; e))
k; f J 7−→ k J

(29.2e)

Evaluating fail propagates a failure up the stack. The act of failing itself, fail, will, of course,
give rise to a failure. Evaluating catch(e1; e2) consists of pushing the handler on the control stack
and evaluating e1. If a value reaches to the handler, the handler is removed and the value is passed
to the surrounding frame. If a failure reaches the handler, the stored expression is evaluated with
the handler removed from the control stack. Failures propagate through all frames other than the
catch frame.

The initial and final states of the FPCF machine are defined by the following rules:

ε initial
(29.3a)

e val
ε / e final

(29.3b)

ε J final
(29.3c)

The definition of stack typing given in Chapter 28 can be extended to account for the new forms
of frame so that safety can be proved in the same way as before. The only difference is that the
statement of progress must be weakened to take account of failure: a well-typed expression is
either a value, or may take a step, or may signal failure.
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Theorem 29.1 (Safety for FPCF). 1. If s ok and s 7−→ s′, then s′ ok.

2. If s ok, then either s final or there exists s′ such that s 7−→ s′.

29.2 Exceptions

The language XPCF enriches FPCF with exceptions, failures to which a value is attached. The
syntax of XPCF extends that of PCF with the following forms of expression:

Exp e ::= raise(e) raise(e) raise an exception
try(e1; x.e2) try e1 ow x ↪→ e2 handle an exception

The argument to raise is evaluated to determine the value passed to the handler. The expression
try(e1; x.e2) binds a variable x in the handler e2. The associated value of the exception is bound to
that variable within e2, should an exception be raised when e1 is evaluated.

The statics of exceptions extends the statics of failures to account for the type of the value
carried with the exception:

Γ ` e : τexn
Γ ` raise(e) : τ

(29.4a)

Γ ` e1 : τ Γ, x : τexn ` e2 : τ

Γ ` try(e1; x.e2) : τ
(29.4b)

The type τexn is some fixed, but as yet unspecified, type of exception values. (The choice of τexn is
discussed in Section 29.3.)

The dynamics of XPCF is similar to that of FPCF, except that the failure state k J is replaced
by the exception state k J e which passes an exception value e to the stack k. There is only one
notion of exception, but the associated value can be used to identify the source of the exception.
We use a by-value interpretation to avoid the problem of imprecise exceptions that arises under a
by-name interpretation.

The stack frames of the PCF machine are extended to include raise(−) and try(−; x.e2).
These are used in the following rules:

k . raise(e) 7−→ k;raise(−) . e
(29.5a)

k;raise(−) / e 7−→ k J e
(29.5b)

k . try(e1; x.e2) 7−→ k;try(−; x.e2) . e1
(29.5c)

k;try(−; x.e2) / e 7−→ k / e
(29.5d)
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k;try(−; x.e2) J e 7−→ k . [e/x]e2
(29.5e)

( f 6= try(−; x.e2))

k; f J e 7−→ k J e
(29.5f)

The main difference compared to Rules (29.2) is that an exception passes a values to the stack,
whereas a failure does not.

The initial and final states of the XPCF machine are defined by the following rules:

ε . e initial
(29.6a)

e val
ε / e final

(29.6b)

ε J e final
(29.6c)

Theorem 29.2 (Safety for XPCF). 1. If s ok and s 7−→ s′, then s′ ok.

2. If s ok, then either s final or there exists s′ such that s 7−→ s′.

29.3 Exception Values

The statics of XPCF is parameterized by the type τexn of values associated to exceptions. The
choice of τexn is important because it determines how the source of an exception is identified in a
program. If τexn is the one-element type unit, then exceptions degenerate to failures, which are
unable to identify their source. Thus τexn must have more than one value to be useful.

This fact suggests that τexn should be a finite sum. The classes of the sum identify the sources of
exceptions, and the classified value carries information about the particular instance. For example,
τexn might be a sum type of the form

[div ↪→ unit, fnf ↪→ string, . . .].

Here the class div might represent an arithmetic fault, with no associated data, and the class fnf
might represent a “file not found” error, with associated data being the name of the file that was
not found.

Using a sum means that an exception handler can dispatch on the class of the exception value
to identify its source and cause. For example, we might write

handle e1 ow x ↪→
match x {
div 〈〉 ↪→ ediv

| fnf s ↪→ efnf }
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to handle the exceptions specified by the above sum type. Because the exception and its associated
data are coupled in a sum type, there is no possibility of misinterpreting the data associated to one
exception as being that of another.

The disadvantage of choosing a finite sum for τexn is that it specifies a closed world of possible
exception sources. All sources must be identified for the entire program, which impedes modular
development and evolution. A more modular approach admits an open world of exception sources
that can be introduced as the program evolves and even as it executes. A generalization of finite
sums, called dynamic classification, defined in Chapter 33, is required for an open world. (See that
Chapter for further discussion.)

When τexn is a type of classified values, its classes are often called exceptions, so that one may
speak of “the fnf exception” in the above example. This terminology is harmless, and all but
unavoidable, but it invites confusion between two separate ideas:

1. Exceptions as a control mechanism that allows the course of evaluation to be altered by raising
and handling exceptions.

2. Exceptions as a data value associated with such a deviation of control that allows the source
of the deviation to be identified.

As a control mechanism exceptions can be eliminated using explicit exception passing. A computa-
tion of type τ that may raise an exception is interpreted as an exception-free computation of type
τ + τexn; see Exercise 29.5 for more on this method.

29.4 Notes

Various forms of exceptions were considered in Lisp (Steele, 1990). The original formulation of
ML (Gordon et al., 1979) as a metalanguage for mechanized logic used failures to implement back-
tracking proof search. Most modern languages now have exceptions, but differ in the forms of
data that may be associated with them.

Exercises

29.1. Prove Theorem 29.2. Are any properties of τexn required for the proof?

29.2. Give an evaluation dynamics for XPCF using the following judgment forms:

• Normal evaluation: e ⇓ v, where e : τ, v : τ, and v val.

• Exceptional evaluation: e ⇑ v, where e : τ, and v : τexn, and v val.

The first states that e evaluates normally to value v, the second that e raises an exception with
value v.

29.3. Give a structural operational dynamics to XPCF by inductively defining the following judg-
ment forms:
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• e 7−→ e′, stating that expression e transitions to expression e′;

• e val, stating that expression e is a value.

Ensure that e ⇓ v iff e 7−→∗ v, and e ⇑ v iff e 7−→∗ raise(v), where v val in both cases.

29.4. The closed world assumption on exceptions amounts to choosing the type of exception val-
ues to be a finite sum type shared by the entire program. Under such an assumption it is
possible to track exceptions by placing an upper bound on the possible classes of an excep-
tion value.

Type refinements (defined in Chapter 25) can be used for exception tracking in a closed-
world setting. Define finite sum refinements by the rule

X′ ⊆ X (∀x ∈ X′) φx v τx

[φx]x∈X′ v [τx]x∈X

.

In particular, the refinement ∅ is the vacuous sum refinement [] satisfied by no value. Entail-
ment of finite sum refinements is defined by the rule

X′ ⊆ X′′ (∀x ∈ X′) φx ≤ φ′x
[φx]x∈X′ ≤ [φ′x]x∈X′′

So, in particular, ∅ ≤ φ for all sum refinements φ of τexn. Entailment weakens knowledge of
the class of a value of sum type, which is crucial to their application to exception tracking.

The goal of this exercise is to develop a system of type refinements for the modal formulation
of exceptions in MPCF using sum refinements to perform exception tracking.

(a) Define the command refinement judgment m ∈τ φ owχ, where m ∼·· τ, φ v τ, and
χ v τexn, to mean that if m returns e, then e ∈τ φ, and if m raises e, then e ∈τexn χ.

(b) Define satisfaction and entailment for the expression refinement cmd(φ; χ) v cmd(τ),
where φ v τ and χ v τexn. This refinement classifies encapsulated commands that sat-
isfy the stated value and exception refinements in the sense of the preceding problem.

29.5. Show that exceptions in MPCF can be eliminated by a translation into PCF enriched with
sum types by what is called the exception-passing style transformation. Each command m ∼·· τ
of MPCF is translated to a pure expression m̂ of type τ̂ + τexn whose value is either l · e,
where e : τ, for normal return, or r · e, where e : τexn, for an exceptional return. The command
translation is extended to an expression translation ê that replaces occurrences of cmd(m) by
m̂. The corresponding type translation, τ̂, replaces cmd(τ) by τ̂ + τexn. Define the command
translation from MPCF to PCF enriched with sums, and show that it has the required type
and correctly simulates the behavior of exceptions.
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Chapter 34

Modernized Algol

Modernized Algol, or MA, is an imperative, block-structured programming language based on
the classic language Algol. MA extends PCF with a new syntactic sort of commands that act on
assignables by retrieving and altering their contents. Assignables are introduced by declaring them
for use within a specified scope; this is the essence of block structure. Commands are combined
by sequencing, and are iterated using recursion.

MA maintains a careful separation between pure expressions, whose meaning does not de-
pend on any assignables, and impure commands, whose meaning is given in terms of assignables.
The segregation of pure from impure ensures that the evaluation order for expressions is not con-
strained by the presence of assignables in the language, so that they can be manipulated just as in
PCF. Commands, on the other hand, have a constrained execution order, because the execution of
one may affect the meaning of another.

A distinctive feature of MA is that it adheres to the stack discipline, which means that assignables
are allocated on entry to the scope of their declaration, and deallocated on exit, using a conven-
tional stack discipline. Stack allocation avoids the need for more complex forms of storage man-
agement, at the cost of reducing the expressive power of the language.

34.1 Basic Commands

The syntax of the language MA of modernized Algol distinguishes pure expressions from impure
commands. The expressions include those of PCF (as described in Chapter 19), augmented with
one construct, and the commands are those of a simple imperative programming language based
on assignment. The language maintains a sharp distinction between variables and assignables. Vari-
ables are introduced by λ-abstraction and are given meaning by substitution. Assignables are
introduced by a declaration and are given meaning by assignment and retrieval of their contents,
which is, for the time being, restricted to natural numbers. Expressions evaluate to values, and
have no effect on assignables. Commands are executed for their effect on assignables, and return
a value. Composition of commands not only sequences their execution order, but also passes the
value returned by the first to the second before it is executed. The returned value of a command
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is, for the time being, restricted to the natural numbers. (But see Section 34.3 for the general case.)
The syntax of MA is given by the following grammar, from which we have omitted repetition

of the expression syntax of PCF for the sake of brevity.

Typ τ ::= cmd cmd command
Exp e ::= cmd(m) cmdm encapsulation
Cmd m ::= ret(e) ret e return

bnd(e; x.m) bnd x← e ; m sequence
dcl(e; a.m) dcl a := e in m new assignable
get[a] @ a fetch
set[a](e) a := e assign

The expression cmd(m) consists of the unevaluated command m thought of as a value of type
cmd. The command ret(e) returns the value of the expression e without having any effect on
the assignables. The command bnd(e; x.m) evaluates e to an encapsulated command, then this
command is executed for its effects on assignables, with its value substituted for x in m. The
command dcl(e; a.m) introduces a new assignable, a, for use within the command m whose initial
contents is given by the expression e. The command get[a] returns the current contents of the
assignable a and the command set[a](e) changes the contents of the assignable a to the value of e,
and returns that value.

34.1.1 Statics

The statics of MA consists of two forms of judgment:

1. Expression typing: Γ `Σ e : τ.

2. Command formation: Γ `Σ m ok.

The context Γ specifies the types of variables, as usual, and the signature Σ consists of a finite set
of assignables. As with other uses of symbols, the signature cannot be interpreted as a form of
typing hypothesis (it enjoys no structural properties of entailment), but must be considered as an
index of a family of judgments, one for each choice of Σ.

The statics of MA is inductively defined by the following rules:

Γ `Σ m ok

Γ `Σ cmd(m) : cmd
(34.1a)

Γ `Σ e : nat
Γ `Σ ret(e) ok

(34.1b)

Γ `Σ e : cmd Γ, x : nat `Σ m ok

Γ `Σ bnd(e; x.m) ok
(34.1c)

Γ `Σ e : nat Γ `Σ,a m ok

Γ `Σ dcl(e; a.m) ok
(34.1d)
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Γ `Σ,a get[a] ok
(34.1e)

Γ `Σ,a e : nat
Γ `Σ,a set[a](e) ok

(34.1f)

Rule (34.1a) is the introduction rule for the type cmd, and rule (34.1c) is the corresponding elimi-
nation form. Rule (34.1d) introduces a new assignable for use within a specified command. The
name a of the assignable is bound by the declaration, and so may be renamed to satisfy the im-
plicit constraint that it not already occur in Σ. Rule (34.1e) states that the command to retrieve
the contents of an assignable a returns a natural number. Rule (34.1f) states that we may assign a
natural number to an assignable.

34.1.2 Dynamics

The dynamics of MA is defined in terms of a memory µ a finite function assigning a numeral to
each of a finite set of assignables.

The dynamics of expressions consists of these two judgment forms:

1. e valΣ, stating that e is a value relative to Σ.

2. e 7−→
Σ

e′, stating that the expression e steps to the expression e′.

These judgments are inductively defined by the following rules, together with the rules defining
the dynamics of PCF (see Chapter 19). It is important, however, that the successor operation be
given an eager, instead of lazy, dynamics so that a closed value of type nat is a numeral (for reasons
that will be explained in Section 34.3).

cmd(m) valΣ
(34.2a)

Rule (34.2a) states that an encapsulated command is a value.
The dynamics of commands is defined in terms of states m ‖ µ, where µ is a memory mapping

assignables to values, and m is a command. There are two judgments governing such states:

1. m ‖ µ finalΣ. The state m ‖ µ is complete.

2. m ‖ µ 7−→
Σ

m′ ‖ µ′. The state m ‖ µ steps to the state m′ ‖ µ′; the set of active assignables is

given by the signature Σ.

These judgments are inductively defined by the following rules:

e valΣ
ret(e) ‖ µ finalΣ

(34.3a)

e 7−→
Σ

e′

ret(e) ‖ µ 7−→
Σ

ret(e′) ‖ µ
(34.3b)
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e 7−→
Σ

e′

bnd(e; x.m) ‖ µ 7−→
Σ

bnd(e′; x.m) ‖ µ
(34.3c)

e valΣ
bnd(cmd(ret(e)); x.m) ‖ µ 7−→

Σ
[e/x]m ‖ µ (34.3d)

m1 ‖ µ 7−→
Σ

m′1 ‖ µ′

bnd(cmd(m1); x.m2) ‖ µ 7−→
Σ

bnd(cmd(m′1); x.m2) ‖ µ′
(34.3e)

get[a] ‖ µ⊗ a ↪→ e 7−→
Σ,a

ret(e) ‖ µ⊗ a ↪→ e (34.3f)

e 7−→
Σ,a

e′

set[a](e) ‖ µ 7−→
Σ,a

set[a](e′) ‖ µ
(34.3g)

e valΣ,a

set[a](e) ‖ µ⊗ a ↪→ 7−→
Σ,a

ret(e) ‖ µ⊗ a ↪→ e (34.3h)

e 7−→
Σ

e′

dcl(e; a.m) ‖ µ 7−→
Σ

dcl(e′; a.m) ‖ µ
(34.3i)

e valΣ m ‖ µ⊗ a ↪→ e 7−→
Σ,a

m′ ‖ µ′ ⊗ a ↪→ e′

dcl(e; a.m) ‖ µ 7−→
Σ

dcl(e′; a.m′) ‖ µ′
(34.3j)

e valΣ e′ valΣ,a

dcl(e; a.ret(e′)) ‖ µ 7−→
Σ

ret(e′) ‖ µ
(34.3k)

Rule (34.3a) specifies that a ret command is final if its argument is a value. Rules (34.3c) to (34.3e)
specify the dynamics of sequential composition. The expression e must, by virtue of the type
system, evaluate to an encapsulated command, which is executed to find its return value, which
is then substituted into the command m before executing it.

Rules (34.3i) to (34.3k) define the concept of block structure in a programming language. Dec-
larations adhere to the stack discipline in that an assignable is allocated during evaluation of the
body of the declaration, and deallocated after evaluation of the body is complete. Therefore the
lifetime of an assignable can be identified with its scope, and hence we may visualize the dynamic
lifetimes of assignables as being nested inside one another, in the same way as their static scopes
are nested inside one another. The stack-like behavior of assignables is a characteristic feature of
what are known as Algol-like languages.
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34.1.3 Safety

The judgment m ‖ µ okΣ is defined by the rule

`Σ m ok µ : Σ
m ‖ µ okΣ

(34.4)

where the auxiliary judgment µ : Σ is defined by the rule

∀a ∈ Σ ∃e µ(a) = e and e val∅ and `∅ e : nat
µ : Σ

(34.5)

That is, the memory must bind a number to each assignable in Σ.

Theorem 34.1 (Preservation).

1. If e 7−→
Σ

e′ and `Σ e : τ, then `Σ e′ : τ.

2. If m ‖ µ 7−→
Σ

m′ ‖ µ′, with `Σ m ok and µ : Σ, then `Σ m′ ok and µ′ : Σ.

Proof. Simultaneously, by induction on rules (34.2) and (34.3).
Consider rule (34.3j). Assume that `Σ dcl(e; a.m) ok and µ : Σ. By inversion of typing we have

`Σ e : nat and `Σ,a m ok. Because e valΣ and µ : Σ, we have µ⊗ a ↪→ e : Σ, a. By induction we have
`Σ,a m′ ok and µ′ ⊗ a ↪→ e′ : Σ, a, from which the result follows immediately.

Consider rule (34.3k). Assume that `Σ dcl(e; a.ret(e′)) ok and µ : Σ. By inversion we have
`Σ e : nat, and `Σ,a ret(e′) ok, and so `Σ,a e′ : nat. But because e′ valΣ,a, and e′ is a numeral, and
we also have `Σ e′ : nat, as required.

Theorem 34.2 (Progress).

1. If `Σ e : τ, then either e valΣ, or there exists e′ such that e 7−→
Σ

e′.

2. If `Σ m ok and µ : Σ, then either m ‖ µ finalΣ or m ‖ µ 7−→
Σ

m′ ‖ µ′ for some µ′ and m′.

Proof. Simultaneously, by induction on rules (34.1). Consider rule (34.1d). By the first inductive
hypothesis we have either e 7−→

Σ
e′ or e valΣ. In the former case rule (34.3i) applies. In the latter, we

have by the second inductive hypothesis,

m ‖ µ⊗ a ↪→ e finalΣ,a or m ‖ µ⊗ a ↪→ e 7−→
Σ,a

m′ ‖ µ′ ⊗ a ↪→ e′.

In the former case we apply rule (34.3k), and in the latter, rule (34.3j).
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34.2 Some Programming Idioms

The language MA is designed to expose the elegant interplay between the execution of an expres-
sion for its value and the execution of a command for its effect on assignables. In this section we
show how to derive several standard idioms of imperative programming in MA.

We define the sequential composition of commands, written {x←m1 ; m2}, to stand for the com-
mand bnd x← cmd (m1) ; m2. Binary composition readily generalizes to an n-ary form by defining

{x1←m1 ; . . . xn−1←mn−1 ; mn},

to stand for the iterated composition

{x1←m1 ; . . . {xn−1←mn−1 ; mn}}.

We sometimes write just {m1 ; m2} for the composition { ←m1 ; m2} where the returned value
from m1 is ignored; this generalizes in the obvious way to an n-ary form.

A related idiom, the command do e, executes an encapsulated command and returns its result.
By definition do e stands for the command bnd x← e ; ret x.

The conditional command if (m)m1 else m2 executes either m1 or m2 according to whether the
result of executing m is zero or not:

{x←m ; do (ifz x {z ↪→ cmdm1 | s( ) ↪→ cmdm2})}.

The returned value of the conditional is the value returned by the selected command.

The while loop command while (m1)m2 repeatedly executes the command m2 while the com-
mand m1 yields a non-zero number. It is defined as follows:

do (fix loop : cmd is cmd (if (m1) {ret z} else {m2 ; do loop})).

This commands runs the self-referential encapsulated command that, when executed, first exe-
cutes m1, branching on the result. If the result is zero, the loop returns zero (arbitrarily). If the
result is non-zero, the command m2 is executed and the loop is repeated.

A procedure is a function of type τ ⇀ cmd that takes an argument of some type τ and yields
an unexecuted command as result. Many procedures have the form λ (x : τ) cmdm, which we
abbreviate to proc (x : τ)m. A procedure call is the composition of a function application with the
activation of the resulting command. If e1 is a procedure and e2 is its argument, then the procedure
call call e1(e2) is defined to be the command do (e1(e2)), which immediately runs the result of
applying e1 to e2.

As an example, here is a procedure of type nat⇀ cmd that returns the factorial of its argument:



PREVIE
W

34.3 Typed Commands and Typed Assignables 313

proc (x:nat) {
dcl r := 1 in

dcl a := x in

{ while ( @ a ) {
y ← @ r

; z ← @ a

; r := (x-z+1)× y

; a := z-1

}
; x ← @ r

; ret x

}
}

The loop maintains the invariant that the contents of r is the factorial of x minus the contents
of a. Initialization makes this invariant true, and it is preserved by each iteration of the loop, so
that upon completion of the loop the assignable a contains 0 and r contains the factorial of x, as
required.

34.3 Typed Commands and Typed Assignables

So far we have restricted the type of the returned value of a command, and the contents of an
assignable, to be nat. Can this restriction be relaxed, while adhering to the stack discipline?

The key to admitting returned and assignable values of other types may be uncovered by a
close examination of the proof of Theorem 34.1. For the proof to go through it is crucial that
values of type nat, the type of assignables and return values, cannot contain an assignable, for
otherwise the embedded assignable would escape the scope of its declaration. This property is
self-evidently true for eagerly evaluated natural numbers, but fails when they are evaluated lazily.
Thus the safety of MA hinges on the evaluation order for the successor operation, in contrast to
most other situations where either interpretation is also safe.

When extending MA to admit assignables and returned values of other types, it is necessary
to pay close attention to whether assignables can be embedded in a value of a candidate type.
For example, if return values of procedure type are allowed, then the following command violates
safety:

dcl a := z in {ret (proc (x : nat) {a := x})}.

This command, when executed, allocates a new assignable a and returns a procedure that, when
called, assigns its argument to a. But this makes no sense, because the assignable a is deallocated
when the body of the declaration returns, but the returned value still refers to it. If the returned
procedure is called, execution will get stuck in the attempt to assign to a.

A similar example shows that admitting assignables of procedure type is also unsound. For
example, suppose that b is an assignable whose contents are of type nat⇀ cmd, and consider the
command

dcl a := z in {b := proc (x : nat) cmd(a := x) ; ret z}.
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We assign to b a procedure that uses a locally declared assignable a and then leaves the scope of
the declaration. If we then call the procedure stored in b, execution will get stuck attempting to
assign to the non-existent assignable a.

To admit declarations that return values other than nat and to admit assignables with contents
of types other than nat, we must rework the statics of MA to record the returned type of a com-
mand and to record the type of the contents of each assignable. First, we generalize the finite set
Σ of active assignables to assign a mobile type to each active assignable so that Σ has the form
of a finite set of assumptions of the form a ~ τ, where a is an assignable. Second, we replace the
judgment Γ `Σ m ok by the more general form Γ `Σ m ∼·· τ, stating that m is a well-formed com-
mand returning a value of type τ. Third, the type cmd is generalized to cmd(τ), which is written in
examples as τ cmd, to specify the return type of the encapsulated command.

The statics given in Section 34.1.1 is generalized to admit typed commands and typed assignables
as follows:

Γ `Σ m ∼·· τ

Γ `Σ cmd(m) : cmd(τ)
(34.6a)

Γ `Σ e : τ

Γ `Σ ret(e) ∼·· τ
(34.6b)

Γ `Σ e : cmd(τ) Γ, x : τ `Σ m ∼·· τ′

Γ `Σ bnd(e; x.m) ∼·· τ′
(34.6c)

Γ `Σ e : τ τ mobile Γ `Σ,a~τ m ∼·· τ′ τ′ mobile

Γ `Σ dcl(e; a.m) ∼·· τ′
(34.6d)

Γ `Σ,a~τ get[a] ∼·· τ
(34.6e)

Γ `Σ,a~τ e : τ

Γ `Σ,a~τ set[a](e) ∼·· τ
(34.6f)

Apart from the generalization to track returned types and content types, the most important
change is that in Rule (34.6d) both the type of a declared assignable and the return type of the
declaration is required to be mobile. The definition of the judgment τ mobile is guided by the
following mobility condition:

if τ mobile, `Σ e : τ and e valΣ, then `∅ e : τ and e val∅. (34.7)

That is, a value of mobile type may not depend on any active assignables.
As long as the successor operation is evaluated eagerly, the type nat is mobile:

nat mobile
(34.8)

Similarly, a product of mobile types may safely be deemed mobile, if pairs are evaluated eagerly:

τ1 mobile τ2 mobile

τ1 × τ2 mobile
(34.9)
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And the same goes for sums, if the injections are evaluated eagerly:

τ1 mobile τ2 mobile

τ1 + τ2 mobile
(34.10)

In each of these cases laziness defeats mobility, because values may contain suspended computa-
tions that depend on an assignable. For example, if the successor operation for the natural num-
bers were evaluated lazily, then s(e) would be a value for any expression e including one that
refers to an assignable a.

Because the body of a procedure may involve an assignable, no procedure type is mobile, nor
is any command type. What about function types other than procedure types? We may think
they are mobile, because a pure expression cannot depend on an assignable. Although this is the
case, the mobility condition need not hold. For example, consider the following value of type
nat⇀ nat:

λ (x : nat) (λ ( : τ cmd) z)(cmd {@ a}).

Although the assignable a is not actually needed to compute the result, it nevertheless occurs in
the value, violating the mobility condition.

The mobility restriction on the statics of declarations ensures that the type associated to an
assignable is always mobile. We may therefore assume, without loss of generality, that the types
associated to the assignables in the signature Σ are mobile.

Theorem 34.3 (Preservation for Typed Commands).

1. If e 7−→
Σ

e′ and `Σ e : τ, then `Σ e′ : τ.

2. If m ‖ µ 7−→
Σ

m′ ‖ µ′, with `Σ m ∼·· τ and µ : Σ, then `Σ m′ ∼·· τ and µ′ : Σ.

Theorem 34.4 (Progress for Typed Commands).

1. If `Σ e : τ, then either e valΣ, or there exists e′ such that e 7−→
Σ

e′.

2. If `Σ m ∼·· τ and µ : Σ, then either m ‖ µ finalΣ or m ‖ µ 7−→
Σ

m′ ‖ µ′ for some µ′ and m′.

