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Edito~' s Preface 

A generation has passed since the late Emil Artin's little classic on the 
gamma function appea~d in the Hamburger Mathematische Einzelschriften. 
Since that time, it has 6\en read with joy and fascination by many thousands 
of mathematicians and students of mathematics. In the United States (and 
presumably elsewhere as well), it has for many years been hard to find, and 
'dog-eared copies and crude photocopies have been passed from hand to hand. 
Professor Artin's monograph has given many a student his first look at genuine 
analysis-the delicacy of its arguments, the precision of its results. Artin had 
a deep feeling for these aspects of analysis, and he treated them with a master's 
hand. His undergraduate lectures in the calculus, for example, were filled with 
elegant constructions and theorems which, alas, Artin never had time to put 
into printed form. We may be all the more grateful for this beautiful essay, 
and for its appearance in a new English edition. Various changes made by 
Artin himself have been incorporated in the present edition. In particular a 
small error following formula (59) (this edition) was corrected on the basis of 
a suggestion by Professor B0rge Jessen. 

Finally, thanks are due to the translator, Mr. Michael Butler, and to the 
firm of B. G. Teubner for English-language rights. 

Seattle, Washington 
May, 1964 
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EDWIN HEWITT 



Preface 

I have written this monograph with the hope of filling in a certain gap 
which has often been felt to exist in the mathematical literature. Despite the 
importance of the gamma function in many different parts of mathematics, 
calculus books often treat this function in a very sketchy and complicated 
fashion. I feel that this monograph will help to show that the gamma function 
can be thought of as one of the elementary functions, and that all of its basic 
properties can be established using elementary methods of the calculus. 

As far as prerequisites are concerned, the reader need only be well acquainted, 
with calcul~s, including improper integrals. Some of the more important 
concepts needed will even be introduced and discussed again in the first chapter. 
\Vith this background the reader should have no trouble understanding every­
thing but the later parts of the last two chapters, which do assume some knowl­
edge of Fourier series. But then, these parts of the monograph can be passed 
over on a first reading without any difficulty whatsoever. 

The following parts of the theory will not be discussed: 

(I) Extension to complex variables. For those familiar with the theory of 
complex variables, it will suffice to point out that for the most part the expressions 
used are analytic, and hence they retain their validity in the complex case 
because of the principle of analytic continuation. The only parts of the theory 
that really need to be changed are those dealing with approximations. This 
certainly should not be much of an obstacle. 

(2) Holder's theorem showing that the gamma function does not satisfy 
any algebraic differential equation. 

(3) Kummer's series and the integral representation of log T(x). 

(4) The formula for the logarithmic derivative of T(x). All the necessary 
expressions for this can easily be worked out by the reader. 

I have chosen the integral as my original definition of the gamma function 
because this approach saves us the trouble of proving the convergence of 
Gauss' product. Any other analytic expression having the characteristic proper­
ties of the gamma function could just as well have been used. The whole theory 
will then be deduced using the concept of log convexity. This method comes 
from Bohr and l\'Iollerup. 1 

EMIL ARTlN 

1 H. Bohr and J. Mollcrup, Laerebog i matematisk Analyse (Kopenhagen 1922), 
vol. Ill, 149-164. 
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[ 1 ]-

Convex Functions 

Let f(x) be a real-valued function defi~\d on an open interval a < x < b 
of the real line. For each pair x1 , .\'2 of distinct numbers in the interval we form 
the difference quotient 

and for each triple of distinct numbers x1 , x2 , x3 the quotient 

(x3 - x2)/(x1) + (x 1 - x3)j(x2} + (x2 - x1)/(x3) 

(x1 - x2) (x2 - x3) (x3 - x1) 

( 1.1) 

( 1.2) 

The value of the function 'P(x1 , x2 , x3) does not change when the arguments 
x 1 , x2 , x3 are permuted. 

