
A PROOF OF THE HCF

1. Introduction

For our purposes, a partition, written, λ = (n0, . . . , nd) is simply a finite list of
weakly decreasing integers. (Indexing the ni starting on 0 will make a number of
later computations neater.) A Young diagram of shape λ is an array of boxes with
ni boxes in the ith row (again indexing beginning with 0). A Young diagram of
shape λ′ or λ “conjugate” is an array of boxes with ni boxes in the ith column. For
instance, a Young diagram of shape (4, 3, 1) (or of shape (3, 2, 2, 1)′) is drawn as
follows:

A semi-standard Young tableau or SSYT of parameters (N,λ) (where N is a
nonegative integer) is a way of filling the boxes of a Young diagram of shape λ with
positive integers no greater than N so that the entries are weakly increasing across
rows, and strictly increasing down columns. For λ as above, the following is an
SSYT of parameters (3,λ):

1 1 2 3
2 2 3
3

The hook hij of box xij is the rectilinear path from xij up to the top row of λ
and then across to the rightmost box in the top row. By the hook length of xij ,
expressed, |hij |, we refer to the number of boxes in hij . The content of box xij ,
denoted by |xij |, is the number, N + i− j. For instance, for λ as above, |h01| = 5
and, if N = 3, then |x01| = 3 + 0− 1 = 2.

In the following, we prove the Hook Content Formula (HCF), namely that: The
number of SSYT of parameters (N,λ) is given by:

SSY T (N,λ) =
∏
xij∈λ

|xij |
|hij |

[2]

2. The Set-Up

Suppose d ≥ 0, and we are given N ≥ 0, and a list of (d+1) nonnegative integers,
n0, . . . , nd. Let v1, . . . , vN be a list of N , (d+1)–dimensional vectors, each of which
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is composed of 1’s and 0’s and such that:

N∑
k=1

vk =

n0...
nd

 .
Define C(N,n0, . . . , nd) to be the number of choices of such a list such that for each

integer L ∈ [1, N ], the vector
L∑
k=1

vk is weakly decreasing from top to bottom.

If there exists i ∈ {1, . . . , d} such that ni−1 < ni, then C(N,n0, . . . , nd) = 0. If
not, it follows that n0 ≥ · · · ≥ nd. If, in addition, nd 6= 0, then one can sheck that:

C(N,n0, . . . , nd) = SSY T (N, (n0, . . . , nd)
′).

In this case (i.e., n0 ≥ · · · ≥ nd and nd 6= 0) each ni ≥ 1, so, if N ≥ 1 as well,
we may write:

C(N,n0, . . . , nd) =
∑

(j0,...,jd):ji∈{0,1}

C(N − 1, n0 − j0, . . . , nd − jd),

where one should think of each possible vector of the form

j0...
jd

 as a possible value

for the final vector vN , in the list v1, . . . , vN .

3. Counting C(N,n0, . . . , nd)

Let d ≥ 0 and let ~N = (N,n0, . . . , nd) be a (d+2)–tuple of nonnegative integers.
If, for all i ∈ {1, . . . , d}, we have ni−1 + 1 ≥ ni, define

†( ~N) = 1.

Otherwise, define

†( ~N) = 0.

Moreover, let:

F (N,n0, . . . , nd) =

d∏
i=0

(N + i)!

(N + i− ni)!
× V (m0, . . . ,md)

m0! · · ·md!
,

where mi = ni+d− i for each i. We use the conventions that 0! = 1, and for n > 0,

1

(−n)!
= lim
k→∞

k∏
m=n

(
1

−m

)
= 0.

Theorem 3.1. Let d ≥ 0 and let ~N = (N,n0, . . . , nd) be a (d + 2)–tuple of non-
negative integers. We have:

†( ~N) = 0 =⇒ C( ~N) = 0

†( ~N) = 1 =⇒ C( ~N) = F ( ~N).
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Proof. We prove the theorem by induction on N . Let N = 0. First, suppose that

†( ~N) = 0. It follows that some ni 6= 0, whence, C( ~N) = 0. On the other hand,

suppose †( ~N) = 1. If each ni = 0, then C( ~N) = 1 = F ( ~N). Otherwise some ni > 0,

and C( ~N) = 0. Moreover, in this case, either n0 > 0 so that the left hand factor of

F ( ~N) vanishes, or, for some i ∈ {1, . . . , d}, we have ni−1 < ni (i.e., ni−1 + 1 = ni),

so that the right hand factor of F ( ~N) vanishes. Regardless, F ( ~N) = 0. Thus,
Theorem 3.1 holds for N = 0.

Now suppose N ≥ 1 and that 3.1 holds for N − 1. If †( ~N) = 0 it is clear that

C( ~N) = 0 as claimed, as

n0...
nd

 itself is not weakly decreasing from top to bottom.

