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ABsTRACT. We offer the point of view that the Goodwillie tower of the identity
functor is a formal inverse to the standard filtration of stable homotopy in the same
sense as In(xz) is inverse to exp(z).

(0. INTRODUCTION

The Gooduwillie tower of the identity (see [2, 3, 4] for a general reference on the
Goodwillie calculus) is a tower of functors and natural transformations, which starts
with stable homotopy and converges to unstable homotopy. The functors in this
tower are characterized by certain universal properties, and according to [4] they
should be thought of as the Taylor polynomials of the identity. The study of these
polynomial approximations was initiated in [5] and continued in [1]. In particular,
an explicit description of the fibers in the tower was derived there. However, the
nature of the tower and the reason that it converges remained a bit mysterious. It
appears that the Goodwillie tower is a natural, canonical object, and therefore one
expects to have a basic understanding of it in terms of some fundamental object in
mathematics. Our goal in this short, simple note is to show that there is a formal
analogy between the Goodwillie tower of the identity and the Taylor series of the
logarithm function and to suggest the point of view that the Goodwillie tower is an
inverse to stable homotopy in the same way as logarithm is an inverse to exponential.

Let D,(X) denote the n-th fiber in the Goodwillie tower of the identity (the n-th
differential). It was shown in [1] (see also [5] for a different approach) that D;(X) =
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Q*°Y>(X) and that for n > 1
Do(X) = 0% (Map, (SK,, 5% X))

where K, is the unreduced suspension of the Folkman complex (essentially the geo-
metric realization) of the category of partitions of the set n = {1,... ,n}, and SK,
is the suspension of K,. SK, is a complex with a natural action of the symmetric
group Y,. Furthermore, it is well-known that non-equivariantly
(n—1)!
SK, ~ \/ S

=1

Thus, the coefficient of the n-th differential of the identity looks like K, /3, &~ ﬁnT_,lM =
L, which reminds one of the Taylor series of the function g(x) = In(1 4 2). We will
see that this is not a coincidence, that the fact that the Goodwillie tower converges
is a jazzed up version of the fact that the Taylor series of logarithm is inverse to the
Taylor series of exponential. More precisely, our point of view is that stable homotopy
is analogous to the function ="' rather than to a linear function, and the Goodwillie
tower is an infinite product, rather than an infinite sum, namely it is analogous to
the product

— eln(l—l—(l’—l)) ———

It is clear that in the context of the Goodwillie tower it is not good enough to think
of the coefficient of the n-th term in the Taylor expansion of the function In(1 4 z)

as L. Rather, it is (n;,l)!, where (n — 1)! is a fancy (n — 1)!, as given by the reduced
homology, equivalently by the reduced Euler characteristic, of the partition lattice,
considered as a Y, -representation. As a biproduct we will obtain an elementary proof
of the well-known fact that the reduced Euler characteristic of K, is (—1)"(n — 1)L
We will see that in our context the partition lattice is the “correct” way to think of
the umbral coefficient in the Taylor tower of In(1 + x). We believe it to be true in
other situations too. We emphasize, however, that the combinatorics in this paper
is elementary and the corresponding topological results about the Goodwillie tower
of the identity, as well as their proofs, are contained in [1]. It is their juxtaposition
which we hope will be of some interest.

Both authors would like to express their thanks to the University of Bielefeld,
where this work was done, for its hospitality.

1. COMBINATORICS VERSUS HOMOTOPY THEORY

In the category of topological spaces the categorical product (cartesian product)
and the categorical sum (disjoint union) satisfy the distributivity relation

X x (AI]B) =(X x A (X x B).
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which makes the category of spaces into a semiring with the sum and the product
being the categorical ones. The empty set and the one-point space are the zero and
the unit element of this semiring. More generally, suppose we are given a commutative
square

XO — X1
(1) | |
X2 — X12
If it is a homotopy pullback, we would like to interpret it heuristically as
XXy
X = .
12 X

If it is a homotopy pushout, we interpret it as
X2 = X1 + Xy — Xo.

As an illustration of the distributivity law in this more general setting, consider the
following well-known fact: Suppose we are given a pushout square as in (1). Let Y
be a connected, pointed space and let f : X;3 — Y be a map. Then the fiber of f
is homotopy equivalent to the pushout of the obvious diagram of fibers of the maps
X; —= Y, where : = 0,1 or 2. This fact has no formal dual in the category of spaces,
and it is analogous to the fact that

Xi+Xo—Xo Xi Xo X

y Y v Y
Thus, from our point of view, a tower of functors is analogous to an infinite product of
functions, while according to the philosophy of calculus it is analogous to an infinite

suimn.