f(x) is called convex (on the interval (a, b)) if, for every number x3 of our 
interval, tp(x1 , x3) is a monotonically increasing function of x1 • This means, 
of course, that for any pair of numbers x 1 > x2 distinct from x3 the inequality 
tp(.\'1 , x3) :3 tp(x2 , x3) holds; in other words, that 'P(x1 , x2 , x3) :3 0. Since the 
value of 'P is not changed by permuting the arguments, the convexity of f(x) 
is equivalent to the inequality 

(1.3) 

for all triples of distinct numbers in our interval. 
Suppose g(x) is another function that is defined and c<lnvex on the same 

interval. By adding ( 1.3) to the corresponding inequality for g(x), we can easily 
see that the sum j(x) + g(x) is also convex. :\'lore generally, suppose / 1(x}, 
/ 2(x), fix) ... is a sequence of functions that are all defined and convex on the 
same interval. Furthermore, suppose that the limit lim,. •00 /r,(x) = f(x) exists 
and is finite for all x in the interval. By forming the inequality ( 1.3) for fn(x) 
with arbitrary but fixed numbers x1 , .~2 , x3 , and then taking th,: limit as 
n-.... oo, we see that f(x) is likewise convex. This proves the following theorem: 

I 



2 THE GAMMA FUNCTION 

Theorem 1.1 

The sum of convex functions is again convex. The limit function 
of a convergent sequence of convex functions is convex. A convergent 
infinite series whose terms are all convex has a convex sum. 

The last statement of this theorem follows from the fact that each partial 
sum of the series is a convex function and the sum of the series is merely the 
limit of these partial sums. 

We are now going to investigate some important properties of a function 
f(x) defined and convex on the open interval (a, b). For a fixed x0 in the interval 
let .t•1 range over all numbers > .~0 and x2 range over all numbers < x0 • \Ve 
have 

(1.4) 

If x2 is kept fixed and x1 decreases approaching x0 , the left side of Eq. ( 1.4) will 
decrease but always remain greater than the right side. This implies that the 
"right-handed" derivative of f(x) exists; that is to say, the limit 

for which we shall use the intuitive notation f'(x0 + 0). Furthermore, the 
inequality ( 1.4) also shows that 

If we let x2 increase, approaching x0 , we see that the "left-handed" derivative 
f'(x0 - 0) also exists, and that 

( 1.5) 

Given two numbers x0 < x1 in our interval, we can choose x2 , x3 such that 
x0 < x2 < x3 < x1 • Then 

If we let x2 approach ,\'o and x3 approach x1 , we obtain 

/'(x0 + 0) ~ f'(.\'1 - 0) for (1.6) 

This proves that the one-sided derivatives of a convex function always exist 
and that they satisfy the inequalities (1.5) and (1.6). We shall refer to the pro­
perties (1.5) and (1.6) by saying that the one-sided derivatives are monotonically 
increasing. 
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In order to show the converse, we must generalize the ordinary mean-value 
theorem to cover the case of functions for which only the one-sided derivatives 
exist. The analogue to RoUe's theorem is the following: 

Theorem 1.2 

Let f(x) be a function, defined and continuous on a ~ x ~ b, whose 
one-sided derivatives exist in the open interval a < x < b. Suppose 
/(a) = f(b). Then there exists a value ~ with a < ~ ;Vb such that one of 
the values /'(f + 0) and /'(f - 0) is ): 0 and the other ~ 0. 

Proof 

(I) If f(x) takes on its maximum f in the interior of our interval, then 

f(f +h)-!W 
--h--

is ~ 0 for positive h, ~ 0 for negative h. Taking limits, we get f'(f + 0) ::::; 0, 
/'(~ - 0) ): 0. 

(2) If the minimum ~ is taken on in the interior, we obtain similarly 
/'(f + 0) ): 0, /'(f - 0) ~ 0. 

(3) If both maximum and minimum are at a or b, then f(x) is constant, 
/'(.~) = 0, and ~can be taken anywhere in the interior. This completes the proof. 