Therefore, assume †( ~N) = 1. First, suppose that for some i ∈ {1, . . . , d}, we

have ni−1 < ni (i.e., ni−1 + 1 = ni). Clearly C( ~N) = 0, and F ( ~N) = 0 as well,

because the right hand factor of F ( ~N) vanishes. Hence, we may suppose that for

each i ∈ {1, . . . , d}, we have ni−1 ≥ ni. Since both C( ~N) and F ( ~N) are invariant
under the addition or removal of terminal 0’s from (n0, . . . , nd), we may assume
WLOG that nd 6= 0. This implies that each ni ≥ 1, which, in conjunction with the
fact that N ≥ 1, allows us to write:

C(N,n0, . . . , nd) =
∑

(j0,...,jd):ji∈{0,1}

C(N − 1, n0 − j0, . . . , nd − jd)

=
∑

(j0,...,jd):ji∈{0,1}

F (N − 1, n0 − j0, . . . , nd − jd),

where the last equality follows by the inductive hypothesis and the fact that, for
each (j0, . . . , jd), we have †(N−1, n0−j0, . . . , nd−jd) = 1. Hence if we can establish
the identity:

F (N,n0, . . . , nd) =
∑

(j0,...,jd):ji∈{0,1}

F (N − 1, n0 − j0, . . . , nd − jd).(3.1)

we are done. �

4. A Useful Algebraic Result

In the following lemma, we make use of the Vandermonde polynomial, V , which
is defined as:

V (x0, . . . , xd) =
∏

0≤i<j≤d

(xi − xj).

In order to establish (3.1) we will need the following lemma:

Lemma 4.1. Write ~X = (X,x0, . . . , xn) and define:

G( ~X, t) =
∑

(j0,...,jn):ji∈{0,1}

([ n∏
i=0

(X − xi)1−jixjii
]
V (x0 − j0t, . . . , xn − jnt)

)
.

We have:

(4.1) G( ~X, t) =

[
n∏
r=0

(X − rt)

]
V (x0, . . . , xn),
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Proof. Before we start, we let ~J = (j0, . . . , jn) and write:

ψ( ~X, t, ~J) =

[ n∏
i=0

(X − xi)1−jixjii
]
V (x0 − j0t, . . . , xn − jnt),

so that we have:

G( ~X, t) =
∑

~J∈{0,1}n+1

ψ( ~X, t, ~J).

4.1. First, we show that G( ~X, t) is antisymmetric with respect to transposition of
any two of the variables (x0, . . . , xn). Indeed, fix k and l such that 0 ≤ k < l ≤ n and

let ~Jkl = (j0, . . . , jk−1, jk+1, . . . , jl−1, jl+1, . . . , jn) ∈ {0, 1}n−1 denote the values of

ji in ~J for i 6= k, l. Then,

G( ~X, t) =
∑

~Jkl∈{0,1}n−1

( ∑
(jk,jl)∈{0,1}×{0,1}

ψ( ~X, t, ~Jkl, jk, jl)

)
.

G( ~X, t) is antisymmetric because the expression inside the large parenthesis

above is always antisymmetric. To see the latter, let ~X ′ be the vector obtained

from ~X by switching xk and xl. Then, for any fixed value of ~Jkl ∈ {0, 1}n−1,

ψ( ~X, t, ~Jkl, 0, 0) = −ψ( ~X ′, t, ~Jkl, 0, 0)

ψ( ~X, t, ~Jkl, 0, 1) = −ψ( ~X ′, t, ~Jkl, 1, 0)

ψ( ~X, t, ~Jkl, 1, 0) = −ψ( ~X ′, t, ~Jkl, 0, 1)

ψ( ~X, t, ~Jkl, 1, 1) = −ψ( ~X ′, t, ~Jkl, 1, 1).

4.2. Now we show that G( ~X, t) is homogenous of degree n(n+1)
2 with respect to the

variables (x0, . . . , xn). Clearly any monomial in its monomial expansion must have

degree at least n(n+1)
2 by antisymmetry. Suppose, therefore, that some monomial,

m, in this expansion has degree larger than n(n+1)
2 in (x0, . . . , xn). It follows that

m has degree greater than n (but no greater than n + 1) in some variable xi. We
may assume, WLOG, this variable is x0, that is, that m has degree n+ 1 in x0.

