A PROOF OF THE HCF

1. Introduction

For our purposes, a partition, written, $\lambda=\left(n_{0}, \ldots, n_{d}\right)$ is simply a finite list of weakly decreasing integers. (Indexing the n_{i} starting on 0 will make a number of later computations neater.) A Young diagram of shape λ is an array of boxes with n_{i} boxes in the $i^{\text {th }}$ row (again indexing beginning with 0). A Young diagram of shape λ^{\prime} or λ "conjugate" is an array of boxes with n_{i} boxes in the $i^{t h}$ column. For instance, a Young diagram of shape $(4,3,1)$ (or of shape $\left.(3,2,2,1)^{\prime}\right)$ is drawn as follows:

A semi-standard Young tableau or SSYT of parameters (N, λ) (where N is a nonegative integer) is a way of filling the boxes of a Young diagram of shape λ with positive integers no greater than N so that the entries are weakly increasing across rows, and strictly increasing down columns. For λ as above, the following is an SSYT of parameters $(3, \lambda)$:

\[

\]

The hook $h_{i j}$ of box $x_{i j}$ is the rectilinear path from $x_{i j}$ up to the top row of λ and then across to the rightmost box in the top row. By the hook length of $x_{i j}$, expressed, $\left|h_{i j}\right|$, we refer to the number of boxes in $h_{i j}$. The content of box $x_{i j}$, denoted by $\left|x_{i j}\right|$, is the number, $N+i-j$. For instance, for λ as above, $\left|h_{01}\right|=5$ and, if $N=3$, then $\left|x_{01}\right|=3+0-1=2$.

In the following, we prove the Hook Content Formula (HCF), namely that: The number of SSYT of parameters (N, λ) is given by:

$$
\begin{equation*}
S S Y T(N, \lambda)=\prod_{x_{i j} \in \lambda} \frac{\left|x_{i j}\right|}{\left|h_{i j}\right|} \tag{2}
\end{equation*}
$$

2. The Set-Up

Suppose $d \geq 0$, and we are given $N \geq 0$, and a list of ($d+1$) nonnegative integers, n_{0}, \ldots, n_{d}. Let v_{1}, \ldots, v_{N} be a list of $N,(d+1)$-dimensional vectors, each of which
is composed of 1's and 0's and such that:

$$
\sum_{k=1}^{N} v_{k}=\left[\begin{array}{c}
n_{0} \\
\vdots \\
n_{d}
\end{array}\right]
$$

Define $C\left(N, n_{0}, \ldots, n_{d}\right)$ to be the number of choices of such a list such that for each integer $L \in[1, N]$, the vector $\sum_{k=1}^{L} v_{k}$ is weakly decreasing from top to bottom.

If there exists $i \in\{1, \ldots, d\}$ such that $n_{i-1}<n_{i}$, then $C\left(N, n_{0}, \ldots, n_{d}\right)=0$. If not, it follows that $n_{0} \geq \cdots \geq n_{d}$. If, in addition, $n_{d} \neq 0$, then one can sheck that:

$$
C\left(N, n_{0}, \ldots, n_{d}\right)=\operatorname{SSYT}\left(N,\left(n_{0}, \ldots, n_{d}\right)^{\prime}\right)
$$

In this case (i.e., $n_{0} \geq \cdots \geq n_{d}$ and $n_{d} \neq 0$) each $n_{i} \geq 1$, so, if $N \geq 1$ as well, we may write:

$$
C\left(N, n_{0}, \ldots, n_{d}\right)=\sum_{\left(j_{0}, \ldots, j_{d}\right): j_{i} \in\{0,1\}} C\left(N-1, n_{0}-j_{0}, \ldots, n_{d}-j_{d}\right)
$$

where one should think of each possible vector of the form $\left[\begin{array}{c}j_{0} \\ \vdots \\ j_{d}\end{array}\right]$ as a possible value for the final vector v_{N}, in the list v_{1}, \ldots, v_{N}.