Remark 1.1. Of course, our analogy is very crude. For instance, it suggests that QX
corresponds to % and therefore 22X can be identified with X, which is not generally
true in the category of spaces.

Now let L : Spaces, — Spaces, be a reduced homology theory, or equivalently, in
the terminology of [2], a homogeneous linear functor. Thus L(*) ~ %, where * is
the one-point space, and L takes homotopy pushout squares to homotopy pullback
squares. According to our picture, L is analogous to a function f (say from reals

to reals) which satisfies f(1) = 1 and f(a +b—¢) = ﬂ%%ﬁ A typical function
with these properties has the form f(z) = «*~'. Thus, our first suggestion is that
a reduced homology theory is analogous to a function of this form rather than to a
linear function. Our next suggestion is that the counterpart of the functor Q(X) =

Q°¥*(X) is the function
h: R— R, xw— "%
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We give two reasons for this. First, Q(X) gives the best possible approximation
of the identity functor by a reduced homology theory. More precisely, Q(X) is the
unique homology theory such that there is a natural map X — Q(X), which is 2k+1
connected where k is the connectivity of X. This corresponds to the fact that e*1
is the best approximation of x by a function of the form a®~!. Notice also that with
topological spaces the higher the connectivity of X is, the better the approximation,
while with numbers, the closer x to 1, the better the approximation. Indeed, we
have already said that a contractible space corresponds to 1, and therefore a highly
connected space corresponds to a number close to 1. The second reason is that
the standard (May-Milgram) filtration of Q(X) formally corresponds to the Taylor
expansion of e*~'. We leave it to the reader to convince himself of this (keeping in
mind that product corresponds to cartesian product, not smash product).

We denote by A* the composition of k copies of h, for every k > 1. For k =
0 we define h° to be the identity mapping of R. More generally, for k positive
integers 7; < iy < -+ < i we define hy, ;= h*. In [1] the Goodwillie tower was
studied by comparing it with the Bousfield-KKan tower converging to stable homotopy
localization. To understand better this part of [1], we construct the counterpart in
the realm of real valued functions. We would like to define a sequence of functions
fr corresponding to the Bousfield-Kan tower. In particular, we expect f; to converge
to the identity function. We proceed as follows. Let fo = h. Thus fy is the first
approximation to the identity (corresponding to stable homotopy!). We define

h(z)
2 ) = fu(x)- ‘
Motivation: Clearly, © = fi(x) - —fkg(l’)' Therefore, it is reasonable to hope that if one

replaces @ with A(x) in %, one will get a better approximation to x than fj, see

Proposition 1.4 below.

Proposition 1.2. For k > 1

I hie)

1<i<k

Jr—i(2) =

H hilﬂé(x)

1<y <2<k

1§’i1<"'<ik§k
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Proof. The proof is an easy induction on k, observing that whenever 1 <y < --- <
1x < k, one can write

Rig i (@) = Dy iy o ().
0

Corollary 1.3.

(=) D) - () O
(h2(2)) (&) (ha(e) ) ...

Jr—i(2) =

and

fk : H (hz-l-l) l( )

=0
The sequence (fi,) converges to the identity function. More precisely, we have the

following proposition,

Proposition 1.4. Let >>°_ an(x — 1)™ be the Taylor series of fr_y near 1. Then
ap=a,=1and a,, =0 for2 <m <k.

Proof. The claim is trivially true for & = 1. Assume the claim holds for £ = n. Then
we can write

fn_l(l') =x+ an+1($ _ 1)n+1 + O[(l‘ . 1)n+2]‘
Using formula (2) we get

a4 app(z — )" + Of(x — 1)"*2))
er—1 + an_l_l(ex—l _ 1)n—l—1 + O[(ex—l _ 1)n—l—2] .

fn(x) =

Since
1 (¢ = 1) = appa (@ — 1) + Of(x — 1))
and
Ol(e”™! = 1)"*] = O(x — 1)™*7],

it follows that in the above formula the inverse of the denominator equals to

S22(1 = 1Y = (€ — 1741 4 Offer — 1y
= ' —a,p(x —1)" + O(x — 1),
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Therefore
fule) = € (@ dua (2 = 1™ £ O[(e — 1))
(7 = appr(z — 1) 4+ Of(x — 1)+7))
= (2 + anpr(z — )" 4+ Of(x — 1)"*7])
(1= (e — 1)1+ Ol — 1))
=2 —2appi (v — )"+ O(x — 1)"?] + ayqq(x — 1)"H
=2+ Of(x — 1)"7],
which completes the proof. [

To compare the sequence ( f) with its homotopy-theoretic counterpart, the Bousfield-
Kan stable homotopy localization tower, we rewrite Proposition 1.4 as follows. Let
g(x) be a function, such that g and In(g) are analytic around 1. Let

In(g(x)) = ap+ ar(x — 1) + az(x — 1)2 4+
Then
3) o) = 0 ) a2

We call (3) the logarithmic expansion of g(x). It is the point of this paper that the
Goodwillie tower is the homotopy-theoretic analog of logarithmic expansion, rather
than of Taylor series.