The substitute for the mean-value theorem is the following: 

Theorem 1.3 

Let f(x) be defined and continuous on a ~ x ~ b and have one­
sided derivatives in the interior. Then there exists a value f in the interior 
such that (/(b) .. _ f(a))j(b -a) lies between/'(~ - 0) and/'(~ + 0). 

Proof 

The function 

F(x) = f(x) _/(b) - f(a) (x - a) 
b-a 

is continuous, has one-sided derivatives 

F'(x ± 0) = f'(x ± O) _f(bi =~(a), 

and F(a) = f(a), F(b) =/(a). According to our extension of Rolle's theorem, 
there is a f in the interior such that one of the values 

j'(f + O) _f(b) - f(a) 
b-a 

or f'(f ___ O) _/(b) - f(al 
b-a 

is ;?- 0, the other ~ 0. This completes the proof. 



4 THE GAMMA FUNCTION 

We are now in a position to prove the desired converse. Letj(x) be a func­
tion defined on the open interval a < x < b. Suppose j(x) has one-sided deriva­
tives that are monotonically increasing. \Ve contend that j(x) is convex. 

Let x1 , x2 , x3 be distinct numbers in our interval. Since the value of 'P 
does not change under permutation of the subscripts, we may assume that 
x2 < x3 < x 1 • According to the mean-value theorem, we can find ~. 7J with 
x2 < 7J <·"a < t < .t'1 such that 9'(x1 , x3) lies between/'(§ - 0) and f'(f + 0), 
and <p(x2 , x3) between f'(7J - 0) and /'(7J + 0). Therefore (1.5) implies that 

and 

From Eq. (1.2) we obtain 

f'(f - 0} - /'(7} + 0) 
'P(xl • X2 • Xa) ?:- ------------- · 

x,- ,'1;2 

Finally we conclude from ( 1.6) that 

and this is the contention. 

Theorem 1.4 

j(x) is an convex function if, and only if,j(x) has monotonically increas­
ing one-sided derivatives. 

Corollary 

Let f(.\'} be a twice differentiable function. Then f(x) is convex if, 
and only if, j"(x) > 0 for all x of our interval. 

Proof 

f'(x) is monotonically increasing if, and only if, j"(x) :j 0. 

\\'e now return to Eq. ( 1.2) and select for x3 the midpoint (x1 + ,\·2)j2 of 
x 1 and x2 • Assuming for a moment that .t'2 < .\'1 , we have 

The numerator of 'P(x1 , x 2 , x3) becomes 

and the denominator is positive. For a convex function we obtain the inequality 

( 1.7) 
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which is symmetric in x 1 and x2 and therefore also holds for x1 < x2 • For 
x 1 = x2 it is trival. 

We shall call a function defined on an interval weakly convex if it satisfies 
the inequality (1.7) for all x1 , x2 of the interval. It is obvious that the sum of 
two weakly convex functions, both defined on the same interval, is again weakly 
convex. It is also obvious that the limit function of a sequence of weakt'y convex 
functions, all defined on the same interval, is weakly convex. 

Let j(x} be weakly convex. The inequality (I. 7} can be generalized to 

(1.8} 

Proof 

( 1} We first show that if ( 1.8) holds for a certain integer n, then it also 
holds for 2n. Indeed, suppose x1 , x2 , ... , x2n are numbers in our interval. 
Replacing x1 and x2 in Eq. (1.7} by 

and 

respectively, we have 

j (' + ... + Xz,.) ~ t (/ (• +_· ·_· + x,..) + j (n+l + "' -\- X2n)) . 
~ . . . n n . 

Applying the inequality (1.8} to both terms on the right-hand side, we get the 
desired formula 

(2) Next we show that if ( 1.8) holds for n + 1, then it also holds for n. 
With n numbers (x1 , x2 , ... , -"n} the number 

also belongs to our interval. If ( 1.8} holds for n + 1, then 

Transposing the term 1/(n + l}j(x,..+1) to the left side, we obtain (1.8) for then 
given numbers. 
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(3) We now combine steps (I) and (2) to attain the desired result. If 
( 1.8) holds for any integer n, then step (2) implies that it also holds for all smaller 
integers. Because of step (I) the contention is true for arbitrarily large integers. 
Therefore it must be true for all n. This completes the proof. 