3. Counting $C\left(N, n_{0}, \ldots, n_{d}\right)$

Let $d \geq 0$ and let $\vec{N}=\left(N, n_{0}, \ldots, n_{d}\right)$ be a $(d+2)$-tuple of nonnegative integers. If, for all $i \in\{1, \ldots, d\}$, we have $n_{i-1}+1 \geq n_{i}$, define

$$
\dagger(\vec{N})=1
$$

Otherwise, define

$$
\dagger(\vec{N})=0
$$

Moreover, let:

$$
F\left(N, n_{0}, \ldots, n_{d}\right)=\prod_{i=0}^{d} \frac{(N+i)!}{\left(N+i-n_{i}\right)!} \times \frac{V\left(m_{0}, \ldots, m_{d}\right)}{m_{0}!\cdots m_{d}!}
$$

where $m_{i}=n_{i}+d-i$ for each i. We use the conventions that $0!=1$, and for $n>0$,

$$
\frac{1}{(-n)!}=\lim _{k \rightarrow \infty} \prod_{m=n}^{k}\left(\frac{1}{-m}\right)=0
$$

Theorem 3.1. Let $d \geq 0$ and let $\vec{N}=\left(N, n_{0}, \ldots, n_{d}\right)$ be a $(d+2)$-tuple of nonnegative integers. We have:

$$
\begin{aligned}
& \dagger(\vec{N})=0 \quad \Longrightarrow \quad C(\vec{N})=0 \\
& \dagger(\vec{N})=1 \quad \Longrightarrow \quad C(\vec{N})=F(\vec{N}) .
\end{aligned}
$$

Proof. We prove the theorem by induction on N. Let $N=0$. First, suppose that $\dagger(\vec{N})=0$. It follows that some $n_{i} \neq 0$, whence, $C(\vec{N})=0$. On the other hand, suppose $\dagger(\vec{N})=1$. If each $n_{i}=0$, then $C(\vec{N})=1=F(\vec{N})$. Otherwise some $n_{i}>0$, and $C(\vec{N})=0$. Moreover, in this case, either $n_{0}>0$ so that the left hand factor of $F(\vec{N})$ vanishes, or, for some $i \in\{1, \ldots, d\}$, we have $n_{i-1}<n_{i}$ (i.e., $n_{i-1}+1=n_{i}$), so that the right hand factor of $F(\vec{N})$ vanishes. Regardless, $F(\vec{N})=0$. Thus, Theorem 3.1 holds for $N=0$.

Now suppose $N \geq 1$ and that 3.1 holds for $N-1$. If $\dagger(\vec{N})=0$ it is clear that $C(\vec{N})=0$ as claimed, as $\left[\begin{array}{c}n_{0} \\ \vdots \\ n_{d}\end{array}\right]$ itself is not weakly decreasing from top to bottom.

Therefore, assume $\dagger(\vec{N})=1$. First, suppose that for some $i \in\{1, \ldots, d\}$, we have $n_{i-1}<n_{i}$ (i.e., $n_{i-1}+1=n_{i}$). Clearly $C(\vec{N})=0$, and $F(\vec{N})=0$ as well, because the right hand factor of $F(\vec{N})$ vanishes. Hence, we may suppose that for each $i \in\{1, \ldots, d\}$, we have $n_{i-1} \geq n_{i}$. Since both $C(\vec{N})$ and $F(\vec{N})$ are invariant under the addition or removal of terminal 0 's from $\left(n_{0}, \ldots, n_{d}\right)$, we may assume WLOG that $n_{d} \neq 0$. This implies that each $n_{i} \geq 1$, which, in conjunction with the fact that $N \geq 1$, allows us to write:

$$
\begin{aligned}
C\left(N, n_{0}, \ldots, n_{d}\right) & =\sum_{\left(j_{0}, \ldots, j_{d}\right): j_{i} \in\{0,1\}} C\left(N-1, n_{0}-j_{0}, \ldots, n_{d}-j_{d}\right) \\
& =\sum_{\left(j_{0}, \ldots, j_{d}\right): j_{i} \in\{0,1\}} F\left(N-1, n_{0}-j_{0}, \ldots, n_{d}-j_{d}\right),
\end{aligned}
$$

where the last equality follows by the inductive hypothesis and the fact that, for each $\left(j_{0}, \ldots, j_{d}\right)$, we have $\dagger\left(N-1, n_{0}-j_{0}, \ldots, n_{d}-j_{d}\right)=1$. Hence if we can establish the identity:

$$
\begin{equation*}
F\left(N, n_{0}, \ldots, n_{d}\right)=\sum_{\left(j_{0}, \ldots, j_{d}\right): j_{i} \in\{0,1\}} F\left(N-1, n_{0}-j_{0}, \ldots, n_{d}-j_{d}\right) . \tag{3.1}
\end{equation*}
$$

we are done.

