A PROOF OF THE HCF

1. INTRODUCTION

For our purposes, a partition, written, $\lambda = (n_0, \ldots, n_d)$ is simply a finite list of weakly decreasing integers. (Indexing the n_i starting on 0 will make a number of later computations neater.) A Young diagram of shape λ is an array of boxes with n_i boxes in the i^{th} row (again indexing beginning with 0). A Young diagram of shape λ' or λ "conjugate" is an array of boxes with n_i boxes in the i^{th} column. For instance, a Young diagram of shape (4,3,1) (or of shape (3,2,2,1)') is drawn as follows:

A semi-standard Young tableau or SSYT of parameters (N, λ) (where N is a nonegative integer) is a way of filling the boxes of a Young diagram of shape λ with positive integers no greater than N so that the entries are weakly increasing across rows, and strictly increasing down columns. For λ as above, the following is an SSYT of parameters $(3, \lambda)$:

1	1	2	3
2	2	3	
3			

The hook h_{ij} of box x_{ij} is the rectilinear path from x_{ij} up to the top row of λ and then across to the rightmost box in the top row. By the hook length of x_{ij} , expressed, $|h_{ij}|$, we refer to the number of boxes in h_{ij} . The content of box x_{ij} , denoted by $|x_{ij}|$, is the number, N + i - j. For instance, for λ as above, $|h_{01}| = 5$ and, if N = 3, then $|x_{01}| = 3 + 0 - 1 = 2$.

In the following, we prove the Hook Content Formula (HCF), namely that: The number of SSYT of parameters (N, λ) is given by:

$$SSYT(N, \lambda) = \prod_{x_{ij} \in \lambda} \frac{|x_{ij}|}{|h_{ij}|}$$

[2]

2. The Set-Up

Suppose $d \ge 0$, and we are given $N \ge 0$, and a list of (d+1) nonnegative integers, n_0, \ldots, n_d . Let v_1, \ldots, v_N be a list of N, (d+1)-dimensional vectors, each of which

is composed of 1's and 0's and such that:

$$\sum_{k=1}^{N} v_k = \begin{bmatrix} n_0 \\ \vdots \\ n_d \end{bmatrix}.$$

Define $C(N, n_0, \ldots, n_d)$ to be the number of choices of such a list such that for each integer $L \in [1, N]$, the vector $\sum_{k=1}^{L} v_k$ is weakly decreasing from top to bottom. If there exists $i \in \{1, \dots, d\}$ such that $n_{i-1} < n_i$, then $C(N, n_0, \dots, n_d) = 0$. If

not, it follows that $n_0 \geq \cdots \geq n_d$. If, in addition, $n_d \neq 0$, then one can sheck that:

$$C(N, n_0, \ldots, n_d) = SSYT(N, (n_0, \ldots, n_d)').$$

In this case (i.e., $n_0 \ge \cdots \ge n_d$ and $n_d \ne 0$) each $n_i \ge 1$, so, if $N \ge 1$ as well, we may write:

$$C(N, n_0, \dots, n_d) = \sum_{(j_0, \dots, j_d): j_i \in \{0, 1\}} C(N - 1, n_0 - j_0, \dots, n_d - j_d),$$

where one should think of each possible vector of the form $\begin{bmatrix} j_0 \\ \vdots \\ j_d \end{bmatrix}$ as a possible value

for the final vector v_N , in the list v_1, \ldots, v_N .

3. Counting
$$C(N, n_0, \ldots, n_d)$$

Let $d \ge 0$ and let $\vec{N} = (N, n_0, \dots, n_d)$ be a (d+2)-tuple of nonnegative integers. If, for all $i \in \{1, \ldots, d\}$, we have $n_{i-1} + 1 \ge n_i$, define

$$\dagger(N) = 1.$$

Otherwise, define

$$\dagger(\vec{N}) = 0.$$

Moreover, let:

$$F(N, n_0, \dots, n_d) = \prod_{i=0}^d \frac{(N+i)!}{(N+i-n_i)!} \times \frac{V(m_0, \dots, m_d)}{m_0! \cdots m_d!},$$

where $m_i = n_i + d - i$ for each *i*. We use the conventions that 0! = 1, and for n > 0,

$$\frac{1}{(-n)!} = \lim_{k \to \infty} \prod_{m=n}^{k} \left(\frac{1}{-m}\right) = 0.$$

