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ABSTRACT

The relationship between cohomology and the quantization of certain coupling
constants in physics is discussed. A brief discussion ja given about the rela-
tionship between cohomology and the Schrédinger wavefunction in field theories
with quantized coupling constants.

1 Introduction

The relationship between charge quantization and topology goes back to Dirac [1]. Tn
recent years, a flurry of research has gone into elucidaling the relationships among geometry,
topology and quantum field theory. In pariicular, physicists have discovered that homotopy
arguments are very useful in understanding quantization conditiona. It ia also possible to use
coliomology arguments to obtain the same quantization conditions. These ideas have been
discussed in detail in a paper [2]. In this talk | present a brief introduction to the subject.
1 will also discuss the classilication of Schrddinger wavefunctions in a quantum field theory,
This seems Lo be intimately related to the Cech cohomology ideas used in the topological
quantization argutnents. The bulk of the wavelunction study is still unpublished 3],

There are three very familiar quantization conditions in quantum field theory: magnetic
charge quantization (1], quantization [4] of the Yang-Mills mass term [5] and the quantiza-
tion {6] uf Lhe conpling of the Wess-Zumine Lagrangian [7]. Part of the Lagrangian for each
of these theories can be interpreted as a dillerential forin. The Lagrangian will be written
as bhe sum of two terms £ = Lo 4- T where T is the term of topological significance and

‘Invited plenary talk at the Symposium on Anomalies, Geometry and Topology, March 28-30, 1985

*This work was aupported in part by the National Science Foundalion under Contracts PHY81-18647; and
by the Director, Office of High Energy and Nuclear Physica of the U.S. Department of Energy under
Contract DE- AC03-705F00098.

*Alfred P. Sloan Foundation Fellow

magnetic | [T ~ [A,dtdl ]
monopole ~ [ A, dz*

Y-M [T ~[e™ (A 0,4, ) &z
masa ~ [Tr(ANdAY -}

W-Z T ~fe™ Ie(xdmd,nt--Ydiz
{d=2) ~ fPe(rdn Adn t )

£y includes the kinetic energy terms and interactions which will not concern us. The three
“lopological” Lagrangians for each of the theories are scheinatically presented in the table.
The Lagrangians have the following in common:

1. Lg is globally delined.
2, T has special properties;

{a) T may be interpreted as a differential form.
(b} Under an appropriate transformation T changes by a total derivative.!
(¢} 7 is not globally defined.

The common properties of the topological part of the Lagrangian, denoted by T, wilt lead
to the topological quantization conditions,

2 Dirac’s Quantization Condition Revisited

In this section, the famitiar Dirac quantization condition ig derived in a manaer illus-
trating Cech cohomolagical concepts. We will use a genevalization of some ideas of Wi and
Yang [8}. The mothods of this section extend to higher dimensional cases.

Consider the motion of u point particle on a two dimensional sphere with a magnetic
monopole residing at the center of the aphere. The classical Lagrangian for this system is

{ fdz\? 1 dz#
b=3 () + maFwk + 2,52

Tal\a) it "
The term of interest for us is Lhe coupling of the vector potential to the velocity of the
parlicle. This is the only term of topological interest and for the remaining part of this
section we will completely disregard the kinelic energy terms. We would like to view Lhis
Llerm as the line integral of the onc form A = A,dz* along the trajectory I of the particle:

Jot

This would be fine except for the fact that it is impossible to find an everywhere noa-
singular veclor potential over the eutire sphere. Wu and Yang [8] pointed out how to

*This should remind the reader of the classical mechanics theorem about the equivalence of Lagrangiana
that differ by a total time derivative.