The proofs of Theorems 34.3 and 34.4 follows very closely the proof of Theorems 34.1 and 34.2.
The main difference is that we appeal to the mobility condition to ensure that returned values and
stored values are independent of the active assignables.

34.4 Notes

Modernized Algol is a derivative of Reynolds’s Idealized Algol (Reynolds, 1981). In contrast to
Reynolds’s formulation, Modernized Algol maintains a separation between computations that
depend on the memory and those that do not, and does not rely on call-by-name for function
application, but rather has a type of encapsulated commands that can be used where call-by-name
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would otherwise be required. The modal distinction between expressions and commands was
present in the original formulation of Algol 60, but is developed here in light of the concept of
monadic effects introduced by Moggi (1989). Its role in functional programming was emphasized
by Wadler (1992). The modal separation in MA is adapted directly from Pfenning and Davies
(2001), which stresses the connection to lax modal logic.

What are called assignables here are invariably called variables elsewhere. The distinction be-
tween variables and assignables is blurred in languages that allow assignables as forms of expres-
sion. (Indeed, Reynolds himself1 regards this as a defining feature of Algol, in opposition to the
formulation given here.) In MA we choose to make the distinction between variables, which are
given meaning by substitution, and assignables, which are given meaning by mutation. Draw-
ing this distinction requires new terminology; the term assignable seems apt for the imperative
programming concept.

The concept of mobility of a type was introduced in the ML5 language for distributed comput-
ing (Murphy et al., 2004), with the similar meaning that a value of a mobile type cannot depend
on local resources. Here the mobility restriction is used to ensure that the language adheres to the
stack discipline.

Exercises

34.1. Originally Algol had both scalar assignables, whose contents are atomic values, and array
assignables, which is a finite sequence of scalar assignables. Like scalar assignables, array
assignables are stack-allocated. Extend MA with array assignables, ensuring that the lan-
guage remains type safe, but allowing that computation may abort if a non-existent array
element is accessed.

34.2. Consider carefully the behavior of assignable declarations within recursive procedures, as in
the following expression

fix p isλ (p : τ) dcl a := e in cmd(m)

of type τ ⇀ ρ cmd for some ρ. Because p is recursive, the body m of the procedure may
call itself during its execution, causing the same declaration to be executed more than once.
Explain the dynamics of getting and setting a in such a situation.

34.3. Originally Algol considered assignables as expressions that stand for their contents in mem-
ory. Thus, if a is an assignable containing a number, one could write expressions such as
a + a that would evaluate to twice the contents of a. Moreover, one could write commands
such as a := a + a to double the contents of a. These conventions encouraged programmers
to think of assignables as variables, quite the opposite of their separation in MA. This con-
vention, combined with an over-emphasis on concrete syntax, led to a conundrum about the
different roles of a in the above assignment command: its meaning on the left of the assign-
ment is different from its meaning on the right. These came to be called the left-, or l-value,

1Personal communication, 2012.



PREVIE
W

34.4 Notes 317

and the right-, or r-value of the assignable a, corresponding to its position in the assignment
statement. When viewed as abstract syntax, though, there is no ambiguity to be explained:
the assignment operator is indexed by its target assignable, instead of taking as argument
an expression that happens to be an assignable, so that the command is set[a](a + a), not
set(a; a + a).

This still leaves the puzzle of how to regard assignables as forms of expression. As a first
cut, reformulate the dynamics of MA to account for this. Reformulate the dynamics of ex-
pressions in terms of the judgments e ‖ µ 7−→

Σ
e′ ‖ µ′ and e ‖ µ final that allow evaluation of e

to depend on the contents of the memory. Each use of an assignable as an expression should
require one access to the memory. Then prove memory invariance:: if e ‖ µ 7−→

Σ
e′ ‖ µ′, then

µ′ = µ.

A natural generalization is to allow any sequence of commands to be considered as an ex-
pression, if they are all passive in the sense that no assignments are allowed. Write do {m},
where m is a passive command, for a passive block whose evaluation consists of executing the
command m on the current memory, using its return value as the value of the expression.
Observe that memory invariance holds for passive blocks.

The use of an assignable a as an expression may now be rendered as the passive block
do {@ a}. More complex uses of assignables as expressions admit several different inter-
pretations using passive blocks. For example, an expression such as a + a might be rendered
in one of two ways:

(a) do {@ a}+ do {@ a}, or

(b) let x be do {@ a} in x + x.

The latter formulation accesses a only once, but uses its value twice. Comment on there
being two different interpretations of a + a.

34.4. Recursive procedures in Algol are declared using a command of the form proc p(x : τ) : ρ is
m in m′, which is governed by the typing rule

Γ, p : τ ⇀ ρ cmd, x : τ `Σ m ∼·· ρ Γ, p : τ ⇀ ρ cmd `Σ m′ ∼·· τ′

Γ `Σ proc p(x : τ) : ρ is m in m′ ∼·· τ′
. (34.11)

From the present viewpoint it is peculiar to insist on declaring procedures at all, because they
are simply values of procedure type, and even more peculiar to insist that they be confined
for use within a command. One justification for this limitation, though, is that Algol included
a peculiar feature, called an own variable2 that was declared for use within the procedure, but
whose state persisted across calls to the procedure. One application would be to a procedure
that generated pseudo-random numbers based on a stored seed that influenced the behavior
of successive calls to it. Give a formulation in MA of the extended declaration

proc p(x : τ) : ρ is {own a := e in m} in m′

2That is to say, an own assignable.
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where a is declared as an “own” of the procedure p. Contrast the meaning of the foregoing
declaration with the following one:

proc p(x : τ) : ρ is {dcl a := e in m} in m′.

34.5. A natural generalization of own assignables is to allow the creation of many such scenarios
for a single procedure (or mutually recursive collection of procedures), with each instance
creating its own persistent state. This ability motivated the concept of a class in Simula-67 as
a collection of procedures, possibly mutually recursive, that shared common persistent state.
Each instance of a class is called an object of that class; calls to its constituent procedures mu-
tate the private persistent state. Formulate this 1967 precursor of imperative object-oriented
programming in the context of MA.

34.6. There are several ways to formulate an abstract machine for MA that accounts for both the
control stack, which sequences execution (as described in Chapter 28 for PCF), and the data
stack, which records the contents of the assignables. A consolidated stack combines these two
separate concepts into one, whereas separated stacks keeps the memory separate from the
control stack, much as we have done in the structural dynamics given by Rules (34.3). In
either case the storage required for an assignable is deallocated when exiting the scope of
that assignable, a key benefit of the stack discipline for assignables in MA.

With a modal separation between expressions and commands it is natural to use a structural
dynamics for expressions (given by the transition and value judgments, e 7−→ e′ and e val),
and a stack machine dynamics for commands.

(a) Formulate a consolidated stack machine where both assignables and stack frames are
recorded on the same stack. Consider states k .Σ m, where `Σ k /: τ and `Σ m ∼·· τ,
and k /Σ e, where `Σ k /: τ and `Σ e : τ. Comment on the implementation methods
required for a consolidated stack.

(b) Formulate a separated stack machine where the memory is maintained separately from
the control stack. Consider states of the form µ ‖ k .Σ m, where µ : Σ, `Σ k /: τ, and
`Σ m ∼·· τ, and of the form µ ‖ k /Σ e, where `Σ k /: τ, `Σ e : τ, and e val.
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Assignable References

A reference to an assignable a is a value, written &a, of reference type that determines the assignable a.
A reference to an assignable provides the capability to get or set the contents of that assignable, even
if the assignable itself is not in scope when it is used. Two references can be compared for equality
to test whether they govern the same underlying assignable. If two references are equal, then
setting one will affect the result of getting the other; if they are not equal, then setting one cannot
influence the result of getting from the other. Two references that govern the same underlying
assignable are aliases. Aliasing complicates reasoning about programs that use references, because
any two references may refer to the assignable.

Reference types are compatible with both a scoped and a scope-free allocation of assignables.
When assignables are scoped, the range of significance of a reference type is limited to the scope
of the assignable to which it refers. Reference types are therefore immobile, so that they cannot be
returned from the body of a declaration, nor stored in an assignable. Although ensuring adherence
to the stack discipline, this restriction precludes using references to create mutable data structures,
those whose structure can be altered during execution. Mutable data structures have a number of
applications in programming, including improving efficiency (often at the expense of expressive-
ness) and allowing cyclic (self-referential) structures to be created. Supporting mutability requires
that assignables be given a scope-free dynamics, so that their lifetime persists beyond the scope of
their declaration. Consequently, all types are mobile, so that a value of any type may be stored in
an assignable or returned from a command.

35.1 Capabilities

The commands get[a] and set[a](e) in MA operate on statically specified assignable a. Even to
write these commands requires that the assignable a be in scope where the command occurs. But
suppose that we wish to define a procedure that, say, updates an assignable to double its previous
value, and returns the previous value. We can write such a procedure for any given assignable, a,
but what if we wish to write a generic procedure that works for any given assignable?
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One way to do this is give the procedure the capability to get and set the contents of some caller-
specified assignable. Such a capability is a pair consisting of a getter and a setter for that assignable.
The getter for an assignable a is a command that, when executed, returns the contents of a. The
setter for an assignable a is a procedure that, when applied to a value of suitable type, assigns that
value to a. Thus, a capability for an assignable a containing a value of type τ is a value of type

τ cap , τ cmd× (τ ⇀ τ cmd).

A capability for getting and setting an assignable a containing a value of type τ is given by the
pair

〈cmd (@ a), proc (x : τ) a := x〉

of type τ cap. Because a capability type is a product of a command type and a procedure type,
no capability type is mobile. Thus, a capability cannot be returned from a command, nor stored
into an assignable. This is as it should be, for otherwise we would violate the stack discipline for
allocating assignables.

The proposed generic doubling procedure is programmed using capabilities as follows:

proc (〈get, set〉 : nat cmd× (nat⇀ nat cmd)) {x← do get ; y← do (set(x + x)) ; ret x}.

The procedure is called with the capability to access an assignable a. When executed, it invokes the
getter to obtain the contents of a, and then invokes the setter to assign to a, returning the previous
value. Observe that the assignable a need not be accessible by this procedure; the capability given
by the caller comprises the commands required to get and set a.

35.2 Scoped Assignables

A weakness of using a capability to give indirect access to an assignable is that there is no guaran-
tee that a given getter/setter pair are in fact the capability for a particular assignable. For example,
we might pair the getter for a with the setter for b, leading to unexpected behavior. There is noth-
ing in the type system that prevents creating such mismatched pairs.

To avoid this we introduce the concept of a reference to an assignable. A reference is a value
from which we may obtain the capability to get and set a particular assignable. Moreover, two
references can be tested for equality to see whether they act on the same assignable.1 The reference
type ref(τ) has as values references to assignables of type τ. The introduction and elimination
forms for this type are given by the following syntax chart:

Typ τ ::= ref(τ) τ ref assignable
Exp e ::= ref[a] &a reference
Cmd m ::= getref(e) ∗ e contents

setref(e1; e2) e1 ∗= e2 update

1The getter and setter do not suffice to define equality, because not all types admit a test for equality. When they do,
and when there are at least two distinct values of their type, we can determine whether they are aliases by assigning to one
and checking whether the contents of the other is changed.
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The statics of reference types is defined by the following rules:

Γ `Σ,a~τ ref[a] : ref(τ)
(35.1a)

Γ `Σ e : ref(τ)
Γ `Σ getref(e) ∼·· τ

(35.1b)

Γ `Σ e1 : ref(τ) Γ `Σ e2 : τ

Γ `Σ setref(e1; e2) ∼·· τ
(35.1c)

Rule (35.1a) specifies that the name of any active assignable is an expression of type ref(τ).
The dynamics of reference types defers to the corresponding operations on assignables, and

does not alter the underlying dynamics of assignables:

ref[a] valΣ,a~τ

(35.2a)

e 7−→
Σ

e′

getref(e) ‖ µ 7−→
Σ

getref(e′) ‖ µ
(35.2b)

getref(ref[a]) ‖ µ 7−−−→
Σ,a~τ

get[a] ‖ µ
(35.2c)

e1 7−→
Σ

e′1

setref(e1; e2) ‖ µ 7−→
Σ

setref(e′1; e2) ‖ µ
(35.2d)

setref(ref[a]; e) ‖ µ 7−−−→
Σ,a~τ

set[a](e) ‖ µ
(35.2e)

A reference to an assignable is a value. The getref and setref operations on references defer to
the corresponding operations on assignables once the referent has been resolved.

Because references give rise to capabilities, the reference type is immobile. As a result refer-
ences cannot be stored in assignables or returned from commands. The immobility of references
ensures safety, as can be seen by extending the safety proof given in Chapter 34.

As an example of using references, the generic doubling procedure discussed in the preceding
section is programmed using references as follows:

proc (r : nat ref) {x←∗ r ; r ∗= x + x ; ret x}.

Because the argument is a reference, rather than a capability, there is no possibility that the getter
and setter refer to different assignables.
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The ability to pass references to procedures comes at a price, because any two references might
refer to the same assignable (if they have the same type). Consider a procedure that, when given
two references x and y, adds twice the contents of y to the contents of x. One way to write this
code creates no complications:

λ (x : nat ref) λ (y : nat ref) cmd {x′←∗ x ; y′←∗ y ; x ∗= x′ + y′ + y′}.

Even if x and y refer to the same assignable, the effect will be to set the contents of the assignable
referenced by x to the sum of its original contents and twice the contents of the assignable refer-
enced by y.

But now consider the following seemingly equivalent implementation of this procedure:

λ (x : nat ref) λ (y : nat ref) cmd {x += y ; x += y},

where x += y is the command

{x′←∗ x ; y′←∗ y ; x ∗= x′ + y′}

that adds the contents of y to the contents of x. The second implementation works right, as long
as x and y do not refer to the same assignable. If they do refere to a common assignable a, with
contents n, the result is that a is to set 4× n, instead of the intended 3× n. The second get of y is
affected by the first set of x.

In this case it is clear how to avoid the problem: use the first implementation, rather than
the second. But the difficulty is not in fixing the problem once it has been discovered, but in
noticing the problem in the first place. Wherever references (or capabilities) are used, the problems
of interference lurk. Avoiding them requires very careful consideration of all possible aliasing
relationships among all of the references in play. The problem is that the number of possible
aliasing relationships among n references grows combinatorially in n.

35.3 Free Assignables

Although it is interesting to note that references and capabilities are compatible with the stack
discipline, for references to be useful requires that this restriction be relaxed. With immobile ref-
erences it is impossible to build data structures containing references, or to return references from
procedures. To allow this we must arrange that the lifetime of an assignable extend beyond its
scope. In other words we must give up stack allocation for heap allocation. Assignables that
persist beyond their scope of declaration are called scope-free, or just free, assignables. When all
assignables are free, every type is mobile and so any value, including a reference, may be used in
a data structure.

Supporting free assignables amounts to changing the dynamics so that allocation of assignables
persists across transitions. We use transition judgments of the form

ν Σ {m ‖ µ } 7−→ ν Σ′ {m′ ‖ µ′ }.
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Execution of a command may allocate new assignables, may alter the contents of existing assignables,
and may give rise to a new command to be executed at the next step. The rules defining the dy-
namics of free assignables are as follows:

e valΣ
ν Σ { ret(e) ‖ µ } final

(35.3a)

e 7−→
Σ

e′

ν Σ { ret(e) ‖ µ } 7−→ ν Σ { ret(e′) ‖ µ }
(35.3b)

e 7−→
Σ

e′

ν Σ { bnd(e; x.m) ‖ µ } 7−→ ν Σ { bnd(e′; x.m) ‖ µ }
(35.3c)

e valΣ
ν Σ { bnd(cmd(ret(e)); x.m) ‖ µ } 7−→ ν Σ { [e/x]m ‖ µ } (35.3d)

ν Σ {m1 ‖ µ } 7−→ ν Σ′ {m′1 ‖ µ′ }
ν Σ { bnd(cmd(m1); x.m2) ‖ µ } 7−→ ν Σ′ { bnd(cmd(m′1); x.m2) ‖ µ′ }

(35.3e)

ν Σ, a ~ τ { get[a] ‖ µ⊗ a ↪→ e } 7−→ ν Σ, a ~ τ { ret(e) ‖ µ⊗ a ↪→ e }
(35.3f)

e 7−→
Σ

e′

ν Σ { set[a](e) ‖ µ } 7−→ ν Σ { set[a](e′) ‖ µ }
(35.3g)

e valΣ,a~τ

ν Σ, a ~ τ { set[a](e) ‖ µ⊗ a ↪→ } 7−→ ν Σ, a ~ τ { ret(e) ‖ µ⊗ a ↪→ e }
(35.3h)

e 7−→
Σ

e′

ν Σ { dcl(e; a.m) ‖ µ } 7−→ ν Σ { dcl(e′; a.m) ‖ µ }
(35.3i)

e valΣ
ν Σ { dcl(e; a.m) ‖ µ } 7−→ ν Σ, a ~ τ {m ‖ µ⊗ a ↪→ e } (35.3j)

The language RMA extends MA with references to free assignables. Its dynamics is similar to
that of references to scoped assignables given earlier.

e 7−→
Σ

e′

ν Σ { getref(e) ‖ µ } 7−→ ν Σ { getref(e′) ‖ µ }
(35.4a)

ν Σ { getref(ref[a]) ‖ µ } 7−→ ν Σ { get[a] ‖ µ }
(35.4b)

e1 7−→
Σ

e′1

ν Σ { setref(e1; e2) ‖ µ } 7−→ ν Σ { setref(e′1; e2) ‖ µ }
(35.4c)
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ν Σ { setref(ref[a]; e2) ‖ µ } 7−→ ν Σ { set[a](e2) ‖ µ }
(35.4d)

The expressions cannot alter or extend the memory, only commands may do so.
As an example of using RMA, consider the command newref[τ](e) defined by

dcl a := e in ret (&a). (35.5)

This command allocates a fresh assignable, and returns a reference to it. Its static and dynamics
are derived from the foregoing rules as follows:

Γ `Σ e : τ

Γ `Σ newref[τ](e) ∼·· ref(τ)
(35.6)

e 7−→
Σ

e′

ν Σ { newref[τ](e) ‖ µ } 7−→ ν Σ { newref[τ](e′) ‖ µ }
(35.7a)

e valΣ
ν Σ { newref[τ](e) ‖ µ } 7−→ ν Σ, a ~ τ { ret(ref[a]) ‖ µ⊗ a ↪→ e } (35.7b)

Oftentimes the command newref[τ](e) is taken as primitive, and the declaration command is omit-
ted. In that case all assignables are accessed by reference, and no direct access to assignables is
provided.

35.4 Safety

Although the proof of safety for references to scoped assignables presents few difficulties, the
safety for free assignables is tricky. The main difficulty is to account for cyclic dependencies within
data structures. The contents of one assignable may contain a reference to itself, or a reference to
another assignable that contains a reference to it, and so forth. For example, consider the following
procedure e of type nat⇀ nat cmd:

proc (x : nat) {if (x) ret (1) else { f ←@ a ; y← f (x− 1) ; ret (x ∗ y)}}.

Let µ be a memory of the form µ′ ⊗ a ↪→ e in which the contents of a contains, via the body of the
procedure, a reference to a itself. Indeed, if the procedure e is called with a non-zero argument, it
will “call itself” by indirect reference through a.

Cyclic dependencies complicate the definition of the judgment µ : Σ. It is defined by the
following rule:

`Σ m ∼·· τ `Σ µ : Σ
ν Σ {m ‖ µ } ok

(35.8)

The first premise of the rule states that the command m is well-formed relative to Σ. The second
premise states that the memory µ conforms to Σ, relative to all of Σ so that cyclic dependencies are
permitted. The judgment `Σ′ µ : Σ is defined as follows:

∀a ~ τ ∈ Σ ∃e µ(a) = e and `Σ′ e : τ

`Σ′ µ : Σ
(35.9)
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Theorem 35.1 (Preservation).

1. If `Σ e : τ and e 7−→
Σ

e′, then `Σ e′ : τ.

2. If ν Σ {m ‖ µ } ok and ν Σ {m ‖ µ } 7−→ ν Σ′ {m′ ‖ µ′ }, then ν Σ′ {m′ ‖ µ′ } ok.

Proof. Simultaneously, by induction on transition. We prove the following stronger form of the
second statement:

If ν Σ {m ‖ µ } 7−→ ν Σ′ {m′ ‖ µ′ }, where `Σ m ∼·· τ, `Σ µ : Σ, then Σ′ extends Σ, and
`Σ′ m′ ∼·· τ, and `Σ′ µ′ : Σ′.

Consider the transition

ν Σ { dcl(e; a.m) ‖ µ } 7−→ ν Σ, a ~ ρ {m ‖ µ⊗ a ↪→ e }

where e valΣ. By assumption and inversion of rule (34.6d) we have `Σ e : ρ, `Σ,a~ρ m ∼·· τ, and
`Σ µ : Σ. But because extension of Σ with a fresh assignable does not affect typing, we also have
`Σ,a~ρ µ : Σ and `Σ,a~ρ e : ρ, from which it follows by rule (35.9) that `Σ,a~ρ µ⊗ a ↪→ e : Σ, a ~ ρ.

The other cases follow a similar pattern, and are left as an exercise for the reader.

Theorem 35.2 (Progress).

1. If `Σ e : τ, then either e valΣ or there exists e′ such that e 7−→
Σ

e′.

2. If ν Σ {m ‖ µ } ok then either ν Σ {m ‖ µ } final or ν Σ {m ‖ µ } 7−→ ν Σ′ {m′ ‖ µ′ } for some Σ′,
µ′, and m′.

Proof. Simultaneously, by induction on typing. For the second statement we prove the stronger
form

If `Σ m ∼·· τ and `Σ µ : Σ, then either ν Σ {m ‖ µ } final, or ν Σ {m ‖ µ } 7−→ ν Σ′ {m′ ‖ µ′ }
for some Σ′, µ′, and m′.

Consider the typing rule
Γ `Σ e : ρ Γ `Σ,a~ρ m ∼·· τ

Γ `Σ dcl(e; a.m) ∼·· τ

We have by the first inductive hypothesis that either e valΣ or e 7−→
Σ

e′ for some e′. In the latter case

we have by rule (35.3i)

ν Σ { dcl(e; a.m) ‖ µ } 7−→ ν Σ { dcl(e′; a.m) ‖ µ }.

In the former case we have by rule (35.3j) that

ν Σ { dcl(e; a.m) ‖ µ } 7−→ ν Σ, a ~ ρ {m ‖ µ⊗ a ↪→ e }.
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Now consider the typing rule

Γ `Σ,a~τ get[a] ∼·· τ

By assumption `Σ,a~τ µ : Σ, a ~ τ, and hence there exists e valΣ,a~τ such that µ = µ′ ⊗ a ↪→ e and
`Σ,a~τ e : τ. By rule (35.3f)

ν Σ, a ~ τ { get[a] ‖ µ′ ⊗ a ↪→ e } 7−→ ν Σ, a ~ τ { ret(e) ‖ µ′ ⊗ a ↪→ e },

as required. The other cases are handled similarly.

35.5 Benign Effects

The modal separation between commands and expressions ensures that the meaning of an expres-
sion does not depend on the (ever-changing) contents of assignables. Although this is helpful in
many, perhaps most, situations, it also precludes programming techniques that use storage effects
to implement purely functional behavior. A prime example is memoization. Externally, a sus-
pended computation behaves exactly like the underlying computation; internally, an assignable
is associated with the computation that stores the result of any evaluation of the computation for
future use. Other examples are self-adjusting data structures, which use state to improve their effi-
ciency without changing their functional behavior. For example, a splay tree is a binary search tree
that uses mutation internally to re-balance the tree as elements are inserted, deleted, and retrieved,
so that lookup takes time proportional to the logarithm of the number of elements.

These are examples of benign storage effects, uses of mutation in a data structure to improve
efficiency without disrupting its functional behavior. One class of examples are self-adjusting data
structures that reorganize themselves during one use to improve efficiency of later uses. Another
class of examples are memoized, or lazy, data structures, which are discussed in Chapter 36. Be-
nign effects such as these are impossible to implement if a strict separation between expressions
and commands is maintained. For example, a self-adjusting tree involves mutation, but is a value
just like any other, and this cannot be achieved in MA. Although several special-case techniques
are known, the most general solution is to do away with the modal distinction, coalescing expres-
sions and commands into a single syntactic category. The penalty is that the type system no longer
ensures that an expression of type τ denotes a value of that type; it might also have storage effects
during its evaluation. The benefit is that one may freely use benign effects, but it is up to the
programmer to ensure that they truly are benign.

The language RPCF extends PCF with references to free assignables. The following rules de-
fine the statics of the distinctive features of RPCF:

Γ `Σ e1 : τ1 Γ `Σ,a~τ1 e2 : τ2

Γ `Σ dcl(e1; a.e2) : τ2
(35.10a)

Γ `Σ,a~τ get[a] : τ
(35.10b)
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Γ `Σ,a~τ e : τ

Γ `Σ,a~τ set[a](e) : τ
(35.10c)

Correspondingly, the dynamics of RPCF is given by transitions of the form

ν Σ { e ‖ µ } 7−→ ν Σ′ { e′ ‖ µ′ },

where e is an expression, and not a command. The rules defining the dynamics are very similar to
those for RMA, but with commands and expressions integrated into a single category.

To illustrate the concept of a benign effect, consider the technique of back-patching to implement
recursion. Here is an implementation of the factorial function that uses an assignable to implement
recursive calls:

dcl a := λn:nat.0 in

{ f ← a := λn:nat.ifz(n, 1, n′.n×(@a)(n′))
; ret( f)
}

This declaration returns a function of type nat ⇀ nat that is obtained by (a) allocating a free
assignable initialized arbitrarily with a function of this type, (b) defining a λ-abstraction in which
each “recursive call” consists of retrieving and applying the function stored in that assignable, (c)
assigning this function to the assignable, and (d) returning that function. The result is a function
on the natural numbers, even though it uses state in its implementation.

Backpatching is not expressible in RMA, because it relies on assignment. Let us attempt to
recode the previous example in RMA:

dcl a := proc(n:nat){ret 0} in

{ f ← a := . . .
; ret( f)
},

where the elided procedure assigned to a is given by

proc(n:nat) {if (ret(n)) {ret(1)} else {f←@a; x←f(n-1); ret(n×x)}}.

The difficulty is that what we have is a command, not an expression. Moreover, the result of
the command is of the procedure type nat⇀ (nat cmd), and not of the function type nat⇀ nat.
Consequently, we cannot use the factorial procedure in an expression, but have to execute it as a
command using code such as this:

{ f ← fact ; x ← f(n); ret(x) }.

