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Abstract

In the last decade the theory of the Quantum Hall effect for inter-
acting electrons in the thermodynamic limit was put on firm mathemat-
ical foundations. The solution rests on advances made by Hastings and
Michalakis[2, 10], Giuliani, Mastropietro and Porta, [8], Bachmann, De
Roeck and Fraas [4] and others [7, 6, 9, 10]. Here is a brief outline of
the main results and of one emergent insight.

1 Introduction

Almost 20 years ago M. Aizenman initiated a page of “Open problems in math-
ematical physics” on the IAMP web site 1. In 1999, Ruedi Seiler and myself ad-
vertised on this page the problem to put the theory of the Integer Quantum Hall
effect for interacting electrons in the thermodynamic limit on solid mathematical
foundations.

The problem was dormant for about 10 years. In 2009 an ArXiv article of Matt
Hastings and Spyridon Michalakis, [1], described a central pillar of the solution.
The paper, which also introduced new methods and techniques, is not quite bed-
time reading. Six years passed before it got published [2].

Alessandro Giuliani, Vieri Mastropietro and Marcello Porta [8] derived closely
related results using the methods of multi-scale analysis and Ward identities.

Both Hastings et al. and Giuliani et al. took Kubo formula for granted. Putting
Kubo’s formula on firm mathematical foundation is one of B. Simon 15 problems
[3]. Sven Bachmann, Wojciech de Roeck and Martin Fraas accomplished this for
gapped systems in [4].

This note attempts to briefly review these results and describe one non-technical
emergent insight.

1The page that does not exists anymore on the IAMP site.
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2 Background

Before describing the new results it is worthwhile to recall what was known about
the quantum Hall effect when the problem was posed in 1999.

• In 1983 Thouless et al. showed that Kubo formula for the Hall conductance
of non-interacting Fermion in a periodic potential can be identified with the
Chern number of a line bundle over the Brillouin zone. David Thouless
received the 2016 Nobel prize in Physics for this discovery.

• In 1985 Niu, Thouless and Wu and independently Avron and Seiler, described
a theory of adiabatic quantum transport for general interacting Hamiltonians
in an external gauge field A, of finite systems. The two fundamental periods
of the gauge field: (φ1, φ2), are identified with two Aharonov-Bohm flux
tubes that thread the physical system. The charge transport due to an
increase of one of the fluxes by period is given by the corresponding period
of the adiabatic curvature. The Chern number associated with the bundle of
ground states over (φ1, φ2) is the period of the adiabatic charge transport. It
was believed that for large systems the curvature and charge transport are
both flux independent, but a proof was missing.

• In 1988 Jean Bellissard extended the results of Thouless et al. to non-
interacting Fermions in random and quasi-periodic potentials for infinite sys-
tems. Kubo’s formula was identified with a suitable Fredholm index related
to Chern numbers in Non-commutative geometry. In 1990, Avron, Seiler
and Simon reformulated Bellissard finding in terms of the relative index of
projections.

In the works of Thouless et al. and Bellissard et al. the Hall conductances
of infinite two dimensional systems was identified with a topological invariant.
However, these results only applied to non-interacting Fermions. The results of
Thouless, Niu and Wu and Avron, Seiler are complementary in that they apply
for general interacting Hamiltonians and do not rely on Kubo’s formula, but the
methods used only apply to finite systems and can not handle large systems in the
thermodynamic limit.

3 Hastings and Michalakis: Quantized adiabatic curvature

Omitting technicalities, and stated somewhat cavalierly, Hastings and Michalakis
proved [2]
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Theorem 3.1 Let H(A, `) be a many body Hamiltonian acting on the Fock space
associated with Z2

` , with charge conserving short range interactions and gauge field
A. Denote by (φ1, φ2) the “twists” associated with the periods of A for the two
fundamental loops (γ1, γ2) of the torus, (see Fig. 1). Let P denote the projection of
the (non-degenerate) ground state separated by a gap. Then the adiabatic curvature
ω over (φ1, φ2)

ω = i T rΩ, Ω = P dP ∧ dP P

is quantized in multiples of (2π)−1 dφ1∧dφ2, up to an error that decays faster than
any power of `.

The proof rests on two new tools introduced into the theory of the Quantum
Hall Effect : A generator of transport in Range P with good localization properties,
and the Lieb-Robinson bound. The first tool was invented in 2004 by Hastings
who also pioneered the second tool in other contexts.

Bachmann et al. [6] gave a short proof of the constancy of the curvature under
the simplifying assumption of a gap for all fluxes. Below I shall attempt to give
a brief and informal account of the key underlying non-technical insight behind
both [2] and [6]. In the following I shall refer to ω as the scalar curvature and to
Ω as the operator valued curvature.

γ1

γ2

A

δA

Figure 1: The square represents the torus in coordinate space. The fundamental
periods γj are the black lines. The red stripes describe A near the fundamental
period and determine the fluxes, aka twists, φj. The variation δA is supported on
the blue stripes. The operator valued curvature Ω is localized near the intersection
of the blue stripes which is far from the fundamental periods γj.

