

WHAT CAN YOU MEASURE WITH BBN IN 202I?

WHY NOW? CURRENT STATUS OF BBN

$$
\begin{array}{cc}
\text { (Blue Compact Galaxies) } & \text { (Quasar/Gas Cloud Systems) } \\
Y_{\mathrm{P}}=0.245 \pm 0.003,10^{5} \times \mathrm{D} / \mathrm{H}=2.547 \pm 0.025
\end{array}
$$

Measurements of abundances (He, D/H) at l\% level - it is a precision probe
Standard Model theory predictions at the same level with only one free parameter
Recently, rates for key parts of the reaction network updated (LUNA; see later)
Theoretically sensitive to a wide range of particle physics and cosmological effects

So, clean probe to compare to other data e.g. CMB or look for/constrain new physics

WHAT QUANTITIES DOES BBN "SEE"?

BBN can be used to measure* a combination of the reaction and expansion rates
*subject to the size of the effect being larger than the measurement errors

REST OF THE TALK

INTRO: Why now? What for?

PHYSICS OF BBN: Building a simple reaction network

- Discuss key events in BBN timeline
- Focus on (n, P, D, He) region

PHYSICS OF BBN

IDEA: You can solve first for the Cosmology and thermodynamics, and then for the reaction network

PHYSICS OF BBN

SOLVING THE COSMOLOGY

THERMODYANMICS

Non-instantaneous neutrino decoupling

Method: Can use the fact that entropy is conserved in the adiabatic expansion to solve for the scale factor as a function of time

Result: $a(T)$
$\frac{\mathrm{d} \log (a T)}{\mathrm{d} \log T}=\frac{\mathcal{N}-(\mathrm{d} \mathcal{S} / \mathrm{d} \log T)}{\mathcal{N}+3 \mathcal{S}}$

TEMPERATURE-TO-TIME RELATION

$$
H^{2}=\frac{8 \pi G}{3}\left(\rho_{\nu}+\rho_{\mathrm{pl}}+\rho_{\mathrm{b}}+\rho_{\mathrm{cdm}}+\rho_{\Lambda}\right)
$$

Method: Can solve the Friedmann equation to obtain the time dependence of the scale factor, and therefore the temperature

Result: $T(t)$

TEMPERATURE-TO-TIME RELATION

(in SBBN)

The relation between temperature and time is COSMOLOGY-dependent

TEMPERATURE-TO-TIME RELATION

(in SBBN)

TEMPERATURE-TO-TIME RELATION

(in SBBN)

Result: $T_{\nu}<T_{\gamma}$

THE BBN REACTION NETWORK

$T \simeq 0.8 \mathrm{MeV}$
$t \sim 1 \mathrm{sec}$

PROTONS AND NEUTRONS: WEAK FREEZE-OUT

Kept in equilibrium
 by the reactions
 $\mathrm{n}+\nu_{e} \rightarrow \mathrm{p}+e^{-}$
 $\mathrm{n} \rightarrow \mathrm{p}+e^{-}+\bar{\nu}_{e}$
 $\mathrm{n}+e^{+} \rightarrow \mathrm{p}+\bar{\nu}_{e}$

...until around 0.8 MeV

$T \simeq 0.3 \mathrm{MeV}$ $t \sim 10$ secs

PROTONS AND NEUTRONS: NEUTRON DECAY

Then, at about 0.28 MeV , protons can no longer be efficiently converted into neutrons

...after this, neutrons simply decay until Deuterium synthesis can start

$T \simeq 0.078 \mathrm{MeV}$
 $t \sim 200$ secs

THE BOTTLENECK

Even though the binding energy of D is 2.2 MeV, it takes until 0.078 MeV for deuterium synthesis to occur, why?

DEUTERIUM BOTTLENECK $\xrightarrow[\mathrm{n}+\mathrm{p} \rightarrow \gamma+\mathrm{D}]{ }$

D

Answer: there are lots of photons that can easily dissociate any deuterium that is formed - parameterised by baryon-to-photon ratio

$$
\begin{gathered}
T \simeq 0.066 \mathrm{MeV} \\
t \sim 300 \mathrm{secs}
\end{gathered}
$$

PRODUCING HELIUM-4

DESCRIBING THE NETWORK

Ultimately, the reason BBN is a good probe of reaction rates and the expansion rate is because it is an out-of-equilibrium process

LUNA AND DEUTERIUM

Reaction Rates

$$
\frac{\mathrm{d} n_{i}}{\mathrm{~d} t}+3 H n_{i}=\cdots+n_{i} n\langle\sigma v\rangle_{i j-k}+\cdots
$$

Recently, the LUNA experiment has remeasured the reaction rate for

$$
\mathrm{D}+\mathrm{p} \rightarrow \gamma+{ }^{3} \mathrm{He}
$$

This reaction previously dominated theoretical error

> S-Factor
> $\eta \equiv \frac{Z_{1} Z_{2} e^{2}}{\hbar v}$
> $\sigma(E) \equiv \frac{S(E)}{E} \exp (-2 \pi \eta)$
> $\langle\sigma v\rangle=\int_{0}^{\infty} \sigma(v) \phi_{\mathrm{MB}}(v) v d v$
> $\phi_{\mathrm{MB}}(\nu) \nu \mathrm{d} \nu=\sqrt{\frac{8}{\pi m}} \frac{1}{\left(k_{B} T\right)^{3 / 2}} e^{-\frac{E}{k_{B^{T}}}} E \mathrm{~d} E$
budget for precision determinations of D and Helium-3 predictions