Theorem 3.1. Let $d \ge 0$ and let $\vec{N} = (N, n_0, \dots, n_d)$ be a (d+2)-tuple of nonnegative integers. We have:

$$\begin{split} &\dagger(\vec{N})=0 \quad \Longrightarrow \quad C(\vec{N})=0 \\ &\dagger(\vec{N})=1 \quad \Longrightarrow \quad C(\vec{N})=F(\vec{N}). \end{split}$$

Proof. We prove the theorem by induction on N. Let N = 0. First, suppose that $\dagger(\vec{N}) = 0$. It follows that some $n_i \neq 0$, whence, $C(\vec{N}) = 0$. On the other hand, suppose $\dagger(\vec{N}) = 1$. If each $n_i = 0$, then $C(\vec{N}) = 1 = F(\vec{N})$. Otherwise some $n_i > 0$, and $C(\vec{N}) = 0$. Moreover, in this case, either $n_0 > 0$ so that the left hand factor of $F(\vec{N})$ vanishes, or, for some $i \in \{1, \ldots, d\}$, we have $n_{i-1} < n_i$ (i.e., $n_{i-1} + 1 = n_i$), so that the right hand factor of $F(\vec{N})$ vanishes. Regardless, $F(\vec{N}) = 0$. Thus, Theorem 3.1 holds for N = 0.

Now suppose $N \ge 1$ and that 3.1 holds for N - 1. If $\dagger(\vec{N}) = 0$ it is clear that $\begin{bmatrix} n_0 \\ \ddots \end{bmatrix}$

 $C(\vec{N}) = 0$ as claimed, as $\begin{bmatrix} r_0 \\ \vdots \\ n_d \end{bmatrix}$ itself is not weakly decreasing from top to bottom.

Therefore, assume $\dagger(\vec{N}) = 1$. First, suppose that for some $i \in \{1, \ldots, d\}$, we have $n_{i-1} < n_i$ (i.e., $n_{i-1} + 1 = n_i$). Clearly $C(\vec{N}) = 0$, and $F(\vec{N}) = 0$ as well, because the right hand factor of $F(\vec{N})$ vanishes. Hence, we may suppose that for each $i \in \{1, \ldots, d\}$, we have $n_{i-1} \ge n_i$. Since both $C(\vec{N})$ and $F(\vec{N})$ are invariant under the addition or removal of terminal 0's from (n_0, \ldots, n_d) , we may assume WLOG that $n_d \ne 0$. This implies that each $n_i \ge 1$, which, in conjunction with the fact that $N \ge 1$, allows us to write:

$$C(N, n_0, \dots, n_d) = \sum_{\substack{(j_0, \dots, j_d): j_i \in \{0, 1\}}} C(N - 1, n_0 - j_0, \dots, n_d - j_d)$$

=
$$\sum_{\substack{(j_0, \dots, j_d): j_i \in \{0, 1\}}} F(N - 1, n_0 - j_0, \dots, n_d - j_d),$$

where the last equality follows by the inductive hypothesis and the fact that, for each (j_0, \ldots, j_d) , we have $\dagger (N-1, n_0-j_0, \ldots, n_d-j_d) = 1$. Hence if we can establish the identity:

(3.1)
$$F(N, n_0, \dots, n_d) = \sum_{(j_0, \dots, j_d): j_i \in \{0, 1\}} F(N - 1, n_0 - j_0, \dots, n_d - j_d).$$

we are done.

4. A Useful Algebraic Result

In the following lemma, we make use of the Vandermonde polynomial, V, which is defined as:

$$V(x_0,\ldots,x_d) = \prod_{0 \le i < j \le d} (x_i - x_j).$$

In order to establish (3.1) we will need the following lemma:

Lemma 4.1. Write $\vec{X} = (X, x_0, \dots, x_n)$ and define:

$$G(\vec{X},t) = \sum_{(j_0,\dots,j_n): j_i \in \{0,1\}} \left(\left[\prod_{i=0}^n (X-x_i)^{1-j_i} x_i^{j_i} \right] V(x_0 - j_0 t,\dots,x_n - j_n t) \right).$$

