
THE GOODWILLIE TOWER OF THE IDENTITY IS ALOGARITHMGREG ARONE AND MARJA KANKAANRINTAApril 6, 1995Abstract. We o�er the point of view that the Goodwillie tower of the identityfunctor is a formal inverse to the standard �ltration of stable homotopy in the samesense as ln(x) is inverse to exp(x).0. IntroductionThe Goodwillie tower of the identity (see [2, 3, 4] for a general reference on theGoodwillie calculus) is a tower of functors and natural transformations, which startswith stable homotopy and converges to unstable homotopy. The functors in thistower are characterized by certain universal properties, and according to [4] theyshould be thought of as the Taylor polynomials of the identity. The study of thesepolynomial approximations was initiated in [5] and continued in [1]. In particular,an explicit description of the �bers in the tower was derived there. However, thenature of the tower and the reason that it converges remained a bit mysterious. Itappears that the Goodwillie tower is a natural, canonical object, and therefore oneexpects to have a basic understanding of it in terms of some fundamental object inmathematics. Our goal in this short, simple note is to show that there is a formalanalogy between the Goodwillie tower of the identity and the Taylor series of thelogarithm function and to suggest the point of view that the Goodwillie tower is aninverse to stable homotopy in the same way as logarithm is an inverse to exponential.Let Dn(X) denote the n-th �ber in the Goodwillie tower of the identity (the n-thdi�erential). It was shown in [1] (see also [5] for a di�erent approach) that D1(X) =1991 Mathematics Subject Classi�cation. 55P99 .Key words and phrases. Goodwillie calculus, partition.The �rst author is an Alexander von Humboldt fellow.The second author was supported by the Emil Aaltonen foundationand by Sonderforschungsbereich 343. 1



2 GREG ARONE AND MARJA KANKAANRINTA
1�1(X) and that for n > 1Dn(X) ' 
1 �Map� (SKn;�1X^n)h�n�where Kn is the unreduced suspension of the Folkman complex (essentially the geo-metric realization) of the category of partitions of the set n = f1; : : : ; ng, and SKnis the suspension of Kn. SKn is a complex with a natural action of the symmetricgroup �n. Furthermore, it is well-known that non-equivariantlySKn ' (n�1)!_i=1 Sn�1:Thus, the coe�cient of the n-th di�erential of the identity looks likeKn=�n � (n�1)!n! =1n , which reminds one of the Taylor series of the function g(x) = ln(1 + x). We willsee that this is not a coincidence, that the fact that the Goodwillie tower convergesis a jazzed up version of the fact that the Taylor series of logarithm is inverse to theTaylor series of exponential. More precisely, our point of view is that stable homotopyis analogous to the function ex�1 rather than to a linear function, and the Goodwillietower is an in�nite product, rather than an in�nite sum, namely it is analogous tothe product ex�1 � e� (x�1)22 � e (x�1)33 � � � = eln(1+(x�1)) = x:It is clear that in the context of the Goodwillie tower it is not good enough to thinkof the coe�cient of the n-th term in the Taylor expansion of the function ln(1 + x)as 1n . Rather, it is (n�1)!n! , where (n � 1)! is a fancy (n� 1)!, as given by the reducedhomology, equivalently by the reduced Euler characteristic, of the partition lattice,considered as a �n-representation. As a biproduct we will obtain an elementary proofof the well-known fact that the reduced Euler characteristic of Kn is (�1)n(n � 1)!.We will see that in our context the partition lattice is the \correct" way to think ofthe umbral coe�cient in the Taylor tower of ln(1 + x). We believe it to be true inother situations too. We emphasize, however, that the combinatorics in this paperis elementary and the corresponding topological results about the Goodwillie towerof the identity, as well as their proofs, are contained in [1]. It is their juxtapositionwhich we hope will be of some interest.Both authors would like to express their thanks to the University of Bielefeld,where this work was done, for its hospitality.1. Combinatorics versus homotopy theoryIn the category of topological spaces the categorical product (cartesian product)and the categorical sum (disjoint union) satisfy the distributivity relationX � �AaB� �= (X �A)a (X �B) ;