It follows from Proposition 1.4 that

In fn—1(:1?) = ln(l + (:1; — 1) + O[( _ )n—l—l])
= (= 1) = 3o =1+ (G 1) 4 Ol = 1))
=In(z)+ O[( 1)m+].
Thus Proposition 1.4 can be reformulated as follows:

Corollary 1.5. The logarithmic expansion of fr_; coincides with the logarithmic
expansion of the identity up to the k-th term.

Proposition 1.4 and Corollary 1.5 illustrate the convergence of the Bousfield-Kan
tower (of course, they are far from proving it). By Bousfield-Kan tower we mean the
tower of functors from based spaces to based spaces

c— Fi(=) —
associated with the cosimplicial space
QX 5 QQX -

In this tower Fo(X) = Q(X) and fiber (F, — Fj_1) is given by the k-th loop space
of the iterated fiber of a certain k-dimensional cubical diagram defined by x(U) =
QlE\UH'l(—) for U C k. For instance

fiber (£y — Fo) ~ Q (fiber (QQ(X) — Q(X)))
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and
QQQ(X) — QQ(X)
fiber (Fy — I) ~ Q%iterated fiber J l

QA(X) — Q(X)

We leave it to the interested reader to convince himself that this formula is exactly
parallel to the formula for fﬁl in Corollary 1.3. The functors F} correspond to the
functions fi. The tower Fj(X) converges to the identity functor for reasonable spaces
X. More precisely, the Goodwillie tower of Fj_1(X) coincides with the Goodwillie
tower of the identity up to the k-th degree approximation. This is the topological
counterpart of Corollary 1.5.

Next, we would like to link the coefficients of the Taylor series of In( fz) with parti-
tions. We denote the number of partitions of n = {1,2,... ,n} with £ components by
Py.. These are the Stirling numbers. Let P! denote the total number of partitions
of n. Then P! = Py, + P2, + -+ + P,,.. More generally, define a partial ordering on
the set of partitions of n by Ay < Ay if A\; is a refinement of A;. Let 1 and # be the
obvious minimal and maximal objects in this poset. We define the set of k-chains
of partitions of n to be the set of sequences (i = Aoy A1y .., Ak, Agp1 = 1) such that
1 < A < --- <X £ . We denote the number of k-chains by Pf, for £ > —1 and
n > 1. To avoid confusion, we note that P;' =1 and P7' = 0 for n > 1. We have
no doubt that the following two propositions can be found in the literature, but for
completeness we include their proofs.

Proposition 1.6. Let k> 1. Then

! 1 _ 2 _ n
rF= % 1!(2!)k2"‘(n;;k"kﬂkgl---kn! (Plk—l)k (pzk 1)’“ (Pég 1)k .

Z lkl =n
=1

Proof. By abuse of notation, and only for the purposes of this proof, we let P* denote
the set of k-chains as well as its cardinality. Let (i,)\l,... , Ak,n) be a k-chain.
Consider the partition Ay, the coarsest partition in the chain. Let m be the number
of components of Ay and let 7q,... ,1,, be their cardinalities. Thus 7y +--- 41, = n.
For [ = 1,2,..., let k; be the number of components of Ay whose cardinality is [.
Clearly, k; = 0 for [ > n. We call the sequence (ki, ... ,k,) the type of A\x. The set P}
has a natural action of ¥,,, and it is easy to see that two partitions are in the same
orbit iff they have the same type. Given that Ay has type (ki,... k), it is obvious
that the number of ways to choose Aq,... , A;_; such that (i, Aly.oo s Ak, 1) is a chain

is (Plk_l)k1 (]32]“_1)k2 e (Pf_l)kn. On the other hand, the number of partitions of
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a given type (ki,...,k,) equals the number of cosets of the corresponding isotropy
subgroup of ¥, which is easily seen to be

ZklzZlx2k2222><---><2kn22n.

Thus the number of k-chains (1, Ay, ... , Ax,72) such that Ay, has a given type (ki,... , k)
is

! _ n
1!(2!)k2---(n!7;knk1!k2 T (P (P ()

This proves the proposition. [

Proposition 1.7. The coefficient of( ) in the Taylor series of h**!(z) — 1 is P¥,
forn>1and k> —1.