We have:

(4.1)
$$G(\vec{X},t) = \left[\prod_{r=0}^{n} (X-rt)\right] V(x_0,\ldots,x_n),$$

Proof. Before we start, we let $\vec{J} = (j_0, \ldots, j_n)$ and write:

$$\psi(\vec{X}, t, \vec{J}) = \left[\prod_{i=0}^{n} (X - x_i)^{1 - j_i} x_i^{j_i}\right] V(x_0 - j_0 t, \dots, x_n - j_n t),$$

so that we have:

$$G(\vec{X},t) = \sum_{\vec{J} \in \{0,1\}^{n+1}} \psi(\vec{X},t,\vec{J}).$$

4.1. First, we show that $G(\vec{X}, t)$ is antisymmetric with respect to transposition of any two of the variables (x_0, \ldots, x_n) . Indeed, fix k and l such that $0 \le k < l \le n$ and let $\vec{J_{kl}} = (j_0, \ldots, j_{k-1}, j_{k+1}, \ldots, j_{l-1}, j_{l+1}, \ldots, j_n) \in \{0, 1\}^{n-1}$ denote the values of j_i in \vec{J} for $i \ne k, l$. Then,

$$G(\vec{X},t) = \sum_{\vec{J}_{kl} \in \{0,1\}^{n-1}} \left(\sum_{(j_k,j_l) \in \{0,1\} \times \{0,1\}} \psi(\vec{X},t,\vec{J}_{kl},j_k,j_l) \right).$$

 $G(\vec{X}, t)$ is antisymmetric because the expression inside the large parenthesis above is always antisymmetric. To see the latter, let \vec{X}' be the vector obtained from \vec{X} by switching x_k and x_l . Then, for any fixed value of $\vec{J}_{kl} \in \{0, 1\}^{n-1}$,

$$\begin{split} \psi(\vec{X},t,\vec{J}_{kl},0,0) &= -\psi(\vec{X}',t,\vec{J}_{kl},0,0) \\ \psi(\vec{X},t,\vec{J}_{kl},0,1) &= -\psi(\vec{X}',t,\vec{J}_{kl},1,0) \\ \psi(\vec{X},t,\vec{J}_{kl},1,0) &= -\psi(\vec{X}',t,\vec{J}_{kl},0,1) \\ \psi(\vec{X},t,\vec{J}_{kl},1,1) &= -\psi(\vec{X}',t,\vec{J}_{kl},1,1). \end{split}$$

4.2. Now we show that $G(\vec{X}, t)$ is homogenous of degree $\frac{n(n+1)}{2}$ with respect to the variables (x_0, \ldots, x_n) . Clearly any monomial in its monomial expansion must have degree at least $\frac{n(n+1)}{2}$ by antisymmetry. Suppose, therefore, that some monomial, m, in this expansion has degree larger than $\frac{n(n+1)}{2}$ in (x_0, \ldots, x_n) . It follows that m has degree greater than n (but no greater than n + 1) in some variable x_i . We may assume, WLOG, this variable is x_0 , that is, that m has degree n + 1 in x_0 .

Let $\vec{J}_0 = (j_1, \dots, j_n) \in \{0, 1\}^n$ denote the values of j_i in \vec{J} for $i \neq 0$, so that:

(4.2)
$$G(\vec{X},t) = \sum_{\vec{J}_0 \in \{0,1\}^n} \left(\sum_{j_0 \in \{0,1\}} \psi(\vec{X},t,\vec{J}_0,j_0) \right)$$

 $G(\vec{X},t)$ has no monomials of degree n+1 in x_0 because the expression inside the parenthesis above never has any. Indeed, fix $\vec{J_0} = (j_1, \ldots, j_n)$. Then the entire degree n+1 (with respect to x_0) part of $\psi(\vec{X},t,\vec{J_0},0)$ is given by:

$$-x_0 \left[\prod_{i=1}^n (X-x_i)^{1-j_i} x_i^{j_i} \right] x_0^n \left[\sum_{\sigma \in S_n} (-1)^{sgn(\sigma)} \left(\prod_{i=1}^n (x_i - j_i t)^{n-\sigma(i)} \right) \right],$$

whereas the entire degree n + 1 (with respect to x_0) part of $\psi(\vec{X}, t, \vec{J}_0, 1)$ is given by:

$$x_0 \left[\prod_{i=1}^n (X - x_i)^{1 - j_i} x_i^{j_i} \right] x_0^n \left[\sum_{\sigma \in S_n} (-1)^{sgn(\sigma)} \left(\prod_{i=1}^n (x_i - j_i t)^{n - \sigma(i)} \right) \right].$$

