The K-theory of the Category of O-module objects over an Algebra Object over a Unital ∞ -Operad C^{\otimes}

Sanath Devalapurkar¹

¹Apartment 47, 20501 Anza Avenue, Torrance, CA 90503

Fall Western Sectional Meeting, 2014

Fall Western Sectional Meeting,

Sanath Devalapurkar (West High School) THE K-THEORY OF THE CATEGORY OF O-MC

Outline

- Motivation
- Preliminaries
- 2 The Main Theorem
 - The Main Theorem

/ 24

/ 24

Outline

- Preliminaries
- The Main TheoremThe Main Theorem

Preliminary to the Motivation - the (well-known) Quillen Q-construction

Quillen's Q-construction - If \mathcal{C} is an exact category, then define $Q(\mathcal{C})$ as the category whose objects are the objects of \mathcal{C} and morphisms $X \to Y$ are isomorphism classes of diagrams $Y \leftrightarrow P \rightsquigarrow X$, where $Y \leftrightarrow P$ is an admissible monomorphism and $P \rightsquigarrow X$ is an admissible epimorphism. Composition in this category is given by pullbacks. In this section, we will suppress Q; so by $\Omega \mathcal{C}$ we will mean $\Omega Q(\mathcal{C})$.

• Let $\operatorname{Mod}_A(\mathcal{C})$ denote the subcategory of \mathcal{C} spanned by the A-module objects of \mathcal{C} .

- Let $\operatorname{Mod}_A(\mathcal{C})$ denote the subcategory of \mathcal{C} spanned by the A-module objects of \mathcal{C} .
- Ask the following question:

Question

```
Which of \operatorname{Mod}_{\mathcal{A}}(\Omega \mathcal{C}) \supseteq \Omega \operatorname{Mod}_{\mathcal{A}}(\mathcal{C}) or \operatorname{Mod}_{\mathcal{A}}(\Omega \mathcal{C}) \subset \Omega \operatorname{Mod}_{\mathcal{A}}(\mathcal{C}) is impossible?
```

- Let $Mod_{\mathcal{A}}(\mathbb{C})$ denote the subcategory of \mathbb{C} spanned by the \mathcal{A} -module objects of \mathbb{C} .
- Ask the following question:

Question

Which of $Mod_{\mathcal{A}}(\Omega \mathcal{C}) \supseteq \Omega Mod_{\mathcal{A}}(\mathcal{C})$ or $Mod_{\mathcal{A}}(\Omega \mathcal{C}) \subset \Omega Mod_{\mathcal{A}}(\mathcal{C})$ is impossible?

• It turns out that $Mod_{\mathcal{A}}(\Omega \mathcal{C}) \subset \Omega Mod_{\mathcal{A}}(\mathcal{C})$ is impossible.

Can the ∞ -categorification hold?

Can the impossibility Mod_A(ΩC) ⊄ ΩMod_A(C) hold if we ∞-categorify it? I.e., can we obtain an impossibility:

$$\mathsf{K}(\mathrm{Mod}^{\mathbb{O}}_{\mathcal{A}}(\mathbb{C}^{\otimes})^{\otimes}) \not\supset \mathrm{Mod}^{\mathbb{O}}_{\mathcal{A}}(\mathsf{K}(\mathbb{C}^{\otimes}))^{\otimes}?$$

(1)

24

Fall Western Sectional Meeting, 201

Sanath Devalapurkar (West High School) THE K-THEORY OF THE CATEGORY OF O-MC

Can the ∞ -categorification hold?

Can the impossibility Mod_A(ΩC) ⊄ ΩMod_A(C) hold if we ∞-categorify it? I.e., can we obtain an impossibility:

$$\mathsf{K}(\mathrm{Mod}^{\mathbb{O}}_{\mathcal{A}}(\mathbb{C}^{\otimes})^{\otimes}) \not\supset \mathrm{Mod}^{\mathbb{O}}_{\mathcal{A}}(\mathsf{K}(\mathbb{C}^{\otimes}))^{\otimes}?$$
(1)

• Our long-term goal is to compute $K(Mod^{0}_{\mathcal{A}}(\mathbb{C}^{\otimes})^{\otimes})$, and perhaps generalize this to $K(\mathbb{C}^{\otimes})$ if possible. We won't do so here.