35.6 Notes

Reynolds (1981) uses capabilities to provide indirect access to assignables; references are just an
abstract form of capability. References are often permitted only for free assignables, but with
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mobility restrictions one may also have references to scoped assignables. The proof of safety of
free references outlined here follows those given by Wright and Felleisen (1994) and Harper (1994).

Benign effects are central to the distinction between Haskell, which provides an Algol-like sep-
aration between commands and expressions, and ML, which integrates evaluation with execution.
The choice between them is classic trade-off, with neither superior to the other in all respects.

Exercises

35.1. Consider scoped array assignables as described in Exercise 34.1. Extend the treatment of
array assignables in Exercise 34.1, to account for array assignable references.

35.2. References to scope-free assignables are often used to implement recursive data structures
such as mutable lists and trees. Examine such data structures in the context of RMA enriched
with sum, product, and recursive types.

Give six different types that could be considered a type of linked lists, according to the fol-
lowing characteristics:

(a) A mutable list may only be updated in toto by replacing it with another (immutable)
list.

(b) A mutable list can be altered in one of two ways, to make it empty, or to change both its
head and tail element simultaneously. The tail element is any other such mutable list,
so circularities may arise.

(c) A mutable list is, permanently, either empty or non-empty. If not, both its head and tail
can be modified simultaneously.

(d) A mutable list is, permanently, either empty or non-empty. If not, its tail, but not its
head, can be set to another such list.

(e) A mutable list is, permanently, either empty or non-empty. If not, either its head or its
tail elements can be modified independently.

(f) A mutable list can be altered to become either empty or non-empty. If it is non-empty,
either it head, or its tail, can be modified independently of one another.

Discuss the merits and deficiencies of each representation.
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Chapter 37

Nested Parallelism

Parallel computation seeks to reduce the running times of programs by allowing many computa-
tions to be carried out simultaneously. For example, if we wish to add two numbers, each given by
a complex computation, we may consider evaluating the addends simultaneously, then comput-
ing their sum. The ability to exploit parallelism is limited by the dependencies among parts of a
program. Obviously, if one computation depends on the result of another, then we have no choice
but to execute them sequentially so that we may propagate the result of the first to the second.
Consequently, the fewer dependencies among sub-computations, the greater the opportunities for
parallelism.

In this chapter we discuss the language PPCF, which is the extension of PCF with nested par-
allelism. Nested parallelism has a hierarchical structure arising from forking two (or more) parallel
computations, then joining these computations to combine their results before proceeding. Nested
parallelism is also known as fork-join parallelism. We will consider two forms of dynamics for
nested parallelism. The first is a structural dynamics in which a single transition on a compound
expression may involve multiple transitions on its constituent expressions. The second is a cost dy-
namics (introduced in Chapter 7) that focuses attention on the sequential and parallel complexity
(also known as the work and the depth, or span) of a parallel program by associating a series-parallel
graph with each computation.

37.1 Binary Fork-Join

The syntax of PPCF extends that of PCF with the following construct:

Exp e ::= par(e1; e2; x1.x2.e) par x1 = e1 and x2 = e2 in e parallel let

The variables x1 and x2 are bound only within e, and not within e1 or e2, which ensures that they
are not mutually dependent and hence can be evaluated simultaneously. The variable bindings
represent a fork of two parallel computations e1 and e2, and the body e represents their join.
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The static of PPCF enriches that of PCF with the following rule for parallel let:

Γ ` e1 : τ1 Γ ` e2 : τ2 Γ, x1 : τ1, x2 : τ2 ` e : τ

Γ ` par(e1; e2; x1.x2.e) : τ
(37.1)

The sequential structural dynamics of PPCF is defined by a transition judgment of the form
e 7→seq e′ defined by these rules:

e1 7→seq e′1
par(e1; e2; x1.x2.e) 7→seq par(e′1; e2; x1.x2.e)

(37.2a)

e1 val e2 7→seq e′2
par(e1; e2; x1.x2.e) 7→seq par(e1; e′2; x1.x2.e)

(37.2b)

e1 val e2 val

par(e1; e2; x1.x2.e) 7→seq [e1, e2/x1, x2]e
(37.2c)

The parallel structural dynamics of PPCF is given by a transition judgment of the form e 7→par e′,
defined as follows:

e1 7→par e′1 e2 7→par e′2
par(e1; e2; x1.x2.e) 7→par par(e′1; e′2; x1.x2.e)

(37.3a)

e1 7→par e′1 e2 val

par(e1; e2; x1.x2.e) 7→par par(e′1; e2; x1.x2.e)
(37.3b)

e1 val e2 7→par e′2
par(e1; e2; x1.x2.e) 7→par par(e1; e′2; x1.x2.e)

(37.3c)

e1 val e2 val

par(e1; e2; x1.x2.e) 7→par [e1, e2/x1, x2]e
(37.3d)

The parallel dynamics abstracts away from any limitations on processing capacity; such limitations
are considered in Section 37.4.

The implicit parallelism theorem states that the sequential and the parallel dynamics coincide.
Consequently, we need never be concerned with the semantics of a parallel program (its meaning
is given by the sequential dynamics), but only with its efficiency. As a practical matter, this means
that a program can be developed on a sequential platform, even if it is meant to run on a parallel
platform, because the behavior is not affected by whether we execute it using a sequential or a
parallel dynamics. Because the sequential dynamics is deterministic (every expression has at most
one value), the implicit parallelism theorem implies that the parallel dynamics is also determin-
istic. For this reason the implicit parallelism theorem is also known as the deterministic parallelism
theorem. This terminology emphasizes the distinction between deterministic parallelism, the subject
of this chapter, from non-deterministic concurrency, the subject of Chapters 39 and 40.

A proof of the implicit parallelism theorem can be given by giving an evaluation dynamics
e ⇓ v in the style of Chapter 7, and showing that

e 7→∗par v iff e ⇓ v iff e 7→∗seq v
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(where v is a closed expression such that v val). The most important rule of the evaluation dynam-
ics is for the evaluation of a parallel let:

e1 ⇓ v1 e2 ⇓ v2 [v1, v2/x1, x2]e ⇓ v
par(e1; e2; x1.x2.e) ⇓ v

(37.4)

The other rules are easily derived from the structural dynamics of PCF as in Chapter 7.
It is possible to show that the sequential dynamics of PPCF agrees with its evaluation dynam-

ics by extending the proof of Theorem 7.2.

Lemma 37.1. For all v val, e 7→∗seq v if, and only if, e ⇓ v.

Proof. It suffices to show that if e 7→seq e′ and e′ ⇓ v, then e ⇓ v, and that if e1 7→∗seq v1 and
e2 7→∗seq v2 and [v1, v2/x1, x2]e 7→∗seq v, then

par x1 = e1 and x2 = e2 in e 7→∗seq v.

By a similar argument we may show that the parallel dynamics also agrees with the evaluation
dynamics, and hence with the sequential dynamics.

Lemma 37.2. For all v val, e 7→∗par v if, and only if, e ⇓ v.

Proof. It suffices to show that if e 7→par e′ and e′ ⇓ v, then e ⇓ v, and that if e1 7→∗par v1 and
e2 7→∗par v2 and [v1, v2/x1, x2]e 7→∗par v, then

par x1 = e1 and x2 = e2 in e 7→∗par v.

The proof of the first is by induction on the parallel dynamics. The proof of the second proceeds
by simultaneous induction on the derivations of e1 7→∗par v1 and e2 7→∗par v2. If e1 = v1 with v1 val
and e2 = v2 with v2 val, then the result follows immediately from the third premise. If e2 = v2
but e1 7→par e′1 7→∗par v1, then by induction we have that par x1 = e′1 and x2 = v2 in e 7→∗par v, and
hence the result follows by an application of rule (37.3b). The symmetric case follows similarly by
an application of rule (37.3c), and in the case that both e1 and e2 transition, the result follows by
induction and rule (37.3a).

Theorem 37.3 (Implicit Parallelism). The sequential and parallel dynamics coincide: for all v val, e 7→∗seq
v iff e 7→∗par v.

Proof. By Lemmas 37.1 and 37.2.

The implicit parallelism theorem states that parallelism does not affect the semantics of a pro-
gram, only the efficiency of its execution. Correctness is not affected by parallelism, only efficiency.
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37.2 Cost Dynamics

In this section we define a parallel cost dynamics that assigns a cost graph to the evaluation of a PPCF
expression. Cost graphs are defined by the following grammar:

Cost c ::= 0 zero cost
1 unit cost
c1 ⊗ c2 parallel combination
c1 ⊕ c2 sequential combination

A cost graph is a series-parallel ordered directed acyclic graph, with a designated source node and
sink node. For 0 the graph consists of one node and no edges, with the source and sink both being
the node itself. For 1 the graph consists of two nodes and one edge directed from the source to
the sink. For c1 ⊗ c2, if g1 and g2 are the graphs of c1 and c2, respectively, then the graph has two
extra nodes, a source node with two edges to the source nodes of g1 and g2, and a sink node, with
edges from the sink nodes of g1 and g2 to it. The children of the source are ordered according to
the sequential evaluation order. Finally, for c1 ⊕ c2, where g1 and g2 are the graphs of c1 and c2,
the graph has as source node the source of g1, as sink node the sink of g2, and an edge from the
sink of g1 to the source of g2.

The intuition behind a cost graph is that nodes represent subcomputations of an overall com-
putation, and edges represent sequentiality constraints stating that one computation depends on
the result of another, and hence cannot be started before the one on which it depends completes.
The product of two graphs represents parallelism opportunities in which there are no sequentiality
constraints between the two computations. The assignment of source and sink nodes reflects the
overhead of forking two parallel computations and joining them after they have both completed.
At the structural level, we note that only the root has no ancestors, and only the final node of
the cost graph has no descendents. Interior nodes may have one or two descendents, the former
representing a sequential dependency, and the latter representing a fork point. Such nodes may
have one or two ancestors, the former corresponding to a sequential dependency and the latter
representing a join point.

We associate with each cost graph two numeric measures, the work, wk(c), and the depth, dp(c).
The work is defined by the following equations:

wk(c) =


0 if c = 0
1 if c = 1
wk(c1) + wk(c2) if c = c1 ⊗ c2

wk(c1) + wk(c2) if c = c1 ⊕ c2

(37.5)

The depth is defined by the following equations:

dp(c) =


0 if c = 0
1 if c = 1
max(dp(c1), dp(c2)) if c = c1 ⊗ c2

dp(c1) + dp(c2) if c = c1 ⊕ c2

(37.6)
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Informally, the work of a cost graph determines the total number of computation steps repre-
sented by the cost graph, and thus corresponds to the sequential complexity of the computation.
The depth of the cost graph determines the critical path length, the length of the longest depen-
dency chain within the computation, which imposes a lower bound on the parallel complexity of a
computation. The critical path length is a lower bound on the number of steps required to com-
plete the computation.

In Chapter 7 we introduced cost dynamics to assign time complexity to computations. The proof
of Theorem 7.7 shows that e ⇓k v iff e 7−→k v. That is, the step complexity of an evaluation of e to
a value v is just the number of transitions required to derive e 7−→∗ v. Here we use cost graphs
as the measure of complexity, then relate these cost graphs to the structural dynamics given in
Section 37.1.

The judgment e ⇓c v, where e is a closed expression, v is a closed value, and c is a cost graph
specifies the cost dynamics. By definition we arrange that e ⇓0 e when e val. The cost assignment
for let is given by the following rule:

e1 ⇓c1 v1 e2 ⇓c2 v2 [v1, v2/x1, x2]e ⇓c v

par(e1; e2; x1.x2.e) ⇓(c1⊗c2)⊕1⊕c v
(37.7)

The cost assignment specifies that, under ideal conditions, e1 and e2 are evaluated in parallel, and
that their results are passed to e. The cost of fork and join is implicit in the parallel combination
of costs, and assign unit cost to the substitution because we expect it to be implemented by a
constant-time mechanism for updating an environment. The cost dynamics of other language
constructs is specified in a similar way, using only sequential combination to isolate the source of
parallelism to the let construct.

Two simple facts about the cost dynamics are important to keep in mind. First, the cost assign-
ment does not influence the outcome.

Lemma 37.4. e ⇓ v iff e ⇓c v for some c.

Proof. From right to left, erase the cost assignments to construct an evaluation derivation. From
left to right, decorate the evaluation derivations with costs as determined by the rules defining the
cost dynamics.

Second, the cost of evaluating an expression is uniquely determined.

Lemma 37.5. If e ⇓c v and e ⇓c′ v, then c is c′.

Proof. By induction on the derivation of e ⇓c v.

The link between the cost dynamics and the structural dynamics is given by the following
theorem, which states that the work cost is the sequential complexity, and the depth cost is the
parallel complexity, of the computation.

Theorem 37.6. If e ⇓c v, then e 7→w
seq v and e 7→d

par v, where w = wk(c) and d = dp(c). Conversely, if
e 7→w

seq v, then there exists c such that e ⇓c v with wk(c) = w, and if e 7→d
par v′, then there exists c′ such

that e ⇓c′ v′ with dp(c′) = d.
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Proof. The first part is proved by induction on the derivation of e ⇓c v, the interesting case being
rule (37.7). By induction we have e1 7→w1

seq v1, e2 7→w2
seq v2, and [v1, v2/x1, x2]e 7→w

seq v, where
w1 = wk(c1), w2 = wk(c2), and w = wk(c). By pasting together derivations we get a derivation

par(e1; e2; x1.x2.e) 7→w1
seq par(v1; e2; x1.x2.e)

7→w2
seq par(v1; v2; x1.x2.e)

7→seq [v1, v2/x1, x2]e
7→w

seq v.

Noting that wk((c1 ⊗ c2)⊕ 1⊕ c) = w1 + w2 + 1 + w completes the proof. Similarly, we have by
induction that e1 7→d1

par v1, e2 7→d2
par v2, and [v1, v2/x1, x2]e 7→d

par v, where d1 = dp(c1), d2 = dp(c2),
and d = dp(c). Assume, without loss of generality, that d1 ≤ d2 (otherwise simply swap the roles
of d1 and d2 in what follows). We may paste together derivations as follows:

par(e1; e2; x1.x2.e) 7→d1
par par(v1; e′2; x1.x2.e)

7→d2−d1
par par(v1; v2; x1.x2.e)

7→par [v1, v2/x1, x2]e

7→d
par v.

Calculating dp((c1 ⊗ c2)⊕ 1⊕ c) = max(d1, d2) + 1 + d completes the proof.
Turning to the second part, it suffices to show that if e 7→seq e′ with e′ ⇓c′ v, then e ⇓c v with

wk(c) = wk(c′) + 1, and if e 7→par e′ with e′ ⇓c′ v, then e ⇓c v with dp(c) = dp(c′) + 1.
Suppose that e = par(e1; e2; x1.x2.e0) with e1 val and e2 val. Then e 7→seq e′, where e =

[e1, e2/x1, x2]e0 and there exists c′ such that e′ ⇓c′ v. But then e ⇓c v, where c = (0⊗ 0)⊕ 1⊕ c′,
and a simple calculation shows that wk(c) = wk(c′) + 1, as required. Similarly, e 7→par e′ for e′ as
above, and hence e ⇓c v for some c such that dp(c) = dp(c′) + 1, as required.

Suppose that e = par(e1; e2; x1.x2.e0) and e 7→seq e′, where e′ = par(e′1; e2; x1.x2.e0) and e1 7→seq

e′1. From the assumption that e′ ⇓c′ v, we have by inversion that e′1 ⇓c′1 v1, e2 ⇓c′2 v2, and
[v1, v2/x1, x2]e0 ⇓c′0 v, with c′ = (c′1 ⊗ c′2)⊕ 1⊕ c′0. By induction there exists c1 such that wk(c1) =
1 + wk(c′1) and e1 ⇓c1 v1. But then e ⇓c v, with c = (c1 ⊗ c′2)⊕ 1⊕ c′0.

By a similar argument, suppose that e = par(e1; e2; x1.x2.e0) and e 7→par e′, where e′ = par(e′1; e′2; x1.x2.e0)

and e1 7→par e′1, e2 7→par e′2, and e′ ⇓c′ v. Then by inversion e′1 ⇓c′1 v1, e′2 ⇓c′2 v2, [v1, v2/x1, x2]e0 ⇓c0

v. But then e ⇓c v, where c = (c1 ⊗ c2)⊕ 1⊕ c0, e1 ⇓c1 v1 with dp(c1) = 1 + dp(c′1), e2 ⇓c2 v2 with
dp(c2) = 1 + dp(c′2), and [v1, v2/x1, x2]e0 ⇓c0 v. Calculating, we get

dp(c) = max(dp(c′1) + 1, dp(c′2) + 1) + 1 + dp(c0)

= max(dp(c′1), dp(c′2)) + 1 + 1 + dp(c0)

= dp((c′1 ⊗ c′2)⊕ 1⊕ c0) + 1

= dp(c′) + 1,

which completes the proof.
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Corollary 37.7. If e 7→w
seq v and e 7→d

par v′, then v is v′ and e ⇓c v for some c such that wk(c) = w and
dp(c) = d.

37.3 Multiple Fork-Join

So far we have confined attention to binary fork/join parallelism induced by the parallel let con-
struct. A generalizaton, called data parallelism, allows the simultaneous creation of any number of
tasks that compute on the components of a data structure. The main example is a sequence of val-
ues of a specified type. The primitive operations on sequences are a natural source of unbounded
parallelism. For example, we may consider a parallel map construct that applies a given function
to every element of a sequence simultaneously, forming a sequence of the results.

We will consider here a simple language of sequence operations to illustrate the main ideas.

Typ τ ::= seq(τ) τ seq sequence
Exp e ::= seq(e0, . . . ,en−1) [e0, . . . ,en−1] sequence

len(e) |e| size
sub(e1; e2) e1[e2] element
tab(x.e1; e2) tab(x.e1; e2) tabulate
map(x.e1; e2) [e1 | x∈ e2] map
cat(e1; e2) cat(e1; e2) concatenate

The expression seq(e0, . . . ,en−1) evaluates to an n-sequence whose elements are given by the ex-
pressions e0, . . . , en−1. The operation len(e) returns the number of elements in the sequence given
by e. The operation sub(e1; e2) retrieves the element of the sequence given by e1 at the index given
by e2. The tabulate operation, tab(x.e1; e2), yields the sequence of length given by e2 whose ith
element is given by [i/x]e1. The operation map(x.e1; e2) computes the sequence whose ith element
is given by [e/x]e1, where e is the ith element of the sequence given by e2. The operation cat(e1; e2)
concatenates two sequences of the same type.

The statics of these operations is given by the following typing rules:

Γ ` e0 : τ . . . Γ ` en−1 : τ

Γ ` seq(e0, . . . ,en−1) : seq(τ)
(37.8a)

Γ ` e : seq(τ)
Γ ` len(e) : nat

(37.8b)

Γ ` e1 : seq(τ) Γ ` e2 : nat
Γ ` sub(e1; e2) : τ

(37.8c)

Γ, x : nat ` e1 : τ Γ ` e2 : nat
Γ ` tab(x.e1; e2) : seq(τ)

(37.8d)

Γ ` e2 : seq(τ) Γ, x : τ ` e1 : τ′

Γ ` map(x.e1; e2) : seq(τ′)
(37.8e)
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Γ ` e1 : seq(τ) Γ ` e2 : seq(τ)
Γ ` cat(e1; e2) : seq(τ)

(37.8f)

The cost dynamics of these constructs is defined by the following rules:

e0 ⇓c0 v0 . . . en−1 ⇓cn−1 vn−1

seq(e0, . . . ,en−1) ⇓
⊗n−1

i=0 ci seq(v0, . . . ,vn−1)
(37.9a)

e ⇓c seq(v0, . . . ,vn−1)

len(e) ⇓c⊕1 num[n]
(37.9b)

e1 ⇓c1 seq(v0, . . . ,vn−1) e2 ⇓c2 num[i] (0 ≤ i < n)

sub(e1; e2) ⇓c1⊕c2⊕1 vi
(37.9c)

e2 ⇓c num[n] [num[0]/x]e1 ⇓c0 v0 . . . [num[n− 1]/x]e1 ⇓cn−1 vn−1

tab(x.e1; e2) ⇓c⊕⊗n−1
i=0 ci seq(v0, . . . ,vn−1)

(37.9d)

e2 ⇓c seq(v0, . . . ,vn−1)

[v0/x]e1 ⇓c0 v′0 . . . [vn−1/x]e1 ⇓cn−1 v′n−1

map(x.e1; e2) ⇓c⊕⊗n−1
i=0 ci seq(v′0, . . . ,v′n−1)

(37.9e)

e1 ⇓c1 seq(v0, . . . , vm−1) e2 ⇓c2 seq(v′0, . . . , v′n−1)

cat(e1; e2) ⇓c1⊕c2⊕
⊗m+n

i=0 1 seq(v0, . . . , vm−1, v′0, . . . , v′n−1)
(37.9f)

The cost dynamics for sequence operations is validated by introducing a sequential and parallel
cost dynamics and extending the proof of Theorem 37.6 to cover this extension.

37.4 Bounded Implementations

Theorem 37.6 states that the cost dynamics accurately models the dynamics of the parallel let
construct, whether executed sequentially or in parallel. The theorem validates the cost dynamics
from the point of view of the dynamics of the language, and permits us to draw conclusions
about the asymptotic complexity of a parallel program that abstracts away from the limitations
imposed by a concrete implementation. Chief among these is the restriction to a fixed number,
p > 0, of processors on which to schedule the workload. Besides limiting the available parallelism
this also imposes some synchronization overhead that must be taken into account. A bounded
implementation is one for which we may establish an asymptotic bound on the execution time once
these overheads are taken into account.

A bounded implementation must take account of the limitations and capabilities of the hard-
ware on which the program is run. Because we are only interested in asymptotic upper bounds,
it is convenient to formulate an abstract machine model, and to show that the primitives of the
language can be implemented on this model with guaranteed time (and space) bounds. One ex-
ample of such a model is the shared-memory multiprocessor, or SMP, model. The basic assumption
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of the SMP model is that there are some fixed p > 0 processors coordinated by an interconnect
that permits constant-time access to any object in memory shared by all p processors.1 An SMP
is assumed to provide a constant-time synchronization primitive with which to control simulta-
neous access to a memory cell. There are a variety of such primitives, any of which are enough
to provide a parallel fetch-and-add instruction that allows each processor to get the current con-
tents of a memory cell and update it by adding a fixed constant in a single atomic operation—the
interconnect serializes any simultaneous accesses by more than one processor.

Building a bounded implementation of parallelism involves two major tasks. First, we must
show that the primitives of the language can be implemented efficiently on the abstract machine
model. Second, we must show how to schedule the workload across the processors to minimize
execution time by maximizing parallelism. When working with a low-level machine model such
as an SMP, both tasks involve a fair bit of technical detail to show how to use low-level machine
instructions, including a synchronization primitive, to implement the language primitives and to
schedule the workload. Collecting these together, we may then give an asymptotic bound on the
time complexity of the implementation that relates the abstract cost of the computation to cost
of implementing the workload on a p-way multiprocessor. The prototypical result of this kind is
Brent’s Theorem.

Theorem 37.8. If e ⇓c v with wk(c) = w and dp(c) = d, then e can be evaluated on a p-processor SMP
in time O(max(w/p, d)).

The theorem tells us that we can never execute a program in fewer steps than its depth d and
that, at best, we can divide the work up evenly into w/p rounds of execution by the p processors.
Note that if p = 1 then the theorem establishes an upper bound of O(w) steps, the sequential
complexity of the computation. Moreover, if the work is proportional to the depth, then we are
unable to exploit parallelism, and the overall time is proportional to the work alone.

Theorem 37.8 motivates consideration of a useful figure of merit, the parallelizability ratio, which
is the ratio w/d of work to depth. If w/d � p, then the program is parallelizable, because then
w/p � d, and we may therefore reduce running time by using p processors at each step. If the
parallelizability ratio is a constant, then d will dominate w/p, and we will have little opportunity
to exploit parallelism to reduce running time. It is not known, in general, whether a problem
admits a parallelizable solution. The best we can say, on present knowledge, is that there are
algorithms for some problems that have a high degree of parallelizability, and there are problems
for which no such algorithm is known. It is a difficult problem in complexity theory to analyze
which problems are parallelizable, and which are not.

Proving Brent’s Theorem for an SMP would take us much too far afield for the present pur-
poses. Instead we shall prove a Brent-type Theorem for an abstract machine, the P machine. The
machine is unrealistic in that it is defined at a very high level of abstraction. But it is designed
to match well the cost semantics given earlier in this chapter. In particular, there are mechanisms
that account for both sequential and parallel dependencies in a computation.

At the highest level, the state of the P machine consists of a global task graph whose struc-
ture corresponds to a “diagonal cut” through the cost graph of the overall computation. Nodes

1A slightly weaker assumption is that each access may require up to lg p time to account for the overhead of synchro-
nization, but we shall neglect this refinement in the present, simplified account.
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immediately above the cut are eligible to be executed, higher ancestors having already been com-
pleted, and whose immediate descendents are waiting for their ancestors to complete. Further
descendents in the full task graph are tasks yet to be created, once the immediate descendents
are finished. The P machine discards completed tasks, and future tasks beyond the immediate
dependents are only created as execution proceeds. Thus it is only those nodes next to the cut line
through the cost graph that are represented in the P machine state.

The global state of the P machine is a configuration of the form ν Σ { µ }, where Σ is degenerated
to just a finite set of (pairwise distinct) task names and µ is a finite mapping the task names in Σ to
local states, representing the state of an individual task. A local state is either a closed PCF expres-
sion, or one of two special join points that implement the sequential and parallel dependencies of a
task on one or two ancestors, respectively.2 Thus, when expanded out, a global state has the form

ν a1, . . . , an { a1 ↪→ s1 ⊗ . . .⊗ an ↪→ sn },

where n ≥ 1, and each si is a local state. The ordering of the tasks in a state, like the order of
declarations in the signature, is not significant.

A P machine state transition has the form ν Σ { µ } 7−→ ν Σ′ { µ′ }. There are two forms of
such transitions, the global and the local. A global step selects as many tasks as are available, up
to a pre-specified parameter p > 0, which represents the number of processors available at each
round. (Such a scheduler is greedy in the sense that it never fails to execute an available task, up
to the specified limit for each round.) A task is finished if it consists of a closed PCF value, or
is a join point whose dependents are not yet finished; otherwise a task is available, or ready. A
ready task is always capable of taking a local step consisting of either a step of PCF, expressed in
the setting of the P machine, or a synchronization step that manages the join-point logic. Because
the P machine employs a greedy scheduler, it must complete execution in time proportional to
max(w/p, d) steps by doing up to p steps of work at a time, insofar as it is possible within the
limits of the depth of the computation. We thus get a Brent-type Theorem for the abstract machine
that illustrates more sophisticated Brent-type Theorems for other models, such as the PRAM, that
are used in the analysis of parallel algorithms.