Figure 1: The worldline of the particle which begins at I and ends at F traverses two
distinct coordinate patches. The point P is in the intersection of the two patches

modily the Lagrangian to take this into account. Cover the aphere with a collection of open
geta U = {U,}. On each open set choose a vector potential one form A,. The subseript a
on A, is not a Lorentz index and refera Lo the open cover: Ay = Aqudz”. Consider the
siluation depicted in Figure 1 where one has a trajectory I' that goes through a non-empty
overlap Uy N Upg. Let P be a point in the intersection. Naively one would write the vector
potential contribution tc the action as {remember that we are concentrating only on the
term of possible topological interest)

F r
1,,=/ A,,,+f Ap
p i

The problem with this definition is that it deperds on the choice of the point P. To see this,
consider another point @ in the overlap, constenct Iy and compute the difference I — Ip:

9
’Q—IP=—/P{A-:"A3)

We require knowledge of the gauge transformation on the overlap to evaluate the above.
On each overlap it is necessary to specify a pauge transformation yap satislying

dpeg = Ax — Ap
Note that —y,g = Yip,. Using the gauge transformation properties we see that:
fIg—1Ip= V”mﬂ(P) - '!’aﬂ(Q)
In particular the quantity I = fg -+ hap{@) is independent of the choice of point Q. More
explicitly, I is given by
F Q
I :/Q Ag 4 ",’aﬁ(Q) + fj’ Aﬂ

Thia is the correct form of the action which was given by Wu and Yang. It seems to be a
bit mysteticous but its significance is more discernible by thinking about quantum mechanics.

Figure 2; A third coordinate patch is introduced. The points P and Mt do not have to be
in the triple intersection

According to the Feynman path integral formulation of quantum mechanics [9], the effect
of a vector potential on propagation is to multiply the amplitudes by the exponential of
the above equation. Thin is simply seen to be the amplitude for propagation in patch Ug,
followed by a gauge translormation and terminating with the amplitude to propagale in the
new gauge in patch U,.

We now depart from the diascussion of Wu and Yang and we ask the question, “What
happens in a triple overlap?. The situation js depicted in Figure 2. Lel us temporarily
forget U,. The action is given by the Wu-Yang prescription. Remember that the value
of the action is independent of the location of Q. Let us rewrite this term in such a way
that coniribution to the line integral Irom the part of the trajectory between P and R
is expressed in terms of A, only. By using the gauge transformation faw for the vector
potential the action may be rewritten as:

F R P
= [ AatbaRy+ [ Art bop(P)+ [ g

()
+ {Fan(@) + 90:(@) + $10(@))
This equation is reminiscent of the Wu-Yang prescription. It is of the form line integral,
gauge transformation, line inlegral, gauge transformation, line integral, and a left over picce.
IL is important to note that the left over piece contains the only relerence to the point Q.
The other picces are just the Wu-Yang prescription for going from patch Ug to pateh U,
and ending in patch U,. We will see that the left over piece contains all the informalion
reguired to oblain Dirac’s quantization condition.
The first piece of information we need is that the gange transformations must salisly a



consistency condition on triple overtaps. Consider the following three equationa:
Aa — Ap = dipap

Ap — Ay = dipgy
Ay~ Ay =d,,

Add all three equations to obtain the result
d('paﬂ + ¢.31 + \b"ra) =0

To proceed further we need a special condition on the cover we chose for the sphere. 1t
is possible to choose a cover such that each Uy is dilfeomorphic Lo an open ball, and each
non-empty finite multiple intersection is also diffeomorphic to an open ball [10].This means
that the Poincaré Jemma is valid in each multiple intersection. In particular, we reach the
conclusion that on Uy N Ug N, one has

Yap + Ppy -+ Pya = Cagy

where ¢, is 8 constant over the entire triple overlap. Therefore equation (1) is independent
of @ as required.

There is an important lesson that this exercise teaches us. The classical action is am-
biguous up to a constant. A priort, one could use the Wu-Yang prescription to write an
expreasion involving patches Uy and Up only, or write an expreasion involving patches U,
Ug, U,. The difference between these two expressions is a constant which does not affect
the classical equations of motion.

This classical ambiguity leads to quantum mechanical inconsistencies unless certain
conditions are imposed on the collection of all {¢,g,}. The best way to sce this is through
path integral quantization, Consider the contribution of a trajectory T' to the non-relativistic

propagator:
exp (i/l:A) + Kigell')

The only ambiguity arises in how one decides to evaluale the vector potential line integral.
There is an ambiguous phase factor of exp(icag,). Such a polential ambiguity exists at each
non-empty iriple intersection of patches on the sphere. The only way to avoid this mishap is
to require that each phase factor be equal to one, In other words one has to choose all eog,,
to be 2x x {integer). Later we will see that this statement contains topological information
about the manifold. It states that if the manifold’s second cohomology class contains the
integers then a consistent quantum theory requires an apprapriate coupling constant to he
quantized. In fact, the collection {e.g,} delines a two cocycle.