Can the ∞ -categorification hold?

Can the impossibility Mod_A(ΩC) ⊄ ΩMod_A(C) hold if we ∞-categorify it? I.e., can we obtain an impossibility:

$$\mathsf{K}(\mathrm{Mod}^{\mathcal{O}}_{\mathcal{A}}(\mathbb{C}^{\otimes})^{\otimes}) \not\supset \mathrm{Mod}^{\mathcal{O}}_{\mathcal{A}}(\mathsf{K}(\mathbb{C}^{\otimes}))^{\otimes}?$$
(1)

- Our long-term goal is to compute K(Mod⁰_A(C[⊗])[⊗]), and perhaps generalize this to K(C[⊗]) if possible. We won't do so here.
- In order to answer these, we will first introduce some preliminaries.

Outline

- Preliminaries
- 2 The Main Theorem• The Main Theorem

∞ -categories

• Let us imagine a (simply-connected, for simplicity) topological space X with a points, P, Q, in it, which are connected by homotopic paths γ, Γ .

∞ -categories

- Let us imagine a (simply-connected, for simplicity) topological space X with a points, P, Q, in it, which are connected by homotopic paths γ, Γ .
- We can view X as an "∞-groupoid" as follows: the points of X can be viewed as objects, the paths as 1-morphisms, the homotopies as 2-morphisms, etc.

∞ -categories, II

• This is called an ∞-groupoid, and the **homotopy hypothesis** states that the category ∞Grpd of ∞-groupoids is is equivalent to the category Top of topological spaces.

∞ -categories, II

- This is called an ∞-groupoid, and the **homotopy hypothesis** states that the category ∞Grpd of ∞-groupoids is is equivalent to the category Top of topological spaces.
- We will define an ∞-category O to be a collection of objects along with an ∞-groupoid Hom_O(X, Y) for any two objects X, Y ∈ Obj(O), with a composition law.

24

• Lurie has defined in his book, *Higher Algebra* ([[4]]) the concept of ∞-operads.

∞ -Operads

- Lurie has defined in his book, *Higher Algebra* ([[4]]) the concept of ∞-operads.
- I will try to offer a hand-wavy and informal definition of ∞-operads. Ordinary 1-categorical colored operads are multicategories, which allow for multiple inputs into the hom-set and one single output. Thus, if the 2-category of categories is denoted Cat, and the 2-category of colored operads/multicategories is denoted Mult, then there is an inclusion Cat → Mult.

$\infty\text{-}\mathsf{Operads},\,\mathsf{II}$

• ∞ -operads generalize this to the ∞ -categorical setting by completing the diagram:

 $\operatorname{Cat}^{\operatorname{Cat}} \longrightarrow \operatorname{Mult}$ $\downarrow \qquad \qquad \downarrow \\ \infty \operatorname{Cat} \hookrightarrow \infty \operatorname{Operad}^{"}$

(2)

∞ -Operads, II

• ∞ -operads generalize this to the ∞ -categorical setting by completing the diagram:

$$\begin{array}{ccc} \operatorname{Cat} & & & \operatorname{Mult} \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

• We will use Lurie's abuse of terminology for ∞ -operads; see [4, Remark 2.1.1.12]: if $\mathcal{O}^{\otimes} \to N(\mathfrak{Fin}_*)$ is an ∞ -operad, we always will refer to \mathcal{O}^{\otimes} as an ∞ -operad.

24

Defining some important $\infty\text{-}\mathsf{Operads}$

• Let \mathcal{C}^{\otimes} be a unital ∞ -operad.