The local transitions of the P machine corresponding to the steps of PCF itself are illustrated
by the following example rules for application; the others follow a similar pattern.3

¬(e1 val)

ν a { a ↪→ e1(e2) } 7−→loc ν a a1 { a ↪→ join[a1](x1.x1(e2))⊗ a1 ↪→ e1 }
(37.10a)

e1 val

ν a { a ↪→ e1(e2) } 7−→loc ν a a2 { a ↪→ join[a2](x2.e1(x2))⊗ a2 ↪→ e2 }
(37.10b)

e1 val e2 val

ν a1 a2 { a1 ↪→ join[a2](x2.e1(x2))⊗ a2 ↪→ e2 } 7−→loc ν a1 { a1 ↪→ [e2/x2]e1 }
(37.10c)

2The use of join points for each sequential dependency is profligate, but aligns the machine with the cost semantics.
Realistically, individual tasks manage sequential dependencies without synchronization, by using local control stacks as in
Chapter 28.

3Here and elsewhere typing information is omitted from Σ, because it is not relevant to the dynamics.
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e2 val

ν a { a ↪→ (λ (x : τ2) e)(e2) } 7−→loc ν a { a ↪→ [e2/x]e } (37.10d)

Rules (37.10a) and (37.10b) create create tasks for the evaluation of the function and argument of
an expression. Rule (37.10c) propagates the result of evaluation of the function or argument of an
application to the appropriate application expression. This rule mediates between the first two
rules and Rule (37.10d), which effects a β-reduction in-place.

The local transitions of the P machine corresponding to binary fork and join are as follows:


ν a { a ↪→ par(e1; e2; x1.x2.e) }

7−→loc

ν a1, a2, a { a1 ↪→ e1 ⊗ a2 ↪→ e2 ⊗ a ↪→ join[a1; a2](x1; x2.e) }

 (37.11a)

e1 val e2 val
ν a1, a2, a { a1 ↪→ e1 ⊗ a2 ↪→ e2 ⊗ a ↪→ join[a1; a2](x1; x2.e) }

7−→loc

ν a { a ↪→ [e1, e2/x1, x2]e }

 (37.11b)

Rule (37.11a) creates two parallel tasks on which the executing task depends. The expression
join[a1; a2](x1; x2.e) is blocked on tasks a1 and a2, so that no local step applies to it. Rule (37.11b)
synchronizes a task with the tasks on which it depends once their execution has completed; those
tasks are no longer required, and are eliminated from the state.

Each global transition is the simultaneous execution of one step of computation on as many as
p ≥ 1 processors.

ν Σ1 a1 { µ1 ⊗ a1 ↪→ s1 } 7−→loc ν Σ′1 a1 { µ′1 ⊗ a1 ↪→ s′1 }
. . .

ν Σn an { µn ⊗ an ↪→ sn } 7−→loc ν Σ′n an { µ′n ⊗ an ↪→ s′n }
ν Σ0 Σ1 a1 . . . Σn an { µ0 ⊗ µ1 ⊗ a1 ↪→ s1 ⊗ . . .⊗ µn ⊗ an ↪→ sn }

7−→glo

ν Σ0 Σ′1 a1 . . . Σ′n an { µ0 ⊗ µ′1 ⊗ a1 ↪→ s′1 ⊗ . . .⊗ µ′n ⊗ an ↪→ s′n }


(37.12)

At each global step some number 1 ≤ n ≤ p of ready tasks are scheduled for execution, where n is
maximal among the number of ready tasks. Because no two distinct tasks may depend on the same
task, we may partition the n tasks so that each scheduled task is grouped with the tasks on which
it depends as necessary for any local join step. Any local fork step adds two fresh tasks to the state
resulting from the global transition; any local join step eliminates two tasks whose execution has
completed. A subtle point is that it is implicit in our name binding conventions that the names
of any created tasks are globally unique, even though they are locally created. In implementation
terms this requires a synchronization step among the processors to ensure that task names are not
accidentally reused among the parallel tasks.
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The proof of a Brent-type Theorem for the P machine is now obvious. We need only ensure
that the parameter n of Rule (37.12) is chosen as large as possible at each step, limited only by
the parameter p and the number of ready tasks. A scheduler with this property is greedy; it never
allows a processor to go idle if work remains to be done. Consequently, if there are always p
available tasks at each global step, then the evaluation will complete in w/p steps, where w is
the work complexity of the program. If, at some stage, fewer than p tasks are available, then
performance degrades according to the sequential dependencies among the sub-computations. In
the limiting case the P machine must take at least d steps, where d is the depth of the computation.

37.5 Scheduling

The global transition relation of the P machine defined in Section 37.4 affords wide latitude in the
choice of tasks that are advanced by taking a local transition. Doing so abstracts from implemen-
tation details that are irrelevant to the proof of the Brent-type Theorem given later in that section,
the only requirement being that the number of tasks chosen be as large as possible up to the spec-
ified bound p, representing the number of available processors. When taking into account factors
not considered here, it is necessary to specify the scheduling policy more precisely—for example,
different scheduling policies may have asymptotically different space requirements. The overall
idea is to consider scheduling a computation on p processors as a p-way parallel traversal of its cost
graph, visiting up to p nodes at a time in an order consistent with the dependency ordering. In
this section we will consider one such traversal, p-way parallel depth-first-search, or p-DFS, which
specializes to the familiar depth-first traversal in the case that p = 1.

Recall that the depth first-search of a directed graph maintain a stack of unvisited nodes, which
is initialized with the start node. At each round, a node is popped from the stack and visited, and
then its unvisited children are pushed on the stack (in reverse order in the case of ordered graphs),
completing that round. The traversal terminates when the stack is empty. When viewed as a
scheduling strategy, visiting a node of a cost graph consists of scheduling the work associated
with that node on a processor. The job of such as scheduler is to do the work of the computation in
depth-first order, visiting the children of a node from left to right, consistently with the sequential
dynamics (which would, in particular, treat a parallel binding as two sequential bindings). Notice
that because a cost graph is directed acyclic, there are no “back edges” arising from the traversal,
and because it is series-parallel in structure, there are no “cross edges”. Thus, all children of a node
are unvisited, and no task is considered more than once.

Although evocative, viewing scheduling as graph traversal invites one to imagine that the
cost graph is given explicitly as a data structure, which is not at all the case. Instead the graph
is created dynamically as the sub-computations are executed. At each round the computation
associated with a node may complete (when it has achieved its value), continue (when more work
is yet to be done), or fork (when it generates parallel sub-computations with a specified join point).
Once a computation has completed and its value has been passed to the associated join point, its
node in the cost graph is discarded. Furthermore, the children of a node only come into existence
as a result of its execution, according to whether it completes (no children), continues (one child),
or forks (two children). Thus one may envision that the cost graph “exists” as a cut through the
abstract cost graph representing pending tasks that have not yet been activated by the traversal.
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A parallel depth-first search works much the same way, except that as many as p nodes are
visited at each round, constrained only by the presence of unvisited (yet-to-be-scheduled) nodes.
One might naively think that this simply means popping up to p nodes from the stack on each
round, visiting them all simultaneously, and pushing their dependents on the stack in reverse or-
der, just as for conventional depth-first search. But a moment’s thought reveals that this is not
correct. Because the cost graphs are ordered, the visited nodes form a sequence determined by
the left-to-right ordering of the children of a node. If a node completes, it has no children and is
removed from its position in the sequence in the next round. If a node continues, it has one child
that occupies the same relative position as its parent in the next round. And if a node forks two
children, they are inserted into the sequence after the predecessor, and immediately prior to that
node, related to each other by the left-to-right ordering of the children. The task associated to the
visited node itself becomes the join point of the immediately preceding pair of tasks, with which
it will synchronize when they complete. Thus the visited sequence of k ≤ p nodes becomes, on
the next round, anywhere from 0 (if all nodes completes) to 3× k nodes (if each node forks). These
are placed into consideration, in the specified order, for the next round to ensure that they are pro-
cessed in depth-first order. Importantly, the data structure maintaining the unvisited nodes of the
graph is not a simple pushdown stack, because of the “in-place” replacement of each visited node
by zero, one, or two nodes in between its predecessor and successor in the sequential ordering of
the visited nodes.

Consider a variant of the P machine in which the order of the tasks is significant. A task is
finished if it is a value, blocked if it is a join, and ready otherwise. Local transitions remain the same
as in Section 37.4, bearing in mind that the ordering is significant. A global transition, however,
consists of making a local transition on each of the first k ≤ p ready tasks.4 After this selection the
global state is depicted as follows:

ν Σ0 a1 Σ1 . . . ak Σk Σ { µ0 ⊗ a1 ↪→ e1 ⊗ µ1 ⊗ . . . ak ↪→ ek ⊗ µ }

where each µi consists of finished or blocked tasks, and each ei is ready. A schedule is greedy If
k < p only when no task in µ is ready.

After a local transition is made on each of the k selected tasks, the resulting global state has the
form

ν Σ0Σ′1 a1 Σ1 . . . Σ′k ak Σk Σ { µ0 ⊗ µ′1 ⊗ a1 ↪→ e′1 ⊗ µ1 ⊗ . . . µ′k ⊗ ak ↪→ e′k ⊗ µ }

where each µ′i represents the newly created task(s) of the local transition on task ai ↪→ ei, and each
e′i is the expression resulting from the transition on that task. Next, all possible synchronizations
are made by replacing each occurrence of an adjacent triple of the form

ai,1 ↪→ e1 ⊗ ai,2 ↪→ e2 ⊗ ai ↪→ join[ai,1; ai,2](x1; x2.e)

(with e1 and e2 finished) by the task ai ↪→ [e1, e2/x1, x2]e. Doing so propagates the values of tasks
ai,1 and ai,2 to the join point, enabling the computation to continue. The two finished tasks are
removed from the state, and the join point is no longer blocked.

4Thus the local transition given by Rule (37.11b) is never applicable; the dynamics of joins will be described shortly.
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37.6 Notes

Parallelism is a high-level programming concept that increases efficiency by carrying out multiple
computations simultaneously when they are mutually independent. Parallelism does not change
the meaning of a program, but only how fast it is executed. The cost semantics specifies the num-
ber of steps required to execute a program sequentially and with maximal parallelism. A bounded
implementation provides a bound on the number of steps when the number of processors is lim-
ited, limiting the degree of parallelism that can be realized. This formulation of parallelism was
introduced by Blelloch (1990). The concept of a cost semantics and the idea of a bounded imple-
mentation studied here are derived from Blelloch and Greiner (1995, 1996).

Exercises

37.1. Consider extending PPCF with exceptions, as described in Chapter 29, under the assump-
tion that τexn has at least two exception values. Give a sequential and a parallel structural
dynamics to parallel let in such a way that determinacy continues to hold.

37.2. Give a matching cost semantics to PPCF extended with exceptions (descibed in Exercise 37.1)
by inductively defining the following two judgments:

(a) e ⇓c v, stating that e evaluates to value v with cost c;

(b) e ⇑c v, stating that e raises the value v with cost c.

The analog of Theorem 37.6 remains valid for the dynamics. In particular, if e ⇑c v, then both
e 7→w

seq raise(v), where w = wk(c), and e 7→d
par raise(v), where d = dp(c), and conversely.

37.3. Extend the P machine to admit exceptions to match your solution to Exercise 37.2. Argue
that the revised machine supports a Brent-type validation of the cost semantics.

37.4. Another way to express the dynamics of PPCF enriched with exceptions is by rewriting
par(e1; e2; x1.x2.e) into another such parallel binding, par(e′1; e′2; x′1.x′2.e′), which implements
the correct dynamics to ensure determinacy. Hint: Extend XPCF with sums (Chapter 11),
using them to record the outcome of each parallel sub-computation (e′1 derived from e1, and
e′2 derived from e2), then check the outcomes (e′ derived from e) in such a way to ensure
determinacy.



PREVIE
WChapter 38

Futures and Speculations

A future is a computation that is performed before it is value is needed. Like a suspension, a future
represents a value that is to be determined later. Unlike a suspension, a future is always evaluated,
regardless of whether its value is required. In a sequential setting futures are of little interest; a
future of type τ is just an expression of type τ. In a parallel setting, however, futures are of interest
because they provide a means of initiating a parallel computation whose result is not needed until
later, by which time it will have been completed.

The prototypical example of the use of futures is to implementing pipelining, a method for over-
lapping the stages of a multistage computation to the fullest extent possible. Pipelining minimizes
the latency caused by one stage waiting for a previous stage to complete by allowing the two
stages to execute in parallel until an explicit dependency arises. Ideally, the computation of the
result of an earlier stage is finished by the time a later stage needs it. At worst the later stage is
delayed until the earlier stage completes, incurring what is known as a pipeline stall.

A speculation is a delayed computation whose result might be needed for the overall compu-
tation to finish. The dynamics for speculations executes suspended computations in parallel with
the main thread of computation, without regard to whether the value of the speculation is needed
by the main thread. If the value of the speculation is needed, then such a dynamics pays off, but if
not, the effort to compute it is wasted.

Futures are work efficient in that the overall work done by a computation involving futures is no
more than the work done by a sequential execution. Speculations, in contrast, are work inefficient
in that speculative execution might be in vain—the overall computation may involve more steps
than the work needed to compute the result. For this reason speculation is a risky strategy for
exploiting parallelism. It can make use available resources, but perhaps only at the expense of
doing more work than necessary!
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38.1 Futures

The syntax of futures is given by the following grammar:

Typ τ ::= fut(τ) τ fut future
Exp e ::= fut(e) fut(e) future

fsyn(e) fsyn(e) synchronize
fcell[a] fcell[a] indirection

The type τ fut is the type of futures of type τ. Futures are introduced by the expression fut(e),
which schedules e for evaluation and returns a reference to it. Futures are eliminated by the ex-
pression fsyn(e), which synchronizes with the future referred to by e, returning its value. Indirect
references to future values are represented by fcell[a], indicating a future value to be stored at a.

38.1.1 Statics

The statics of futures is given by the following rules:

Γ ` e : τ
Γ ` fut(e) : fut(τ) (38.1a)

Γ ` e : fut(τ)
Γ ` fsyn(e) : τ

(38.1b)

These rules are unsurprising, because futures add no new capabilities to the language beyond
providing an opportunity for parallel evaluation.

38.1.2 Sequential Dynamics

The sequential dynamics of futures is easily defined. Futures are evaluated eagerly; synchroniza-
tion returns the value of the future.

e val
fut(e) val

(38.2a)

e 7−→ e′

fut(e) 7−→ fut(e′)
(38.2b)

e 7−→ e′

fsyn(e) 7−→ fsyn(e′)
(38.2c)

e val
fsyn(fut(e)) 7−→ e (38.2d)

Under a sequential dynamics futures have little purpose: they introduce a pointless level of
indirection.
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38.2 Speculations

The syntax of (non-recursive) speculations is given by the following grammar:1

Typ τ ::= spec(τ) τ spec speculation
Exp e ::= spec(e) spec(e) speculate

ssyn(e) ssyn(e) synchronize
scell[a] scell[a] indirection

The type τ spec is the type of speculations of type τ. The introduction form spec(e) creates a
computation that can be speculatively evaluated, and the elimination form ssyn(e) synchronizes
with a speculation. A reference to the result of a speculative computation stored at a is written
scell[a].

38.2.1 Statics

The statics of speculations is given by the following rules:

Γ ` e : τ
Γ ` spec(e) : spec(τ) (38.3a)

Γ ` e : spec(τ)
Γ ` ssyn(e) : τ

(38.3b)

Thus, the statics for speculations as given by rules (38.3) is equivalent to the statics for futures
given by rules (38.1).

38.2.2 Sequential Dynamics

The definition of the sequential dynamics of speculations is like that of futures, except that specu-
lations are values.

spec(e) val
(38.4a)

e 7−→ e′

ssyn(e) 7−→ ssyn(e′)
(38.4b)

ssyn(spec(e)) 7−→ e
(38.4c)

Under a sequential dynamics speculations are simply a re-formulation of suspensions.

1We confine ourselves to the non-recursive case to ease the comparison with futures.
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38.3 Parallel Dynamics

Futures are only interesting insofar as they admit a parallel dynamics that allows the computation
of the future to go ahead concurrently with some other computation. In this section we give a
parallel dynamics of futures and speculation in which the creation, execution, and synchronization
of tasks is made explicit. The parallel dynamics of futures and speculations is identical, except for
the termination condition. Whereas futures require that all tasks are completed before termination,
speculations may be abandoned before they are completed. For the sake of concision we will
give the parallel dynamics of futures, remarking only where alterations are made for the parallel
dynamics of speculations.

The parallel dynamics of futures relies on a modest extension to the language given in Sec-
tion 38.1 to introduce names for tasks. Let Σ be a finite mapping assigning types to names. As
mentioned earlier, the expression fcell[a] is a value referring to the outcome of task a. The statics
of this expression is given by the following rule:2

Γ `Σ,a~τ fcell[a] : fut(τ)
(38.5)

Rules (38.1) carry over in the obvious way with Σ recording the types of the task names.
States of the parallel dynamics have the form ν Σ { e ‖ µ }, where e is the focus of evaluation,

and µ records the active parallel futures (or speculations). Formally, µ is a finite mapping assigning
expressions to the task names declared in Σ. A state is well-formed according to the following rule:

`Σ e : τ (∀a ∈ dom(Σ)) `Σ µ(a) : Σ(a)
ν Σ { e ‖ µ } ok

(38.6)

As discussed in Chapter 35 this rule admits self-referential and mutually referential futures. A
more refined condition could as well be given that avoids circularities; we leave this as an exercise
for the reader.

The parallel dynamics is divided into two phases, the local phase, which defines the basic steps
of evaluation of an expression, and the global phase, which executes all possible local steps in
parallel. The local dynamics of futures is defined by the following rules:3

fcell[a] valΣ,a~τ

(38.7a)

ν Σ { fut(e) ‖ µ } 7−→loc ν Σ, a ~ τ { fcell[a] ‖ µ⊗ a ↪→ e }
(38.7b)

ν Σ { e ‖ µ } 7−→loc ν Σ′ { e′ ‖ µ′ }
ν Σ { fsyn(e) ‖ µ } 7−→loc ν Σ′ { fsyn(e′) ‖ µ′ }

(38.7c)

2A similar rule applies to scell[a] in the case of speculations.
3These rules are augmented by a reformulation of the dynamics of the other constructs of the language phrased in terms

of the present notion of state.
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e′ valΣ,a~τ
ν Σ, a ~ τ { fsyn(fcell[a]) ‖ µ⊗ a ↪→ e′ }

7−→loc

ν Σ, a ~ τ { e′ ‖ µ⊗ a ↪→ e′ }

 (38.7d)

Rule (38.7b) activates a future named a executing the expression e and returns a reference to it.
Rule (38.7d) synchronizes with a future whose value has been determined. Note that a local tran-
sition always has the form

ν Σ { e ‖ µ } 7−→loc ν Σ Σ′ { e′ ‖ µ⊗ µ′ }

where Σ′ is either empty or declares the type of a single symbol, and µ′ is either empty or of the
form a ↪→ e′ for some expression e′.

A global step of the parallel dynamics consists of at most one local step for the focal expression
and one local step for each of up to p futures, where p > 0 is a fixed parameter representing the
number of processors.

µ = µ0 ⊗ a1 ↪→ e1 ⊗ . . .⊗ an ↪→ en

µ′′ = µ0 ⊗ a1 ↪→ e′1 ⊗ . . .⊗ an ↪→ e′n
ν Σ { e ‖ µ } 7−→0,1

loc ν Σ Σ′ { e′ ‖ µ⊗ µ′ }
(∀1 ≤ i ≤ n ≤ p) ν Σ { ei ‖ µ } 7−→loc ν Σ Σ′i { e′i ‖ µ⊗ µ′i }

ν Σ { e ‖ µ }
7−→glo

ν Σ Σ′ Σ′1 . . . Σ′n { e′ ‖ µ′′ ⊗ µ′ ⊗ µ′1 ⊗ . . .⊗ µ′n }


(38.8a)

Rule (38.8a) allows the focus expression to take either zero or one steps because it might be blocked
awaiting the completion of evaluation of a parallel future (or synchronizing with a speculation).
The futures allocated by the local steps of execution are consolidated in the result of the global
step. We assume without loss of generality that the names of the new futures in each local step
are pairwise disjoint so that the combination makes sense. In implementation terms satisfying this
disjointness assumption means that the processors must synchronize their access to memory.

The initial state of a computation, for futures or speculations, is defined by the rule

ν ∅ { e ‖ ∅ } initial
(38.9)

For futures a state is final only if the focus and all parallel futures have completed evaluation:

e valΣ µ valΣ

ν Σ { e ‖ µ } final
(38.10a)

(∀a ∈ dom(Σ)) µ(a) valΣ
µ valΣ

(38.10b)
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For speculations a state is final only if the focus is a value, regardless of whether any other specu-
lations have completed:

e valΣ
ν Σ { e ‖ µ } final

(38.11)

All futures must terminate to ensure that the work performed in parallel matches that performed
sequentially; no future is created whose value is not needed according to the sequential semantics.
In contrast, speculations can be abandoned when their values are not needed.

38.4 Pipelining With Futures

Pipelining is an interesting example of the use of parallel futures. Consider a situation in which a
producer builds a list whose elements represent units of work, and a consumer traverses the work
list and acts on each element of that list. The elements of the work list can be thought of as “in-
structions” to the consumer, which maps a function over that list to carry out those instructions.
An obvious sequential implementation first builds the work list, then traverses it to perform the
work indicated by the list. This strategy works well provided that the elements of the list can be
produced quickly, but if each element needs a lot of computation, it would be preferable to over-
lap production of the next list element with execution of the previous unit of work, which can be
programmed using futures.

Let flist be the recursive type rec t is unit+ (nat× t fut), whose elements are nil, defined
to be fold(l · 〈〉), and cons(e1,e2), defined to be fold(r · 〈e1, fut(e2)〉). The producer is a recursive
function that generates a value of type flist:

fix produce : (nat → nat opt) → nat → flist is

λ f. λ i.

case f(i) {
null ↪→ nil

| just x ↪→ cons(x, fut (produce f (i+1)))

}

On each iteration the producer generates a parallel future to produce the tail. The future continues
to execute after the producer returns so that its evaluation overlaps with subsequent computation.

The consumer folds an operation over the work list as follows:

fix consume : ((nat×nat)→nat) → nat → flist → nat is

λ g. λ a. λ xs.

case xs {
nil ↪→ a

| cons (x, xs) ↪→ consume g (g (x, a)) (fsyn xs)

}

The consumer synchronizes with the tail of the work list just at the point where it makes a recursive
call and hence needs the head element of the tail to continue processing. At this point the consumer
will block, if necessary, to await computation of the tail before continuing the recursion.
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Speculations arise naturally in lazy languages. But although they provide opportunities for
parallelism, they are not, in general, work efficient: a speculation might be evaluated even though
its value is never needed. An alternative is to combine suspensions (see Chapter 36) with futures
so that the programmer may specify which suspensions ought to be evaluated in parallel. The
notion of a spark is designed to achieve this. A spark evaluates a computation in parallel only for
its effect on suspensions that are likely to be needed later. Specifically, we may define

spark(e1; e2) , letfut be force(e1) in e2,

where e1 : τ1 susp and e2 : τ2.4 The expression force(e1) is evaluated in parallel, forcing the
evaluation of e1, in hopes that it will have completed evaluation before its value is needed by e2.

As an example, consider the type strm of streams of numbers defined by the recursive type
rec t is (unit+ (nat× t)) susp. Elements of this type are suspended computations that, when
forced, either signals the end of stream, or produces a number and another such stream. Suppose
that s is such a stream, and assume that we know, for reasons of its construction, that it is finite.
We wish to compute map( f )(s) for some function f , and to overlap this computation with the
production of the stream elements. We will make use of a function mapforce that forces successive
elements of the input stream, but yields no useful output. The computation

letfut be map(force)(s) in map( f )(s)

forces the elements of the stream in parallel with the computation of map( f )(s), with the intention
that all suspensions in s are forced before their values are needed by the main computation.

38.5 Notes

Futures were introduced by Friedman and Wise (1976), and featured in the MultiLisp language
(Halstead, 1985) for parallel programming. A similar concept is proposed by Arvind et al. (1986)
under the name “I-structures.” The formulation given here is derived from Greiner and Blelloch
(1999). Sparks were introduced by Trinder et al. (1998).

Exercises

38.1. Use futures to define letfut x be e1 in e2, a parallel let in which e2 is evaluated in parallel
with e1 up to the point that e2 needs the value of x.

38.2. Use futures to encode binary nested parallelism by giving a definition of par(e1; e2; x1.x2.e).
Hint: Only one future is needed if you are careful.

4The expression evaluates e1 simultaneously with e2, up to the point that the value of x is needed. Its definition in terms
of futures is the subject of Exercise 38.1.
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Concurrent Algol

In this chapter we integrate concurrency into the framework of Modernized Algol described in
Chapter 34. The resulting language, called Concurrent Algol, or CA, illustrates the integration of
the mechanisms of the process calculus described in Chapter 39 into a practical programming lan-
guage. To avoid distracting complications, we drop assignables from Modernized Algol entirely.
(There is no loss of generality, however, because free assignables are definable in Concurrent Algol
using processes as cells.)

The process calculus described in Chapter 39 is intended as a self-standing model of concurrent
computation. When viewed in the context of a programming language, however, it is possible to
streamline the machinery to take full advantage of types that are in any case required for other
purposes. In particular the concept of a channel, which features prominently in Chapter 39, is
identified with the concept of a dynamic class as described in Chapter 33. More precisely, we take
broadcast communication of dynamically classified values as the basic synchronization mechanism
of the language. Being dynamically classified, messages consist of a payload tagged with a class,
or channel. The type of the channel determines the type of the payload. Importantly, only those
processes that have access to the channel may decode the message; all others must treat it as
inscrutable data that can be passed around but not examined. In this way we can model not only
the mechanisms described in Chapter 39, but also formulate an abstract account of encryption and
decryption in a network using the methods described in Chapter 39.