4. A Useful Algebraic Result

In the following lemma, we make use of the Vandermonde polynomial, V, which is defined as:

$$
V\left(x_{0}, \ldots, x_{d}\right)=\prod_{0 \leq i<j \leq d}\left(x_{i}-x_{j}\right)
$$

In order to establish (3.1) we will need the following lemma:
Lemma 4.1. Write $\vec{X}=\left(X, x_{0}, \ldots, x_{n}\right)$ and define:

$$
G(\vec{X}, t)=\sum_{\left(j_{0}, \ldots, j_{n}\right): j_{i} \in\{0,1\}}\left(\left[\prod_{i=0}^{n}\left(X-x_{i}\right)^{1-j_{i}} x_{i}^{j_{i}}\right] V\left(x_{0}-j_{0} t, \ldots, x_{n}-j_{n} t\right)\right)
$$

We have:

$$
\begin{equation*}
G(\vec{X}, t)=\left[\prod_{r=0}^{n}(X-r t)\right] V\left(x_{0}, \ldots, x_{n}\right) \tag{4.1}
\end{equation*}
$$

Proof. Before we start, we let $\vec{J}=\left(j_{0}, \ldots, j_{n}\right)$ and write:

$$
\psi(\vec{X}, t, \vec{J})=\left[\prod_{i=0}^{n}\left(X-x_{i}\right)^{1-j_{i}} x_{i}^{j_{i}}\right] V\left(x_{0}-j_{0} t, \ldots, x_{n}-j_{n} t\right)
$$

so that we have:

$$
G(\vec{X}, t)=\sum_{\vec{J} \in\{0,1\}^{n+1}} \psi(\vec{X}, t, \vec{J})
$$

4.1. First, we show that $G(\vec{X}, t)$ is antisymmetric with respect to transposition of any two of the variables $\left(x_{0}, \ldots, x_{n}\right)$. Indeed, fix k and l such that $0 \leq k<l \leq n$ and let $\overrightarrow{J_{k l}}=\left(j_{0}, \ldots, j_{k-1}, j_{k+1}, \ldots, j_{l-1}, j_{l+1}, \ldots, j_{n}\right) \in\{0,1\}^{n-1}$ denote the values of j_{i} in \vec{J} for $i \neq k, l$. Then,

$$
G(\vec{X}, t)=\sum_{\vec{J}_{k l} \in\{0,1\}^{n-1}}\left(\sum_{\left(j_{k}, j_{l}\right) \in\{0,1\} \times\{0,1\}} \psi\left(\vec{X}, t, \vec{J}_{k l}, j_{k}, j_{l}\right)\right)
$$

$G(\vec{X}, t)$ is antisymmetric because the expression inside the large parenthesis above is always antisymmetric. To see the latter, let \vec{X}^{\prime} be the vector obtained from \vec{X} by switching x_{k} and x_{l}. Then, for any fixed value of $\vec{J}_{k l} \in\{0,1\}^{n-1}$,

$$
\begin{aligned}
& \psi\left(\vec{X}, t, \vec{J}_{k l}, 0,0\right)=-\psi\left(\vec{X}^{\prime}, t, \vec{J}_{k l}, 0,0\right) \\
& \psi\left(\vec{X}, t, \vec{J}_{k l}, 0,1\right)=-\psi\left(\vec{X}^{\prime}, t, \vec{J}_{k l}, 1,0\right) \\
& \psi\left(\vec{X}, t, \vec{J}_{k l}, 1,0\right)=-\psi\left(\vec{X}^{\prime}, t, \vec{J}_{k l}, 0,1\right) \\
& \psi\left(\vec{X}, t, \vec{J}_{k l}, 1,1\right)=-\psi\left(\vec{X}^{\prime}, t, \vec{J}_{k l}, 1,1\right)
\end{aligned}
$$

4.2. Now we show that $G(\vec{X}, t)$ is homogenous of degree $\frac{n(n+1)}{2}$ with respect to the variables $\left(x_{0}, \ldots, x_{n}\right)$. Clearly any monomial in its monomial expansion must have degree at least $\frac{n(n+1)}{2}$ by antisymmetry. Suppose, therefore, that some monomial, m, in this expansion has degree larger than $\frac{n(n+1)}{2}$ in $\left(x_{0}, \ldots, x_{n}\right)$. It follows that m has degree greater than n (but no greater than $n+1$) in some variable x_{i}. We may assume, WLOG, this variable is x_{0}, that is, that m has degree $n+1$ in x_{0}.