Let ~J0 = (j1, . . . , jn) ∈ {0, 1}n denote the values of ji in ~J for i 6= 0, so that:

G( ~X, t) =
∑

~J0∈{0,1}n

( ∑
j0∈{0,1}

ψ( ~X, t, ~J0, j0)

)
.(4.2)

G( ~X, t) has no monomials of degree n + 1 in x0 because the expression inside the

parenthesis above never has any. Indeed, fix ~J0 = (j1, . . . , jn). Then the entire

degree n+ 1 (with respect to x0) part of ψ( ~X, t, ~J0, 0) is given by:

−x0

[
n∏
i=1

(X − xi)1−jixjii

]
xn0

[ ∑
σ∈Sn

(−1)sgn(σ)

(
n∏
i=1

(xi − jit)n−σ(i)
)]

,
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whereas the entire degree n + 1 (with respect to x0) part of ψ( ~X, t, ~J0, 1) is given
by:

x0

[
n∏
i=1

(X − xi)1−jixjii

]
xn0

[ ∑
σ∈Sn

(−1)sgn(σ)

(
n∏
i=1

(xi − jit)n−σ(i)
)]

.

Hence the degree n+ 1 (with respect to x0) of the expression inside the parenthesis
in (4.2) is 0, so it has no monomials of degree n + 1 in x0. We have established

that each monomial in the monomial expansion of G( ~X, t) has total degree n(n+1)
2

in the variables (x0, . . . , xn).

4.3. Since G( ~X, t) is antisymmetric, homogenous of degree n(n+1)
2 , with respect

to (x0, . . . , xn), it is divisible by V (x0, . . . , xn), and the quotient has degree 0 in
(x0, . . . , xn). That is, we may write:

G( ~X, t) = H(X, t)× V (x0, . . . , xn),

for a function H, that only depends on the two variables, X and t. In this section,
we compute H(X, t).

For ~J ∈ {0, 1}n+1, σ ∈ Sn+1, write:

Π( ~J) =

n∏
i=0

(X − xi)1−jixjii

Vσ( ~J) = (−1)sgn(σ)(x0 − j0t0)n−σ(0) · · · (xn − jntn)n−σ(n),

so that we have:

G( ~X, t) =
∑

~J∈{0,1}n+1

[ ∑
σ∈Sn+1

Π( ~J)Vσ( ~J)

]
.

We make the following definitions:

(1) Let p ∈ Z[X, t, x0, . . . , xn]. Consider p as a polynomial in x0, . . . , xn with
coefficients in Z[X, t]. Define δ(p) ∈ Z[X, t] to be the coefficient of xn0 · · ·x0n
in p.

(2) Let pi ∈ Z[X, t, xi]. Consider pi as a polynomial in xi with coefficients in
Z[X, t]. Define δi(pi) ∈ Z[X, t] to be the coefficient of xn−ii in pi.

(3) Define δij = 1 if i = j, and δij = 0 if i 6= j. (Kronecker delta function.)

Using these definitions, we may write:

H(X, t) = δ(G( ~X, t)) =
∑

~J∈{0,1}n+1

[ ∑
σ∈Sn+1

δ

(
Π( ~J)Vσ( ~J)

)]
.
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Since Π( ~J) is linear in each xi, it follows that δ
(
Π( ~J)Vσ( ~J)

)
= 0 unless σ(i) ∈

{i, i+ 1} for each i. The only such permutation is the identity, so,

H(X, t) =
∑

~J∈{0,1}n+1

δ

(
Π( ~J)(x0 − j0t0)n · · · (xn − jntn)0

)

=
∑

~J∈{0,1}n+1

δ

( n∏
i=0

[
(X − xi)1−jixjii (xi − jit)n−i

])

=
∑

~J∈{0,1}n+1

[
n∏
i=0

δi

(
(X − xi)1−jixjii (xi − jit)n−i

)]

=
∑

~J∈{0,1}n+1

[
n∏
i=0

X(δ0ji )
(
(i− n)t

)(δ1ji )].
From this expression, we see that each monomial in the monomial expansion of
H(X, t) has total degree n+ 1 in the variables X, t. Thus we may write:

H(X, t) =

n+1∑
m=0

amX
(n+1−m)tm, where, am =

∑
~J:
∑

(ji)=m

[ ∏
ji=1

(i− n)

]

=
∑

I∈({0,...,n}m )

[∏
i∈I

(−i)

]
,

and where
({0,...,n}

m

)
is the set of all m element subsets of {0, . . . , n}. Moreover, if

we write out the following expansion:

n∏
r=0

(X − rt) =

n+1∑
m=0

bmX
(n+1−m)tm, we find: bm =

∑
I∈({0,...,n}m )

[∏
i∈I

(−i)

]
,

=⇒ H(X, t) =

n∏
r=0

(X − rt),

and the lemma is complete. �

5. Conclusion of Theorem 3.1

We apply (4.1) with n = d, X = N + d, xi = mi, and t = 1, noting that
([N + d]−mi) may be replaced by (N + i−ni) by the definition of mi. This gives:

(N + d)!