The Dirac flux quantization condition is related to the two cocycle {capy}. With a little
work one can see that the total magnetic Bux is given by

for =3 e

Vasy

where the sum is over sll triple overlaps with V,p, = Ua nUg N U, N 5% We conclude that

the total flux ia given by
j:s“ F =292 Z Nagy

Vapy

where the integer n is given by
Cafy = 2% Nafy

This is Dirac’s quantization condilion. We shall see that this condition generalizes in higher
dimensions. Note that the quantization arose because of consistency conditions on triple
overlaps of the different coordinate patchiea. There ia a connection between the ambiguily
in the classical action and the total lux through the sphere. In the case of a sphere, the
construction given above is not necessary since one can cover the sphere with two coordinate
patches, sce Wu and Yang [8]. The above construction is valid for any manifold.

In Lhis example, one finds that no further conditions are impaosed by loaking at quadruple
or higlier overtapa, This is not true in two dimensional field theories as we will sec in the
next section.

3 Cech Cohomology

Cech cohomology is the correct language for formulating the examples presented in the
previous section. The machinery of Cech cohomology provides a means of cataloguing the
necessary information required Lo extract the physica. In this section we will explain the
relationship of Cech cohomology to the topology of the manifold, and we will also explain
the cataloguing procedure. We will not present Cech cohomology in ils most abstract
setting. The general theory will be stripped down to & level sulficient to atéack and solve
the problema addressed in this talk. We assume the reader is familiar with the elementary
aspects of simplicial homology [11], [£2]. Namely, the concept of simplices, the existence
of triangulations of a manifold, the notion of a chain {the formal sum of simplices), and
the concept of the boundary of a chain. It is clear that the topology of the manifold will
determine the allowed triangulations and that there are many possible triangulations. What
ia remarkable is that there are certain invarianta which are independent of the triangulations.
These invariants are the homology groups and their associated cohioinology groups.

We will formulate Cech homology in a way that the connection to simplicial homology
will be explicit. In all the manifolds we will consider it is always possible to choose an
open cover U = {U,) such that each open set and each non-empty finite intersection is
diffcomorphic to an open ball in " [10]. We will refer to these covers as good covers.
At this stage we have already tailored Cech theory to some specifics we require. A major
benefit of a good cover is that on cach intersection the Poincaré lemma holds.

On each non-empty finite intersection define objects U,pg, Ungy, Uapqs, ete. by

Un,,g =N Uﬁ
Uapr =UannUgn U,
Uaﬁ.,g =U,N Uﬁ N Un, nUs

We define a formal orientation by requiring that U5 = —Ug,, and likewise for the other
objects. This good cover of the manifold defines a simplicial triangulation of the manifold.
This is ilustrated in Figure 3. In cach open set U, we choose a point in the interior,
see Figure 3a . Theae points define the vertices of the trianguiation. To each non-empty
intersection we associale a one simplex, see Figure 3b . To each non-empty triple intersection
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Figure 3: a: an open set and its associated vertex. b: two intersecting open sets and the
associated segment. c: triply overlapping sets and the associated triangle.

we associate a two simplex, see Figure 3¢ . 1t ia clear that the combinatorics of a good cover
defines s simplicial triangulation of the manifold,

Qur main interest is not Cech homology theory but Cech cohomology theory. For our
purposes, Cech cohomology provides a systematic way of cataloguing information and a
systematic way of dealing with singular fields confligurations by avoiding the singularities.
We will see how the ideas discussed in the previous sections may be discussed in the language
of Cech cohomology.

A p-cochain with values in q-forms is an assignment of a nonsingular q-form to each
p-chain. As an example consider the monopole. In that case we assigned to ench open
set Uy 8 vector potential A,. The collection {A.} is a zero cochain with values in one
forma. We required that on U, the vector potential A, be nonsingular. A, may be singular
somewhere outside of IJ,. This singularity is the famous Dirac string singularity. The
collection of gauge transformalion {{,g} defines a one cochain with values in the zero
forms,

Let us try to answer the [ollowing question, “When does a zero cochain define a global
difforential form?' Consider a zero cochain {A.}. The zero cochain specifies a q-form on
each open set in the cover. Assume U,p # 0, then on the overlap U,p one must have
Ao — Ag = 0. Il not then A, will not extend to Ag. One can define a global differential
q-farm Aot if and only if {Xa ~ Ag} vanishes identically. In other words, {1,} is a zero
cocycle. ‘This already gives us an inkling on what Cech theory will do for ua. It will in
certain situations allow us to piece focal information into global information. We will see
that Cech cohomology provides a aystematic way for determining when local information
can be pieced into less local information.