Let $\vec{J}_{0}=\left(j_{1}, \ldots, j_{n}\right) \in\{0,1\}^{n}$ denote the values of j_{i} in \vec{J} for $i \neq 0$, so that:

$$
\begin{equation*}
G(\vec{X}, t)=\sum_{\vec{J}_{0} \in\{0,1\}^{n}}\left(\sum_{j_{0} \in\{0,1\}} \psi\left(\vec{X}, t, \vec{J}_{0}, j_{0}\right)\right) \tag{4.2}
\end{equation*}
$$

$G(\vec{X}, t)$ has no monomials of degree $n+1$ in x_{0} because the expression inside the parenthesis above never has any. Indeed, fix $\vec{J}_{0}=\left(j_{1}, \ldots, j_{n}\right)$. Then the entire degree $n+1$ (with respect to x_{0}) part of $\psi\left(\vec{X}, t, \vec{J}_{0}, 0\right)$ is given by:

$$
-x_{0}\left[\prod_{i=1}^{n}\left(X-x_{i}\right)^{1-j_{i}} x_{i}^{j_{i}}\right] x_{0}^{n}\left[\sum_{\sigma \in S_{n}}(-1)^{\operatorname{sgn}(\sigma)}\left(\prod_{i=1}^{n}\left(x_{i}-j_{i} t\right)^{n-\sigma(i)}\right)\right]
$$

whereas the entire degree $n+1$ (with respect to x_{0}) part of $\psi\left(\vec{X}, t, \vec{J}_{0}, 1\right)$ is given by:

$$
x_{0}\left[\prod_{i=1}^{n}\left(X-x_{i}\right)^{1-j_{i}} x_{i}^{j_{i}}\right] x_{0}^{n}\left[\sum_{\sigma \in S_{n}}(-1)^{\operatorname{sgn}(\sigma)}\left(\prod_{i=1}^{n}\left(x_{i}-j_{i} t\right)^{n-\sigma(i)}\right)\right] .
$$

Hence the degree $n+1$ (with respect to x_{0}) of the expression inside the parenthesis in (4.2) is 0 , so it has no monomials of degree $n+1$ in x_{0}. We have established that each monomial in the monomial expansion of $G(\vec{X}, t)$ has total degree $\frac{n(n+1)}{2}$ in the variables $\left(x_{0}, \ldots, x_{n}\right)$.
4.3. Since $G(\vec{X}, t)$ is antisymmetric, homogenous of degree $\frac{n(n+1)}{2}$, with respect to $\left(x_{0}, \ldots, x_{n}\right)$, it is divisible by $V\left(x_{0}, \ldots, x_{n}\right)$, and the quotient has degree 0 in $\left(x_{0}, \ldots, x_{n}\right)$. That is, we may write:

$$
G(\vec{X}, t)=H(X, t) \times V\left(x_{0}, \ldots, x_{n}\right)
$$

for a function H, that only depends on the two variables, X and t. In this section, we compute $H(X, t)$.

For $\vec{J} \in\{0,1\}^{n+1}, \sigma \in S_{n+1}$, write:

$$
\begin{aligned}
\Pi(\vec{J}) & =\prod_{i=0}^{n}\left(X-x_{i}\right)^{1-j_{i}} x_{i}^{j_{i}} \\
V_{\sigma}(\vec{J}) & =(-1)^{\operatorname{sgn}(\sigma)}\left(x_{0}-j_{0} t_{0}\right)^{n-\sigma(0)} \cdots\left(x_{n}-j_{n} t_{n}\right)^{n-\sigma(n)}
\end{aligned}
$$

so that we have:

$$
G(\vec{X}, t)=\sum_{\vec{J} \in\{0,1\}^{n+1}}\left[\sum_{\sigma \in S_{n+1}} \Pi(\vec{J}) V_{\sigma}(\vec{J})\right]
$$