Concurrent Algol features a modal separation between commands and expressions like in
Modernized Algol. It is also possible to combine these two levels (so as to allow benign con-
currency effects), but we do not develop this approach in detail here.
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40.1 Concurrent Algol

The syntax of CA is obtained by removing assignables from MA, and adding a syntactic level of
processes to represent the global state of a program:

Typ τ ::= cmd(τ) τ cmd commands
Exp e ::= cmd(m) cmdm command
Cmd m ::= ret e ret e return

bnd(e; x.m) bnd x← e ; m sequence
Proc p ::= stop 1 idle

run(m) run(m) atomic
conc(p1; p2) p1 ⊗ p2 concurrent
new{τ}(a.p) ν a ~ τ.p new channel

The process run(m) is an atomic process executing the command m. The other forms of process are
adapted from Chapter 39. If Σ has the form a1 ~ τ1, . . . , an ~ τn, then we sometimes write ν Σ{p}
for the iterated form ν a1 ~ τ1.. . . ν an ~ τn.p.

The statics of CA is given by these judgments:

Γ `Σ e : τ expression typing
Γ `Σ m ∼·· τ command typing
Γ `Σ p proc process formation
Γ `Σ α action action formation

The expression and command typing judgments are essentially those of MA, augmented with the
constructs described below.

Process formation is defined by the following rules:

`Σ 1 proc
(40.1a)

`Σ m ∼·· τ

`Σ run(m) proc
(40.1b)

`Σ p1 proc `Σ p2 proc

`Σ p1 ⊗ p2 proc
(40.1c)

`Σ,a~τ p proc

`Σ ν a ~ τ.p proc
(40.1d)

Processes are identified up to structural congruence, as described in Chapter 39.
Action formation is defined by the following rules:

`Σ ε action
(40.2a)
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`Σ e : clsfd e valΣ
`Σ e ! action

(40.2b)

`Σ e : clsfd e valΣ
`Σ e ? action

(40.2c)

Messages are values of the type clsfd defined in Chapter 33.

The dynamics of CA is defined by transitions between processes, which represent the state of
the computation. More precisely, the judgment p α7−→

Σ
p′ states that the process p evolves in one

step to the process p′ while undertaking action α.

m α
=⇒
Σ

ν Σ′ {m′ ⊗ p }

run(m)
α7−→
Σ

ν Σ′{run(m′)⊗ p}
(40.3a)

e valΣ

run(ret e) ε7−→
Σ

1 (40.3b)

p1
α7−→
Σ

p′1

p1 ⊗ p2
α7−→
Σ

p′1 ⊗ p2

(40.3c)

p1
α7−→
Σ

p′1 p2
α7−→
Σ

p′2

p1 ⊗ p2
ε7−→
Σ

p′1 ⊗ p′2
(40.3d)

p α7−−−→
Σ,a~τ

p′ `Σ α action

ν a ~ τ.p α7−→
Σ

ν a ~ τ.p′
(40.3e)

Rule (40.3a) states that a step of execution of the atomic process run(m) consists of a step of execu-
tion of the command m, which may allocate some set Σ′ of symbols or create a concurrent process
p. This rule implements scope extrusion for classes (channels) by expanding the scope of the chan-
nel declaration to the context in which the command m occurs. Rule (40.3b) states that a completed
command evolves to the inert (stopped) process; processes are executed solely for their effect, and
not for their value.

Executing a command in CA may, in addition to evolving to another command, allocate a new
channel or may spawn a new process. More precisely, the judgment1

m α
=⇒
Σ

ν Σ′ {m′ ⊗ p′ }

1The right-hand side of this judgment is a triple consisting of Σ′, m′, and p′, not a process expression comprising these
parts.
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states that the command m transitions to the command m′ while creating new channels Σ′ and
new processes p′. The action α specifies the interactions of which m is capable when executed.
As a notational convenience we drop mention of the new channels or processes when either are
trivial.

The following rules define the execution of the basic forms of command inherited from MA:

e 7−→
Σ

e′

ret e ε
=⇒
Σ

ret e′
(40.4a)

m1
α
=⇒
Σ

ν Σ′ {m′1 ⊗ p′ }

bnd x← cmdm1 ; m2
α
=⇒
Σ

ν Σ′{bnd x← cmdm′1 ; m2 ⊗ p′}
(40.4b)

e valΣ

bnd x← cmd (ret e) ; m2
ε
=⇒
Σ

[e/x]m2
(40.4c)

e1 7−→
Σ

e′1

bnd x← e1 ; m2
ε
=⇒
Σ

bnd x← e′1 ; m2
(40.4d)

These rules are supplemented by rules governing communication and synchronization among
processes in the next two sections.

40.2 Broadcast Communication

In this section we consider a very general form of process synchronization called broadcast. Pro-
cesses emit and accept messages of type clsfd, the type of dynamically classified values consid-
ered in Chapter 33. A message consists of a channel, which is its class, and a payload, which is
a value of the type associated with the channel (class). Recipients may pattern match against a
message to determine whether it is of a given class, and, if so, recover the associated payload. No
process that lacks access to the class of a message may recover the payload of that message. (See
Section 33.4.1 for a discussion of how to enforce confidentiality and integrity restrictions using
dynamic classification).

The syntax of the commands pertinent to broadcast communication is given by the following
grammar:

Cmd m ::= spawn(e) spawn(e) spawn
emit(e) emit(e) emit message
acc acc accept message
newch{τ} newch new channel

The command spawn(e) spawns a process that executes the encapsulated command given by e.
The commands emit(e) and acc emit and accept messages, which are classified values whose
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class is the channel on which the message is sent. The command newch{τ} returns a reference to a
fresh class carrying values of type τ.

The statics of broadcast communication is given by the following rules:

Γ `Σ e : cmd(unit)
Γ `Σ spawn(e) ∼·· unit

(40.5a)

Γ `Σ e : clsfd
Γ `Σ emit(e) ∼·· unit

(40.5b)

Γ `Σ acc ∼·· clsfd
(40.5c)

Γ `Σ newch{τ} ∼·· cls(τ)
(40.5d)

Execution of these commands is defined as follows:

spawn(cmd(m))
ε
=⇒
Σ

ret 〈〉 ⊗ run(m)
(40.6a)

e 7−→
Σ

e′

spawn(e) ε
=⇒
Σ

spawn(e′)
(40.6b)

e valΣ

emit(e) e !
=⇒
Σ

ret 〈〉 (40.6c)

e 7−→
Σ

e′

emit(e) ε
=⇒
Σ

emit(e′)
(40.6d)

e valΣ

acc
e ?
=⇒
Σ

ret e (40.6e)

newch{τ} ε
=⇒
Σ

ν a ~ τ { ret (& a) } (40.6f)

Rule (40.6c) specifies that emit(e) has the effect of emitting the message e. Correspondingly,
rule (40.6e) specifies that acc may accept (any) message that is being sent.

As usual, the preservation theorem for CA ensures that well-typed programs remain well-
typed during execution. The proof of preservation requires a lemma about command execution.

Lemma 40.1. If m α
=⇒
Σ

ν Σ′ {m′ ⊗ p′ }, `Σ m ∼·· τ, then `Σ α action, `Σ Σ′ m′ ∼·· τ, and `Σ Σ′ p′ proc.
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Proof. By induction on rules (40.4).

With this in hand the proof of preservation goes along familiar lines.

Theorem 40.2 (Preservation). If `Σ p proc and p 7−→
Σ

p′, then `Σ p′ proc.

Proof. By induction on transition, appealing to Lemma 40.1 for the crucial steps.

Typing does not, however, guarantee progress with respect to unlabeled transition, for the
simple reason that there may be no other process with which to communicate. By extending
progress to labeled transitions we may state that this is the only way for process exceution to
get stuck. But some care must be taken to account for allocating new channels.

Theorem 40.3 (Progress). If `Σ p proc, then either p ≡ 1, or p ≡ ν Σ′{p′} such that p′ α7−−→
Σ Σ′

p′′ for

some `Σ Σ′ p′′ and some `Σ Σ′ α action.

Proof. By induction on rules (40.1) and (40.5).

The progress theorem says that no process can get stuck for any reason other than ithe nability
to communicate with another process. For example, a process that receives on a channel for which
there is no sender is “stuck”, but this does not violate Theorem 40.3.

40.3 Selective Communication

Broadcast communication provides no means of restricting acceptance to messages of a particu-
lar class (that is, of messages on a particular channel). Using broadcast communication we may
restrict attention to a particular channel a of type τ by running the following command:

fix loop : τ cmd is {x← acc ; match x as a · y ↪→ ret y ow ↪→ emit(x) ; do loop}

This command is always capable of receiving a broadcast message. When one arrives, it is exam-
ined to see whether it is classified by a. If so, the underlying classified value is returned; otherwise
the message is re-broadcast so that another process may consider it. Polling consists of repeatedly
executing the above command until a message of channel a is successfully accepted, if ever it is.

Polling is evidently impractical in most situations. An alternative is to change the language
to allow for selective communication. Rather than accept any broadcast message, we may confine
attention to messages sent only on certain channels. The type event(τ) of events consists of a finite
choice of accepts, all of whose payloads are of type τ.

Typ τ ::= event(τ) τ event events
Exp e ::= rcv[a] ? a selective read

never{τ} never null
or(e1; e2) e1 or e2 choice
wrap(e1; x.e2) e1 as x in e2 post-composition

Cmd m ::= sync(e) sync(e) synchronize
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Events in CA are similar to those of the asynchronous process calculus described in Chapter 39.
The chief difference is that post-composition is considered as a general operation on events, in-
stead of one tied to the receive event itself.

The statics of event expressions is given by the following rules:

Σ ` a ~ τ
Γ `Σ rcv[a] : event(τ) (40.7a)

Γ `Σ never{τ} : event(τ)
(40.7b)

Γ `Σ e1 : event(τ) Γ `Σ e2 : event(τ)
Γ `Σ or(e1; e2) : event(τ)

(40.7c)

Γ `Σ e1 : event(τ1) Γ, x : τ1 `Σ e2 : τ2

Γ `Σ wrap(e1; x.e2) : event(τ2)
(40.7d)

The corresponding dynamics is defined by these rules:

Σ ` a ~ τ
rcv[a] valΣ

(40.8a)

never{τ} valΣ
(40.8b)

e1 valΣ e2 valΣ
or(e1; e2) valΣ

(40.8c)

e1 7−→
Σ

e′1

or(e1; e2) 7−→
Σ

or(e′1; e2)
(40.8d)

e1 valΣ e2 7−→
Σ

e′2

or(e1; e2) 7−→
Σ

or(e1; e′2)
(40.8e)

e1 7−→
Σ

e′1

wrap(e1; x.e2) 7−→
Σ

wrap(e′1; x.e′2)
(40.8f)

e1 valΣ
wrap(e1; x.e2) valΣ

(40.8g)

Event values are identified up to structural congruence as described in Chapter 39.
The statics of the synchronization command is given by the following rule:

Γ `Σ e : event(τ)
Γ `Σ sync(e) ∼·· τ

(40.9a)
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The type of the event determines the type of value returned by the synchronization command.
Execution of a synchronization command depends on the event.

e 7−→
Σ

e′

sync(e) ε
=⇒
Σ

sync(e′)
(40.10a)

e valΣ `Σ e : τ Σ ` a ~ τ

sync(rcv[a]) a·e ?
==⇒

Σ
ret(e)

(40.10b)

sync(e1)
α
=⇒
Σ

m1

sync(or(e1; e2))
α
=⇒
Σ

m1

(40.10c)

sync(e2)
α
=⇒
Σ

m2

sync(or(e1; e2))
α
=⇒
Σ

m2

(40.10d)

sync(e1)
α
=⇒
Σ

m1

sync(wrap(e1; x.e2))
α
=⇒
Σ

bnd(cmd(m1); x.ret(e2))
(40.10e)

Rule (40.10b) states that an acceptance on a channel a may synchronize only with messages classi-
fied by a. When combined with structural congruence, Rules (40.10c) and (40.10d) state that either
event between two choices may engender an action. Rule (40.10e) yields the command that per-
forms the command m1 resulting from the action α taken by the event e1, then returns e2 with x
bound to the return value of m1.

Selective communication and dynamic events can be used together to implement a communi-
cation protocol in which a channel reference is passed on a channel in order to establish a com-
munication path with the recipient. Let a be a channel carrying values of type cls(τ), and let b
be a channel carrying values of type τ, so that & b can be passed as a message along channel a.
A process that wishes to accept a channel reference on a and then accept on that channel has the
form

{x← sync(? a) ; y← sync(?? x) ; . . .}.
The event ? a specifies a selective receipt on channel a. Once the value x is accepted, the event ?? x
specifies a selective receipt on the channel referenced by x. So, if & b is sent along a, then the event
?? & b evaluates to ? b, which accepts selectively on channel b, even though the receiving process
may have no direct access to the channel b itself.

40.4 Free Assignables as Processes

Scope-free assignables are definable in CA by associating to each assignable a server process that
sets and gets the contents of the assignable. To each assignable a of type τ is associated a server
that selectively accepts a message on channel a with one of two forms:
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1. get · (& b), where b is a channel of type τ. This message requests that the contents of a be
sent on channel b.

2. set · (〈e, & b〉), where e is a value of type τ, and b is a channel of type τ. This message requests
that the contents of a be set to e, and that the new contents be transmitted on channel b.

In other words, a is a channel of type τsrvr given by

[get ↪→ τ cls, set ↪→ τ × τ cls].

The server selectively accepts on channel a, then dispatches on the class of the message to satisfy
the request.

The server associated with the assignable a of type τ maintains the contents of a using recur-
sion. When called with the current contents of the assignable, the server selectively accepts on
channel a, dispatching on the associated request, and calling itself recursively with the (updated,
if necessary) contents:

λ (u : τsrvr cls) fix srvr : τ ⇀ void cmd isλ (x : τ) cmd {y← sync(?? u) ; e(40.12)}. (40.11)

The server is a procedure that takes an argument of type τ, the current contents of the assignable,
and yields a command that never terminates, because it restarts the server loop after each request.
The server selectively accepts a message on channel a, and dispatches on it as follows:

case y {get · z ↪→ e(40.13) | set · 〈x′, z〉 ↪→ e(40.14)}. (40.12)

A request to get the contents of the assignable a is served as follows:

{ ← emit(mk(z; x)) ; do srvr(x)} (40.13)

A request to set the contents of the assignable a is served as follows:

{ ← emit(mk(z; x′)) ; do srvr(x′)} (40.14)

The type τ ref is defined to be τsrvr cls, the type of channels (classes) to servers providing a
cell containing a value of type τ. A new free assignable is created by the command ref e0, which
is defined to be

{x← newch ; ← spawn(e(40.11)(x)(e0)) ; ret x}. (40.15)

A channel carrying a value of type τsrvr is allocated to serve as the name of the assignable, and a
new server is spawned that accepts requests on that channel, with initial value e0 of type τ0.

The commands ∗ e0 and e0 ∗= e1 send a message to the server to get and set the contents of an
assignable. The code for ∗ e0 is as follows:

{x← newch ; ← emit(mk(e0; get · x)) ; sync(?? (x))} (40.16)

A channel is allocated for the return value, the server is contacted with a get message specifying
this channel, and the result of receiving on this channel is returned. Similarly, the code for e0 ∗= e1
is as follows:

{x← newch ; ← emit(mk(e0; set · 〈e1, x〉)) ; sync(?? (x))} (40.17)
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40.5 Notes

Concurrent Algol is a synthesis of process calculus and Modernized Algol; is essentially an “Algol-
like” formulation of Concurrent ML (Reppy, 1999). The design is influenced by Parallel Algol
(Brookes, 2002). Much work on concurrent interaction takes communication channels as a basic
concept, but see Linda (Gelernter, 1985) for an account similar to the one suggested here.

Exercises

40.1. In Section 40.2 channels are allocated using the command newch, which returns a channel
reference. Alternatively one may extend CA with a means of declaring channels just as
assignables are declared in MA. Formulate the syntax, statics, and dynamics of such a con-
struct, and derive newch using this extension.

40.2. Extend selective communication (Section 40.3) to account for channel references, which give
rise to a new form of event. Give the syntax, statics, and semantics of this extension.

40.3. Adapt the implementation of an RS latch given in Exercise 39.3 to CA.
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Chapter 42

Modularity and Linking

Modularity is the most important technique for controlling the complexity of programs. Programs
are decomposed into separate components with precisely specified, and tightly controlled, interac-
tions. The pathways for interaction among components determine dependencies that constrain
the process by which the components are integrated, or linked, to form a complete system. Differ-
ent systems may use the same components, and a single system may use multiple instances of a
single component. Sharing of components amortizes the cost of their development across systems,
and helps limit errors by limiting coding effort.

Modularity is not limited to programming languages. In mathematics the proof of a theorem
is decomposed into a collection of definitions and lemmas. References among the lemmas deter-
mine a dependency relation that constrains their integration to form a complete proof of the main
theorem. Of course, one person’s theorem is another person’s lemma; there is no intrinsic limit
on the depth and complexity of the hierarchies of results in mathematics. Mathematical structures
are themselves composed of separable parts, for example, a ring comprises a group and a monoid
structure on the same underlying set.

Modularity arises from the structural properties of the hypothetical and general judgments.
Dependencies among components are expressed by free variables whose typing assumptions state
the presumed properties of the component. Linking amounts to substitution to discharge the
hypothesis.

42.1 Simple Units and Linking

Decomposing a program into units amounts to exploiting the transitivity of the hypothetical judg-
ment (see Chapter 3). The decomposition may be described as an interaction between two parties,
the client and the implementor, mediated by an agreed-upon contract, an interface. The client assumes
that the implementor upholds the contract, and the implementor guarantees that the contract will
be upheld. The assumption made by the client amounts to a declaration of its dependence on the
implementor discharged by linking the two parties accordng to their agreed-upon contract.
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The interface that mediates the interaction between a client and an implementor is a type. Link-
ing is the implementation of the composite structural rules of substitution and transitivity:

Γ ` eimpl : τintf Γ, x : τintf ` eclient : τclient

Γ ` [eimpl/x]eclient : τclient
(42.1)

The type τintf is the interface type. It defines the operations provided by the implementor eimpl and
relied upon by the client eclient. The free variable x expresses the dependency of eclient on eimpl. That
is, the client accesses the implementation by using the variable x.

The interface type τintf is the contract between the client and the implementor. It determines
the properties of the implementation on which the client may depend and, at the same time, de-
termines the obligations that the implementor must fulfill. The simplest form of interface type is a
finite product type of the form 〈 f1 ↪→ τ1, . . . , fn ↪→ τn〉, specifying a component with components
fi of type τi. Such a type is an application program interface, or API, because it determines the op-
erations that the client (application) may expect from the implementor. A more advanced form of
interface is one that defines an abstract type of the form ∃(t.〈 f1 ↪→ τ1, . . . , fn ↪→ τn〉), which defines
an abstract type t representing the internal state of an “abstract machine” whose “instruction set”
consists of the operations f1, . . . , fn whose types may involve t. Being abstract, the type t is not
revealed to the client, but is known only to the implementor.1

Conceptually, linking is just substitution, but practically this can be implemented in many
ways. One method is separate compilation. The expressions eclient and eimpl, the source modules,
are translated (compiled) into another, lower-level, language, resulting in object modules. Linking
consists of performing the required substitution at the level of the object language in such a way
that the result corresponds to translating [eimpl/x]eclient. Another method, separate checking, shifts
the requirement for translation to the linker. The client and implementor units are checked for
type correctness with respect to the interface, but are not translated into lower-level form. Linking
then consists of translating the composite program as a whole, often resulting in a more efficient
outcome than would be possible when compiling separately.

The foregoing are all forms of static linking because the program is composed before it is ex-
ecuted. Another method, dynamic linking, defers program composition until run-time, so that a
component is loaded only if it is actually required during execution. This might seem to involve
executing programs with free variables, but it does not. Each client implemented by a stub that
forwards accesses to a stored implementation (typically, in an ambient file system). The difficulty
with dynamic linking is that it refers to components by name (say, a path in a file system), and the
binding of that name may change at any time, wreaking havoc on program behavior.

42.2 Initialization and Effects

Linking resolves the dependencies among the components of a program by substitution. This
view is valid so long as the components are given by pure expressions, those that evaluate to a
value without inducing any effects. For in such cases there is no problem with the replication, or

1See Chapters 17 and 48 for a discussion of type abstraction.
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complete omission, of a component arising from repeated, or absent, uses of a variable represent-
ing it. But what if the expression defining the implementation of a component has an effect when
evaluated? At a minimum replication of the component implies replication of its effects. Worse,
effects introduce implicit dependencies among components that are not apparent from their types.
For example, if each of two components mutates a shared assignable, the order in which they are
linked with a client program affects the behavior of the whole.

This may raise doubts about the treatment of linking as substitution, but on closer inspection it
becomes clear that implicit dependencies are naturally expressed by the modal distinction between
expressions and commands introduced in Chapter 34. Specifically, a component that may have
an effect when executed does not have type τintf of implementations of the interface type, but
rather the type τintf cmd of encapsulated commands that, when executed, have effects and yield
implementations. Being encapsulated, a value of this type is itself free of effects, but it may have
effects when evaluated.

The distinction between the types τintf and τintf cmd is mediated by the sequencing command
introduced in Chapter 34. For the sake of generality, let us assume that the client is itself an
encapsulated command of type τclient cmd, so that it may itself have effects when executed, and may
serve as a component of a yet larger system. Assuming that the client refers to the encapsulated
implementation by the variable x, the command

bnd x← x ; do eclient

first determines the implementation of the interface by running the encapsulated command x then
running the client code with the result bound to x. The implicit dependencies of the client on
the implementor are made explicit by the sequencing command, which ensures that the imple-
mentor’s effects occur prior to those of the client, precisely because the client depends on the
implementor for its execution.

More generally, to manage such interactions in a large program it is common to isolate an
initialization procedure whose role is to stage the effects engendered by the various components
according to some policy or convention. Rather than attempt to survey all possible policies, let us
just note that the upshot of such conventions is that the initialization procedure is a command of
the form

{x1← x1 ; . . . xn← xn ; mmain},

where x1, . . . , xn represent the components of the system and mmain is the main (startup) routine.
After linking the initialization procedure has the form

{x1← e1 ; . . . xn← en ; mmain},

where e1, . . . , en are the encapsulated implementations of the linked components. When the ini-
tialization procedure is executed, it results in the substitution

[v1, . . . , vn/x1, . . . , xn]mmain,

where the expressions v1, . . . , vn represent the values resulting from executing e1, . . . , en, respec-
tively, and the implicit effects have occurred in the order specified by the initializer.
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42.3 Notes

The relationship between the structural properties of entailment and the practical problem of sep-
arate development was implicit in much early work on programming languages, but became ex-
plicit once the correspondence between propositions and types was developed. There are many
indications of this correspondence in sources such as Proofs and Types (Girard, 1989) and Intuition-
istic Type Theory (Martin-Löf, 1984), but it was first made explicit by Cardelli (1997).
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Type Abstractions and Type Classes

An interface is a contract that specifies the rights of a client and the responsibilities of an imple-
mentor. Being a specification of behavior, an interface is a type. In principle any type may serve
as an interface, but in practice it is usual to structure code into modules consisting of separable
and reusable components. An interface specifies the behavior of a module expected by a client
and imposed on the implementor. It is the fulcrum balancing the tension between separation and
integration. As a rule, a module ought to have a well-defined behavior that can be understood
separately, but it is equally important that it be easy to combine modules to form an integrated
whole.

A fundamental question is, what is the type of a module? That is, what form should an interface
take? One long-standing idea is that an interface is a labeled tuple of functions and procedures
with specified types. The types of the fields of the tuple are often called function headers, because
they summarize the call and return types of each function. Using interfaces of this form is called
procedural abstraction, because it limits the dependencies between modules to a specified set of
procedures. We may think of the fields of the tuple as being the instruction set of a virtual machine.
The client makes use of these instructions in its code, and the implementor agrees to provide their
implementations.

The problem with procedural abstraction is that it does not provide as much insulation as one
might like. For example, a module that implements a dictionary must expose in the types of its
operations the exact representation of the tree as, say, a recursive type (or, in more rudimentary
languages, a pointer to a structure that itself may contain such pointers). Yet the client ought not
depend on this representation: the purpose of abstraction is to get rid of pointers. The solution,
as discussed in Chapter 17, is to extend the abstract machine metaphor to allow the internal state
of the machine to be hidden from the client. In the case of a dictionary the representation of the
dictionary as a binary search tree is hidden by existential quantification. This concept is called type
abstraction, because the type of the underlying data (state of the abstract machine) is hidden.

Type abstraction is a powerful method for limiting the dependencies among the modules that
constitute a program. It is very useful in many circumstances, but is not universally applicable.
It is often useful to expose, rather than obscure, type information across a module boundary. A
typical example is the implementation of a dictionary, which is a mapping from keys to values. To
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use, say, a binary search tree to implement a dictionary, we require that the key type admit a total
ordering with which keys can be compared. The dictionary abstraction does not depend on the
exact type of the keys, but only requires that the key type be constrained to provide a comparison
operation. A type class is a specification of such a requirement. The class of comparable types, for
example, specifies a type t together with an operation leq of type (t× t) → bool with which to
compare them. Superficially, such a specification looks like a type abstraction, because it specifies
a type and one or more operations on it, but with the important difference that the type t is not
hidden from the client. For if it were, the client would only be able to compare keys using leq, but
would have no means of obtaining keys to compare. A type class, in contrast to a type abstraction,
is not intended to be an exhaustive specification of the operations on a type, but as a constraint
on its behavior expressed by demanding that certain operations, such as comparison, be available,
without limiting the other operations that might be defined on it.

Type abstractions and type classes are the extremal cases of a general concept of module type
that we shall discuss in detail in this chapter. The crucial idea is the controlled revelation of type
information across module boundaries. Type abstractions are opaque; type classes are trans-
parent. These are both instances of translucency, which arises from combining existential types
(Chapter 17), subtyping (Chapter 24), and singleton kinds and subkinding (Chapter 43). Unlike in
Chapter 17, however, we will distinguish the types of modules, which are called signatures, from
the types of ordinary values. The distinction is not essential, but it will be helpful to keep the two
concepts separate at the outset, deferring discussion of how to ease the segregation once the basic
concepts are in place.

44.1 Type Abstraction

Type abstraction is captured by a form of existential type quantification similar to that described
in Chapter 17. For example, a dictionary with keys of type τkey and values of type τval implements
the signature σdict defined by Jt :: T ; τdictK, where τdict is the labeled tuple type

〈emp ↪→ t , ins ↪→ τkey × τval × t→ t , fnd ↪→ τkey × t→ τval opt〉.