We wish to prove the following theorem: 

Theorem 1.5 

A function is convex if, and only if, it is continuous and weakly con-
vex. 

Proof 

(I) A convex function is continuous since it has one-sided derivatives. 
It is also weakly convex, as has already been shown. 

(2) Suppose that f(x) is weakly convex, that there are x2 < x1 numbers 
in our interval, and that 0 ~ p ~ n are two arbitrary integers. Apply (1.8) 
to the case where p of the n numbers have the value x1 and the remaining 
n - p numbers have the value x2 • We obtain 

Assume now that f(x) is continuous and let t be any real number such that 
0 ~ t ~ I. Select a sequence of rational numbers between 0 and I that converges 
tot. Every term of this sequence is of the form pfn for suitable integers p and n; 
therefore Eq. (1.9) can be applied. Since f(x) is continuous, we can go to the 
limit. 'We obtain 

f(tx1 +(I - t) x2) ~ tf(x1) +(I - t)f(x2). (1.10) 

For any distinct numbers (x1 , x2 , x3 } in our interval we must show that 
ifi(x1 , x2 , x3) ;;?- 0. Since 1/1 is symmetric, we may assume that x2 < x3 < x1 • 

The denominator of Eq. (1.2) is positive. 

and 

We set t = (.~3 - x2)/(x1 - x2); then 

0 < t <I, - t = _x-=.1_-_x~a 
X1- .\'2 

Hence Eq. ( 1.10) implies that 

f(xa) ~ Xa - x?_ /(xl) + xt - Xa f(x2), 
x1- Xz x1- Xz 

which shows that the numerator of .p is ;;:::=: 0. This completes the proof. 
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Numerous inequalities useful in analysis can be obtained from Eq. (1.8) 
by a suitable choice for /(x). As an example, consider f(x) = - log x for x > 0. 
We have f"(x) = lfx2 and our function is convex. Therefore Eq. (1.8) implies 
that 

( x+- .. +x) I 
-· Jog 1 

n 
11 ~ - n (Jog X1 -1- log Xz + ''' + Jog Xn), 

hence 

( x+ .. ·J...x) 
Jog 1 n ' n ;;::::: log '\f X 1 + " ' + Xn , 

and consequently 

X + ... +X -v' x1 + ... + x,.. ~ 1 n • 
n 

We now introduce an important concept closely related to that of convexity. 
A function f(x) defined and positive on a certain interval is called log conve:>.: 
(weakly log convex) if the function log f(x) is convex (weakly convex). The con­
dition that f(x) be positive is obviously necessary, for otherwise the function 
log f(x) could not be formed. As an immediate consequence of our previous 
results, we have the following: 

Theorem 1.6 

A product of log-convex (weakly log-convex) functions is again 
log convex (weakly log convex). A convergent sequence of log-convex 
weakly log-convex) functions has a log-convex (weakly log-convex) limit 
function, provided the limit is positive. 

Instead of the condition that the limit function be pos1ttve, we could 
require that the sequence of the logarithms of the individual terms be con­
vergent. 

Theorem 1. 7 

Suppose f(x) is a twice differentiable function. If the inequalities 

f(x) > 0, f(:o:)f"(x) - (f'(x))2 ;;::::: 0 

hold, then f(x) is log convex. 

This theorem follows directly from the fact that the second derivative of 
log f(x) has the value 

f(x)f"(x) - (f'(x))2 

(f(x))2 
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The properties of log-convex functions mentioned thus far are all more or 
less immediate consequences of the definition. The following remarkable 
theorem, however, is a much deeper result: 

Theorem 1.8 

Suppose f(x) and g(x) are functions, defined on a common interval. 
If both are weakly log convex, then their sum j(x) + g(x) is also weakly 
log convex. If both are log convex, thenf(x) + g(x) is Jog convex. 