The coboundary cperator § is an operation between p-chaina and (p+1})-chains. It is

delined as follows for small values of p:
§{An} = {Aq — 4Ap}
8{Bap} = {Bup -+ Bpy + Bya}

E{Caﬁ'r} = {Co.r!'y + Cﬁ':ri + C"fﬁa + Cb‘n-ﬂ}

The generalization to larger values of p is straightforward. One can show thal the cobonnd-
ary operator satisfies §2 = 0. The nilpotency of § allows us ta define a cahomology theory.
We define the p-cocycles as those p-cochains that are annihilated by 6. A p-cocycle z is said
to be exact il one can find a (p-1)-cochnin y such that z = &y. The p-coboundarics are the
image of the (p-1)-cochains under §. Since § is nilpotent, it follows that the p-coboundaries
are a subset of the p-cochaina, Thereflore it is possible to define cohoniology classes by
taking the quotient of the cocycles by the coboundaries. Since a cocycle is defined by the
condition §z = 0, the existence of non-trivial cohomology elasses boils down to the question
of whether every cocycle ia exact. The answer i3 provided by the existence of a 'sincard
lemma for the § operator. This lemma stales that if p > 0 then the equation §2 = 0 for a
p-chain z can always be “solved”. Namely, there exists a {p-1)-cochain y such that 2 = §y.
This seems to say that the cohomology classes are trivial. This is trae except for a cavent,
which is related to the construction of y in the prool of the Poincaré lernira. This caveat will
be used ta consluct nontrivial cohomelogy classes called Cech eohomolagy classes. We will
postpone the caveat until later. The p=0 case is the statement that a closed zero cochain
defines a global differential form.

The final piece of formalism we need is the tic-tac-toe box [10]. We will be studying the
so called double chain complezes. These ideas are beat explained by looking at onr magunetic
monopole example. It will not be necessary to assume that the electrically charged particle
movea on the sutface of a sphere. The configuration space for the trajectary of bhe particle
may be any compact manifold without boundary. In the box below we have included the
vector potentials and the trausition functions.

na

n‘!

it {Aa}

n° ___£¢'uﬂ}

F I I ¢l ot 3

The rows correspond to the degree of the differential form. The notation 117 stands for the
q-forma. The columns correspond te the degree of the cochain. The nobation CP alauds for
the p-cochains. The d operalor moves us vertically and the § operator moves us horizontally.
Let us apply the d and the § operations to the elementa in the above box. We can operate
again with d and § and get zero since these operators are nilpotent. Nolice that one of the
entrics is the gauge transformation law. Also, the operators d and § commute.



s 0

n? {dA.} 0

n! {4} 8{A}={d¢} O

n° {¥ap} 6{¢ap} O
d 1
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Define quantities Fy by Fy = dAg, and ¢qpy by 5{¥ap} = {capy}. The above box thus
becomes:

ns 0

n* {Fa) 0

a! {4} 8{A}={dp} o

o {(Yop}) __ lcapy) O
d T

5 — co ct c? c?

We immediately learn that the F, is d-closed and it is also a zero §-cocycle. The means
that F, defines a closed global differential form F, the electromagnetic field strength two
forin.