The type variable t occurring in τdict and bound by σdict is the abstract type of dictionaries on which
are defined three operations emp, ins, and fnd with the specified types. The type τval is immaterial
to the discussion, because the dictionary operations impose no restrictions on the values that are
associated to keys. However, it is important that the type τkey be some fixed type, such as str,
equipped with a suite of operations such as comparison. Observe that the signature σdict merely
specifies that a dictionary is a value of some type that admits the operations emp, ins, and fnd with
the types given by τdict.

An implementation of the signature σdict is a structure Mdict of the form Jρdict ; edictK, where ρdict
is some concrete representation of dictionaries, and edict is a labeled tuple of type [ρdict/t]τdict of
the general form

〈emp ↪→ . . . , ins ↪→ . . . , fnd ↪→ . . .〉.

The elided parts implement the dictionary operations in terms of the chosen representation type
ρdict making use of the comparison operation that we assume is available of values of type τkey. For
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example, the type ρdict might be a recursive type defining a balanced binary search tree, such as a
red-black tree. The dictionary operations work on the underlying representation of the dictionary
as such a tree, just as would a package of existential type (see Chapter 17). The supposition about
τkey is temporary, and is lifted in Section 44.2.

To ensure that the representation of the dictionary is hidden from a client, the structure Mdict
is sealed with the signature σdict to obtain the module

Mdict � σdict.

The effect of sealing is to ensure that the only information about Mdict that propagates to the client
is given by σdict. In particular, because σdict only specifies that the type t have kind T, no informa-
tion about the choice of t as ρdict in Mdict is made available to the client.

A module is a two-phase object consisting of a static part and a dynamic part. The static part is
a constructor of a specified kind; the dynamic part is a value of a specified type. There are two
elimination forms that extract the static and dynamic parts of a module. These are, respectively, a
form of constructor and a form of expression. More precisely, the constructor M · s stands for the
static part of M, and the expression M · d stands for its dynamic part. According to the inversion
principle, if a module M has introduction form, then M · s should be equivalent to the static part
of M. So, for example, Mdict · s should be equivalent to ρdict.

But consider the static part of a sealed module, which has the form (Mdict � σdict) · s. Because
sealing hides the representation of an abstract type, this constructor should not be equivalent
to ρdict. If M′dict is another implementation of σdict, should (Mdict � σdict) · s be equivalent to
(M′dict � σdict) · s? To ensure reflexivity of type equivalence this equation should hold when M
and M′ are equivalent modules. But this violates representation independence for abstract types
by making equivalence of abstract types sensitive to their implementation.

It would seem, then, that there is a contradiction between two very fundamental concepts,
type equivalence and representation independence. The way out of this conundrum is to disallow
reference to the static part of a sealed module: the type expression M � σ · s is deemed ill-formed.
More generally, the formation of M · s is disallowed unless M is a module value, whose static part
is always manifest. An explicit structure is a module value, as is any module variable (provided
that module variables are bound by-value).

One effect of this restriction is that sealed modules must be bound to a variable before they
are used. Because module variables are bound by-value, doing so has the effect of imposing ab-
straction at the binding site. In fact, we may think of sealing as a kind of computational effect
that “occurs” at the binding site, much as the bind operation in Algol discussed in Chapter 34
engenders the effects induced by an encapsulated command. As a consequence two bindings of
the same sealed module result in two abstract types. The type system willfully ignores the iden-
tity of the two occurrences of the same module in order to ensure that their representations can be
changed independently of one another without disrupting the behavior of any client code (because
the client cannot rely on their identity, it must regard them as different).
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44.2 Type Classes

Type abstraction is an essential tool for limiting dependencies among modules in a program. The
signature of a type abstraction determines all that is known about a module by a client; no other
uses of the values of an abstract type are permissible. A complementary tool is to use a signature to
partially specify the capabilities of a module. Such a signature is a type class, or a view; an instance
of the type class is an implementation of it. Because the signature of a type class only constrains
the minimum capabilities of an unknown module, there must be some other means of working
with values of that type. The way to achieve this is to expose, rather than hide, the identity of
the static part of a module. In this sense type classes are the “opposite” of type abstractions, but
we shall see below that there is a smooth progression between them, mediated by a subsignature
judgment.

Let us consider the implementation of dictionaries as a client of the implementation of its
keys. To implement a dictionary using a binary search tree the only requirement is that keys
come equipped with a total ordering given by a comparison operation. This requirement can be
expressed by a signature σord given by

Jt :: T ; 〈leq ↪→ (t× t)→ bool〉K .

Because a given type can be ordered in many ways, it is essential that the ordering be packaged
with the type to determine a type of keys.

The implementation of dictionaries as binary search trees takes the form

X : σord ` MX
bstdict : σX

dict.

Here σX
dict is the signature

q
t :: T ; τX

dict

y
, whose body, τX

dict, is the tuple type

〈emp ↪→ t , ins ↪→ X · s× τval × t→ t , fnd ↪→ X · s× t→ τval opt〉,

and MX
bstdict is a structure (not given explicitly here) that implements the dictionary operations

using binary search trees.1 Within MX
bstdict, the static and dynamic parts of the module X are

accessed by writing X · s and X · d, respectively. In particular, the comparison operation on keys is
accessed by the projection X · d · leq.

The declared signature of the module variable X expresses a constraint on the capabilities of a
key type by specifying an upper bound on its signature in the subsignature ordering. So any mod-
ule bound to X must provide a type of keys and a comparison operation on that type, but nothing
else is assumed of it. Because this is all we know about the unknown module X the dictionary
implementation is constrained to rely only on these specified capabilities, and no others. When
linking with a module defining X, the implementation need not be sealed with this signature, but
must instead have a signature that is no larger than it in the subsignature relation. Indeed, the
signature σord is useless for sealing, as is easily seen by example. Suppose that Mnatord : σord is
an instance of the class of ordered types under the usual ordering. If we seal Mnatord with σord by
writing

Mnatord � σord,
1Here and elsewhere in this chapter and the next, the superscript X serves as a reminder that the module variable X

may occur free in the annotated module or signature.
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the resulting module is useless, because we would then have no way to create values of the key
type.

We see, then, that a type class is a description (or view) of a pre-existing type, and is not a means
of introducing a new type. Rather than obscure the identity of the static part of Mnatord, we wish
to propagate its identity as nat while specifying a comparison with which to order them. Type
identity propagation is achieved using singleton kinds (as described in Chapter 43). Specifically,
the most precise, or principal, signature of a structure is the one that exposes its static part using a
singleton kind. In the case of the module Mnatord, the principal signature is the signature σnatord
given by

Jt :: S(nat) ; leq ↪→ (t× t)→ boolK ,

which, by the rules of equivalence (defined formally in Section 44.3), is equivalent to the signature

J :: S(nat) ; leq ↪→ (nat× nat)→ boolK .

The derivation of such an equivalence is called equivalence propagation, because it propagates the
identity of the type t into its scope.

The dictionary implementation MX
bstdict expects a module X with signature σord, but the mod-

ule Mnatord provides the signature σnatord. Applying the rules of subkinding given in Chapter 43,
together with the covariance principle for signatures, we obtain the subsignature relationship

σnatord <: σord.

By the subsumption principle, a module of signature σnatord may be provided when a module of
signature σord is required. Therefore Mnatord may be linked to X in MX

bstdict.
Combining subtyping with sealing provides a smooth gradation between type classes and type

abstractions. The principal signature for MX
bstdict is the signature ρX

dict given by
r

t :: S(τX
bst) ; 〈emp ↪→ t , ins ↪→ X · s× τval × t→ t , fnd ↪→ X · s× t→ τval opt〉

z
,

where τX
bst is the type of binary search trees with keys given by the module X of signature σord.

This signature is a subsignature of σX
dict given earlier, so that the sealed module

MX
bstdict � σX

dict

is well-formed, and has type σX
dict, which hides the representation type of the dictionary abstrac-

tion.
After linking X to Mnatord, the signature of the dictionary is specialized by propagating the

identity of the static part of Mnatord using the subsignature judgment. As remarked earlier, the
dictionary implementation satisfies the typing

X : σord ` MX
bstdict : σX

dict.

But because σnatord <: σord, we have, by contravariance, that

X : σnatord ` MX
bstdict : σX

dict.
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is also a valid typing judgment. If X : σnatord, then X · s is equivalent to nat, because it has kind
S(nat), so that the typing

X : σnatord ` MX
bstdict : σnatdict

is also valid. The closed signature σnatdict is given explicitly by

Jt :: T ; 〈emp ↪→ t , ins ↪→ nat× τval × t→ t , fnd ↪→ nat× t→ τval opt〉K .

The representation of dictionaries is hidden, but the representation of keys as natural numbers is
not. The dependency on X has been eliminated by replacing all occurrences of X · s within σX

dict by
the type nat. Having derived this typing we may link X with Mnatord as described in Chapter 42
to obtain a composite module, Mnatdict, of signature σnatdict, in which keys are natural numbers
ordered as specified by Mnatord.

It is convenient to exploit subtyping for labeled tuple types to avoid creating an ad hoc module
specifying the standard ordering on the natural numbers. Instead we can extract the required
module directly from the implementation of the abstract type of numbers using subsumption. As
an illustration, let Xnat be a module variable of signature σnat, which has the form

Jt :: T ; 〈zero ↪→ t , succ ↪→ t→ t , leq ↪→ (t× t)→ bool , . . . 〉K

The fields of the tuple provide all and only the operations that are available on the abstract type of
natural numbers. Among them is the comparison operation leq, which is required by the dictio-
nary module. Applying the subtyping rules for labeled tuples given in Chapter 24, together with
the covariance of signatures, we obtain the subsignature relationship

σnat <: σord,

so that by subsumption the variable Xnat may be linked to the variable X postulated by the dictio-
nary implementation. Subtyping takes care of extracting the required leq field from the abstract
type of natural numbers, demonstrating that the natural numbers are an instance of the class of
ordered types. Of course, this approach only works if we wish to order the natural numbers in the
natural way provided by the abstract type. If, instead, we wish to use another ordering, then we
must construct instances of σord “by hand” to define the appropriate ordering.

44.3 A Module Language

The module language Mod formalizes theideas outlined in the preceding section. The syntax is
divided into five levels: expressions classified by types, constructors classified by kinds, and mod-
ules classified by signatures. The expression and type level consists of various language mecha-
nisms described earlier in this book, including at least product, sum, and partial function types.
The constructor and kind level is as described in Chapters 18 and 43, with singleton and dependent
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kinds. The following grammar summarizes the syntax of modules.

Sig σ ::= sig{κ}(t.τ) Jt :: κ ; τK signature
Mod M ::= X X variable

str(c;e) Jc ; eK structure
seal{σ}(M) M � σ seal
let{σ}(M1; X.M2) (let X be M1 in M2) : σ definition

Con c ::= stat(M) M · s static part
Exp e ::= dyn(M) M · d dynamic part

The statics of Mod consists of the following forms of judgment:

Γ ` σ sig well-formed signature
Γ ` σ1 ≡ σ2 equivalent signatures
Γ ` σ1 <: σ2 subsignature
Γ ` M : σ well-formed module
Γ ` M val module value
Γ ` e val expression value

Rather than segregate hypotheses into zones, we instead admit the following three forms of hy-
pothesis groups:

X : σ, X val module value variable
u :: κ constructor variable
x : τ, x val expression value variable

It is important that module and expression variables are always regarded as values to ensure
that type abstraction is properly enforced. Correspondingly, each module and expression variable
appears in Γ paired with the hypothesis that it is a value. As a notational convenience we will not
explicitly state the value hypotheses associated with module and expression variables, under the
convention that all such variables implicitly come paired with such an assumption.

The following rules define the formation, equivalence, and subsignature judgments.

Γ ` κ kind Γ, u :: κ ` τ type

Γ ` Ju :: κ ; τK sig
(44.1a)

Γ ` κ1 ≡ κ2 Γ, u :: κ1 ` τ1 ≡ τ2

Γ ` Ju :: κ1 ; τ1K ≡ Ju :: κ2 ; τ2K
(44.1b)

Γ ` κ1 <:: κ2 Γ, u :: κ1 ` τ1 <: τ2

Γ ` Ju :: κ1 ; τ1K <: Ju :: κ2 ; τ2K
(44.1c)

Most importantly, signatures are covariant in both the kind and type positions: subkinding and
subtyping are preserved by the formation of a signature. It follows from rule (44.1b) that

Ju :: S(c) ; τK ≡ J :: S(c) ; [c/u]τK
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and, further, it follows from rule (44.1c) that

J :: S(c) ; [c/u]τK <: J :: T ; [c/u]τK

and so
Ju :: S(c) ; τK <: J :: T ; [c/u]τK.

It is also the case that
Ju :: S(c) ; τK <: Ju :: T ; τK.

But the two supersignatures of Ju :: S(c) ; τK are incomparable with respect to the subsignature judg-
ment.

The statics of expressions of Mod is given by the following rules:

Γ, X : σ ` X : σ
(44.2a)

Γ ` c :: κ Γ ` e : [c/u]τ
Γ ` Jc ; eK : Ju :: κ ; τK

(44.2b)

Γ ` σ sig Γ ` M : σ

Γ ` M � σ : σ
(44.2c)

Γ ` σ sig Γ ` M1 : σ1 Γ, X : σ1 ` M2 : σ

Γ ` (let X be M1 in M2) : σ : σ
(44.2d)

Γ ` M : σ Γ ` σ <: σ′

Γ ` M : σ′
(44.2e)

In rule (44.2b) it is always possible to choose κ to be the most specific kind of c in the subkind
ordering, which uniquely determines c up to constructor equivalence. For such a choice, the sig-
nature Ju :: κ ; τK is equivalent to J :: κ ; [c/u]τK, which propagates the identity of the static part
of the module expression into the type of its dynamic part. Rule (44.2c) is used together with the
subsumption (rule (44.2e)) to ensure that M has the specified signature.

The need for a signature annotation on a module definition is a manifestation of the avoidance
problem. Rule (44.2d) would be perfectly sensible were the signature σ omitted from the syntax of
the definition. However, omitting this information greatly complicates type checking. If σ were
omitted from the syntax of the definition, the type checker would be required to find a signature σ
for the body of the definition that avoids the module variable X. Inductively, we may suppose that
we have found a signature σ1 for the module M1, and a signature σ2 for the module M2, under the
assumption that X has signature σ1. To find a signature for an unadorned definition, we must find
a supersignature σ of σ2 that avoids X. To ensure that all possible choices of σ are accounted for, we
seek the least (most precise) such signature with respect to the subsignature relation; this is called
the principal signature of a module. The problem is that there may not be a least supersignature
of a given signature that avoids a specified variable. (Consider the example above of a signature
with two incomparable supersignatures. The example can be chosen so that the supersignatures
avoid a variable X that occurs in the subsignature.) Consequently, modules do not have principal
signatures, a significant complication for type checking. To avoid this problem, we insist that the
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avoiding supersignature σ be given by the programmer so that the type checker is not required to
find one.

Modules give rise to a new form of constructor expression, M · s, and a new form of value ex-
pression, M · d. These operations, respectively, extract the static and dynamic parts of the module
M. Their formation rules are as follows:

Γ ` M val Γ ` M : Ju :: κ ; τK
Γ ` M · s :: κ

(44.3a)

Γ ` M : J :: κ ; τK
Γ ` M · d : τ

(44.3b)

Rule (44.3a) requires that the module expression M be a value according to the following rules:

Γ, X : σ, X val ` X val
(44.4a)

Γ ` e val
Γ ` Jc ; eK val

(44.4b)

(It is not strictly necessary to insist that the dynamic part of a structure be a value for the structure
to itself be a value.)

Rule (44.3a) specifies that only structure values have well-defined static parts, and hence pre-
cludes reference to the static part of a sealed structure, which is not a value. This property ensures
representation independence for abstract types, as discussed in Section 44.1. For if M · s were ad-
missible when M is a sealed module, it would be a type whose identity depends on the underlying
implementation, in violation of the abstraction principle. Module variables are, on the other hand,
values, so that if X : Jt :: T ; τK is a module variable, then X · s is a well-formed type. What this
means in practice is that sealed modules must be bound to variables before they can be used. It is
for this reason that we include definitions among module expressions.

Rule (44.3b) requires that the signature of the module, M, be non-dependent, so that the result
type, τ, does not depend on the static part of the module. This independence may not always
be the case. For example, if M is a sealed module, say N � Jt :: T ; tK for some module N, then
projection M · d is ill-formed. For if it were well-formed, its type would be M · s, which would
violate representation independence for abstract types. But if M is a module value, then it is
always possible to derive a non-dependent signature for it, provided that we include the following
rule of self-recognition:

Γ ` M : Ju :: κ ; τK Γ ` M val

Γ ` M : Ju :: S(M · s :: κ) ; τK
(44.5)

This rule propagates the identity of the static part of a module value into its signature. The depen-
dency of the type of the dynamic part on the static part is then eliminable by sharing propagation.

The following rule of constructor equivalence states that a type projection from a module value
is eliminable:

Γ ` Jc ; eK : Jt :: κ ; τK Γ ` Jc ; eK val

Γ ` Jc ; eK · s ≡ c :: κ
(44.6)
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The requirement that the expression e be a value, which is implicit in the second premise of the
rule, is not strictly necessary, but does no harm. A consequence is that apparent dependencies of
closed constructors (or kinds) on modules may always be eliminated. In particular the identity of
the constructor Jc ; eK · s is independent of e, as would be expected if representation independence
is to be assured.

The dynamics of modules is given as follows:

e 7−→ e′

Jc ; eK 7−→ Jc ; e′K
(44.7a)

e val
Jc ; eK · d 7−→ e (44.7b)

There is no need to evaluate constructors at run-time, because the dynamics of expressions does
not depend on their types. It is not difficult to prove type safety for this dynamics relative to the
foregoing statics.

44.4 First- and Second-Class

It is common to draw a distinction between first-class and second-class modules based on whether
signatures are types, and hence whether modules are just a form of expression like any other.
When modules are first-class their values can depend on the state of the world at run-time. When
modules are second-class signatures are a separate form of classifier from types, and module ex-
pressions may not be used in the same way as ordinary expressions. For example, it may not be
possible to compute a module based on the phase of the moon.

Superficially, it seems as though first-class modules are uniformly superior to second-class
modules, because you can do more with them. But on closer examination we see that the “less
is more” principle applies here as well, much as in the distinction between dynamic and static
languages discussed in Chapters 22 and 23. In particular if modules are first-class, then one must
adopt a “pessimistic” attitude towards expressions that compute them, precisely because they
represent fully general, even state-dependent, computations. One consequence is that it is difficult,
or even impossible, to track the identity of the static part of a module during type checking. A
general module expression need not have a well-defined static component, precluding its use in
type expressions. Second-class modules, on the other hand, can be permissive with the use of the
static components of modules in types, precisely because the range of possible computations is
reduced. In this respect second-class modules are more powerful than first-class, despite initial
impressions. More importantly, a second-class module system can always be enriched to allow
first-class modules, without requiring that they be first-class. Thus we have the best of both worlds:
the flexibility of first-class modules and the precision of second-class modules. In short you pay
for only what you use: if you use first-class capabilities, you should expect to pay a cost, but if you
do not, you should not be taxed on the unrealized gain.

First-class modules are added to Mod in the following way. First, enrich the type system with
existential types, as described in Chapter 17, so that “first-class modules” are just packages of
existential type. A second-class module M of signature Jt :: κ ; τK is made first-class by forming
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the package pack M · s with M · d as ∃(t.τ) of type ∃ t :: κ.τ consisting of the static and dynamic
parts of M. Second, to allow packages to act like modules, we introduce the module expression
open e that opens the contents of a package as a module:

Γ ` e : ∃ t :: κ.τ
Γ ` open e : Jt :: κ ; τK

(44.8)

Because the package e is an arbitrary expression of existential type, the module expression open e
may not be regarded as a value, and hence does not have a well-defined static part. Instead we
must generally bind it to a variable before it is used, mimicking the composite behavior of the
existential elimination form given in Chapter 17.

44.5 Notes

The use of dependent types to express modularity was first proposed by MacQueen (1986). Later
studies extended this proposal to model the phase distinction between compile- and run-time (Harper
et al., 1990), and to account for type abstraction as well as type classes (Harper and Lillibridge,
1994; Leroy, 1994). The avoidance problem was first isolated by Castagna and Pierce (1994) and
by Harper and Lillibridge (1994). It has come to play a central role in subsequent work on mod-
ules, such as Lillibridge (1997) and Dreyer (2005). The self-recognition rule was introduced by
Harper and Lillibridge (1994) and by Leroy (1994). That rule was later identified as a manifesta-
tion of higher-order singletons (Stone and Harper, 2006). A consolidation of these ideas is used as
the foundation for a mechanization of the meta-theory of modules (Lee et al., 2007). A thorough
summary of the main issues in module system design is given in Dreyer (2005).

The presentation given here focuses attention on the type structure required to support modu-
larity. An alternative formulation uses elaboration, a translation of modularity constructs into more
primitive notions such as polymorphism and higher-order functions. The Definition of Standard
ML (Milner et al., 1997) pioneered the elaboration approach. Building on earlier work of Russo,
a more rigorous type-theoretic formulation was given by Rossberg et al. (2010). The advantage
of the elaboration-based approach is that it can make do with a simpler type theory as the target
language, but at the expense of making the explanation of modularity more complex.

Exercises

44.1. Consider the type abstraction σset of finite sets of elements of type τelt given by the following
equations:

σset , Jt :: T ; τsetK

τset , 〈emp ↪→ t , ins ↪→ τelt × t→ t , mem ↪→ τelt × t→ bool〉.

Define an implementation
Γ, D : σdict ` Mset : σset
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of finite sets of elements in terms of a dictionary whose key and value types are chosen
appropriately.

44.2. Fix an ordered type τnod of nodes, and consider the type abstraction σgrph of finite graphs given
by the following equations:

σgrph ,
q

tgrph :: T ;
q

tedg :: S(τedg) ; τgrph
yy

τedg , τnod × τnod

τgrph , 〈emp ↪→ tgrph , ins ↪→ τedg × tgrph → tgrph , mem ↪→ τedg × tgrph → bool〉.

The signature σgrph is translucent, with both opaque and transparent type components:
graphs themselves are abstract, but edges are pairs of nodes.

Define an implementation

N : σord, S : σnodset, D : σnodsetdict ` Mgrph : σgrph

in terms of an implementation of nodes, sets of nodes, and a dictionary mapping nodes to
sets of nodes. Represent the graph by a dictionary assigning to each node the set of nodes
incident upon it. Define the node type τnod to be the type N · s, and choose the signatures of
the set and dictionary abstractions appropriately in terms of this choice of node type.

44.3. Define signature modification, a variant of kind modification defined in Exercise 43.3, in which
a definition of a constructor component can be imposed on a signature. Let P stand for a
composition of static and dynamic projections of the form · d . . . · d · s, so that X · P stands
for X · d . . . · d · s. Assume that Γ ` σ sig, Γ, X : σ ` X · P :: κ, and Γ ` c :: κ. Define signature
σ{P := c} such that Γ ` σ{P := c} <: σ and Γ, X : σ{P := c} ` X · P ≡ c :: κ.

44.4. The signature σgrph is a subsignature (instance) of the type class

σgrphcls ,
q

tgrph :: T ;
q

tedg :: T ; τgrph
yy

in which the definition of tedg has been made explicit as the product of two nodes.

Check that Γ ` σgrph ≡ σgrphcls{ · d · s := τnod × τnod}, so that the former can be defined as
the latter.
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Chapter 46

Equality for System T

The beauty of functional programming is that equality of expressions in a functional language
follows familiar patterns of mathematical reasoning. For example, in the language T of Chapter 9
in which we can express addition as the function plus, the expressions

λ (x : nat) λ (y : nat) plus(x)(y)

and
λ (x : nat) λ (y : nat) plus(y)(x)

are equal. In other words, the addition function as programmed in T is commutative.
Commutativity of addition may seem self-evident, but why is it true? What does it mean for

two expressions to be equal? These two expressions are not definitionally equal; their equality re-
quires proof, and is not merely a matter of calculation. Yet the two expressions are interchangeable
because they give the same result when applied to the same number. In general two functions are
logically equivalent if they give equal results for equal arguments. Because this is all that matters
about a function, we may expect that logically equivalent functions are interchangeable in any pro-
gram. Thinking of the programs in which these functions occur as observations of their behavior,
these functions are said to be observationally equivalent. The main result of this chapter is that ob-
servational and logical equivalence coincide for a variant of T in which the successor is evaluated
eagerly, so that a value of type nat is a numeral.

46.1 Observational Equivalence

When are two expressions equal? Whenever we cannot tell them apart! It may seem tautological to
say so, but it is not, because it all depends on what we consider to be a means of telling expressions
apart. What “experiment” are we permitted to perform on expressions in order to distinguish
them? What counts as an observation that, if different for two expressions, is a sure sign that they
are different?
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If we permit ourselves to consider the syntactic details of the expressions, then very few ex-
pressions could be considered equal. For example, if it is significant that an expression contains,
say, more than one function application, or that it has an occurrence of λ-abstraction, then very few
expressions would come out as equivalent. But such considerations seem silly, because they con-
flict with the intuition that the significance of an expression lies in its contribution to the outcome of
a computation, and not to the process of obtaining that outcome. In short, if two expressions make
the same contribution to the outcome of a complete program, then they ought to be regarded as
equal.

We must fix what we mean by a complete program. Two considerations inform the definition.
First, the dynamics of T is defined only for expressions without free variables, so a complete
program should clearly be a closed expression. Second, the outcome of a computation should be
observable, so that it is evident whether the outcome of two computations differs or not. We define
a complete program to be a closed expression of type nat, and define the observable behavior of the
program to be the numeral to which it evaluates.

An experiment on, or observation about, an expression is any means of using that expression
within a complete program. We define an expression context to be an expression with a “hole”
in it serving as a place-holder for another expression. The hole is permitted to occur anywhere,
including within the scope of a binder. The bound variables within whose scope the hole lies are
exposed to capture by the expression context. A program context is a closed expression context of
type nat—that is, it is a complete program with a hole in it. The meta-variable C stands for any
expression context.

Replacement is the process of filling a hole in an expression context C with an expression e
which is written C{e}. Importantly, the free variables of e that are exposed by C are captured by
replacement (which is why replacement is not a form of substitution, which is defined so as to
avoid capture). If C is a program context, then C{e} is a complete program iff all free variables of
e are captured by the replacement. For example, if C = λ (x : nat) ◦, and e = x + x, then

C{e} = λ (x : nat) x + x.

The free occurrences of x in e are captured by the λ-abstraction as a result of the replacement of
the hole in C by e.