THE GOODWILLIE TOWER OF THE IDENTITY IS A LOGARITHM 3which makes the category of spaces into a semiring with the sum and the productbeing the categorical ones. The empty set and the one-point space are the zero andthe unit element of this semiring. More generally, suppose we are given a commutativesquare X0 ! X1# #(1) X2 ! X12If it is a homotopy pullback, we would like to interpret it heuristically asX12 = X1 �X2X0 :If it is a homotopy pushout, we interpret it asX12 = X1 +X2 �X0:As an illustration of the distributivity law in this more general setting, consider thefollowing well-known fact: Suppose we are given a pushout square as in (1). Let Ybe a connected, pointed space and let f : X12 ! Y be a map. Then the �ber of fis homotopy equivalent to the pushout of the obvious diagram of �bers of the mapsXi ! Y , where i = 0; 1 or 2. This fact has no formal dual in the category of spaces,and it is analogous to the fact thatX1 +X2 �X0Y = X1Y + X2Y � X0Y :Thus, from our point of view, a tower of functors is analogous to an in�nite product offunctions, while according to the philosophy of calculus it is analogous to an in�nitesum.Remark 1.1. Of course, our analogy is very crude. For instance, it suggests that 
Xcorresponds to 1X and therefore 
2X can be identi�ed with X, which is not generallytrue in the category of spaces.Now let L : Spaces� ! Spaces� be a reduced homology theory, or equivalently, inthe terminology of [2], a homogeneous linear functor. Thus L(�) ' �, where � isthe one-point space, and L takes homotopy pushout squares to homotopy pullbacksquares. According to our picture, L is analogous to a function f (say from realsto reals) which satis�es f(1) = 1 and f(a + b � c) = f(a)�f(b)f(c) . A typical functionwith these properties has the form f(x) = ax�1. Thus, our �rst suggestion is thata reduced homology theory is analogous to a function of this form rather than to alinear function. Our next suggestion is that the counterpart of the functor Q(X) =
1�1(X) is the function h : R! R; x 7! ex�1:



4 GREG ARONE AND MARJA KANKAANRINTAWe give two reasons for this. First, Q(X) gives the best possible approximationof the identity functor by a reduced homology theory. More precisely, Q(X) is theunique homology theory such that there is a natural map X ! Q(X), which is 2k+1connected where k is the connectivity of X. This corresponds to the fact that ex�1is the best approximation of x by a function of the form ax�1. Notice also that withtopological spaces the higher the connectivity of X is, the better the approximation,while with numbers, the closer x to 1, the better the approximation. Indeed, wehave already said that a contractible space corresponds to 1, and therefore a highlyconnected space corresponds to a number close to 1. The second reason is thatthe standard (May-Milgram) �ltration of Q(X) formally corresponds to the Taylorexpansion of ex�1. We leave it to the reader to convince himself of this (keeping inmind that product corresponds to cartesian product, not smash product).We denote by hk the composition of k copies of h, for every k � 1. For k =0 we de�ne h0 to be the identity mapping of R. More generally, for k positiveintegers i1 < i2 < � � � < ik we de�ne hi1;::: ;ik = hk. In [1] the Goodwillie tower wasstudied by comparing it with the Bous�eld-Kan tower converging to stable homotopylocalization. To understand better this part of [1], we construct the counterpart inthe realm of real valued functions. We would like to de�ne a sequence of functionsfk corresponding to the Bous�eld-Kan tower. In particular, we expect fk to convergeto the identity function. We proceed as follows. Let f0 = h. Thus f0 is the �rstapproximation to the identity (corresponding to stable homotopy!). We de�nefk+1(x) = fk(x) � h(x)fk(h(x)) :(2)Motivation: Clearly, x = fk(x) � xfk(x). Therefore, it is reasonable to hope that if onereplaces x with h(x) in xfk(x) , one will get a better approximation to x than fk, seeProposition 1.4 below.Proposition 1.2. For k > 1fk�1(x) = Y1�i�khi(x)0BBBBBBBBBBB@ Y1�i1<i2�khi1;i2(x)0BB@ ...Y1�i1<���<ik�k hi1 :::ik(x)1CCA1CCCCCCCCCCCA