(N − 1)!
V (m0, . . . ,md)

=
∑

(j0,...,jd)∈{0,1}d+1

([
d∏
i=0

(N + i− ni)1−jimji
i

]
V (m0 − j0, . . . ,md − jd)

)
.

Multiplying both sides by:[
d∏
i=0

(N + i− 1)!

(N + i− ni)!

]
1

m0! · · ·md!
,
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we have:[
d∏
i=0

(N + i)!

(N + i− ni)!

]
V (m0, . . . ,md)

m0! · · ·md!

=
∑

(j0,...,jd)∈{0,1}d+1

([
d∏
i=0

(N + i− 1)!

(N + i− ni)!
(N + i− ni)1−jimji

i

]
V (m0 − j0, . . . ,md − jd)

m0! · · ·md!

)

=
∑

(j0,...,jd)∈{0,1}d+1

([
d∏
i=0

(N + i− 1)!

(N + i− ni − 1 + ji)!

]
V (m0 − j0, . . . ,md − jd)
(m0 − j0)! · · · (md − jd)!

)
.

Equating the first and third lines above gives:

F (N,n0, . . . , nd) =
∑

(j0,...,jd)∈{0,1}d+1

F (N − 1, n0 − j1, . . . , nd − jd).

This establishes Theorem 3.1.

6. The Hook Content Formula

Let µ = (n0, . . . , nd)
′ be a Young diagram. Then, by definition, we must have

n0 ≥ · · · ≥ nd ≥ 1. As noted earlier, this implies that if N is any nonnegative

integer and we let ~N = (N,n0, . . . , nd), then SSY T (N,µ) = C( ~N). Moreover,

since †( ~N) = 1, it follows by Theorem 3.1 that C( ~N) = F ( ~N), whence:

SSY T (N,µ) =

d∏
i=0

(N + i)!

(N + i− ni)!
× V (m0, . . . ,md)

m0! · · ·md!
.(6.1)

(Again, we use the notation mi = ni + d− i).
On the other hand, the Hook Content Formula states that:

SSY T (N,µ) =
∏
xij∈µ

|xij |
|hij |

=

[ ∏
xij∈µ

(N + i− j)

][ ∏
xij∈µ

1

|hij |

]
,

[2]. It follows from the fact that µ = (n0, . . . , nd)
′ that:∏

xij∈µ
(N + i− j) =

d∏
i=0

(N + i)!

(N + i− ni)!
,

so, the hook content formula will follow from (6.1) if we show that:

(∗)
∏
xij∈µ

|hij | =
m0! · · ·md!

V (m0, . . . ,md)
, or equivalently,

∏
xij∈λ

|hij | =
m0! · · ·md!

V (m0, . . . ,md)
,

[1] for λ = (n0, . . . , nd) = µ′, since the product of hook lengths is invariant under
conjugation.

To demonstrate the latter equality, first note that it may be rewritten as:

∏
xij∈λ

|hij | =
d∏
i=0

[
mi!

d∏
j=i+1

(mi −mj)

]
.
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To establish the equation above, thereby proving (∗), we show that, for each i,
the product of the hook lengths of the squares in row i of λ (denote λi) is given by:

(6.2)
∏

xij∈λi

|hij | =
mi!

d∏
j=i+1

(mi −mj)

[2, Ch. 7, p. 374]. First, note that, for any j such that i < j ≤ d, the value
of mi − mj does not coincide with the hook length of any of the squares

in λi. To see this, let hinj be the hook obtained by removing from hinj

all the squares below xj−1nj . The path from xd0 to xini along hi0 includes
mi squares. It follows that the path from xd0 to xini that begins along hj0
and concludes along hinj must also include mi squares. Moreover, the path
from xd0 to xjnj along hj0 includes mj squares. From this it follows that

the length of hinj is given by mi −mj . One easily observes that for k ≤ nj ,
|hik| > |hinj |, and for k > nj , |hik| < |hinj |. Hence, no square in row i of λ

has hook length equal to |hinj | = mi −mj .

Let Hi = {|hij | : xij ∈ λi}, be the set of hook lengths in row i of λ (each
hook in a row has a distinct length), let Ki = {(mi − mj) : i < j ≤ d}, and let
Mi = {1, . . . ,mi}. Now Hi ⊆Mi, Ki ⊆Mi, and:

#(Hi) + #(Ki) = (ni) + (d− i) = mi = #(Mi).

Further, by the argument above Hi and Ki are disjoint, so Hi∪̇Ki = Mi, whence:∏
xij∈λi

|hij | =
∏
h∈Hi

(h) =

∏
m∈Mi

(m)∏
k∈Ki

(k)
=

mi!
d∏

j=i+1

(mi −mj)

,

and (6.2) has been proven. This establishes (∗), and The Hook Content Formula
now follows.
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