Hence the degree n+1 (with respect to x_0) of the expression inside the parenthesis in (4.2) is 0, so it has no monomials of degree n+1 in x_0 . We have established that each monomial in the monomial expansion of $G(\vec{X}, t)$ has total degree $\frac{n(n+1)}{2}$ in the variables (x_0, \ldots, x_n) .

4.3. Since $G(\vec{X}, t)$ is antisymmetric, homogenous of degree $\frac{n(n+1)}{2}$, with respect to (x_0, \ldots, x_n) , it is divisible by $V(x_0, \ldots, x_n)$, and the quotient has degree 0 in (x_0, \ldots, x_n) . That is, we may write:

$$G(\vec{X},t) = H(X,t) \times V(x_0,\ldots,x_n),$$

for a function H, that only depends on the two variables, X and t. In this section, we compute H(X, t).

For $\vec{J} \in \{0, 1\}^{n+1}$, $\sigma \in S_{n+1}$, write:

$$\Pi(\vec{J}) = \prod_{i=0}^{n} (X - x_i)^{1 - j_i} x_i^{j_i}$$

$$V_{\sigma}(\vec{J}) = (-1)^{sgn(\sigma)} (x_0 - j_0 t_0)^{n - \sigma(0)} \cdots (x_n - j_n t_n)^{n - \sigma(n)},$$

so that we have:

$$G(\vec{X},t) = \sum_{\vec{J} \in \{0,1\}^{n+1}} \left[\sum_{\sigma \in S_{n+1}} \Pi(\vec{J}) V_{\sigma}(\vec{J}) \right].$$

We make the following definitions:

- (1) Let $p \in \mathbb{Z}[X, t, x_0, \dots, x_n]$. Consider p as a polynomial in x_0, \dots, x_n with coefficients in $\mathbb{Z}[X, t]$. Define $\delta(p) \in \mathbb{Z}[X, t]$ to be the coefficient of $x_0^n \cdots x_n^n$ in p.
- (2) Let $p_i \in \mathbb{Z}[X, t, x_i]$. Consider p_i as a polynomial in x_i with coefficients in $\mathbb{Z}[X, t]$. Define $\delta_i(p_i) \in \mathbb{Z}[X, t]$ to be the coefficient of x_i^{n-i} in p_i .
- (3) Define $\delta_{ij} = 1$ if i = j, and $\delta_{ij} = 0$ if $i \neq j$. (Kronecker delta function.)

Using these definitions, we may write:

$$H(X,t) = \delta(G(\vec{X},t)) = \sum_{\vec{J} \in \{0,1\}^{n+1}} \left[\sum_{\sigma \in S_{n+1}} \delta\left(\Pi(\vec{J})V_{\sigma}(\vec{J})\right) \right].$$

Since $\Pi(\vec{J})$ is linear in each x_i , it follows that $\delta(\Pi(\vec{J})V_{\sigma}(\vec{J})) = 0$ unless $\sigma(i) \in$ $\{i, i+1\}$ for each *i*. The only such permutation is the identity, so,

$$H(X,t) = \sum_{\vec{J} \in \{0,1\}^{n+1}} \delta \left(\Pi(\vec{J})(x_0 - j_0 t_0)^n \cdots (x_n - j_n t_n)^0 \right)$$

$$= \sum_{\vec{J} \in \{0,1\}^{n+1}} \delta \left(\prod_{i=0}^n \left[(X - x_i)^{1 - j_i} x_i^{j_i} (x_i - j_i t)^{n-i} \right] \right)$$

$$= \sum_{\vec{J} \in \{0,1\}^{n+1}} \left[\prod_{i=0}^n \delta_i \left((X - x_i)^{1 - j_i} x_i^{j_i} (x_i - j_i t)^{n-i} \right) \right]$$

$$= \sum_{\vec{J} \in \{0,1\}^{n+1}} \left[\prod_{i=0}^n X^{(\delta_{0j_i})} ((i - n)t)^{(\delta_{1j_i})} \right].$$