Proof. By induction on k. The claim is trivially verified for £ = —1. We can write

o0

hk(:zj) — 1= Zai(:p — 1)i.

=1

Then
K () < 1 (& A
R a) =1 =" @7 1 = Z_:lg ('_lai(l‘—l)) .
Therefore the coefficient of (x — 1)" in the Taylor series of A**!(z) — 1 is
"1
> — S aia, - ag,
m=1 """ ZJ ij=n,ij>1

Fix an index m and a monomial a;,a;, - - - @;,, in the above formula. For [ =1,2,...,
let k; be the number of the terms ¢; which are equal to [. Thus 0 < k; < n for every
[, ky =0 for [ > n and 377_, [ky = n. The terms a;,, 1 < j < m, can be arranged in

. 1 .
m! ways of which 22— are different. Thus
o Ve b er!
"1 1
N ailalé . aim f— malla22 e ann‘
m=1m2i—m>1 SO, ty=n 2T
S ALY [

By induction assumption PF~! = ¢! for 1 <i < n, and the sum above equals to

Z 1 Pk 1 Pk 1 Pﬂ]‘g_l kn
o Rt 2l i
l
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Hence the coefficient of ﬁx—;,lﬁ in the Taylor series of A**!(z) — 1 is exactly P* by
Proposition 1.6. O

Pf is the number of k-chains of partitions such that 1 <A < s <y <0
For k > 0 and n > 1 we let C* be the number of chains (1,\,..., A, 7) such
that 1 < A\ < --+ < A < fi. We call these the non-degenerate k-chains. To avoid
confusion, we record that C;7' =1, C-t=0forn > 1, CY=0and C° =1 for n > 1.

Let (i = Aoy A1y oy Ay App1 = 71) be a k-chain. Let jo be the largest index j such
that A; = 1, let j; be the largest index j such that A; = X 41, and so on. Let m+2 be

the cardinality of the set {i, Aty s Ak, n}. There are (:::_11) different ways in which

the indices jg, ... , 7, can occur. Thus the number of k-chains (i, Alyeoe s Ag, 1) with
m + 2 distinct elements is (:::_11) O, This implies that

Al
%=ﬁ—§:(+)w,
o \m + 1

for £ > 0 and n > 1. The following proposition is essentially the inclusion-exclusion
principle.

Proposition 1.8. Forn > 1 and k > 0

(k41
Cri=2 (l+1

[=—1

)(_1)k—lp7§.

Proof. The formula is trivially true for & = 0. Let us assume it holds for all 0 < m <
k — 1. Then

@f=%—z$4§:¥%
= =i () (e () (=mtp)
= Pr =it b (M) (i) (=1

= Ph -yt (M) (S5 () (~ymepy)
= Ph -yt E’;ii; (i (*77) (=1)) P
= Pr+ izt () (=D ps
=i (M)~
O

Now we return to the functions fr. It is easy to see from Corollary 1.3 and the
definition of A that
fk_|_1(l’) _ €Ek+1 (_1)](k-]|-1)(hj(ls)_1)

=0

fi(x)
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for £ > 0. According to Proposition 1.7 the coefficient of ﬁx—lL for n > 1 in the

Taylor series of A**1(z) — 1 is P*. Therefore the coefficient of (= !) ,n > 1, in the
Taylor series of In fy11(x) — In fi(x) is

G | o okt
-1 ]P]—IZ -1 l—I—lPl: -1 k+1 k‘
Z(])< ip: ,:Z_I(m)( JHLPL— (—1yH

Recall that K, is a simplicial complex whose k-simplices are the non-degenerate
kE + 1 chains. Let e(K,,) be the reduced Euler characteristic of K,,. Then

n—2 00
eo(K,) =) (=D)Cy =3 (-1)™oy

for n > 2. Therefore the reduced Euler characteristic of K; equals to the coefficient

of ﬁx—lL for i < n in the Taylor series of In f,,_1(x) — In fo(x). Since In fo(x) =« — 1,
its Taylor coefficients vanish for n > 2. On the other hand, Corollary 1.5 implies that

for i < n the coefficient of &= D' in the Taylor series of In f,_;(z) is (—1)*F(z — 1)!.

Hence we have naturally obtamed a proof of the following well-known fact:

Proposition 1.9. The reduced Euler characteristic of K, is (—1)"t'(n — 1)! for
n > 2.

Another way to say the above is that the infinite product

exp(z —1) Hexp( M)

7!

converges to the identity. This corresponds to the fact that the Goodwillie tower of
the identity converges.
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