"T'he other piece of information we learn from the tic-tac-toe box involves the {capy}-
These ohjects are d-closed and they define a twa cocycle. Since locally closed zero forin is
given by a constant, the {cqp,} must defline a two cacycle. All this information ja shown in
the box below.

o o ]

a2 F | {Fa} 0

o {As} (A} =(d¥} ©

e {Wbaﬂ} {Caﬂ"r} 0
4 1 {eaps} ©
§ | C° cl c? (o

"The main conclugion is that given a collection of vector potentials {4,} and transition
functions {1ap}, the gauge transformation law §A = ¢, one can construct a closed global
two form F and a locally constant two cocycle {¢,a4}. Since F is closed and global, it is a
representative of the second DeRhan cohomology class. Note that we wrote F “outside”
the tic-tac-toe box. The reason is that even though F is closed, the Peincaré lemma is in
general not valid globally. If something is outside the box then one has to be careflul about
applying the Poincaré lemma. We are not aliowing singular vector potentials as acceptable
solutions,

A similar thing happens with the Poincaré lemma for the § operator. Note that the
locally constant cocycle {capq} is exact. It is the § of {{ap}. In general the ¢’s will not be
conatant, The question ia whether on can find 2 solution to the equation §¢ = 0 given by
¢ == 8b where the (b,p} are constants. In general, such a sclution does not exist. This is the
caveat we previously mentioned. There is no Poincaré lemma for the § operator if one only

vaes locally constant cochains. This is analogous to ot allowing singular differential forms
in the Poincaré lemma for the d operator. In analogy te the previous case we write Lthe ¢
cocycle “outside” the box. One has to be careful in applying the Poincaré lemuna oulside
the box. The Cech cohomology classes are defined by looking at locally constant cocycles
and asking whether they are exact within the class of locally constant cocycles. The lwo
cocycle ¢ is a representative of the second Cech cohomology class of the manifold. There is
an isomorphism between the DeRham classes and the Cech classes {10].

Remember that the total magnetic lux through the manifold was determined by the
{cag4}. There scveral notes of interest. The total magnetic flux through the sphere was de-
termined by conditions on triple overlaps. Quantum mechanics imposes a lurther condition
on the cocycle {capy}. The ¢’s must be 2a x (integer). Thia imposes a severe restriction
on the cohomology classes. The integers T are a subset of the real numbers It. One can
define objects {nag,} to be integer valued cochains instead of real valued cochains. Since
the § Poincaré lemma doea not apply to real valued cochains then it certainly does not
apply to the iuteger valued cochains. Therefore, there will be non-trivial integer valued
cohomology. These cohomology classes are called Cech cohomology classes with integer co-
efficients and they will be denoted by HE(M,2). Quantum mechanics requires that the
cocycle {cqp,/(27)} must be integral. The existence of such a cocycle is determined by
whether or not the manifold in question admits integral cocycles in ita second Cech coho-
mology class, i.e., Z < HA(M,2). The exislence of such integral cacycles is determined by
the topology of the manifold. The magnetic flux will be quantized if the manifold admits a
second cohomology class with integer coefficients that contains the integers.

The situation becomes more interesting when one looks at a two dimensional example.
Assume one has a two dimensional non-linear gsigma model given as a map ¢ from a two
dimensional spacetime S to a manifold M. For simplicity we take S to be = x S!'. Assume
that part of the Lagrangian can be interpreted as the pull back of a two formi on M. We
will neglect completely the rest of the Lagrangian. Lagrangian will be taken to refer only
to the term of possible topological significance. In analogy to the monopole example, Lhe
Lagrangian 7' might not be globally defined. Assume that there is a collection of locally
defined two-forms {7y}, one two-form for each open set in a good cover of Ad. Assume thai
on a non-emply intersection U, MU, the respective Lagrangiana difer by the differential of
a one form Jup:

Ty —Tp = dJup .

Note that the collection of Lagrangians defines a zero cocycle and the transition functions
define a one cacycle. In the tic-tac-toe box below we have included the Lagrangian and its
gauge transformation properties.

n{
n!l
n? (Ta} §{Ta} = (dJap}
af {Jaﬂ}

no

d 1
§ | c® ct cr 3 ¢t




First we record the consequence of mulliple d and § operations. This is shown in the box
below:

nt 0

n? {dT.} 0

n? (1.} 8{IL) = {‘Uaﬂ} 0

n! {(Jag) 87} 0

nD

d ]

& — ce c! ¢t ot cf

One of the pieces of information we have iz that 8.7 is closed, d6J = 0. This follows [roin
the commutativity of ihe two operations. The tic-tac-toe box automatically takes this into
account. Since 8J is closed and since the cohomology is trivial, there must exist a two
cochain K such that J iz ils dilferential. This ia illustrated in the box below

m 0

o {dTe) g

n {Ta}  8{Ta} = {dJop} o

n {Jaﬂ} sy} o

n° (X)

d 1

5 —~| ct c? ¢ ¢!