From this expression, we see that each monomial in the monomial expansion of H(X,t) has total degree n+1 in the variables X, t. Thus we may write:

$$H(X,t) = \sum_{m=0}^{n+1} a_m X^{(n+1-m)} t^m, \quad \text{where,} \quad a_m = \sum_{\substack{J: \sum (j_i) = m \\ I \in \binom{\{0,\dots,n\}}{m}}} \left[\prod_{i \in I} (i-n) \right],$$

and where $\binom{\{0,\ldots,n\}}{m}$ is the set of all *m* element subsets of $\{0,\ldots,n\}$. Moreover, if we write out the following expansion:

$$\prod_{r=0}^{n} (X - rt) = \sum_{m=0}^{n+1} b_m X^{(n+1-m)} t^m, \quad \text{we find:} \quad b_m = \sum_{I \in \binom{\{0,\dots,n\}}{m}} \left[\prod_{i \in I} (-i) \right],$$
$$\implies \quad H(X,t) = \prod_{r=0}^{n} (X - rt),$$
and the lemma is complete.

and the lemma is complete.

5. Conclusion of Theorem 3.1

We apply (4.1) with n = d, X = N + d, $x_i = m_i$, and t = 1, noting that $([N+d]-m_i)$ may be replaced by $(N+i-n_i)$ by the definition of m_i . This gives:

$$\frac{(N+d)!}{(N-1)!}V(m_0,\ldots,m_d) = \sum_{(j_0,\ldots,j_d)\in\{0,1\}^{d+1}} \left(\left[\prod_{i=0}^d (N+i-n_i)^{1-j_i} m_i^{j_i} \right] V(m_0-j_0,\ldots,m_d-j_d) \right).$$

Multiplying both sides by:

$$\left[\prod_{i=0}^d \frac{(N+i-1)!}{(N+i-n_i)!}\right] \frac{1}{m_0!\cdots m_d!},$$

6

we have:

$$\begin{bmatrix} \prod_{i=0}^{d} \frac{(N+i)!}{(N+i-n_i)!} \end{bmatrix} \frac{V(m_0, \dots, m_d)}{m_0! \cdots m_d!}$$

=
$$\sum_{(j_0,\dots,j_d) \in \{0,1\}^{d+1}} \left(\left[\prod_{i=0}^{d} \frac{(N+i-1)!}{(N+i-n_i)!} (N+i-n_i)^{1-j_i} m_i^{j_i} \right] \frac{V(m_0 - j_0,\dots, m_d - j_d)}{m_0! \cdots m_d!} \right)$$

=
$$\sum_{(j_0,\dots,j_d) \in \{0,1\}^{d+1}} \left(\left[\prod_{i=0}^{d} \frac{(N+i-1)!}{(N+i-n_i-1+j_i)!} \right] \frac{V(m_0 - j_0,\dots, m_d - j_d)}{(m_0 - j_0)! \cdots (m_d - j_d)!} \right).$$

Equating the first and third lines above gives:

$$F(N, n_0, \dots, n_d) = \sum_{(j_0, \dots, j_d) \in \{0, 1\}^{d+1}} F(N-1, n_0 - j_1, \dots, n_d - j_d).$$

This establishes Theorem 3.1.

6. The Hook Content Formula

Let $\mu = (n_0, \ldots, n_d)'$ be a Young diagram. Then, by definition, we must have $n_0 \geq \cdots \geq n_d \geq 1$. As noted earlier, this implies that if N is any nonnegative integer and we let $\vec{N} = (N, n_0, \ldots, n_d)$, then $SSYT(N, \mu) = C(\vec{N})$. Moreover, since $\dagger(\vec{N}) = 1$, it follows by Theorem 3.1 that $C(\vec{N}) = F(\vec{N})$, whence:

(6.1)
$$SSYT(N,\mu) = \prod_{i=0}^{d} \frac{(N+i)!}{(N+i-n_i)!} \times \frac{V(m_0,\dots,m_d)}{m_0!\cdots m_d!}.$$

(Again, we use the notation $m_i = n_i + d - i$).