Defining some important ∞ -Operads

- Let \mathcal{C}^{\otimes} be a unital ∞ -operad.
- Let 0[⊗] be a unital ∞-operad. Denote by K₀ ⊆ Funct(Δ¹, 0[⊗]) the full subcategory of Funct(Δ¹, 0[⊗]) spanned by semi-inert morphisms in 0[⊗]. Let K₀⁰ denote the full subcategory of K₀ spanned by the null morphisms in 0[⊗]. Let PreMod⁰(C[⊗])[⊗] be the simplicial set such that for every map of simplicial sets X → 0[⊗], there is a bijection Funct₀_⊗(X, PreMod⁰(C[⊗])[⊗]) ≃
 - $\begin{aligned} & \mathcal{F}\mathrm{unct}_{\mathcal{F}\mathrm{unct}(\{1\},0^{\otimes})}(X\times_{\mathcal{F}\mathrm{unct}(\{0\},0^{\otimes})}\mathsf{K}^{0}_{0},\mathbb{C}^{\otimes}). \text{ Let }\mathrm{Mod}^{\mathbb{O}}(\mathbb{C}^{\otimes})^{\otimes} \text{ be the} \\ & \text{full simplicial subset of } \mathbb{P}\mathrm{reMod}^{\mathbb{O}}(\mathbb{C}^{\otimes})^{\otimes} \text{ spanned by vertices } \overline{\nu} \text{ such} \\ & \text{that if } \nu = q(\overline{\nu}) \in \mathbb{O}^{\otimes}, \text{ then } \overline{\nu} \text{ determines a functor} \\ & \{\nu\}\times_{\mathbb{O}^{\otimes}}\mathsf{K}_{\mathbb{O}} \to \mathbb{C}^{\otimes} \text{ which carries inert morphisms to inert morphisms,} \\ & \text{where } q: \mathbb{P}\mathrm{reMod}^{\mathbb{O}}(\mathbb{C}^{\otimes})^{\otimes} \to \mathbb{O}^{\otimes}. \end{aligned}$

Defining some important ∞ -Operads, Continued

• Construct a ∞ -category $\mathcal{Alg}_{\mathcal{O}'/\mathcal{O}}(\mathbb{C}^{\otimes})$ as follows: Let $p: \mathbb{C}^{\otimes} \to \mathbb{O}^{\otimes}$ be a fibration of ∞ -operads and suppose there are ∞ -operads $\alpha: \mathcal{O}'^{\otimes} \to \mathcal{O}'$. Let $\mathcal{Alg}_{\mathcal{O}'/\mathcal{O}}$ be the full subcategory of $\mathcal{F}unct_{\mathcal{O}^{\otimes}}(\mathcal{O}'^{\otimes}, \mathbb{C}^{\otimes})$ spanned by maps of ∞ -operads. If $\mathcal{O}'^{\otimes} \cong \mathcal{O}^{\otimes}$ then $\mathcal{Alg}_{\mathcal{O}'/\mathcal{O}}$ is denoted as $\mathcal{Alg}_{/\mathcal{O}}$. If in $\mathcal{Alg}_{/\mathcal{O}}$ we have that $\mathcal{O}^{\otimes} \cong N(\mathcal{F}in_*)$, then $\mathcal{Alg}_{/N(\mathcal{F}in_*)}$ is written as $\mathcal{C}\mathcal{A}lg(\mathbb{C}^{\otimes})$.