We make the following definitions:
(1) Let $p \in \mathbb{Z}\left[X, t, x_{0}, \ldots, x_{n}\right]$. Consider p as a polynomial in x_{0}, \ldots, x_{n} with coefficients in $\mathbb{Z}[X, t]$. Define $\delta(p) \in \mathbb{Z}[X, t]$ to be the coefficient of $x_{0}^{n} \cdots x_{n}^{0}$ in p.
(2) Let $p_{i} \in \mathbb{Z}\left[X, t, x_{i}\right]$. Consider p_{i} as a polynomial in x_{i} with coefficients in $\mathbb{Z}[X, t]$. Define $\delta_{i}\left(p_{i}\right) \in \mathbb{Z}[X, t]$ to be the coefficient of x_{i}^{n-i} in p_{i}.
(3) Define $\delta_{i j}=1$ if $i=j$, and $\delta_{i j}=0$ if $i \neq j$. (Kronecker delta function.)

Using these definitions, we may write:

$$
H(X, t)=\delta(G(\vec{X}, t))=\sum_{\vec{J} \in\{0,1\}^{n+1}}\left[\sum_{\sigma \in S_{n+1}} \delta\left(\Pi(\vec{J}) V_{\sigma}(\vec{J})\right)\right]
$$

Since $\Pi(\vec{J})$ is linear in each x_{i}, it follows that $\delta\left(\Pi(\vec{J}) V_{\sigma}(\vec{J})\right)=0$ unless $\sigma(i) \in$ $\{i, i+1\}$ for each i. The only such permutation is the identity, so,

$$
\begin{aligned}
H(X, t) & =\sum_{\vec{J} \in\{0,1\}^{n+1}} \delta\left(\Pi(\vec{J})\left(x_{0}-j_{0} t_{0}\right)^{n} \cdots\left(x_{n}-j_{n} t_{n}\right)^{0}\right) \\
& =\sum_{\vec{J} \in\{0,1\}^{n+1}} \delta\left(\prod_{i=0}^{n}\left[\left(X-x_{i}\right)^{1-j_{i}} x_{i}^{j_{i}}\left(x_{i}-j_{i} t\right)^{n-i}\right]\right) \\
& =\sum_{\vec{J} \in\{0,1\}^{n+1}}\left[\prod_{i=0}^{n} \delta_{i}\left(\left(X-x_{i}\right)^{1-j_{i}} x_{i}^{j_{i}}\left(x_{i}-j_{i} t\right)^{n-i}\right)\right] \\
& =\sum_{\vec{J} \in\{0,1\}^{n+1}}\left[\prod_{i=0}^{n} X^{\left(\delta_{0 j_{i}}\right)}((i-n) t)^{\left(\delta_{1 j_{i}}\right)}\right] .
\end{aligned}
$$

From this expression, we see that each monomial in the monomial expansion of $H(X, t)$ has total degree $n+1$ in the variables X, t. Thus we may write:

$$
\begin{aligned}
H(X, t)=\sum_{m=0}^{n+1} a_{m} X^{(n+1-m)} t^{m}, \quad \text { where }, \quad a_{m} & =\sum_{\vec{J}: \sum\left(j_{i}\right)=m}\left[\prod_{j_{i}=1}(i-n)\right] \\
& =\sum_{I \in\left(\sum_{m}^{\{0, \ldots, n\}}\right)}\left[\prod_{i \in I}(-i)\right]
\end{aligned}
$$

and where $(\underset{m}{\{0, \ldots, n\}})$ is the set of all m element subsets of $\{0, \ldots, n\}$. Moreover, if we write out the following expansion:

$$
\begin{aligned}
\prod_{r=0}^{n}(X-r t)=\sum_{m=0}^{n+1} b_{m} X^{(n+1-m)} t^{m}, \quad \text { we find: } \quad b_{m} & =\sum_{I \in(\{0, \ldots, n\})}\left[\prod_{i \in I}(-i)\right] \\
& \Longrightarrow H(X, t)=\prod_{r=0}^{n}(X-r t)
\end{aligned}
$$

and the lemma is complete.