Applying the d and § information to the box above we find:

o 0
nt {dT,} 0
1y (1.} 8T} ={dJag} O
at {J.8) 5(Jy 0
n {K} &K} o0
d |
§ | ¢t ot ct oot

We learn that K is a closed three-cocycle. This cocycle is represented by constant cocycle
{eapqs} = K. The other piece of information we reed to know is that {dT,} defines a
closed global differential form §. This is all depicted in the box below.

M o 0

o G | {dT%} H

n? {Ta) 6{Ta} = {d-laﬂ} 0

n {Jap} 8{J} 0

n° {K}) &{K} o
d 1 {capre} O
& - cP c! c? c? ct

Figure 4: The evolution of a manifold with ita spatial topology being a circle. The world
sheet lies in two distinct patches. I is anbdivided into regions 17, and Ry with the edge
being Eap.

Just as in the electromagnetic case, the Lagrangian and its gauge transformation law
determinea a closed global differential form and a Jocally constant cocycle. 13 there any
significance to the K and ¢ cochains in the above? What is the mcaning of the global
dilferential form G? To sce the meaning of these quantities on has to go back an see whai
is the analogue of the Wu-Yang prescription in the two dimensional case,

It is possible to generalize the Wu-Yang construction to this situation. For simplicity,
let us assume that the image of spacetime ¢(5) lies entirely in the paiches U, and Uy as
depicted in Figute 4. By mimicking the Wu-Yang construction one can show that

Toe [ dapt [ 7,
j}?., Eop i Ry ?

is independent of where one chooses the boundary E,g. This preseriplion is acbually in-
complete. We will have to do a further modification to reach a satislactory arswer within
the domain of classical field theory.

We have to worry about what happens in triple overlaps. The situation is depicted in
Figure 5. One has to sce whether the introduction of the triple overlap introduces some E,g
dependence and a modification of the above is required. The modification is obtained by
applying the ideas of Wu and Yang one more time. By using the conditions on the overlaps
one can rewrite the previous equation as

T [ dwt [ T [ gt [
R o Far oy at v B R , A
s

e,

{Jﬂﬁ + o+ J'rt!)
I

The form of the above is reminiscent of equation {1). Thete is an ambiguity in the classical
action when one looks at triple overlaps. The above appears Lo depend on E.g. Previously
we found that the ambiguity was a consiant. In the present case we will have Lo work a
little harder.



Fignre 5: The generalization of Figure 2 to one higher dimension. Note that R, and Ry
have been subdivided into regions R, R and ). Also note the new edges.

According to the tic-tac-toe box, on the triple overlaps there exist distinct functions
K ypy such that

dfapy = Japg + Jgq + Jya

The term involving £, may be rewritten as

dK = [ K =0
fs » afy Enp afy

‘This vanishes since E.p is boundaryless,

The triple overlaps introduce no ambiguitics into the two dimensional field theory. This
is unlike the electromagnetic example of Wu and Yang. We will sce that a more careful
analysiz of triple overlaps requires some modifications of the Wu-Yang procedure, We
must analyze a new feature of two dimensional field theories which is not present in the
one dimensional example. A suitable modification of the Wu-Yang procedure will lead to
conditions on quadruple overlaps.

‘The new feature of Lthe two dimensional field theory is the existence of Y junctions when
one subdivides the hnage of 8, see Figure 6. The Wu-Yang prescription can be generalized
in a simple manner to incorporate the physics of the Y junctions. The correct way to define

Figure 6: The appearance of Y-junctions when one subdivides a two dimensional integration
region into three distinct non-overlapping seta.

the action in the case of Y junctiona is

To - j J
R, = Eop a8

+ T-—f J
R,,p Eq L8]

T

+ T-j J
R, ' . ™

- Kuﬂ'r(P)

We have used the notation of Figure 6. One can verily that a small movement of the Y
Jjunction leavea the value of the action invariant. This is the modification of the Wu-Yang
prescription that is required.