Defining some important ∞ -Operads, Continued II

• In the following slide, we will make use of the ∞ -category $\mathcal{A}lg^{\Phi}_{/0}(\mathbb{C}^{\otimes})$, which we can define as follows. Define a set $\operatorname{PreAlg}_{(\mathcal{O})}(\mathcal{C}^{\otimes})$ with a map $\operatorname{PreAlg}_{\mathbb{O}}(\mathbb{C}^{\otimes}) \to \mathbb{O}^{\otimes}$ so that the following is satisfied: for every simplicial set X with a map $X \to \mathbb{O}^{\otimes}$, there is a bijection $\operatorname{Funct}_{\mathbb{O}^{\otimes}}(X, \operatorname{Pre} \operatorname{Alg}_{/\mathbb{O}}(\mathbb{C}^{\otimes})) \simeq$ \mathcal{F} unct_{\mathcal{F} unct({1}, \mathcal{O}^{\otimes})}($X \times_{\mathcal{F}$ unct({0}, \mathcal{O}^{\otimes})} \mathbf{K}_{\mathcal{O}}, \mathcal{C}^{\otimes}). Then we define $\mathcal{A}lg^{\Phi}_{(0)}(\mathbb{C}^{\otimes})$ as the full simplicial subset of $\mathcal{P}re\mathcal{A}lg_{(0)}(\mathbb{C}^{\otimes})$ spanned by those vertices $F : \{Y\} \times_{\text{funct}(\{0\}, \mathcal{O}^{\otimes})} \mathbf{K}^{0}_{\mathcal{O}^{\otimes}} \to \mathbb{C}^{\otimes}$, where $Y \in \mathbb{O}^{\otimes}$, preserves inert morphisms. Here, \mathbf{K}_{\otimes}^{0} is the full subcategory of \mathbf{K}_{\otimes} spanned by the null morphisms in \mathbb{O}^{\otimes} .

Defining some important ∞ -Operads, Continued III

Let 0[⊗] be a unital ∞-operad. Then let Mod⁰(C[⊗])[⊗] denote the fiber product Mod⁰(C[⊗])[⊗] ×_{Alg^Φ/0}(C[⊗]) (0[⊗] × Alg_{/0}(C[⊗])). Let A ∈ Alg_{/0}(C[⊗]). Then let Mod⁰_A(C[⊗])[⊗] denote the fiber product Mod⁰(C[⊗])[⊗] ×_{Alg^Φ/0}(C[⊗]) {A} ≃ Mod⁰(C[⊗])[⊗] ×_{Alg/0}(C[⊗]) {A}, given by an equivalence Alg_{/0}(C[⊗]) ≃ Alg^Φ_{/0}(C[⊗]), which in turn is induced by the equivalence Mod⁰(C[⊗])[⊗] ≃ Mod⁰(C[⊗])[⊗]. We refer to Mod⁰_A(C[⊗])[⊗] as the ∞-operad of 0-module objects over A.

Higher Categorical Q-Construction

Let O(Δⁿ) denote Map(Δ^{n,op} ★ Δⁿ, Δⁿ), where ★ is the concatenation operation on Δ (see [1]).

Higher Categorical Q-Construction

- Let O(Δⁿ) denote Map(Δ^{n,op} ★ Δⁿ, Δⁿ), where ★ is the concatenation operation on Δ (see [1]).
- Let $\operatorname{Mod}_{\mathcal{A}}^{\mathcal{O}}(\mathbb{C}^{\otimes})^{\otimes}_{\dagger}$ and $\operatorname{Mod}_{\mathcal{A}}^{\mathcal{O}}(\mathbb{C}^{\otimes})^{\otimes,\dagger}$ be subcategories of $\operatorname{Mod}_{\mathcal{A}}^{\mathcal{O}}(\mathbb{C}^{\otimes})^{\otimes}$ that contain all the equivalences. Call a pullback square

apprécié if $X' \to Y'$ and $Y \to Y'$ are morphisms of $\operatorname{Mod}_{\mathcal{A}}^{\mathbb{O}}(\mathbb{C}^{\otimes})^{\otimes}_{\dagger}^{\dagger}$ and $\operatorname{Mod}_{\mathcal{A}}^{\mathbb{O}}(\mathbb{C}^{\otimes})^{\otimes,\dagger}$ respectively.

Higher Categorical Q-Construction II

 A functor X : O(Δⁿ) → Mod^O_A(C[⊗])[⊗] is apprécié if for integers 0 ≤ i ≤ k ≤ ℓ ≤ j ≤ n, the square

is an apprécié pullback.

