A PROOF OF THE HCF

1. INTRODUCTION

For our purposes, a partition, written, A = (ng,...,nq) is simply a finite list of
weakly decreasing integers. (Indexing the n; starting on 0 will make a number of
later computations neater.) A Young diagram of shape A is an array of boxes with
n; boxes in the i'" row (again indexing beginning with 0). A Young diagram of
shape X or A “conjugate” is an array of boxes with n; boxes in the i** column. For
instance, a Young diagram of shape (4,3,1) (or of shape (3,2,2,1)') is drawn as
follows:

A semi-standard Young tableau or SSYT of parameters (N, A) (where N is a
nonegative integer) is a way of filling the boxes of a Young diagram of shape \ with
positive integers no greater than N so that the entries are weakly increasing across
rows, and strictly increasing down columns. For A as above, the following is an
SSYT of parameters (3,A):
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The hook h;; of box z;; is the rectilinear path from x;; up to the top row of A
and then across to the rightmost box in the top row. By the hook length of x;;,
expressed, |h;;|, we refer to the number of boxes in h;;. The content of box z;j,
denoted by |z;;/, is the number, N 4 i — j. For instance, for A as above, |ho1| =5
and, if N =3, then |zp1|=3+0—-1=2.

In the following, we prove the Hook Content Formula (HCF), namely that: The
number of SSYT of parameters (N, ) is given by:

|45

SSYT(N, N = []
xijeAl 7"7‘

2. THE SET-UP

Suppose d > 0, and we are given N > 0, and a list of (d+1) nonnegative integers,
ng,...,nq. Let vy,...,vx be alist of N, (d+ 1)-dimensional vectors, each of which
1
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is composed of 1’s and 0’s and such that:

N 1o
> ve=
k=1 ng
Define C(N,ng,...,nq) to be the number of choices of such a list such that for each
L
integer L € [1, N], the vector > vy is weakly decreasing from top to bottom.
k=1

If there exists ¢ € {1,...,d} such that n,_; < n;, then C(N,ng,...,nqg) =0. If
not, it follows that ng > - -+ > ng. If, in addition, ng # 0, then one can sheck that:

C(N,ng,...,ng) = SSYT(N, (ng,...,na)").

In this case (i.e.,, ng > -+ > ng and ng # 0) each n; > 1, so, if N > 1 as well,
we may write:

C(N,no,...,nd): Z C(N_17n0_j07"'7nd_jd)7
(Jo,--»Ja):di€{0,1}

Jo
where one should think of each possible vector of the form | : | as a possible value
Jd
for the final vector vy, in the list v1,...,vN.
3. CouNTING C(N,ng,...,n4)

Let d > 0 and let N = (N, ng, .. .,nq) be a (d+2)—tuple of nonnegative integers.
If, for all i € {1,...,d}, we have n;_1 + 1 > n;, define

—

T(N) = 1.
Otherwise, define
H(N) =0.
Moreover, let:
d .
(N +14)! V(mg,...,mq)
F(N =
( , o, ,Tld) g(N+Z—nz)'X mO'md| ’

where m; = n; +d —i for each i. We use the conventions that 0! = 1, and for n > 0,

1 AR
= lim () =0.
(7’/7,)' k— o0 —m
m=n

Theorem 3.1. Let d > 0 and let N = (N, ng,...,nq) be a (d+ 2)~tuple of non-
negative integers. We have:

HN) =0
N)=1

—
=



A PROOF OF THE HCF 3

Proof. We prove the theorem by induction on N. Let NV = 0. First, suppose that
T(Z\7) = 0. It follows that some n; # 0, whence, C(N) = 0. On the other hand,
suppose T(N) = 1. If each n; = 0, then C(N) = 1 = F(N). Otherwise some n; > 0,
and C(N) = 0. Moreover, in this case, either ng > 0 so that the left hand factor of
F(N) vanishes, or, for some i € {1,...,d}, we have n,_1 <n; (i.e,, n;—1 +1=n;),
so that the right hand factor of F(N) vanishes. Regardless, F(N) = 0. Thus,
Theorem 3.1 holds for N = 0.
Now suppose N > 1 and that 3.1 holds for N — 1. If (N) = 0 it is clear that
no
C’(ﬁ ) = 0 as claimed, as | @ | itself is not weakly decreasing from top to bottom.
Nd
Therefore, assume T(N') = 1. First, suppose that for some i € {1,...,d}, we
have n;—1; < n; (i.e., nj_1 +1 = n;). Clearly C’(Z\_f) = 0, and F(]\_f) = 0 as well,
because the right hand factor of F(]\7 ) vanishes. Hence, we may suppose that for
each i € {1,...,d}, we have n;_; > n;. Since both C(N) and F(N) are invariant
under the addition or removal of terminal 0’s from (ng,...,nq4), we may assume
WLOG that ng # 0. This implies that each n; > 1, which, in conjunction with the
fact that IV > 1, allows us to write:

C(N,'flo,-.-,nd) = Z C(N—l,no—jo,...,nd—jd)
(Jos--Ja):ji€{0,1}
= > F(N —1,n0—jo, ... nq — ja),

(Jos---ja):di€{0,1}

where the last equality follows by the inductive hypothesis and the fact that, for

each (jo, ..., Jq), we have (N —1,n0—jo,...,na—ja) = 1. Hence if we can establish

the identity:

(3.1) F(N,ng,...,ng) = > F(N = 1,10 — jo, ... nd — ja)-
(Gos---da):3i€{0,1}

we are done. ([

4. A USEFUL ALGEBRAIC RESULT

In the following lemma, we make use of the Vandermonde polynomial, V', which
is defined as:

V(!L‘o,...,l‘d): H (:L‘i—l'j).
0<i<j<d
In order to establish (3.1) we will need the following lemma:

Lemma 4.1. Write X = (X, z0,...,zn) and define:

n

G(X,1) > ([H(X - xi)ljixzi} V(o — jots- -y T — jnt)>.

(Jo,---sdn):3i€{0,1} =0

We have:

(4.1) G(X,t) = lﬁ(x—m)
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Proof. Before we start, we let J = (Jos - - - Jn) and write:

=

n
¢(X7 ta ) = |:H(X - xz)lj1sz:| V(.I‘O - j0t7 e Ty — Jnt)7
so that we have:

GX,ty= Y (Xt

Je{0,1}n+1

4.1. First, we show that G(X ,t) is antisymmetric with respect to transposition of
any two of the variables (zg, . .., 2,). Indeed, fix k and I such that 0 < k < I < n and

let Jy = (905« s Jh—1s bt 1y« - s J1—1s Ji41y - - 5 Jn) € {0,131 denote the values of
ji in J for i # k,l. Then,

G(Xat) = Z ( ,(/)(Xat7 j;clajkajl)) .
Jw€{0,1}7=1 \ (r.d1)€{0,1} x{0,1}

G()? ,t) is antisymmetric because the expression inside the large parenthesis
above is always antisymmetric. To see the latter, let X’ be the vector obtained
from X by switching x and x;. Then, for any fixed value of Ji; € {0,1}"71,

(Xt Ju,0,0) = —(X',t,J,0,0)

(Xt T 0,1) = —(X',t, T, 1,0)

WXt T, 1,0) = =X ¢, e, 0,1)

Xt T 1) = (Xt T, 1 1),
4.2. Now we show that G(X t) is homogenous of degree "("+1) with respect to the
variables (xq, ..., 2,). Clearly any monomial in its monomlal expansion must have
degree at least @ by antisymmetry. Suppose, therefore, that some monomial,

m, in this expansion has degree larger than % in (zg,...,%n). It follows that

m has degree greater than n (but no greater than n + 1) in some variable x;. We

may assume, WLOG, this variable is xg, that is, that m has degree n + 1 in .
Let Jo = (j1,...,jn) € {0,1}" denote the values of j; in J for i # 0, so that:

Jo€{0,1}n \jo€{0,1}

G()? ,t) has no monomials of degree n + 1 in zy because the expression inside the
parenthesis above never has any. Indeed, fix J_E) = (J1,-.-,Jn). Then the entire
degree n 4+ 1 (with respect to xg) part of ¥(X,t, Jy, 0) is given by:

ﬁ(X _ $Z)1_]l$zL] xg[ Z 5gn(a) <ﬁ T _j t n— U(i))]’

i=1 oES, i=1

—X0
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whereas the entire degree n + 1 (with respect to xg) part of w()? .t Jo, 1) is given
by:

To [H(X — xl)ljll,zz‘| al [ Z (71)sgn(a) (H(zz _ jit)na(i)>] '

i=1 oES, i=1

Hence the degree n+ 1 (with respect to zq) of the expression inside the parenthesis
in (4.2) is 0, so it has no monomials of degree n + 1 in z9. We have established
that each monomial in the monomial expansion of G ()Z' ,t) has total degree w
in the variables (o, ..., Z,).

4.3. Since G()_(' ,t) is antisymmetric, homogenous of degree @, with respect

to (xo,...,Zn), it is divisible by V(xg,...,x,), and the quotient has degree 0 in
(zo,...,2n). That is, we may write:

G(X,t) = H(X,t) x V(zo, ..., Tn),
for a function H, that only depends on the two variables, X and ¢. In this section,

we compute H(X,t).
For J € {0,1}"", o € S, 41, write:

n
) = [ —a)' 9l
Vo ( _') = (—1)Sgn(0)(z0 — jOtO)n—a(O) co(mpy — jntn)nﬂ:r(n)7
so that we have:

GX.t)= Y [ > TNV ()]

.fe{o’l}'rz+l cESnt1

We make the following definitions:

(1) Let p € Z[X,t,x0,...,x,]. Consider p as a polynomial in g, ...,z, with
coefficients in Z[X, t]. Define §(p) € Z[X,t] to be the coefficient of 2}y - - - 20
in p.

(2) Let p; € Z[X,t,2;]. Consider p; as a polynomial in z; with coefficients in
Z]X,t]. Define 6;(p;) € Z[X,t] to be the coefficient of 2" in p;.

(3) Define 6;; =1if i = j, and 6;; = 0 if 4 # j. (Kronecker delta function.)

Using these definitions, we may write:

H(X,t)=0GX, 1) = Y [Z 5(H(f)VU(J))].

fe{071}7l+1 0ESnt1
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Since TI() is linear in each x;, it follows that §(II(J)V,(J)) = 0 unless o (i) €
{i,i+ 1} for each i. The only such permutation is the identity, so,

HXH = % 6(H<*><zo—joto>“-~-<xn—m)“)

Je{0,1}n+1

- ¥ §<ﬁ{(X—xi)l_jfx{i(xi—jit)”_’})

Je{0,1}n+1 i=0
= .
= Z [Hél((X —xi)l_jix.’zi (mi _jit)n—i)]
Je{o,1yn+1 Li=0
= Z [ﬁ x (605,) ((Z _ n)t) (&j,ﬂ] '
Jefo,1}n+1 Li=0

From this expression, we see that each monomial in the monomial expansion of
H(X,t) has total degree n 4+ 1 in the variables X, ¢. Thus we may write:

+1
H(X,t) = ”z: A XTI where, Ay, = Z l H (i — n)]

m=0 T (Gi)=m L3i=1
- ¥ ||
re(tonmhy Lier
and where ({0"7'7‘1’”}) is the set of all m element subsets of {0,...,n}. Moreover, if

we write out the following expansion:

n n+1
[T =rt) =" b X1 e find: by, = > [H(—i)] ,

r=0 m=0 re(f0rmy Lier
=  H(X,t)=[[(X -rt),

r=0
and the lemma is complete. (Il

5. CONCLUSION OF THEOREM 3.1

We apply (4.1) with n = d, X = N +d, z; = m;, and t = 1, noting that
([N + d] — m;) may be replaced by (N +1i — n;) by the definition of m,. This gives:

(N +d)!
(N —1)!

d
= Z (lH(N—l—i—ni)l_jimzi

(Jos--»da)€{0,1}4+1 =0

Multiplying both sides by:

d .
(N+i—-1)! 1
[H (N—|—z—nl)'1 mo! - mg!’