Proof 

. It suffic~s.to prove t~e first statement. The second then follows immediately 
wrth the addrtlon of contmuity. 

Bothf(x) and g(x) are positive. If x1 , x2 are numbers in our interval, then 

and 

We have to show that 

In other words the proof of our theorem amounts to showing that if a b e 
1 ' 1 , 1 • 

a2, b2 , e2 are positive real numbers with a1e1 - b2
1 

>- 0 and a c -- b2 >- 0 
h 

~ 22 2~, 
t en 

Consider the quadratic form a1x2 + 2b1xy + e1y2 where a1 > 0. We have 

ala1x2 + 2b1xy + e1y2) = (a 1x + b1y)2 + (a1e1 - bi} y2. 

If alel - hi ;;::: 0, the quadratic form never takes on a negative value, what­
ever x, Y may be. On the other hand, if a1c1 --· bi < 0, the quadratic form takes 
on the negative value a1e1 -- b: for y = I, x = - (b

1
fa

1
). 

Our conditions imply that neither 

nor 

takes on negative values. Therefore 

will not take on negative values. Consequently 
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This completes the proof of the theorem. 

The reader who enjoys working with identities can check the validity of 
the following, for an alternate proof: 

If 

a1 > 0, and 

the right side is ;;:;:: 0 and the conclusion follows. 
Other important facts can be obtained by combining our previous results. 

Suppose f(t, x) is a function of the two variables x and t, which is defined and 
continuous for t in the interval a ~ t ~ b and x in some arbitrary int.erval. 
Furthermore, for any fixed value oft, suppose thatf(t, x) is a log-convex, twice 
differentiable function of x. For every integer n we can build the function 

F,(x) = h(f(a, x) + j(a + h, x) + f(a + 2h, x) + ··· + f(a + (n - 1) h, x)), 

where h = (b - a)fn. Being the sum of log-convex functions,· F.,(x) is also 
log convex. As n approaches infinity, the functions F,(x) converge to the integral 

r j(t, x) dt; 
a 

hence this integral is also log convex. 
Suppose that f(t, x) only satisfies our conditions in the interior of the 

t interval, or that the upper bound of the interval is infinite. If the improper 
integral 

r j(t, x) dt 
a 

exists, then it is log convex. This follows directly from the fact that an improper 
integral is the limit of proper integrals over subintervals. Hence, as the limit 
function of log-convex functions, it is also log convex. 

In this book we will only have to test integrals of the form 

r cp(t) tz-l dt 
a 

for log convexity, where cp(t) is a positive continuous function in the interior 
of the integration interval. If we take the logarithm of the integrand and then 
differentiate twice with respect to x, we get 0. 
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Theorem 1.9 

If cp(t) is a pos1t1ve continuous function defined on the interior of 
the integration interval, then 

~ I" cp(t) r•-1 dt 

is a log-convex function of x for every interval on which the proper or 
improper integral exists. 

The following theorem is quite obvious: 

Theorem 1.10 

If f(x) is log convex on a certain interval, and if c is any real number 
*- 0, then both the functions f(x + c) andf(cx) are log convex on the corres­
ponding intervals. 

[ 2 ] 

The Euler Integrals and the 
Gauss Product Formula 

The theory of the gamma function was developed in connection with the 
problem of generalizing the factorial function of the natural numbers, that is, 
the problem of finding an expression that has the value n! for positive integers n, 
and that can be extended to arbitrary real numbers at the same time. In looking 
for such an expression, we come upon the following well-known improper 
integral: 

J'"' e-1 tn dt = n! 
0 

This suggests replacing the integer n on the left side by an arbitrary real number 
(provided the integral still converges) and defining x! for arbitrary x as the value 
of this integral. Rather than doing precisely that, we will follow the custom 
of introducing a function that has the value (n - 1 )! for positive integers n. 
Namely, 