5. Conclusion of Theorem 3.1

We apply (4.1) with $n=d, X=N+d, x_{i}=m_{i}$, and $t=1$, noting that $\left([N+d]-m_{i}\right)$ may be replaced by $\left(N+i-n_{i}\right)$ by the definition of m_{i}. This gives:

$$
\begin{aligned}
& \frac{(N+d)!}{(N-1)!} V\left(m_{0}, \ldots, m_{d}\right) \\
= & \sum_{\left(j_{0}, \ldots, j_{d}\right) \in\{0,1\}^{d+1}}\left(\left[\prod_{i=0}^{d}\left(N+i-n_{i}\right)^{1-j_{i}} m_{i}^{j_{i}}\right] V\left(m_{0}-j_{0}, \ldots, m_{d}-j_{d}\right)\right) .
\end{aligned}
$$

Multiplying both sides by:

$$
\left[\prod_{i=0}^{d} \frac{(N+i-1)!}{\left(N+i-n_{i}\right)!}\right] \frac{1}{m_{0}!\cdots m_{d}!}
$$

we have:

$$
\begin{aligned}
& {\left[\prod_{i=0}^{d} \frac{(N+i)!}{\left(N+i-n_{i}\right)!}\right] \frac{V\left(m_{0}, \ldots, m_{d}\right)}{m_{0}!\cdots m_{d}!} } \\
= & \sum_{\left(j_{0}, \ldots, j_{d}\right) \in\{0,1\}^{d+1}}\left(\left[\prod_{i=0}^{d} \frac{(N+i-1)!}{\left(N+i-n_{i}\right)!}\left(N+i-n_{i}\right)^{1-j_{i}} m_{i}^{j_{i}}\right] \frac{V\left(m_{0}-j_{0}, \ldots, m_{d}-j_{d}\right)}{m_{0}!\cdots m_{d}!}\right) \\
= & \sum_{\left(j_{0}, \ldots, j_{d}\right) \in\{0,1\}^{d+1}}\left(\left[\prod_{i=0}^{d} \frac{(N+i-1)!}{\left(N+i-n_{i}-1+j_{i}\right)!}\right] \frac{V\left(m_{0}-j_{0}, \ldots, m_{d}-j_{d}\right)}{\left(m_{0}-j_{0}\right)!\cdots\left(m_{d}-j_{d}\right)!}\right) .
\end{aligned}
$$

Equating the first and third lines above gives:

$$
F\left(N, n_{0}, \ldots, n_{d}\right)=\sum_{\left(j_{0}, \ldots, j_{d}\right) \in\{0,1\}^{d+1}} F\left(N-1, n_{0}-j_{1}, \ldots, n_{d}-j_{d}\right)
$$

This establishes Theorem 3.1.

6. The Hook Content Formula

Let $\mu=\left(n_{0}, \ldots, n_{d}\right)^{\prime}$ be a Young diagram. Then, by definition, we must have $n_{0} \geq \cdots \geq n_{d} \geq 1$. As noted earlier, this implies that if N is any nonnegative integer and we let $\vec{N}=\left(N, n_{0}, \ldots, n_{d}\right)$, then $\operatorname{SSYT}(N, \mu)=C(\vec{N})$. Moreover, since $\dagger(\vec{N})=1$, it follows by Theorem 3.1 that $C(\vec{N})=F(\vec{N})$, whence:

$$
\begin{equation*}
\operatorname{SSYT}(N, \mu)=\prod_{i=0}^{d} \frac{(N+i)!}{\left(N+i-n_{i}\right)!} \times \frac{V\left(m_{0}, \ldots, m_{d}\right)}{m_{0}!\cdots m_{d}!} \tag{6.1}
\end{equation*}
$$

(Again, we use the notation $m_{i}=n_{i}+d-i$).
On the other hand, the Hook Content Formula states that:

$$
S S Y T(N, \mu)=\prod_{x_{i j} \in \mu} \frac{\left|x_{i j}\right|}{\left|h_{i j}\right|}=\left[\prod_{x_{i j} \in \mu}(N+i-j)\right]\left[\prod_{x_{i j} \in \mu} \frac{1}{\left|h_{i j}\right|}\right]
$$