Vimo,...,mq)

V(mo—jo,...,md—jd)>.

=0
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we have:

(N +i—1)! ,

V(mO_.j07"'7md_jd)

(]

mg! -+ myg!

(Jose--rja)€{0,1}d+1
3 ([ (N+i—1)
(Jose--2Ja)€{0,1}d+1 i=0 (N +i—mn; —1+7)!

d

(lH (N rismg Vi m)my
d
11

V(mo — jo,---,ma — ja)
(mo — jo)!+ -+ (ma — ja)!

Equating the first and third lines above gives:

F(N,no,...,nd): Z F(N—L’I’L()—jl,...,nd—jd).
(Jos---»5a)€{0,1}+1
This establishes Theorem 3.1.

6. THE Hook CONTENT FORMULA

Let = (ng,...,nq)" be a Young diagram. Then, by definition, we must have
ng > -+ > ng > 1. As noted earlier, this implies that if N is any nonnegative
integer and we let N = (N,ng,...,nq), then SSYT(N,u) = C(N). Moreover,
since 1(N) = 1, it follows by Theorem 3.1 that C(N) = F(N), whence:

d
(6.1) swﬂmmzﬂ(

=0

(N +1i)! " Vi(mo,...,mq)
N +i—mn;)! mol---mg!

(Again, we use the notation m; = n; +d — i).
On the other hand, the Hook Content Formula states that:

ij o 1
ssyrv =TT 52 = | I <N+zy>] l 11 M]?
zij€p Y Tij €M zigep Y
[2]. It follows from the fact that p = (ng,...,nq)" that:
d ,
. (N +1)!
=y o (N +17— nz)'

so, the hook content formula will follow from (6.1) if we show that:

mo! d* . mol---myg!
(%) |hij| = —————, or equivalently, |hij| = —————,
zlj_gu T V(mo, ..., ma) xlj_g YN Vime, ..., ma)
[1] for A = (ng,...,ng) = i, since the product of hook lengths is invariant under
conjugation.

To demonstrate the latter equality, first note that it may be rewritten as:

d

I = IT | |

T EN =0 H (ml _ mj)
j=i+1

)
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To establish the equation above, thereby proving (), we show that, for each i,
the product of the hook lengths of the squares in row ¢ of A (denote )\;) is given by:

my!
(62) IT thol= "
Tij ENi H (mi — mj)
j=itl

[2, Ch. 7, p. 374]. First, note that, for any j such that ¢ < j < d, the value
of m; — m; does not coincide with the hook length of any of the squares
in )\;. To see this, let m be the hook obtained by removing from hmj
all the squares below z;_1,,;. The path from x40 to zi, along h;o includes
m; squares. It follows that the path from w49 to x;,, that begins along h;o

and concludes along hj,; must also include m; squares. Moreover, the path
from w49 to @j,,; along hjo includes m; squares. From this it follows that

the length of h,; is given by m; —m;. One easily observes that for k < nj,
|hik| > [hin,|, and for k > nj, |hi| < [hin,|. Hence, no square in row i of A
has hook length equal to |hiy,| = m; —m;.

Xio xmj xani
xj——lnj
Xip X -
J I hig
h
Xao
h;, .
in;

Let H; = {|hi;| : ;; € A}, be the set of hook lengths in row i of A (each
hook in a row has a distinct length), let K; = {(m; — m;) : ¢ < j < d}, and let
Mz‘ = {1, e ,mi}. Now H’i - Mi7 K’i - ]\41'7 and:

#(Hi) + #(Ks) = (ni) + (d — i) = mi = #(M;).
Further, by the argument above H; and K; are disjoint, so H;UK; = M;, whence:

e e, vt T (mi—my)
j=i+1
and (6.2) has been proven. This establishes (x), and The Hook Content Formula
now follows.
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