THE GOODWILLIE TOWER OF THE IDENTITY IS A LOGARITHM 5Proof. The proof is an easy induction on k, observing that whenever 1 � i1 < � � � <ik � k, one can write hi1;::: ;ik(h(x)) = hi1;::: ;ik;k+1(x):Corollary 1.3. fk�1(x) = (h(x))(k1)(h3(x))(k3) � � � (hk(x))(�1)k+1(kk)(h2(x))(k2)(h4(x))(k4) � � �and fkfk�1 = kYi=0 �hi+1�(�1)i(ki) :The sequence (fk) converges to the identity function. More precisely, we have thefollowing proposition,Proposition 1.4. Let P1m=0 am(x � 1)m be the Taylor series of fk�1 near 1. Thena0 = a1 = 1 and am = 0 for 2 � m � k.Proof. The claim is trivially true for k = 1. Assume the claim holds for k = n. Thenwe can write fn�1(x) = x+ an+1(x� 1)n+1 +O[(x� 1)n+2]:Using formula (2) we getfn(x) = ex�1 (x+ an+1(x� 1)n+1 +O[(x� 1)n+2])ex�1 + an+1(ex�1 � 1)n+1 +O[(ex�1 � 1)n+2] :Since an+1(ex�1 � 1)n+1 = an+1(x� 1)n+1 +O[(x� 1)n+2]and O[(ex�1 � 1)n+2] = O[(x� 1)n+2];it follows that in the above formula the inverse of the denominator equals toP1i=0(1� ex�1)i � an+1(ex�1 � 1)n+1 +O[(ex�1 � 1)n+2]= e1�x � an+1(x� 1)n+1 +O[(x� 1)n+2]:



6 GREG ARONE AND MARJA KANKAANRINTATherefore fn(x) = ex�1 (x+ an+1(x� 1)n+1 +O[(x� 1)n+2])� (e1�x � an+1(x� 1)n+1 +O[(x� 1)n+2])= (x+ an+1(x� 1)n+1 +O[(x� 1)n+2])� (1� an+1(x� 1)n+1 +O[(x� 1)n+2])= x� xan+1(x� 1)n+1 +O[(x� 1)n+2] + an+1(x� 1)n+1= x+O[(x� 1)n+2];which completes the proof.To compare the sequence (fk) with its homotopy-theoretic counterpart, the Bous�eld-Kan stable homotopy localization tower, we rewrite Proposition 1.4 as follows. Letg(x) be a function, such that g and ln(g) are analytic around 1. Letln(g(x)) = a0 + a1(x� 1) + a2(x� 1)2 + � � � :Then g(x) = ea0 � ea1(x�1) � ea2(x�2)2 � � � :(3)We call (3) the logarithmic expansion of g(x). It is the point of this paper that theGoodwillie tower is the homotopy-theoretic analog of logarithmic expansion, ratherthan of Taylor series.It follows from Proposition 1.4 thatln fn�1(x) = ln(1 + (x� 1) +O[(x� 1)n+1])= (x� 1) � 12(x� 1)2 + : : :+ (�1)n+1 1n (x� 1)n +O[(x� 1)n+1]= ln(x) +O[(x� 1)n+1]:Thus Proposition 1.4 can be reformulated as follows:Corollary 1.5. The logarithmic expansion of fk�1 coincides with the logarithmicexpansion of the identity up to the k-th term.Proposition 1.4 and Corollary 1.5 illustrate the convergence of the Bous�eld-Kantower (of course, they are far from proving it). By Bous�eld-Kan tower we mean thetower of functors from based spaces to based spaces� � � ! Fk(�)! � � �associated with the cosimplicial spaceQX  ) QQX � � � :In this tower F0(X) = Q(X) and �ber (Fk ! Fk�1) is given by the k-th loop spaceof the iterated �ber of a certain k-dimensional cubical diagram de�ned by �(U) =QjknU j+1(�) for U � k. For instance�ber (F1 ! F0) ' 
(�ber (QQ(X)! Q(X)))