On the other hand, the Hook Content Formula states that:

$$SSYT(N,\mu) = \prod_{x_{ij} \in \mu} \frac{|x_{ij}|}{|h_{ij}|} = \left[\prod_{x_{ij} \in \mu} (N+i-j)\right] \left[\prod_{x_{ij} \in \mu} \frac{1}{|h_{ij}|}\right],$$

[2]. It follows from the fact that $\mu = (n_0, \ldots, n_d)'$ that:

$$\prod_{x_{ij} \in \mu} (N+i-j) = \prod_{i=0}^{d} \frac{(N+i)!}{(N+i-n_i)!},$$

so, the hook content formula will follow from (6.1) if we show that:

$$(*)\prod_{x_{ij}\in\mu}|h_{ij}|=\frac{m_0!\cdots m_d!}{V(m_0,\ldots,m_d)}, \text{ or equivalently, } \prod_{x_{ij}\in\lambda}|h_{ij}|=\frac{m_0!\cdots m_d!}{V(m_0,\ldots,m_d)},$$

[1] for $\lambda = (n_0, \ldots, n_d) = \mu'$, since the product of hook lengths is invariant under conjugation.

To demonstrate the latter equality, first note that it may be rewritten as:

$$\prod_{x_{ij}\in\lambda} |h_{ij}| = \prod_{i=0}^d \left[\frac{m_i!}{\prod_{j=i+1}^d (m_i - m_j)} \right].$$

A PROOF OF THE HCF

To establish the equation above, thereby proving (*), we show that, for each i, the product of the hook lengths of the squares in row i of λ (denote λ_i) is given by:

(6.2)
$$\prod_{x_{ij}\in\lambda_i} |h_{ij}| = \frac{m_i!}{\prod\limits_{j=i+1}^d (m_i - m_j)}$$

[2, Ch. 7, p. 374]. First, note that, for any j such that $i < j \leq d$, the value of $m_i - m_j$ does not coincide with the hook length of any of the squares in λ_i . To see this, let $\overline{h_{inj}}$ be the hook obtained by removing from h_{inj} all the squares below x_{j-1n_j} . The path from x_{d0} to x_{in_i} along h_{i0} includes m_i squares. It follows that the path from x_{d0} to x_{in_i} that begins along h_{j0} and concludes along $\overline{h_{inj}}$ must also include m_i squares. Moreover, the path from x_{d0} to x_{jn_j} along h_{j0} includes m_j squares. From this it follows that the length of $\overline{h_{inj}}$ is given by $m_i - m_j$. One easily observes that for $k \leq n_j$, $|h_{ik}| > |\overline{h_{inj}}|$, and for $k > n_j$, $|h_{ik}| < |\overline{h_{inj}}|$. Hence, no square in row i of λ has hook length equal to $|\overline{h_{inj}}| = m_i - m_j$.

Let $H_i = \{|h_{ij}| : x_{ij} \in \lambda_i\}$, be the set of hook lengths in row *i* of λ (each hook in a row has a distinct length), let $K_i = \{(m_i - m_j) : i < j \leq d\}$, and let $M_i = \{1, \ldots, m_i\}$. Now $H_i \subseteq M_i$, $K_i \subseteq M_i$, and:

$$#(H_i) + #(K_i) = (n_i) + (d - i) = m_i = #(M_i).$$

Further, by the argument above H_i and K_i are disjoint, so $H_i \dot{\cup} K_i = M_i$, whence:

$$\prod_{x_{ij}\in\lambda_i} |h_{ij}| = \prod_{h\in H_i} (h) = \frac{\prod_{m\in M_i} (m)}{\prod_{k\in K_i} (k)} = \frac{m_i!}{\prod_{j=i+1}^d (m_i - m_j)}$$

and (6.2) has been proven. This establishes (*), and The Hook Content Formula now follows.

References

 R.H. van Lint and R.M. Wilson, A Course in Combinatorics, 2nd ed., Cambridge University Press, Cambridge, 2001, pp. 162-166.

A PROOF OF THE HCF

[2] Richard P. Stanley, *Enumerative combinatorics. Vol. 2*, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999.