Let us now see what happena when one introduces a fourth patch, Us, as in Figure 7 .
The above may be rewritten as

f T,,+f"1‘p-l-['T.,+f'T,s

B!, r, R R

- J&*‘[ Ja*f Jos
];7,.3 o Eps il By il

= Kas,(Q1) = Kags(Q:2) — Kgq5(Q3)
- (f(am(P) + Kgys(P) + KysalP) + Kéaﬁ(f’))



Figure 7: Introduction of a fourth coordinate patch into Figure 6. The R regions have been
subdivided into R’ regions.

The last line is a constant (independent of P) since d6{K} = 0. We learn that just as in
the electromagnetic case the classical action is defined up to an additive constant. A path
integral quantization immediately tell us that a consistent quantum theory is only possilile
if

Kopr(P) + Kps(P) + Ko5a(P) + Ksap(P) = 2704045

where the n's are inlegers. Conditiona have to be imposed on quadruple overlaps. Namely,
one has to be able to choose a collection of integers ngg.s on any good cover of the manifold.
The three cocycle {n,g,} is a representative of the third Cech cohomology class of the
configurations space: HE(M,Z).

Finally, we mention that there is an analogue of the magnetic field in this problem
given by the closed global three form §. Thia three form is a representative of the third
Deltham coliomology class of the manifold. If one calculates the ‘flux’ by integrating G over
a boundaryless three dimensional region then one discovers that the total flux is given by
the sum of 2xn,p,s over the patches that intersect the region of interest.

These ideas generalize to higher dimensional field theoties. If the dimension of spacetime
is d then the possibility of a topological Lagrangian with a quantized conpling is determined
by whether or not the (d 4+ 1) DeRham cohomology class is non-trivial. Remember that
there is an isomorphism between the DeRham classes and the Cech classes. It is true that
if the (d + 1) DeRham cohomology class vanishes then there is no topological quantization.
The precise requirements for topological quantization of the Lagrangian requite a case by
case study. For example, il spacetime is the two sphere S? and if the configuration space
M = 5! % §' x S! then there is no quantization condition. The reason is subtle.? The
cohommology of M is the product of the cohomology of the respective circles. Therelore the
third cohomology class of M is the product of the one class for each circle. The pullback of

*F would like to thank P. Ginsparg and E. Wilten for discussiona on this point.

each of these one classes to spacetime S? ia a trivial form. For exantple, one wonld reach a
dilferent conclusion if spacetitoe ia §! x §'.

4 Classification of Wavelunctions

The classification of wavefunctionsz in a quantum field theory is not a well understood
subject. The problem is completely understood in quantum mechanica. [ believe that one
of the vnderlying difficulties involves the issue of locality in a quantum licld theory. Thiz is
intirnalely related to the notion of foeal cohemology. We use the standard physics convention
of writing the dimension of spacetime as (n -+ 1) where n is the apatial dimensionality.

The space of field configuralions C is givea by:

C={p:L - M},

where Il is the spatial manilold and M is the space where the fields reside, i.e., the barget
apace for the map. In the case of quantum mechanica, a (04 1) dimensional flield theory, the
space of field configurations is the same as A, the space where the ficlds reside. Naively,
a Schrodinger wavelunction ¥ is a map that assigns to each element (x) in € a coniplex
number ¥ [©(x)] . More precisely, a wavelunction is a local section of a line bundle over the
ficld configurations C. Since quantum: mechanics requires a Hilbert space type of structure,
the structure group of the line bundle reduces to U/{1). There is a theoreni [10] that states
that over a sufficiently nice space the line bundles are classified by HZ(C,Z). This may be
seen by the following simple argument. Let {U,} be a cover for €. Let {exp{i€,s}} be the
transitions funclions® that define the bundle:

Vo = exp(i{ap) ¥p ,

where ¥, and ¥y are local coordinales on the bundle over the corresponding coordinate
patches. Consider what happena as one changes coordinates [rom patches U, to Up Lo U,
and back o I/,:

il

\Fu exp(ifnﬂ) \]’ﬁ
exp(i€ap) exp(i€p) ¥+
= exp(i{an) exp(ifpy) explifra) ¥a -

One immediately concludes that

Eapt Loyt €yn = 2004p

where the n's are inlegers. In fact, the {nag,) define a twe cocycle. In conelusion” the tran-
sition functions for the line bundle lead Lo a representative in the second Cech enhomology
class HE(C,2). If one puts a connection A on a line bundle over ¢ then the associaled
tnagnetic field B = dA when integrated over a two cycle will have a quantized flux which is
related to collection of integera in the Cech two cocycle ®

T will refer to both ¢ and ita exponential exp (¢¢) as the tranaition fonction.
"This ia valid only If the space € is sufficiently nice.