Higher Categorical Q-Construction II

 A functor X : O(Δⁿ) → Mod^O_A(C[⊗])[⊗] is apprécié if for integers 0 ≤ i ≤ k ≤ ℓ ≤ j ≤ n, the square

is an apprécié pullback.

• Defining the K-theory and the Q-construction: Let $Q(Mod^{\emptyset}_{\mathcal{A}}(\mathbb{C}^{\otimes})^{\otimes})$ denote the ∞ -operad whose *n*-simplices are apprécié functors $\mathcal{O}(\Delta^{n})^{op} \to Mod^{\emptyset}_{\mathcal{A}}(\mathbb{C}^{\otimes})^{\otimes}$. Then define: $\mathbf{K}(Mod^{\emptyset}_{\mathcal{A}}(\mathbb{C}^{\otimes})^{\otimes}) := \Omega Q(Mod^{\emptyset}_{\mathcal{A}}(\mathbb{C}^{\otimes})^{\otimes}).$

Fall Western Sectional Meeting,

/ 24

Outline

Introduction

- Motivation
- Preliminaries

The Higher K-groups

For the sake of posterity, I will define the higher K-groups. Define the homotopy groups π_n(C[⊗]) as Funct_{sSet}(C[⊗], Δ[n]/∂Δ[n]). Thus define K_n(C[⊗]) := π_n(K(C[⊗])).

The Higher K-groups

- For the sake of posterity, I will define the higher K-groups. Define the homotopy groups π_n(C[⊗]) as Funct_{sSet}(C[⊗], Δ[n]/∂Δ[n]). Thus define K_n(C[⊗]) := π_n(K(C[⊗])).
- We will now proceed to our main theorem, which shows that $\mathbf{K}(\mathrm{Mod}^{\mathfrak{O}}_{\mathcal{A}}(\mathbb{C}^{\otimes})^{\otimes}) \supset \mathrm{Mod}^{\mathfrak{O}}_{\mathcal{A}}(\mathbf{K}(\mathbb{C}^{\otimes}))^{\otimes}$ is impossible.

Main Theorem

Theorem (D.)

Let \mathbb{C}^{\otimes} be a unital ∞ -operad. Then there is a stabilization from the first iteration of $\operatorname{Mod}^{\mathfrak{O}}_{\mathcal{A}}(\mathbb{C}^{\otimes})^{\otimes}$:

 $\mathrm{Mod}^{\mathbb{O}}_{\mathcal{A}}(\mathrm{Mod}^{\mathbb{O}}_{\mathcal{A}}(\cdots(\mathrm{Mod}^{\mathbb{O}}_{\mathcal{A}}(\mathsf{K}(\mathbb{C}^{\otimes}))^{\otimes})\cdots)^{\otimes})^{\otimes}\simeq\mathrm{Mod}^{\mathbb{O}}_{\mathcal{A}}(\mathsf{K}(\mathbb{C}^{\otimes}))^{\otimes}$

Additionally, it is impossible to have the inclusion

 $\mathsf{K}(\mathrm{Mod}^{\mathcal{O}}_{\mathcal{A}}(\mathcal{C}^{\otimes})^{\otimes})\supset\mathrm{Mod}^{\mathcal{O}}_{\mathcal{A}}(\mathsf{K}(\mathcal{C}^{\otimes}))^{\otimes}.$

There is a sequence of isomorphisms

$$\mathsf{K}(\mathrm{Mod}^{\mathbb{O}}_{\mathcal{A}}(\mathbb{C}^{\otimes})^{\otimes})\simeq\mathrm{Mod}^{\mathbb{O}}_{\mathcal{A}}(\mathsf{K}(\mathbb{C}^{\otimes}))^{\otimes}\simeq\mathsf{K}(\mathbb{C}^{\otimes}).$$

If either $\mathfrak{O}^{\otimes} = \mathbf{E}[0]^{\otimes} = \mathrm{N}(\mathfrak{Fin}^{\mathrm{inj}}_{*})^{\otimes}$ or \mathfrak{O}^{\otimes} is a coherent ∞ -operad and A is a trivial \mathfrak{O} -algebra.