Fig. 1 The \boldsymbol{S} factor of the $\mathbf{D}(\boldsymbol{p}, \boldsymbol{\gamma})^{3} \mathrm{He}$ reaction. At BBN energies
($E_{\mathrm{cm}} \approx 30-300 \mathrm{keV}$), the new LUNA results (filled red circles, with total (statistical + systematic) error bars) indicate a faster deuterium destruction compared with a best fit ${ }^{19}$ (blue dashed line) of previous experimental data, but a slower destruction compared with theoretical calculations ${ }^{18}$ (black dotted line). At BBN energies, the best fit (red solid line, equation (2)) obtained in this work is entirely dominated by the LUNA data. The fit includes all experimental data ${ }^{13-16,29-31}$ (note that those by Warren et al. ${ }^{30}$ and Geller et al. ${ }^{31}$ lie outside the energy range shown here). Bands represent the 68% confidence level.
V. Mossa et al., [Nature 587 (2020) 210]

LUNA AND DEUTERIUM

Question: What are the implications of LUNA for SBBN?

Answers It depends slightly on who you ask and whether there is a corresponding tension in the baryon density. However, having a more precise determination of the other two key reactions will be key to pin down theoretical uncertainties

$$
\begin{aligned}
& \mathrm{D}+\mathrm{D} \rightarrow \mathrm{n}+{ }^{3} \mathrm{He} \\
& \mathrm{D}+\mathrm{D} \rightarrow \mathrm{p}+{ }^{3} \mathrm{H}
\end{aligned}
$$

Article
The baryon density of the Universe from an improved rate of deuterium burning
https://doi.org/10.0038//41586-020-2878-4 Received: 7 May 2020 Published online: 11 Noevember 2020 Check for updates

Kensuke Akita (Tokyo Tech., Japan) Alain Coc (U. Paris-Saclay, France
Ryan Cooke (Durham U., UK) Ryan Cooke (Durham U., UK)
Pablo F. de Salas (Stockholm U., Sweden) Marco Drewes (UCLouvain, Belgium) Brian D. Fields (Illinois U., USA) Julien Froustey (I.A. Paris, France Martina Gerbino (INFN-Ferrara, Italy) Rasmus S. L. Hansen (Neils Bohr, Denmark) Segio Pastor (IFIC, Spain) Tsung-Han Yeh (Illinois U USA) Subir Sarkar (U. Oxford, UK)
Sandra Zavatarelli (INFN-Genoa, Italy)

Organizers
James Alvey (KCL, UK)
Miguel Escudero (TUM, Germany)

Physics of
-D The Impact of New $d(p, \gamma)^{3}$ He Rates on Big Bang Nuclesynthesis
Department of Physics, University of Ilinois, Urbana, IL 6180 Keith A. Olive
William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA Brian D. Fields
Departments of Astronomy and of Physics,
University of Ilinois, Urbana, IL 61801

Primordial Deuterium after LUNA: concordances and error budget

A new tension in the cosmological model from primordial $\|_{\text {I }}^{\text {INGSS }}$ deuterium?

Cyril Pitrou, ${ }^{1 \star}$ Alain Coc, ${ }^{2}$ Jean-Philippe Uzan, ${ }^{1}$ Elisabeth Vangioni ${ }^{1}$

Sorbonne Universite, Institut Lagrange de Paris, 98 bis Bd Arago, 75014 Paris, France
${ }^{\text {IIJCLab, }}$, CNRS IN2P3, Universite Paris-Saclay, Batiment 104, F-91405 Orsay Campus France

Ofelia Pisanti, Gianpiero Mangano, Gennaro Miele, and Pierpaolo Mazzella
Dipartimento di Fisica E. Pancini, Università di Napoli Federico II, and INFN, Sezione di Napoli, Via Cintia, I-80126 Napoli, Italy

IMPACT ON CONSTRAINTS

Question: What are the implications of LUNA for constraints on light dark sectors?

Answer: Light dark sectors coupled to neutrinos, electrons/photons, or both can modify the history of BBN in a number of ways:

- Modify the expansion rate - this changes the temperature-to-time relation

3- Modify the temperature of neutrinos relative to photons - this can change the weak rates and their freeze-out history

- Modify the baryon-to-photon ratio (for electrophilic species)

But, the constraints are largely driven by Helium-4 predictions, which are not sensitive to changes in the deuterium rates

SUMMARY AND CONCLUSIONS

1. There are a number of key events in the physics of BBN which are controlled by the relevant reaction rates, sector temperatures and expansion

2. Precise measurements of both the nuclear reaction rates as well as the primordial abundances let us test SM and BSM physics extremely well
III. The new results from LUNA require some care and attention.

Recommendation: If probing new physics is the aim, the "safest" thing to do is consider both the theoretical and data-driven fits and see how your results vary