*Mathematically, the above may be sound but it might not neceararily have anything te do with physica.



For example, in the (¢ + 1) dimensional case, the space C is the same as the target
gpace M. Line bundles in quantum mechanics are characterized by H2{M,Z). The associ-
ated integral Cecli cocyles represent the quantization of ordinary magnetic flux.

The sibuation becomes much more inteceating in the true field theory case. Note that the
transition functions exp(if,g) are completely arbitrary. They can be non-local functionals
of the ficlds. From a physical standpoint, this seems to be too atrong a requirement. For
example, reasonable local changes of variables do not aflect the S—matrix but nothing is
guaranteed by a non-local change of variables. It is not clear to me whether such non-local
transition functions are allowed by nature. This means that HA(C,%) might not be the
relevant ohject in the classification of the physical wavefunctiona [3].

The notion of locality in cohomology theory has arisen in several dilferent ways. There
appear to be ways to define local cohomology rigorously [13]. We will not worry about these
technical details but just discuss the main ideas. Conaider an abelian gauge theory in (3+1)
ditnensions with a teft handed Weyl fermion. 'This theory has the standard chiral anomaly.
Since mg(U (1)) = 0, there is no topological obstruction to defining the fermion determinant.
There is a physical obstruction that is imposed by locality. Namely, the anomaly cannot be
eliminated by the addition of local counter terms to the Lagrangian. A non-local counter
term can be used to eliminate the abelian anomaly.

Similar idcas enter in the discussion of the classification of wavelunctions. The relevant
object for the classification problem is probably not HZ(C,Z) but a “local® version of
the second cchomology group. I conjecture that in the type of theories discussed in thia
paper, the relevant local cohomoalogy is closely related to HS':{M, Z) where n ia the spatial
dimensionality, My argument ia based on an analysia of the gauge transformation properties
of the path integral. The path integral is a representation of the time evolution operator
exp(—itf[) where H is the Hamiltonian. For simplicity, I will discuss a {1-+1) dimensional
theory of the type discussed in Section 3. One begins with the initial wave function and
ane evolves it forward in time by using the path integral to compule the evolution keruel.
The discussion of Section 3 explains how to write the the action in such a way that things
are well defined. Consider a history where one begins in patch Ug with a wave function
Pg. At time ¢ one goes to a patch U, with wave function ¥,, analogous to the situation
depicted in Figure 8. The discussion of Section 3 may be interpreted as saying that at time
ty we are required to make a gauge transformation given by

U, = -'f Jag | Vg,
EXP('EM ﬂ) 8

where E.pg is a constant time surface. This situation is is very similar to the quantum
mechanical example of Section 2. The only difference has to do with the transition function.
In the quantum mechanics case the transition function thap was a function of ¢ and x only.
In this case the transition function £, is a local functional:

Jap .
fEaﬁ of

"This suggests that one has a line bundle over C with local transition functions. The situation
becomes more intereating when one looks at the Y junction case depicted in Figure 9. In

Figure 8; A gauge transformation from one palch to a second patch at time ¢;. The solid
line denotes an equal time surface.

Figure 9: Going from a single patch to a double patch at time t,. ‘The equal time sorface
is the solid line. The two “future” patches are separated by the dashed line.

Lhig case the correct transition function ab time ty is given by:

Wopp = exp (—-:'[ Jap) exp (1K ypy (P)) exp (—l'j Jﬂ",) Ug,
Eap Epy

where W, g reflects the fact that the wavefunction for ¢t > 1, has to be specified in two
coordinate patches. Note that the above is local. If one now looks at sequentin! changes of
patches one discovers the constraint on the third cohomology class of M.

The following inleresting question arises. One is constructing a line bundle over C using
local transition functions. What is a connection on this line bundle? My guess is thak the
answer is related to the recent work of Wu and Zee [14]. These authors point out that there
is some Lype of abelian structure in certain intrinsically non-abelian problems.
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