We sometimes write C{◦} to emphasize the occurrence of the hole in C. Expression contexts
are closed under composition in that if C1 and C2 are expression contexts, then so is

C{◦} , C1{C2{◦}},

and we have C{e} = C1{C2{e}}. The trivial, or identity, expression context is the “bare hole”,
written ◦, for which ◦{e} = e.

The statics of expressions of T is extended to expression contexts by defining the typing judg-
ment

C : (Γ . τ) (Γ′ . τ′)

so that if Γ ` e : τ, then Γ′ ` C{e} : τ′. This judgment is inductively defined by a collection of rules
derived from the statics of T (see rules (9.1)). Some representative rules are as follows:

◦ : (Γ . τ) (Γ . τ) (46.1a)
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C : (Γ . τ) (Γ′ . nat)
s(C) : (Γ . τ) (Γ′ . nat)

(46.1b)

C : (Γ . τ) (Γ′ . nat) Γ′ ` e0 : τ′ Γ′, x : nat, y : τ′ ` e1 : τ′

rec C {z ↪→ e0 | s(x) with y ↪→ e1} : (Γ . τ) (Γ′ . τ′)
(46.1c)

Γ′ ` e : nat C0 : (Γ . τ) (Γ′ . τ′) Γ′, x : nat, y : τ′ ` e1 : τ′

rec e {z ↪→C0 | s(x) with y ↪→ e1} : (Γ . τ) (Γ′ . τ′)
(46.1d)

Γ′ ` e : nat Γ′ ` e0 : τ′ C1 : (Γ . τ) (Γ′, x : nat, y : τ′ . τ′)

rec e {z ↪→ e0 | s(x) with y ↪→C1} : (Γ . τ) (Γ′ . τ′)
(46.1e)

C2 : (Γ . τ) (Γ′, x : τ1 . τ2)

λ (x : τ1) C2 : (Γ . τ) (Γ′ . τ1 → τ2)
(46.1f)

C1 : (Γ . τ) (Γ′ . τ2 → τ′) Γ′ ` e2 : τ2

C1(e2) : (Γ . τ) (Γ′ . τ′)
(46.1g)

Γ′ ` e1 : τ2 → τ′ C2 : (Γ . τ) (Γ′ . τ2)

e1(C2) : (Γ . τ) (Γ′ . τ′)
(46.1h)

Lemma 46.1. If C : (Γ . τ) (Γ′ . τ′), then Γ′ ⊆ Γ, and if Γ ` e : τ, then Γ′ ` C{e} : τ′.

Contexts are closed under composition, with the trivial context acting as an identity for it.

Lemma 46.2. If C : (Γ . τ) (Γ′ . τ′), and C ′ : (Γ′ . τ′) (Γ′′ . τ′′), then C ′{C{◦}} : (Γ . τ) (Γ′′ . τ′′).

Lemma 46.3. If C : (Γ . τ) (Γ′ . τ′) and x /∈ dom(Γ), then C : (Γ, x : τ′′ . τ) (Γ′, x : τ′′ . τ′).

Proof. By induction on rules (46.1).

A complete program is a closed expression of type nat.

Definition 46.4. Two complete programs, e and e′, are Kleene equal, written e ' e′, iff there exists n ≥ 0
such that e 7−→∗ n and e′ 7−→∗ n.

Kleene equality is obviously reflexive and symmetric; transitivity follows from determinacy
of evaluation. Closure under converse evaluation follows similarly. It is immediate from the
definition that 0 6' 1.

Definition 46.5. Suppose that Γ ` e : τ and Γ ` e′ : τ are two expressions of the same type. Two such
expressions are observationally equivalent, written Γ ` e ∼= e′ : τ, iff C{e} ' C{e′} for every program
context C : (Γ . τ) (∅ . nat).

In other words, for all possible experiments, the outcome of an experiment on e is the same as the
outcome on e′, which is an equivalence relation. For the sake of brevity, we often write e ∼=τ e′ for
∅ ` e ∼= e′ : τ.

A family of equivalence relations Γ ` e1 E e2 : τ is a congruence iff it is preserved by all contexts.
That is,

if Γ ` e E e′ : τ, then Γ′ ` C{e} E C{e′} : τ′

for every expression context C : (Γ . τ) (Γ′ . τ′). Such a family of relations is consistent iff
∅ ` e E e′ : nat implies e ' e′.
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Theorem 46.6. Observational equivalence is the coarsest consistent congruence on expressions.

Proof. Consistency follows from the definition by noting that the trivial context is a program con-
text. Observational equivalence is clearly an equivalence relation. To show that it is a congruence,
we need only observe that type-correct composition of a program context with an arbitrary expres-
sion context is again a program context. Finally, it is the coarsest such equivalence relation, for if
Γ ` e E e′ : τ for some consistent congruence E , and if C : (Γ . τ) (∅ . nat), then by congruence
∅ ` C{e} E C{e′} : nat, and hence by consistency C{e} ' C{e′}.

A closing substitution γ for the typing context Γ = x1 : τ1, . . . , xn : τn is a finite function assigning
closed expressions e1 : τ1, . . . , en : τn to x1, . . . , xn, respectively. We write γ̂(e) for the substitution
[e1, . . . , en/x1, . . . , xn]e, and write γ : Γ to mean that if x : τ occurs in Γ, then there exists a closed
expression e such that γ(x) = e and e : τ. We write γ ∼=Γ γ′, where γ : Γ and γ′ : Γ, to express that
γ(x) ∼=Γ(x) γ′(x) for each x declared in Γ.

Lemma 46.7. If Γ ` e ∼= e′ : τ and γ : Γ, then γ̂(e) ∼=τ γ̂(e′). Moreover, if γ ∼=Γ γ′, then γ̂(e) ∼=τ γ̂′(e)
and γ̂(e′) ∼=τ γ̂′(e′).

Proof. Let C : (∅ . τ) (∅ . nat) be a program context; we are to show that C{γ̂(e)} ' C{γ̂(e′)}.
Because C has no free variables, this is equivalent to showing that γ̂(C{e}) ' γ̂(C{e′}). Let D be
the context

λ (x1 : τ1) . . . λ (xn : τn) C{◦}(e1) . . .(en),

where Γ = x1 : τ1, . . . , xn : τn and γ(x1) = e1, . . . , γ(xn) = en. By Lemma 46.3 we have C :
(Γ . τ) (Γ . nat), from which it follows that D : (Γ . τ) (∅ . nat). Because Γ ` e ∼= e′ : τ, we
have D{e} ' D{e′}. But by construction D{e} ' γ̂(C{e}), and D{e′} ' γ̂(C{e′}), so γ̂(C{e}) '
γ̂(C{e′}). Because C is arbitrary, it follows that γ̂(e) ∼=τ γ̂(e′).

Defining D′ like D, but based on γ′, rather than γ, we may also show that D′{e} ' D′{e′},
and hence γ̂′(e) ∼=τ γ̂′(e′). Now if γ ∼=Γ γ′, then by congruence we have D{e} ∼=nat D′{e}, and
D{e′} ∼=nat D′{e′}. It follows that D{e} ∼=nat D′{e′}, and so, by consistency of observational
equivalence, we have D{e} ' D′{e′}, which is to say that γ̂(e) ∼=τ γ̂′(e′).

Theorem 46.6 licenses the principle of proof by coinduction: to show that Γ ` e ∼= e′ : τ, it is
enough to exhibit a consistent congruence E such that Γ ` e E e′ : τ. It can be difficult to construct
such a relation. In the next section we will provide a general method for doing so that exploits
types.

46.2 Logical Equivalence

The key to simplifying reasoning about observational equivalence is to exploit types. Informally,
we may classify the uses of expressions of a type into two broad categories, the passive and the
active uses. The passive uses are those that manipulate expressions without inspecting them. For
example, we may pass an expression of type τ to a function that simply returns it. The active
uses are those that operate on the expression itself; these are the elimination forms associated
with the type of that expression. For the purposes of distinguishing two expressions, it is only
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the active uses that matter; the passive uses manipulate expressions at arm’s length, affording no
opportunities to distinguish one from another.

Logical equivalence is therefore defined as follows.

Definition 46.8. Logical equivalence is a family of relations e ∼τ e′ between closed expressions of type
τ. It is defined by induction on τ as follows:

e ∼nat e′ iff e ' e′

e ∼τ1→τ2 e′ iff if e1 ∼τ1 e′1, then e(e1) ∼τ2 e′(e′1)

The definition of logical equivalence at type nat licenses the following principle of proof by
nat-induction. To show that E (e, e′) whenever e ∼nat e′, it is enough to show that

1. E (0, 0), and

2. if E (n, n), then E (n + 1, n + 1).

This assertion is justified by mathematical induction on n ≥ 0, where e 7−→∗ n and e′ 7−→∗ n by
the definition of Kleene equivalence.

Lemma 46.9. Logical equivalence is symmetric and transitive: if e ∼τ e′, then e′ ∼τ e, and if e ∼τ e′ and
e′ ∼τ e′′, then e ∼τ e′′.

Proof. Simultaneously, by induction on the structure of τ. If τ = nat, the result is immediate. If τ =
τ1 → τ2, then we may assume that logical equivalence is symmetric and transitive at types τ1 and
τ2. For symmetry, assume that e ∼τ e′; we wish to show e′ ∼τ e. Assume that e′1 ∼τ1 e1; it suffices
to show that e′(e′1) ∼τ2 e(e1). By induction we have that e1 ∼τ1 e′1. Therefore by assumption
e(e1) ∼τ2 e′(e′1), and hence by induction e′(e′1) ∼τ2 e(e1). For transitivity, assume that e ∼τ e′ and
e′ ∼τ e′′; we are to show e ∼τ e′′. Suppose that e1 ∼τ1 e′′1 ; it is enough to show that e(e1) ∼τ e′′(e′′1 ).
By symmetry and transitivity we have e1 ∼τ1 e1, so by assumption e(e1) ∼τ2 e′(e1). We also have
by assumption e′(e1) ∼τ2 e′′(e′′1 ). By transitivity we have e′(e1) ∼τ2 e′′(e′′1 ), which suffices for the
result.

Logical equivalence is extended to open terms by substitution of related closed terms to obtain
related results. If γ and γ′ are two substitutions for Γ, we define γ ∼Γ γ′ to hold iff γ(x) ∼Γ(x)
γ′(x) for every variable, x, such that Γ ` x : τ. Open logical equivalence, written Γ ` e ∼ e′ : τ, is
defined to mean that γ̂(e) ∼τ γ̂′(e′) whenever γ ∼Γ γ′.

Lemma 46.10. Open logical equivalence is symmetric and transitive.

Proof. Follows from Lemma 46.9 and the definition of open logical equivalence.

At this point we are “two thirds of the way” to justifying the use of the name “open logical
equivalence.” The remaining third, reflexivity, is established in the next section.
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46.3 Logical and Observational Equivalence Coincide

In this section we prove the coincidence of observational and logical equivalence.

Lemma 46.11 (Converse Evaluation). Suppose that e ∼τ e′. If d 7−→ e, then d ∼τ e′, and if d′ 7−→ e′,
then e ∼τ d′.

Proof. By induction on the structure of τ. If τ = nat, then the result follows from the closure of
Kleene equivalence under converse evaluation. If τ = τ1 → τ2, then suppose that e ∼τ e′, and
d 7−→ e. To show that d ∼τ e′, we assume e1 ∼τ1 e′1 and show d(e1) ∼τ2 e′(e′1). It follows from the
assumption that e(e1) ∼τ2 e′(e′1). Noting that d(e1) 7−→ e(e1), the result follows by induction.

Lemma 46.12 (Consistency). If e ∼nat e′, then e ' e′.

Proof. Immediate, from Definition 46.8.

Theorem 46.13 (Reflexivity). If Γ ` e : τ, then Γ ` e ∼ e : τ.

Proof. We are to show that if Γ ` e : τ and γ ∼Γ γ′, then γ̂(e) ∼τ γ̂′(e). The proof proceeds by
induction on typing derivations; we consider two representative cases.

Consider the case of rule (8.4a), in which τ = τ1 → τ2 and e = λ (x : τ1) e2. We are to show that

λ (x : τ1) γ̂(e2) ∼τ1→τ2 λ (x : τ1) γ̂′(e2).

Assume that e1 ∼τ1 e′1; by Lemma 46.11, it is enough to show that [e1/x]γ̂(e2) ∼τ2 [e′1/x]γ̂′(e2).
Let γ2 = γ⊗ x ↪→ e1 and γ′2 = γ′ ⊗ x ↪→ e′1, and observe that γ2 ∼Γ,x:τ1 γ′2. Therefore, by induction
we have γ̂2(e2) ∼τ2 γ̂′2(e2), from which the result follows easily.

Now consider the case of rule (9.1d), for which we are to show that

rec{γ̂(e0); x.y.γ̂(e1)}(γ̂(e)) ∼τ rec{γ̂′(e0); x.y.γ̂′(e1)}(γ̂′(e)).

By the induction hypothesis applied to the first premise of rule (9.1d), we have

γ̂(e) ∼nat γ̂′(e).

We proceed by nat-induction. It suffices to show that

rec{γ̂(e0); x.y.γ̂(e1)}(z) ∼τ rec{γ̂′(e0); x.y.γ̂′(e1)}(z), (46.2)

and that
rec{γ̂(e0); x.y.γ̂(e1)}(s(n)) ∼τ rec{γ̂′(e0); x.y.γ̂′(e1)}(s(n)), (46.3)

assuming
rec{γ̂(e0); x.y.γ̂(e1)}(n) ∼τ rec{γ̂′(e0); x.y.γ̂′(e1)}(n). (46.4)

To show (46.2), by Lemma 46.11 it is enough to show that γ̂(e0) ∼τ γ̂′(e0). This condition is
assured by the outer inductive hypothesis applied to the second premise of rule (9.1d).
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To show (46.3), define

δ = γ⊗ x ↪→ n⊗ y ↪→ rec{γ̂(e0); x.y.γ̂(e1)}(n)

and
δ′ = γ′ ⊗ x ↪→ n⊗ y ↪→ rec{γ̂′(e0); x.y.γ̂′(e1)}(n).

By (46.4) we have δ ∼Γ,x:nat,y:τ δ′. Consequently, by the outer inductive hypothesis applied to the
third premise of rule (9.1d), and Lemma 46.11, the required follows.

Corollary 46.14 (Equivalence). Open logical equivalence is an equivalence relation.

Corollary 46.15 (Termination). If e : nat, then e 7−→∗ e′ for some e′ val.

Lemma 46.16 (Congruence). If C0 : (Γ . τ) (Γ0 . τ0), and Γ ` e ∼ e′ : τ, then Γ0 ` C0{e} ∼ C0{e′} :
τ0.

Proof. By induction on the derivation of the typing of C0. We consider a representative case in
which C0 = λ (x : τ1) C2 so that C0 : (Γ . τ) (Γ0 . τ1 → τ2) and C2 : (Γ . τ) (Γ0, x : τ1 . τ2).
Assuming Γ ` e ∼ e′ : τ, we are to show that

Γ0 ` C0{e} ∼ C0{e′} : τ1 → τ2,

which is to say
Γ0 ` λ (x : τ1) C2{e} ∼ λ (x : τ1) C2{e′} : τ1 → τ2.

We know, by induction, that
Γ0, x : τ1 ` C2{e} ∼ C2{e′} : τ2.

Suppose that γ0 ∼Γ0 γ′0, and that e1 ∼τ1 e′1. Let γ1 = γ0 ⊗ x ↪→ e1, γ′1 = γ′0 ⊗ x ↪→ e′1, and observe
that γ1 ∼Γ0,x:τ1 γ′1. By Definition 46.8 it is enough to show that

γ̂1(C2{e}) ∼τ2 γ̂′1(C2{e′}),

which follows from the inductive hypothesis.

Theorem 46.17. If Γ ` e ∼ e′ : τ, then Γ ` e ∼= e′ : τ.

Proof. By Lemmas 46.12 and 46.16, and Theorem 46.6.

Corollary 46.18. If e : nat, then e ∼=nat n, for some n ≥ 0.

Proof. By Theorem 46.13 we have e ∼nat e. Hence for some n ≥ 0, we have e ∼nat n, and so by
Theorem 46.17, e ∼=nat n.

Lemma 46.19. For closed expressions e : τ and e′ : τ, if e ∼=τ e′, then e ∼τ e′.
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Proof. We proceed by induction on the structure of τ. If τ = nat, consider the empty context
to obtain e ' e′, and hence e ∼nat e′. If τ = τ1 → τ2, then we are to show that whenever
e1 ∼τ1 e′1, we have e(e1) ∼τ2 e′(e′1). By Theorem 46.17 we have e1

∼=τ1 e′1, and hence by congruence
of observational equivalence it follows that e(e1) ∼=τ2 e′(e′1), from which the result follows by
induction.

Theorem 46.20. If Γ ` e ∼= e′ : τ, then Γ ` e ∼ e′ : τ.

Proof. Assume that Γ ` e ∼= e′ : τ, and that γ ∼Γ γ′. By Theorem 46.17 we have γ ∼=Γ γ′, so by
Lemma 46.7 γ̂(e) ∼=τ γ̂′(e′). Therefore, by Lemma 46.19, γ̂(e) ∼τ γ̂(e′).

Corollary 46.21. Γ ` e ∼= e′ : τ iff Γ ` e ∼ e′ : τ.

Definitional equality is sufficient for observational equivalence:

Theorem 46.22. If Γ ` e ≡ e′ : τ, then Γ ` e ∼ e′ : τ, and hence Γ ` e ∼= e′ : τ.

Proof. By an argument similar to that used in the proof of Theorem 46.13 and Lemma 46.16, then
appealing to Theorem 46.17.

Corollary 46.23. If e ≡ e′ : nat, then there exists n ≥ 0 such that e 7−→∗ n and e′ 7−→∗ n.

Proof. By Theorem 46.22 we have e ∼nat e′ and hence e ' e′.

46.4 Some Laws of Equality

In this section we summarize some useful principles of observational equivalence for T. For the
most part these are laws of logical equivalence, and then transferred to observational equivalence
by appeal to Corollary 46.21. The laws are presented as inference rules with the meaning that if all
of the premises are true judgments about observational equivalence, then so are the conclusions.
In other words each rule is admissible as a principle of observational equivalence.

46.4.1 General Laws

Logical equivalence is indeed an equivalence relation: it is reflexive, symmetric, and transitive.

Γ ` e ∼= e : τ (46.5a)

Γ ` e′ ∼= e : τ

Γ ` e ∼= e′ : τ
(46.5b)

Γ ` e ∼= e′ : τ Γ ` e′ ∼= e′′ : τ

Γ ` e ∼= e′′ : τ
(46.5c)

Reflexivity is an instance of a more general principle, that all definitional equalities are obser-
vational equivalences.

Γ ` e ≡ e′ : τ
Γ ` e ∼= e′ : τ

(46.6a)
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Observational equivalence is a congruence: we may replace equals by equals anywhere in an
expression.

Γ ` e ∼= e′ : τ C : (Γ . τ) (Γ′ . τ′)

Γ′ ` C{e} ∼= C{e′} : τ′
(46.7a)

Equivalence is stable under substitution for free variables, and substituting equivalent expres-
sions in an expression gives equivalent results.

Γ ` e : τ Γ, x : τ ` e2 ∼= e′2 : τ′

Γ ` [e/x]e2 ∼= [e/x]e′2 : τ′
(46.8a)

Γ ` e1
∼= e′1 : τ Γ, x : τ ` e2 ∼= e′2 : τ′

Γ ` [e1/x]e2 ∼= [e′1/x]e′2 : τ′
(46.8b)

46.4.2 Equality Laws

Two functions are equal if they are equal on all arguments.

Γ, x : τ1 ` e(x) ∼= e′(x) : τ2

Γ ` e ∼= e′ : τ1 → τ2
(46.9)

Consequently, every expression of function type is equal to a λ-abstraction:

Γ ` e ∼= λ (x : τ1) e(x) : τ1 → τ2 (46.10)

46.4.3 Induction Law

An equation involving a free variable x of type nat can be proved by induction on x.

Γ ` [n/x]e ∼= [n/x]e′ : τ (for every n ∈N)

Γ, x : nat ` e ∼= e′ : τ
(46.11a)

To apply the induction rule, we proceed by mathematical induction on n ∈ N, which reduces
to showing:

1. Γ ` [z/x]e ∼= [z/x]e′ : τ, and

2. Γ ` [s(n)/x]e ∼= [s(n)/x]e′ : τ, if Γ ` [n/x]e ∼= [n/x]e′ : τ.

46.5 Notes

The method of logical relations interprets types as relations (here, equivalence relations) by asso-
ciating with each type constructor a relational action that transforms the relation interpreting its
arguments to the relation interpreting the constructed type. Logical relations (Statman, 1985) are a
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fundamental tool in proof theory and provide the foundation for the semantics of the NuPRL type
theory (Constable, 1986; Allen, 1987; Harper, 1992). The use of logical relations to characterize ob-
servational equivalence is an adaptation of the NuPRL semantics to the simpler setting of Gödel’s
System T.
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Chapter 47

Equality for System PCF

In this Chapter we develop the theory of observational equivalence for PCF, with an eager inter-
pretation of the type of natural numbers. The development proceeds along lines similar to those
in Chapter 46, but is complicated by the presence of general recursion. The proof depends on the
concept of an admissible relation, one that admits the principle of proof by fixed point induction.

47.1 Observational Equivalence

The definition of observational equivalence, along with the auxiliary notion of Kleene equivalence,
are defined similarly to Chapter 46, but modified to account for the possibility of non-termination.

The collection of well-formed PCF contexts is inductively defined in a manner directly anal-
ogous to that in Chapter 46. Specifically, we define the judgment C : (Γ . τ) (Γ′ . τ′) by rules
similar to rules (46.1), modified for PCF. (We leave the precise definition as an exercise for the
reader.) When Γ and Γ′ are empty, we write just C : τ  τ′.

A complete program is a closed expression of type nat.

Definition 47.1. We say that two complete programs, e and e′, are Kleene equal, written e ' e′, iff for
every n ≥ 0, e 7−→∗ n iff e′ 7−→∗ n.

Kleene equality is clearly an equivalence relation and is closed under converse evaluation.
Moreover, 0 6' 1 and, if e and e′ are both divergent, then e ' e′.

Observational equivalence is defined just as it is in Chapter 46.

Definition 47.2. We say that Γ ` e : τ and Γ ` e′ : τ are observationally, or contextually, equivalent
iff for every program context C : (Γ . τ) (∅ . nat), C{e} ' C{e′}.

Theorem 47.3. Observational equivalence is the coarsest consistent congruence.

Proof. See the proof of Theorem 46.6.

Lemma 47.4 (Substitution and Functionality). If Γ ` e ∼= e′ : τ and γ : Γ, then γ̂(e) ∼=τ γ̂(e′).
Moreover, if γ ∼=Γ γ′, then γ̂(e) ∼=τ γ̂′(e) and γ̂(e′) ∼=τ γ̂′(e′).
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Proof. See Lemma 46.7.

47.2 Logical Equivalence

Definition 47.5. Logical equivalence, e ∼τ e′, between closed expressions of type τ is defined by induc-
tion on τ as follows:

e ∼nat e′ iff e ' e′

e ∼τ1⇀τ2 e′ iff e1 ∼τ1 e′1 implies e(e1) ∼τ2 e′(e′1)

Formally, logical equivalence is defined as in Chapter 46, except that the definition of Kleene
equivalence is altered to account for non-termination. Logical equivalence is extended to open
terms by substitution. Specifically, we define Γ ` e ∼ e′ : τ to mean that γ̂(e) ∼τ γ̂′(e′) whenever
γ ∼Γ γ′.

By the same argument as given in the proof of Lemma 46.9 logical equivalence is symmetric
and transitive, as is its open extension.

Lemma 47.6 (Strictness). If e : τ and e′ : τ are both divergent, then e ∼τ e′.

Proof. By induction on the structure of τ. If τ = nat, then the result follows immediately from
the definition of Kleene equivalence. If τ = τ1 ⇀ τ2, then e(e1) and e′(e′1) diverge, so by induction
e(e1) ∼τ2 e′(e′1), as required.

Lemma 47.7 (Converse Evaluation). Suppose that e ∼τ e′. If d 7−→ e, then d ∼τ e′, and if d′ 7−→ e′,
then e ∼τ d′.

47.3 Logical and Observational Equivalence Coincide

The proof of coincidence of logical and observational equivalence relies on the concept of bounded
recursion, which we define by induction on m ≥ 0 as follows:

fix0 x : τ is e , fix x : τ is x

fixm+1 x : τ is e , [fixm x : τ is e/x]e

When m = 0, bounded recursion is defined to be a divergent expression of type τ. When m > 0,
bounded recursion is defined by unrolling the recursion m times by iterated substitution. Intu-
itively, the bounded recursive expression fixm x : τ is e is as good as fix x : τ is e for up to m
unrollings, after which it is divergent.

It is easy to check that the follow rule is derivable for each m ≥ 0:

Γ, x : τ ` e : τ

Γ ` fixm{τ}(x.e) : τ
. (47.1a)

The proof is by induction on m ≥ 0, and amounts to an iteration of the substitution lemma for the
statics of PCF.
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The key property of bounded recursion is the principle of fixed point induction, which permits
reasoning about a recursive computation by induction on the number of unrollings required to
reach a value. The proof relies on compactness, which will be stated and proved in Section 47.4
below.

Theorem 47.8 (Fixed Point Induction). Suppose that x : τ ` e : τ. If

(∀m ≥ 0) fixm x : τ is e ∼τ fixm x : τ is e′,

then fix x : τ is e ∼τ fix x : τ is e′.

Proof. Define an applicative context A to be either a hole, ◦, or an application of the form A(e),
where A is an applicative context. The typing judgment for applicative contexts, A : τ0  τ, is a
special case of the general typing judgment for contexts. Define logical equivalence of applicative
contexts, A ∼ A′ : τ0  τ, by induction on the structure of A as follows:

1. ◦ ∼ ◦ : τ0  τ0;

2. if A ∼ A′ : τ0  τ2 ⇀ τ and e2 ∼τ2 e′2, then A(e2) ∼ A′(e′2) : τ0  τ.

We prove by induction on the structure of τ, if A ∼ A′ : τ0  τ and

for every m ≥ 0, A{fixm x : τ0 is e} ∼τ A′{fixm x : τ0 is e′}, (47.2)

then
A{fix x : τ0 is e} ∼τ A′{fix x : τ0 is e′}. (47.3)

Choosing A = A′ = ◦ with τ0 = τ completes the proof.
If τ = nat, then assume that A ∼ A′ : τ0  nat and (47.2). By Definition 47.5, we are to show

A{fix x : τ0 is e} ' A′{fix x : τ0 is e′}.