Using the language of continuous gauge fields, the fluxes, or “twists”, are given
by

φj =

∮
γj

A (1)
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For a given magnetic field dA, the scalar curvature ω may then be viewed as a
function of φj. This follows from gauge covariance of the projection P . The gap
condition implies that ω(φ, `) is a smooth 2-form on the torus and the associated
Chern number is a well defined integer. The remarkable thing that we want to
explain is that the (scalar) curvature ω(φ, `) approaches a constant 2-form, inde-
pendent of φ, when the systems gets large. Since the total curvature is quantized,
the quantization of the scalar curvature, promised by the theorem, follows.

Unlike ω, the operator valued curvature Ω is gauge dependent and can not be
viewed as a function of the fluxes. It is a function of the gauge field A and its
variation δA. The variation enters because dP involved the variation of the flux
through δφj =

∮
γj
δA. The variation is constrained by dδA = 0, so the magnetic

field acting on the system remains the same, and only the fluxes are varied. This
is reflected in Fig. 1 where the variation is not localized to the intersection of γj
with the blue stripes, but rather spreads to the entire blue stripes.

The variations dP , is related to the variation dH, which is localized near δA.
Since Ω is the wedge product of the variations dP , it is localized near the inter-
section of the variations δA (provided P and dP are localized).

Since there is gauge freedom in choosing δA it now remains to make a good
choice. The two blue stripes in Fig. 1 represent a choice which localizes Ω near
the blue square where the blue stripes intersect. Ω is now localized far from the
periods γj that determine the fluxes φj. It follows that the local part of Ω is
essentially independent of A near the periods γj. The value of the fluxes does not
matter.

This argument uses the localization properties of P and dP . Note that one
may replace dP in the definition of Ω by the commutator equation for dK:

dP = i[dK, P ]

which allows to write the curvature as

Ω = −P dK ∧ dK P

Hastings gave an explicit expression for dK whose localization properties mimic
those of dH.

Lieb-Robinson’s bounds are used to rigorously control the commutators in Ω
and show that Ω inherits the localization properties of dK.

Building on earlier works with Bravyi and Michalakis, Hastings recently proved
the existences of a gap for certain weakly interacting systems [10], putting the icing
on the cake.
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3.1 Ward identities and cluster expansion

Using very different methods, Giuliani, Mastropietro and Porta [8] proved the
following theorem, glibly stated:

Theorem 3.2 Kubo formula for the Hall conductance for a gapped non-interacting
translation invariant Fermionic systems equals the conductance of the correspond-
ing weakly interacting systems in the thermodynamic limit.

This show the universality of the quantum Hall conductivity in the sense that
it is independent of the interaction strength (for weak interactions) and provides
the value of the Hall coefficient.

The main ingredients of the proof are:

• Construction and proof of analyticity of the ground state Euclidean correla-
tions, uniformly in the system size, via fermionic cluster expansion methods.

• Proof of the Wick rotation for the ground state Kubo conductivity (i.e., the
Kubo conductivity is equal to its Euclidean counterpart).

• Proof that all the terms in the perturbation series in powers of the interaction
series for the Euclidean Kubo conductivity, vanish identically. This follows
from a combination of Ward Identities with Schwinger-Dyson equations.

Giuliani et. al. [9] also proved the quantization and universality of the Hall
coefficient in the gapless case of the the weakly interacting Haldane model.

4 Kubo’s formula: Bachmann, den Roeck and Fraas

In 1984 B. Simon formulated a list of 15 problems in Mathematical Physics. Prob-
lem 4 concerns transport theory. This is what he says:

“There are [also] serious foundation questions in quantum transport. A basic
formula in condensed matter physics is the Kubo formula for conduction . . . . Not
only are the usual derivation suspect but van Kempen among others has seriously
questioned its validity on Physical grounds.

Probelm 4B: Either justify Kubo’s formula is a quantum model or else find an
alternate theory of conductivity.”

Linear response theory involves taking limits: The thermodynamic limit of a
large system, the linear response limit of weak perturbation and also the limit of
adiabatic switching of the perturbation. Proving Kubo’s formula requires control-
ling the limits and taking them in the correct order where the thermodynamic
limit is taken first.
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Bachmann et al. [4, 5] proved the validity of Kubo formula for for gapped,
translation invariant, interacting spin systems with short range interactions. In
particular, they proved the commutativity of the thermodynamic and linear re-
sponse limits. They rely on the tools introduced by Hastings: The Lieb-Robinson
bounds and the generator of evolution dK of the previous section.

Bachmann et al. [4, 5] also adapted adiabatic theory to the setting of macro-
scopic systems. The usual, Schrödinger picture of following the quantum state
does not work for thermodynamic systems because tiny local errors accumulate as
the system gets large and make the approximate state a poor approximant. The
way out is to focus instead on the Heisenberg picture of adiabatic evolution of local
observable. The adiabatic framework treats rigorously the “adiabatic switching”
which is central in linear response and prove Kubo’s formula for static perturba-
tions.

In subsequent works Teufel et al. [7] and [6] extended the results in [4, 5]
to adiabatic transport in the Quantum Hall Effect . This involves, among other
things, extending the theory from spins to Fermions, and to currents generated by
time dependent gauge fields. The strategy of [4, 5] works in the Quantum Hall
Effect for, as we have seen, the curvature is associated with a local observable,
lying in the intersection of the blue stripes.

The results of [4, 5, 6] and [7] complement those of Hastings et al. and Giuliani
et al. who took Kubo formula for granted.
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