[2]. It follows from the fact that $\mu=\left(n_{0}, \ldots, n_{d}\right)^{\prime}$ that:

$$
\prod_{x_{i j} \in \mu}(N+i-j)=\prod_{i=0}^{d} \frac{(N+i)!}{\left(N+i-n_{i}\right)!}
$$

so, the hook content formula will follow from (6.1) if we show that:
(*) $\prod_{x_{i j} \in \mu}\left|h_{i j}\right|=\frac{m_{0}!\cdots m_{d}!}{V\left(m_{0}, \ldots, m_{d}\right)}$, or equivalently, $\prod_{x_{i j} \in \lambda}\left|h_{i j}\right|=\frac{m_{0}!\cdots m_{d}!}{V\left(m_{0}, \ldots, m_{d}\right)}$,
[1] for $\lambda=\left(n_{0}, \ldots, n_{d}\right)=\mu^{\prime}$, since the product of hook lengths is invariant under conjugation.

To demonstrate the latter equality, first note that it may be rewritten as:

$$
\prod_{x_{i j} \in \lambda}\left|h_{i j}\right|=\prod_{i=0}^{d}\left[\frac{m_{i}!}{\prod_{j=i+1}^{d}\left(m_{i}-m_{j}\right)}\right]
$$

To establish the equation above, thereby proving $(*)$, we show that, for each i, the product of the hook lengths of the squares in row i of λ (denote λ_{i}) is given by:

$$
\begin{equation*}
\prod_{x_{i j} \in \lambda_{i}}\left|h_{i j}\right|=\frac{m_{i}!}{\prod_{j=i+1}^{d}\left(m_{i}-m_{j}\right)} \tag{6.2}
\end{equation*}
$$

[2, Ch. 7, p. 374]. First, note that, for any j such that $i<j \leq d$, the value of $m_{i}-m_{j}$ does not coincide with the hook length of any of the squares in λ_{i}. To see this, let $\overline{h_{i n_{j}}}$ be the hook obtained by removing from $h_{i n_{j}}$ all the squares below $x_{j-1 n_{j}}$. The path from $x_{d 0}$ to $x_{i n_{i}}$ along $h_{i 0}$ includes m_{i} squares. It follows that the path from $x_{d 0}$ to $x_{i n_{i}}$ that begins along $h_{j 0}$ and concludes along $\overline{h_{i n_{j}}}$ must also include m_{i} squares. Moreover, the path from $x_{d 0}$ to $x_{j n_{j}}$ along $h_{j 0}$ includes m_{j} squares. From this it follows that the length of $\overline{h_{i n_{j}}}$ is given by $m_{i}-m_{j}$. One easily observes that for $k \leq n_{j}$, $\left|h_{i k}\right|>\left|\overline{h_{i n_{j}}}\right|$, and for $k>n_{j},\left|h_{i k}\right|<\left|\overline{h_{i n_{j}}}\right|$. Hence, no square in row i of λ has hook length equal to $\left|\overline{h_{i n_{j}}}\right|=m_{i}-m_{j}$.

Let $H_{i}=\left\{\left|h_{i j}\right|: x_{i j} \in \lambda_{i}\right\}$, be the set of hook lengths in row i of λ (each hook in a row has a distinct length), let $K_{i}=\left\{\left(m_{i}-m_{j}\right): i<j \leq d\right\}$, and let $M_{i}=\left\{1, \ldots, m_{i}\right\}$. Now $H_{i} \subseteq M_{i}, K_{i} \subseteq M_{i}$, and:

$$
\#\left(H_{i}\right)+\#\left(K_{i}\right)=\left(n_{i}\right)+(d-i)=m_{i}=\#\left(M_{i}\right) .
$$

Further, by the argument above H_{i} and K_{i} are disjoint, so $H_{i} \dot{\cup} K_{i}=M_{i}$, whence:

$$
\prod_{x_{i j} \in \lambda_{i}}\left|h_{i j}\right|=\prod_{h \in H_{i}}(h)=\frac{\prod_{m \in M_{i}}(m)}{\prod_{k \in K_{i}}(k)}=\frac{m_{i}!}{\prod_{j=i+1}^{d}\left(m_{i}-m_{j}\right)},
$$

and (6.2) has been proven. This establishes (*), and The Hook Content Formula now follows.

References

[1] R.H. van Lint and R.M. Wilson, A Course in Combinatorics, 2nd ed., Cambridge University Press, Cambridge, 2001, pp. 162-166.
[2] Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999.