THE GOODWILLIE TOWER OF THE IDENTITY IS A LOGARITHM 7and �ber (F2 ! F1) ' 
2iterated �ber0BBBB@ QQQ(X) QQ(X)QQ(X) Q(X)-? ?- 1CCCCAWe leave it to the interested reader to convince himself that this formula is exactlyparallel to the formula for fkfk�1 in Corollary 1.3. The functors Fk correspond to thefunctions fk. The tower Fk(X) converges to the identity functor for reasonable spacesX. More precisely, the Goodwillie tower of Fk�1(X) coincides with the Goodwillietower of the identity up to the k-th degree approximation. This is the topologicalcounterpart of Corollary 1.5.Next, we would like to link the coe�cients of the Taylor series of ln(fk) with parti-tions. We denote the number of partitions of n = f1; 2; : : : ; ng with k components byPk;n. These are the Stirling numbers. Let P 1n denote the total number of partitionsof n. Then P 1n = P1;n+P2;n+ � � �+Pn;n. More generally, de�ne a partial ordering onthe set of partitions of n by �1 � �2 if �1 is a re�nement of �2. Let 1̂ and n̂ be theobvious minimal and maximal objects in this poset. We de�ne the set of k-chainsof partitions of n to be the set of sequences (1̂ = �0; �1; : : : ; �k; �k+1 = n̂) such that1̂ � �1 � � � � � �k � n̂. We denote the number of k-chains by P kn , for k � �1 andn � 1. To avoid confusion, we note that P�11 = 1 and P�1n = 0 for n > 1. We haveno doubt that the following two propositions can be found in the literature, but forcompleteness we include their proofs.Proposition 1.6. Let k � 1. ThenP kn = XnXl=1 lkl = n n!1!(2!)k2 � � � (n!)knk1!k2! � � � kn! �P k�11 �k1 �P k�12 �k2 � � � �P k�1n �kn :Proof. By abuse of notation, and only for the purposes of this proof, we let P kn denotethe set of k-chains as well as its cardinality. Let (1̂; �1; : : : ; �k; n̂) be a k-chain.Consider the partition �k, the coarsest partition in the chain. Let m be the numberof components of �k and let i1; : : : ; im be their cardinalities. Thus i1 + � � �+ im = n.For l = 1; 2; : : : , let kl be the number of components of �k whose cardinality is l.Clearly, kl = 0 for l > n. We call the sequence (k1; : : : ; kn) the type of �k. The set P 1nhas a natural action of �n, and it is easy to see that two partitions are in the sameorbit i� they have the same type. Given that �k has type (k1; : : : ; kn), it is obviousthat the number of ways to choose �1; : : : ; �k�1 such that (1̂; �1; : : : ; �k; n̂) is a chainis �P k�11 �k1 �P k�12 �k2 � � � �P k�1n �kn. On the other hand, the number of partitions of



8 GREG ARONE AND MARJA KANKAANRINTAa given type (k1; : : : ; kn) equals the number of cosets of the corresponding isotropysubgroup of �n, which is easily seen to be�k1 o �1 � �k2 o �2 � � � � � �kn o �n:Thus the number of k-chains (1̂; �1; : : : ; �k; n̂) such that �k has a given type (k1; : : : ; kn)is n!1!(2!)k2 � � � (n!)knk1!k2! � � � kn! �P k�11 �k1 �P k�12 �k2 � � � �P k�1n �kn :This proves the proposition.Proposition 1.7. The coe�cient of (x�1)nn! in the Taylor series of hk+1(x)� 1 is P kn ,for n � 1 and k � �1.Proof. By induction on k. The claim is trivially veri�ed for k = �1. We can writehk(x)� 1 = 1Xi=1 ai(x� 1)i:Then hk+1(x)� 1 = ehk(x)�1 � 1 = 1Xm=1 1m!  1Xi=1 ai(x� 1)i!m :Therefore the coe�cient of (x� 1)n in the Taylor series of hk+1(x)� 1 isnXm=1 1m! 0B@ XPj ij=n;ij�1 ai1ai2 � � � aim1CA :Fix an index m and a monomial ai1ai2 � � � aim in the above formula. For l = 1; 2; : : : ,let kl be the number of the terms ij which are equal to l. Thus 0 � kl � n for everyl, kl = 0 for l > n and Pnl=1 lkl = n. The terms aij , 1 � j � m, can be arranged inm! ways of which m!k1!k2!���kn ! are di�erent. ThusnXm=1 1m! XPj ij=n;ij�1 ai1ai2 � � � aim = XPl lkl=n 1k1!k2! � � � kn!ak11 ak22 � � � aknn :By induction assumption P k�1i = aii! for 1 � i � n, and the sum above equals toXPl lkl=n 1k1!k2! � � � kn!  P k�111! !k1  P k�122! !k2 � � � P k�1nn! !kn :