• Can we compute $\mathsf{K}(\cdots \mathsf{K}(\mathrm{Mod}_{\mathcal{A}}^{\mathcal{O}}(\mathbb{C}^{\otimes})^{\otimes})\cdots)$ for any unital ∞ -operad \mathbb{C}^{\otimes} ?

- Can we compute $\mathsf{K}(\cdots \mathsf{K}(\mathrm{Mod}_{\mathcal{A}}^{\mathcal{O}}(\mathbb{C}^{\otimes})^{\otimes})\cdots)$ for any unital ∞ -operad \mathbb{C}^{\otimes} ?
- Some ideas I've been looking into suggest that $\mathsf{K}(\cdots \mathsf{K}(\mathbb{C}^{\otimes}) \cdots) = \mathrm{Mod}^{\mathbb{O}}_{\mathcal{A}}(\mathbb{C}^{\otimes})^{\otimes}$, for \mathbb{C}^{\otimes} a unital ∞ -operad.

- Can we compute $\mathsf{K}(\cdots \mathsf{K}(\mathrm{Mod}_{\mathcal{A}}^{\mathcal{O}}(\mathbb{C}^{\otimes})^{\otimes})\cdots)$ for any unital ∞ -operad \mathbb{C}^{\otimes} ?
- Some ideas I've been looking into suggest that $\mathbf{K}(\cdots \mathbf{K}(\mathbb{C}^{\otimes}) \cdots) = \mathrm{Mod}_{\mathcal{A}}^{\mathbb{O}}(\mathbb{C}^{\otimes})^{\otimes}$, for \mathbb{C}^{\otimes} a unital ∞ -operad.
- In fact, we can generalize and say that

$$\mathsf{K}(\cdots\mathsf{K}(\mathrm{Mod}^{\emptyset}_{\mathcal{A}}(\mathrm{Mod}^{\emptyset}_{\mathcal{A}}(\cdots(\mathrm{Mod}^{\emptyset}_{\mathcal{A}}(\mathbb{C}^{\otimes})^{\otimes})\cdots)^{\otimes})^{\otimes})\cdots)$$

is $\operatorname{Mod}_{\mathcal{A}}^{\mathbb{O}}(\mathbb{C}^{\otimes})^{\otimes}$.

Thank You

Thank you!

/ 24

Sanath Devalapurkar (West High School) THE K-THEORY OF THE CATEGORY OF O-MC

Thank You

Thank you!

Fall Western Sectional Meeting, 201

24

P.S.

These slides and notes can be obtained by emailing me at devalapurkarsanath@gmail.com.

Sanath Devalapurkar (West High School) THE K-THEORY OF THE CATEGORY OF O-MC

References I

- Clark Barwick, On the Q Construction for Exact ∞ -Categories. Available Online at arXiv:1301.4725v2 [math.KT].
- http://ncatlab.org/nlab/show/dendroidal+set, Accessed August 13, 2014.
- Ben Knudsen, Algebraic K-Theory of Schemes.
- Jacob Lurie, *Higher Algebra*.
- Jacob Lurie, *Higher Topos Theory*.
- Michael Hopkins, Jacob Lurie, *Ambidexterity in K(n)-Local Stable Homotopy Theory*.
- Jacob Lurie, *Moduli Problems for Ring Spectra*. ICM 2010 Address.

References

References II

- Ieke Moerdijk et. al., On the equivalence between Lurie's model and the dendroidal model for infinity-operads. Available Online at arXiv:1305.3658v2 [math.AT].
- Thomas Nikolaus, *Algebraic K-Theory of infinity-Operads*. Available Online at arXiv:1303.2198v1 [math.AT].
- V. A. Smirnov, Simplicial and Operad Methods in Algebraic Topology.
- Charles Weibel, The K-book: an introduction to algebraic K-theory.