By Corollary 47.17 there exists m ≥ 0 such that

A{fix x : τ0 is e} ' A{fixm x : τ0 is e}.

By (47.2) we have
A{fixm x : τ0 is e} ' A′{fixm x : τ0 is e′}.

By Corollary 47.17
A′{fixm x : τ0 is e′} ' A′{fix x : τ0 is e′}.

The result follows by transitivity of Kleene equivalence.
If τ = τ1 ⇀ τ2, then by Definition 47.5, it is enough to show

A{fix x : τ0 is e}(e1) ∼τ2 A′{fix x : τ0 is e′}(e′1)

whenever e1 ∼τ1 e′1. Let A2 = A(e1) and A′2 = A′(e′1). It follows from (47.2) that for every m ≥ 0

A2{fixm x : τ0 is e} ∼τ2 A′2{fixm x : τ0 is e′}.

Noting that A2 ∼ A′2 : τ0  τ2, we have by induction

A2{fix x : τ0 is e} ∼τ2 A′2{fix x : τ0 is e′},

as required.
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Lemma 47.9 (Reflexivity). If Γ ` e : τ, then Γ ` e ∼ e : τ.

Proof. The proof proceeds along the same lines as the proof of Theorem 46.13. The main differ-
ence is the treatment of general recursion, which is proved by fixed point induction. Consider
rule (19.1g). Assuming γ ∼Γ γ′, we are to show that

fix x : τ is γ̂(e) ∼τ fix x : τ is γ̂′(e).

By Theorem 47.8 it is enough to show that, for every m ≥ 0,

fixm x : τ is γ̂(e) ∼τ fixm x : τ is γ̂′(e).

We proceed by an inner induction on m. When m = 0 the result is immediate, because both sides
of the desired equivalence diverge. Assuming the result for m, and applying Lemma 47.7, it is
enough to show that γ̂(e1) ∼τ γ̂′(e1), where

e1 = [fixm x : τ is γ̂(e)/x]γ̂(e), and (47.4)

e′1 = [fixm x : τ is γ̂′(e)/x]γ̂′(e). (47.5)

But this follows directly from the inner and outer inductive hypotheses. For by the outer inductive
hypothesis, if

fixm x : τ is γ̂(e) ∼τ fixm x : τ is γ̂′(e),

then
[fixm x : τ is γ̂(e)/x]γ̂(e) ∼τ [fixm x : τ is γ̂′(e)/x]γ̂′(e).

But the hypothesis holds by the inner inductive hypothesis, from which the result follows.
To handle the conditional ifz e {z ↪→ e0 | s(x) ↪→ e1}, we proceed by cases on whether e di-

verges, in which case the conditional is divergent and therefore self-related by Lemma 47.6, or e
converges, in which case we can proceed by an inner mathematical induction on its value, ap-
pealing to the inductive hypotheses governing the branches of the conditional to complete the
argument.

Symmetry and transitivity of eager logical equivalence are easily established by induction on
types, noting that Kleene equivalence is symmetric and transitive. Eager logical equivalence is
therefore an equivalence relation.

Lemma 47.10 (Congruence). If C0 : (Γ . τ) (Γ0 . τ0), and Γ ` e ∼ e′ : τ, then Γ0 ` C0{e} ∼ C0{e′} :
τ0.

Proof. By induction on the derivation of the typing of C0, following along similar lines to the proof
of Lemma 47.9.

Logical equivalence is consistent, by definition. Consequently, it is contained in observational
equivalence.

Theorem 47.11. If Γ ` e ∼ e′ : τ, then Γ ` e ∼= e′ : τ.
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Proof. By consistency and congruence of logical equivalence.

Lemma 47.12. If e ∼=τ e′, then e ∼τ e′.

Proof. By induction on the structure of τ. If τ = nat, then the result is immediate, because the
empty expression context is a program context. If τ = τ1 ⇀ τ2, then suppose that e1 ∼τ1 e′1.
We are to show that e(e1) ∼τ2 e′(e′1). By Theorem 47.11 e1

∼=τ1 e′1, and hence by Lemma 47.4
e(e1) ∼=τ2 e′(e′1), from which the result follows by induction.

Theorem 47.13. If Γ ` e ∼= e′ : τ, then Γ ` e ∼ e′ : τ.

Proof. Assume that Γ ` e ∼= e′ : τ. Suppose that γ ∼Γ γ′. By Theorem 47.11 we have γ ∼=Γ γ′, and
so by Lemma 47.4 we have

γ̂(e) ∼=τ γ̂′(e′).

Therefore by Lemma 47.12 we have
γ̂(e) ∼τ γ̂′(e′).

Corollary 47.14. Γ ` e ∼= e′ : τ iff Γ ` e ∼ e′ : τ.

47.4 Compactness

The principle of fixed point induction is derived from a critical property of PCF, called compactness.
This property states that only finitely many unwindings of a fixed point expression are needed in
a complete evaluation of a program. Although intuitively obvious (one cannot complete infinitely
many recursive calls in a finite computation), it is rather tricky to state and prove rigorously.

The proof of compactness (Theorem 47.16) makes use of the stack machine for PCF defined in
Chapter 28, augmented with the following transitions for bounded recursive expressions:

k . fix0 x : τ is e 7−→ k . fix0 x : τ is e (47.6a)

k . fixm+1 x : τ is e 7−→ k . [fixm x : τ is e/x]e (47.6b)

It is not difficult to extend the proof of Corollary 28.4 to account for bounded recursion.

To get a feel for what is involved in the compactness proof, consider first the factorial function
f in PCF:

fix f : nat⇀ nat isλ (x : nat) ifz x {z ↪→ s(z) | s(x′) ↪→ x ∗ f (x′)}.

Obviously evaluation of f (n) requires n recursive calls to the function itself. That is, for a given
input n we may place a bound m on the recursion that is sufficient to ensure termination of the
computation. This property can be expressed formally using the m-bounded form of general re-
cursion,

fixm f : nat⇀ nat isλ (x : nat) ifz x {z ↪→ s(z) | s(x′) ↪→ x ∗ f (x′)}.
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Call this expression f (m). It follows from the definition of f that if f (n) 7−→∗ p, then f (m)(n) 7−→∗
p for some m ≥ 0 (in fact, m = n suffices).

When considering expressions of higher type, we cannot expect to get the same result from the
bounded recursion as from the unbounded. For example, consider the addition function a of type
τ = nat⇀ (nat⇀ nat), given by the expression

fix p : τ isλ (x : nat) ifz x {z ↪→ id | s(x′) ↪→ s ◦ (p(x′))},

where id = λ (y : nat) y is the identity, e′ ◦ e = λ (x : τ) e′(e(x)) is composition, and s = λ (x : nat) s(x)
is the successor function. The application a(n) terminates after three transitions, regardless of the
value of n, resulting in a λ-abstraction. When n is positive, the result contains a residual copy of
a itself, which is applied to n − 1 as a recursive call. The m-bounded version of a, written a(m),
is also such that a(m)(n) terminates in three steps, provided that m > 0. But the result is not the
same, because the residuals of a appear as a(m−1), rather than as a itself.

Turning now to the proof of compactness, it is helpful to introduce some notation. Suppose
that x : τ ` ex : τ for some arbitrary abstractor x.ex. Let f (ω) = fix x : τ is ex, and let f (m) =

fixm x : τ is ex. Observe that f (ω) : τ and f (m) : τ for any m ≥ 0.
The following technical lemma governing the stack machine allows the bound on occurrences

of a recursive expression to be raised without affecting the outcome of evaluation.

Lemma 47.15. For every m ≥ 0, if [ f (m)/y]k . [ f (m)/y]e 7−→∗ ε / n, then [ f (m+1)/y]k . [ f (m+1)/y]e 7−→∗
ε / n.

Proof. By induction on m ≥ 0, and then induction on transition.

Theorem 47.16 (Compactness). Suppose that y : τ ` e : nat where y /∈ f (ω). If [ f (ω)/y]e 7−→∗ n,
then there exists m ≥ 0 such that [ f (m)/y]e 7−→∗ n.

Proof. We prove simultaneously the stronger statements that if

[ f (ω)/y]k . [ f (ω)/y]e 7−→∗ ε / n,

then for some m ≥ 0,
[ f (m)/y]k . [ f (m)/y]e 7−→∗ ε / n,

and if
[ f (ω)/y]k / [ f (ω)/y]e 7−→∗ ε / n

then for some m ≥ 0,
[ f (m)/y]k / [ f (m)/y]e 7−→∗ ε / n.

(Note that if [ f (ω)/y]e val, then [ f (m)/y]e val for all m ≥ 0.) The result then follows by the correct-
ness of the stack machine (Corollary 28.4).

We proceed by induction on transition. Suppose that the initial state is

[ f (ω)/y]k . f (ω),
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which arises when e = y, and the transition sequence is as follows:

[ f (ω)/y]k . f (ω) 7−→ [ f (ω)/y]k . [ f (ω)/x]ex 7−→∗ ε / n.

Noting that [ f (ω)/x]ex = [ f (ω)/y][y/x]ex, we have by induction that there exists m ≥ 0 such that

[ f (m)/y]k . [ f (m)/x]ex 7−→∗ ε / n.

By Lemma 47.15
[ f (m+1)/y]k . [ f (m)/x]ex 7−→∗ ε / n

and we need only recall that

[ f (m+1)/y]k . f (m+1) = [ f (m+1)/y]k . [ f (m)/x]ex

to complete the proof. If, on the other hand, the initial step is an unrolling, but e 6= y, then we have
for some z /∈ f (ω) and z 6= y

[ f (ω)/y]k . fix z : τ is dω 7−→ [ f (ω)/y]k . [fix z : τ is dω/z]dω 7−→∗ ε / n.

where dω = [ f (ω)/y]d. By induction there exists m ≥ 0 such that

[ f (m)/y]k . [fix z : τ is dm/z]dm 7−→∗ ε / n,

where dm = [ f (m)/y]d. But then by Lemma 47.15 we have

[ f (m+1)/y]k . [fix z : τ is dm+1/z]dm+1 7−→∗ ε / n,

where dm+1 = [ f (m+1)/y]d, from which the result follows directly.

Corollary 47.17. There exists m ≥ 0 such that [ f (ω)/y]e ' [ f (m)/y]e.

Proof. If [ f (ω)/y]e diverges, then it suffices to take m to be zero. Otherwise, apply Theorem 47.16
to obtain m, and note that the required Kleene equivalence follows.

47.5 Lazy Natural Numbers

Recall from Chapter 19 that if the successor is evaluated lazily, then the type nat changes its mean-
ing to that of the lazy natural numbers, which we shall write lnat for emphasis. This type contains
an “infinite number” ω, which is essentially an endless stack of successors.

To account for the lazy successor the definition of logical equivalence must be reformulated.
Rather than being defined inductively as the strongest relation closed under specified conditions, it
is now defined coinductively as the weakest relation consistent with two analogous conditions. We
may then show that two expressions are related using the principle of proof by coinduction.
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The definition of Kleene equivalence must be altered to account for the lazily evaluated succes-
sor operation. To account for ω, two computations are compared based solely on the outermost
form of their values, if any. We define e ' e′ to hold iff (a) if e 7−→∗ z, then e′ 7−→∗ z, and vice versa;
and (b) if e 7−→∗ s(e1), then e′ 7−→∗ s(e′1), and vice versa.

Corollary 47.17 can be proved for the co-natural numbers by essentially the same argument as
before.

The definition of logical equivalence at type lnat is defined to be the weakest equivalence
relation E between closed terms of type lnat satisfying the following consistency conditions: if
e E e′ : lnat, then

1. If e 7−→∗ z, then e′ 7−→∗ z, and vice versa.

2. If e 7−→∗ s(e1), then e′ 7−→∗ s(e′1) with e1 E e′1 : lnat, and vice versa.

It is immediate that if e ∼lnat e′, then e ' e′, and so logical equivalence is consistent. It is also
strict in that if e and e′ are both divergent expressions of type lnat, then e ∼lnat e′.

The principle of proof by coinduction states that to show e ∼lnat e′, it suffices to exhibit a
relation, E , such that

1. e E e′ : lnat, and

2. E satisfies the above consistency conditions.

If these requirements hold, then E is contained in logical equivalence at type lnat, and hence
e ∼lnat e′, as required.

As an application of coinduction, let us consider the proof of Theorem 47.8. The overall ar-
gument remains as before, but the proof for the type lnat must be altered as follows. Suppose
that A ∼ A′ : τ0  lnat, and let a = A{fix x : τ0 is e} and a′ = A′{fix x : τ0 is e′}. Writing
a(m) = A{fixm x : τ0 is e} and a′(m) = A′{fixm x : τ0 is e′}, assume that

for every m ≥ 0, a(m) ∼lnat a′(m).

We are to show that
a ∼lnat a′.

Define the functions pn for n ≥ 0 on closed terms of type lnat by the following equations:

p0(d) = d

p(n+1)(d) =

{
d′ if pn(d) 7−→∗ s(d′)
undefined otherwise

For n ≥ 0, let an = pn(a) and a′n = pn(a′). Correspondingly, let a(m)
n = pn(a(m)) and a′n

(m) =

pn(a′(m)). Define E to be the strongest relation such that an E a′n : lnat for all n ≥ 0. We will show
that the relation E satisfies the consistency conditions, and so it is contained in logical equivalence.
Because a E a′ : lnat (by construction), the result follows immediately.
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To show that E is consistent, suppose that an E a′n : lnat for some n ≥ 0. We have by Corol-
lary 47.17 an ' a(m)

n , for some m ≥ 0, and hence, by the assumption, an ' a′n
(m), and so by

Corollary 47.17 again, a′n
(m) ' a′n. Now if an 7−→∗ s(bn), then a(m)

n 7−→∗ s(b(m)
n ) for some b(m)

n , and
hence there exists b′n

(m) such that a′n
(m) 7−→∗ b′n

(m), and so there exists b′n such that a′n 7−→∗ s(b′n).
But bn = pn+1(a) and b′n = pn+1(a′), and we have bn E b′n : lnat by construction, as required.

47.6 Notes

The use of logical relations to characterize observational equivalence for PCF is inspired by the
treatment of partiality in type theory by Constable and Smith (1987) and by the studies of observa-
tional equivalence by Pitts (2000). Although the technical details differ, the proof of compactness
here is inspired by Pitts’s structurally inductive characterization of termination using an abstract
machine. It is critical to restrict attention to transition systems whose states are complete programs
(closed expressions of observable type). Structural operational semantics usually does not fulfill
this requirement, thereby requiring a considerably more complex argument than given here.
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Appendix B

Background on Finite Sets

We make frequent use of the concepts of a finite set of discrete objects and of finite functions between
them. A set X is discrete iff equality of its elements is decidable: for every x, y ∈ X, either x =
y ∈ X or x 6= y ∈ X. This condition is to be understood constructively as stating that we may
effectively determine whether any two elements of the set X are equal or not. Perhaps the most
basic example of a discrete set is the set N of natural numbers. A set X is countable iff there is a
bijection f : X ∼= N between X and the set of natural numbers, and it is finite iff there is a bijection,
f : X ∼= { 0, . . . , n− 1 }, where n ∈N, between it and some inital segment of the natural numbers.
This condition is again to be understood constructively in terms of computable mappings, so that
countable and finite sets are computably enumerable and, in the finite case, have a computable
size.

Given countable sets, U and V, a finite function is a computable partial function φ : U → V
between them. The domain dom(φ) of φ is the set { u ∈ U | φ(u) ↓ }, of objects u ∈ U such
that φ(u) = v for some v ∈ V. Two finite functions, φ and ψ, between U and V are disjoint iff
dom(φ) ∩ dom(ψ) = ∅. The empty finite function, ∅, between U and V is the totally undefined
partial function between them. If u ∈ U and v ∈ V, the finite function, u ↪→ v, between U and V
sends u to v, and is undefined otherwise; its domain is therefore the singleton set { u }. In some
situations we write u ~ v for the finite function u ↪→ v.

If φ and ψ are two disjoint finite functions from U to V, then φ⊗ ψ is the finite function from U
to V defined by the equation

(φ⊗ ψ)(u) =


φ(u) if u ∈ dom(φ)

ψ(v) if v ∈ dom(ψ)

undefined otherwise

If u1, . . . , un ∈ U are pairwise distinct, and v1, . . . , vn ∈ V, then we sometimes write u1 ↪→ v1, . . . , un ↪→
vn, or u1 ~ v1, . . . , un ~ vn, for the finite function u1 ↪→ v1 ⊗ . . .⊗ un ↪→ vn.
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Λ, see untyped λ-calculus
F, see universal types
MA, see Modernized Algol
PCF, see Plotkin’s PCF
PPCF, see parallelism
T, see Gödel’s T

abstract binding tree, 3, 6
abstractor, 7

valence, 7
α-equivalence, 8
bound variable, 8
capture, 9
free variable, 8
graph representation, 11
operator, 7

arity, 7
parameter, 9

structural induction, 8
substitution, 9
weakening, 11

abstract binding trees
closed, 32

abstract syntax tree, 3–5
operator, 4

arity, 4
index, 9
parameter, 9

structural induction, 5
substitution, 6
variable, 4
weakening, 10

abstract types, see existential types, see also sig-
natures

abt, see abstract binding tree
assignables, see Modernized Algol
ast, see abstract syntax tree

back-patching, see references
benign effects, see references
bidirectional typing, 39, 40
boolean type, 90

capabilities, 319
channel types, see Concurrent Algol
combinators

sk basis, 30
bracket abstraction, 31, 32
conversion, 31
substitution, 31

command types, see Modernized Algol
compactness, see equality
Concurrent Algol, 381

broadcast communication, 384
dynamics, 385
safety, 385
statics, 385

class declaration, 390
definability of free assignables, 388
dynamics, 383
RS latch, 390
selective communication, 386

dynamics, 388
statics, 387

statics, 382
contravariance, see subtyping
covariance, see subtyping

definitional equality, see equality
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dynamic types, 194
class dispatch, 198
cons, 197
critique, 199
destructors, 197
dynamics, 194
lists, 200
multiple arguments, 200
multiple results, 200
nil, 197
numeric classes, 196
pairs, 200
predicates, 197
safety, 196
statics, 194
subtyping, 215

dynamics, 35, 41
checked errors, 51
contextual, 44
cost, 58
definitional equality, 46
determinacy, 44
environmental evaluation, 60
equational, 46
equivalence theorem, 45
evaluation, 55

equivalence to transition, 56
evaluation context, 44
induction on transition, 42
inversion principle, 44
structural, 42
transition system, 41
unchecked errors, 51

dynamics types
arithmetic, 200

enumeration types, 91
equality, 439

coinduction, 442, 455
compactness, 450, 453, 454
congruence, 441
contexts, 440, 449
definitional, 46, 143, 169, 185, 439
equational laws, 446

fixed point induction, 450
Kleene equality, 449
Kleene equivalence, 441
logical equivalence, 439, 442, 444, 450

closed, 443
observation, 440
observational equivalence, 439, 441, 444, 449

event types, see Concurrent Algol
exceptions, 265, 267

dynamics, 267
evaluation dynamics, 269
exception type, 268, 269
safety, 268, 269
statics, 267
structural dynamics, 269
syntax, 267
type refinements, 270

existential types, 149
coinductive types, 156
definability from universals, 152
dynamics, 150
modeling data abstraction, 151
parametricity, 156
representation independence, 153, 156
safety, 151
statics, 150
streams, 156
subtyping, 220

failures, see also exceptions, 265
dynamics, 266
failure-passing style, 270
safety, 266
statics, 265

finite function, 537
fixed point induction, see equality
function types

subtyping, 217
future types, 355, 356

future let, 361
parallel dynamics, 358
parallel let, 361
pipelining, 360
sequential dynamics, 356
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sparks, 361
statics, 356

futures, see future types

Gödel’s T, 71
canonical forms, 77
definability, 74
definitional equality, 74
dynamics, 72
hereditary termination, 77
iterator, 72
recursor, 71
safety, 73, 77
statics, 72
termination, 77
undefinability, 75

general judgment, 23, 28
generic derivability, 28

proliferation, 28
structurality, 28
substitution, 28

parametric derivability, 29
general recursion, 167
generic inductive definition, 29

formal generic judgment, 29
rule, 29
rule induction, 29
structurality, 29

Girard’s System F, see universal types

hypothetical inductive definition, 26
formal derivability, 27
rule, 26
rule induction, 27
uniformity of rules, 27

hypothetical judgment, 23
admissibility, 25

reflexivity, 26
structurality, 26
transitivity, 26
weakening, 26

derivability, 23
reflexivity, 24
stability, 24

structurality, 24
transitivity, 24
weakening, 24

inductive definition, 13, 14
admissible rule, 25
backward chaining, 16
derivable rule, 23
derivation, 15
forward chaining, 16
function, 19
iterated, 18
rule, 14

axiom, 14
conclusion, 14
premise, 14

rule induction, 15, 16
rule scheme, 14

instance, 14
simultaneous, 18

inheritance, 249
class extension, 249
class-based, 250
method extension, 250
method specialization, 253
method-based, 252
self-reference, 253
simple method override, 253
sub-method, 249
subclass, 249
super-method, 249
superclass, 249

interface, see separate compilation

judgment, 13
judgment form, 13

predicate, 13
subject, 13

Kleene equality, see equality

laziness
parallel or, 173

linking, see separate compilation
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logical equivalence, see equality

mobile types, 314
mobility condition, 314
rules, 314

Modernized Algol
separated and consolidated stacks, 318

Modernized Algol, 307
arrays, 316
assignables, 307, 320
block structure, 310
classes and objects, 318
command types, 314
commands, 307, 313
control stack, 318
data stack, 318
expressions, 307
free assignables, 322
free dynamics, 322
idioms

conditionals, 312
iteration, 312
procedures, 312
sequential composition, 312

multiple declaration instances, 316
own assignables, 317
passive commands, 316
recursive procedures, 316
scoped dynamics, 309
scoped safety, 311
stack discipline, 310
stack machine, 318
statics, 308, 314

modules, see signatures
mutual primitive recursion, 84

null, see option types

observational equivalence, see equality
option types, 92

parallelism, 341
binary fork-join, 341
Brent’s Theorem, 349

cost dynamics, 344, 354
cost dynamics vs. transition dynamics, 345
cost graphs, 344
exceptions, 354
implicit parallelism theorem, 343
multiple fork-join, 347
parallel complexity, 345
parallel dynamics, 342
parallelizability, 349
provably efficient implementation, 348
sequence types, 347

cost dynamics, 348
statics, 347

sequential complexity, 345
sequential dynamics, 342
statics, 341
structural dynamics, 354
task dynamics, 349, 354
work vs. depth, 345

phase distinction, 35, see also signatures
Plotkin’s PCF, 165

Blum size theorem, 172
bounded recursion, 450
definability, 170
definitional equality, 169
dynamics, 168
eager natural numbers, 171
eagerness and laziness, 171
halting problem, 173
induction, 171
mutual recursion, 173
safety, 168
statics, 167
totality and partiality, 171

polarity, 85
polymorphic types, see universal types
primitive recursion, 84
product types, 81

dynamics, 82
finite, 83
safety, 82
statics, 81
subtyping, 215, 217
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recursive types, see also type recursion
dynamics, 176
eager data structures, 177
eager lists, 177
eager natural numbers, 177
lazy data structures, 177
lazy lists, 178
lazy natural numbers, 177
RS latch, 182
self-reference, 178
signals, 182
statics, 175
subtyping, 218, 223

reference types, 319
aliasing, 321
free dynamics, 323
safety, 321, 324
scoped dynamics, 321
statics, 321

references
arrays, 328
back-patching, 327
benign effects, 326
mutable data structures, 328

Reynolds’s Algol, see Modernized Algol

safety
evaluation, 57, 58

scoped assignables, see Modernized Algol
self types, 178

as recursive types, 179
deriving general recursion, 180
self-reference, 178
unrolling, 178

separate compilation, 401
initialization, 402
interface, 401
linking, 401
units, 401

signatures, 415
ascription, see sealing
avoidance problem, 422
dynamic part, 417
dynamics, 424

first- vs second-class, 424
graph abstraction, 426
graph class, 426
instances, 418
opacity, 416
principal signature, 419
revelation, 416
sealing, 417
self-recognition, 423
set abstraction, 425
signature modification, 426
static part, 417
statics, 421
structures, 416
subsignature, 418–420
syntax, 420
translucency, 416
transparency, 416
type abstractions, 415, 416
type classes, 415, 418
views, 418

sparks, see future types
speculation types, 357

parallel dynamics, 358
sequential dynamics, 357
statics, 357

speculations, see speculation types
stack machine, 257

correctness, 260
completeness, 261
soundness, 261
unraveling, 261

dynamics, 258
frame, 257
safety, 259
stack, 257
state, 257

state, 180
from recursion, 180
RS latch, 180

statics, 35
canonical forms, 38
decomposition, 38
induction on typing, 37
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introduction and elimination, 38
structurality, 37
substitution, 37
type system, 36
unicity, 37
weakening, 37

structural subtyping, see subtyping
subtyping, 213

bounded quantification, 220
class types, 215
coercion, 223
coherence, 223
dynamic types, 215
dynamics, 221
function types, 217
numeric types, 214
product types, 215, 217
quantified types, 220
recursive types, 218, 223
safety, 221
subsumption, 213
sum types, 215, 217
variance, 216, 222

sum types, 87
dynamics, 88
finite, 89
statics, 87
subtyping, 215, 217

syntax, 3
abstract, 3
binding, 3
chart, 35
concrete, 3
structural, 3
surface, 3

System F, see universal types

type abstractions, see also existential types
type classes, see signatures
type recursion, see recursive types
type safety, 49

canonical forms, 50
checked errors, 52
errors, 53

preservation, 49, 53
progress, 50, 53

uni-typed λ-calculus, 190
as untyped, 190

unit
dynamics, 82
statics, 81

unit type, 81
vs void type, 90

units, see separate compilation
universal types, 140

sk combinators, 146
Church numerals, 144
definability, 143

booleans, 146
inductive types, 147
lists, 146
natural numbers, 144
products, 143
sums, 143

definitional equality, 143
dynamics, 142
parametricity, 145, 147
safety, 142
statics, 140
subtyping, 220

untyped λ-calculus, 185
Y combinator, 188
as uni-typed, 190
booleans, 191
bracket abstraction, 192
Church numerals, 187
definability, 186
definitional equality, 185
dynamics, 185
lists, 192
products, 191
Scott’s Theorem, 188
statics, 185
streams, 192
sums, 192

variance, see subtyping
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void type, 87
vs unit type, 90
dynamics, 88
statics, 87
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