THE GOODWILLIE TOWER OF THE IDENTITY IS A LOGARITHM 9Hence the coe�cient of (x�1)nn! in the Taylor series of hk+1(x) � 1 is exactly P kn byProposition 1.6.P kn is the number of k-chains of partitions such that 1̂ � �1 � � � � � �k � n̂.For k � 0 and n � 1 we let Ckn be the number of chains (1̂; �1; : : : ; �k; n̂) suchthat 1̂ < �1 < � � � < �k < n̂. We call these the non-degenerate k-chains. To avoidconfusion, we record that C�11 = 1, C�1n = 0 for n > 1, C01 = 0 and C0n = 1 for n > 1.Let (1̂ = �0; �1; : : : ; �k; �k+1 = n̂) be a k-chain. Let j0 be the largest index j suchthat �j = 1̂, let j1 be the largest index j such that �j = �j0+1, and so on. Let m+2 bethe cardinality of the set f1̂; �1; : : : ; �k; n̂g. There are � k+1m+1� di�erent ways in whichthe indices j0; : : : ; jm can occur. Thus the number of k-chains (1̂; �1; : : : ; �k; n̂) withm+ 2 distinct elements is �k+1m+1�Cmk . This implies thatCkn = P kn � k�1Xm=�1 k + 1m+ 1!Cmn ;for k � 0 and n � 1. The following proposition is essentially the inclusion-exclusionprinciple.Proposition 1.8. For n � 1 and k � 0Ckn = kXl=�1 k + 1l + 1!(�1)k�lP ln:Proof. The formula is trivially true for k = 0. Let us assume it holds for all 0 � m �k � 1. Then Ckn = P kn �Pk�1m=�1 � k+1m+1�Cmn= P kn �Pk�1m=�1 � k+1m+1� �Pml=�1 �m+1l+1 �(�1)m�lP ln�= P kn �Pk�1s=�1Pk�1m=s �k+1m+1��m+1s+1�(�1)m�sP sn= P kn �Pk�1s=�1 �k+1s+1� �Pk�1m=s � k�sk�m�(�1)m�sP sn�= P kn �Pk�1s=�1 �k+1s+1� �Pk�s�1j=0 �k�sj �(�1)j�P sn= P kn +Pk�1s=�1 �k+1s+1�(�1)k�sP sn= Pks=�1 �k+1s+1�(�1)k�sP sn :Now we return to the functions fk. It is easy to see from Corollary 1.3 and thede�nition of h that fk+1(x)fk(x) = ePk+1j=0 (�1)j(k+1j )(hj(x)�1)



10 GREG ARONE AND MARJA KANKAANRINTAfor k � 0. According to Proposition 1.7 the coe�cient of (x�1)nn! , for n � 1 in theTaylor series of hk+1(x) � 1 is P kn . Therefore the coe�cient of (x�1)nn! , n � 1, in theTaylor series of ln fk+1(x)� ln fk(x) isk+1Xj=0  k + 1j !(�1)jP j�1n = kXl=�1 k + 1l+ 1!(�1)l+1P ln = (�1)k+1Ckn:Recall that Kn is a simplicial complex whose k-simplices are the non-degeneratek + 1 chains. Let e(Kn) be the reduced Euler characteristic of Kn. Thene(Kn) = n�2Xk=0(�1)k+1Ckn = 1Xk=0(�1)k+1Cknfor n � 2. Therefore the reduced Euler characteristic of Ki equals to the coe�cientof (x�1)ii! for i � n in the Taylor series of ln fn�1(x)� ln f0(x). Since ln f0(x) = x� 1,its Taylor coe�cients vanish for n � 2. On the other hand, Corollary 1.5 implies thatfor i � n the coe�cient of (x�1)ii! in the Taylor series of ln fn�1(x) is (�1)i+1(i� 1)!.Hence we have naturally obtained a proof of the following well-known fact:Proposition 1.9. The reduced Euler characteristic of Kn is (�1)n+1(n � 1)! forn � 2.Another way to say the above is that the in�nite productexp (x� 1) � 1Yi=2 exp �e(Ki) (x� 1)ii! !converges to the identity. This corresponds to the fact that the Goodwillie tower ofthe identity converges. References1. G.Z. Arone and M. Mahowald, The Goodwillie tower of the identity functor and the unstableperiodic homotopy of spheres, preprint.2. T.G. Goodwillie, Calculus I: the �rst derivative of pseudoisotopy theory, K-Theory 4 (1990),1-27.3. T.G. Goodwillie, Calculus II: analytic functors, K-Theory 5 (1992), 295-332.4. T.G. Goodwillie, Calculus III: the Taylor series of a homotopy functor, in preparation.5. B. Johnson, The derivatives of homotopy theory, To appear in Transactions of the AMS.
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