·"" 
r(x) = J 0 e- 1 r•-1 dt. (2.1) 

We still must determine the values of x for which this integral converges. The 
integrand is smaller than t"'-1 when t is positive; therefore 

II rl 1 ""' e-1 t"'-1 dt < tx-l dt =---. 
< • , X X 

For x > 0, 
I J e-t p-1 dt 
f 

is bounded from above by lfx. If we hold x fixed and let E decrease, the value 
of the integral increase monotonically. This means that 

1 1 

J e-t re-l dt = Jim f e-t (X-1 dt 
o e~o .. f 

exists for all positive x. 

11 
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When t is posttlve, every term of the series for e1 is posthve, and 
the inequality e1 > t"fn! holds for all integers n. Hence e-1 < n!ft", which gives 
another inequality for the integrand, namely, e-11'"-1 < n!ftn+l-z. Therefore, by 
holding x fixed and choosing n > x + I, we can make n!/(n- x) an upper 
bound for 

s: e-' tz-1 dt. 

But the value of this integral increases as 8 increases, and thus 

J
"' .~ 

e-1 tz-l dt = lim j e-t t"'-1 dt 
1 

6
- 1 

exists. This implies that our definition, Eq. (2. I), is meaningful for all positive 
real x. 

If we replace x by x + 1 in Eq. (2.1) and integrate the approximating 
integral by parts, we get 

6 ~~ 6 J e-1 t"' dt = - e-1 t"' + x J e-1 t'"-1 dt 
# # # 

= r'E"' - e-68"' + X r e-1 tx-l dt. 
f 

The term r 6o"' is again smaller than n!/8"-"'. As E approaches 0 and 8 approaches 
+ oo, the first two terms on the right side vanish, and we have the formula 

r(x + 1) = xr(x). (2.2) 

This functional equation is basic for the development of the rest of the theory. 
It represents a generalization of the identity n! = n(n - I)! for non integral 
values of n. Suppose the value of the gamma function is known on the interval 
0 < x :;;;:; I. With the help of Eq. (2.2) we can easily calculate its value on the 
interval 1 < x ~ 2, then again on the next interval of length I, and so on. By 
repeated application of Eq. (2.2}, we get 

r(x + n) = (x + n- 1) (x + n- 2) ... (x + 1) xr(x) (2.3) 

for every positive integer n. 
Equation (2.1) is only a definition for positive x. Now we want to extend 

this definition to include negative real numbers. If x lies in the interval 
- n < x < - n + I, we define the value of the gamma function at x by 

1 
r(x) = x(x + I) ... (x + n- I) r(x + n). (2.4) 

THE EULER INTEGRALS AND THE GAUSS PRODUCT FORMULA 13 

If x is a negative integer or 0, the right side of Eq. (2.4) is meaningless. We will 
consider r(x) as undefined for these particular numbers. Otherwise, the left 
side of Eq. (2.4) is well defined, since the argument (x + n) on the right 
lies in the interval 0 to l. This extended definition is obviously so constructed 
that the functional equation, Eq. (2.2), always holds. 

The two paragraphs above clearly show that Eq. (2.2) does not determine 
the gamma function uniquely. If f(x) is any arbitrary function defined on the 
interval 0 < x :;;;:; I , we can set 

f(x + n) = (x + n- l)(x + n - 2) ··· (x + 1) xf(x) (2.5) 

for 0 < x :;;;:; 1, and 

I 
/(x) = x(x+ I) ···(x + n -1/(x + n) 

for - n < x < - n + 1. Thus f(x) is defined for all real numbers, with the 
exception of 0 and the negative integers, in such a way that the functional 
equation f(x + I)= xf(x) always holds. This certainly makes our definitions, 
Eqs. (2.1) and (2.4 ), seem rather arbitrary. If we keep our original problem in 
mind, it is quite natural to want Eq. (2.2) to hold. It is the appropriate generaliza­
tion of an elementary property of the factorial function. But an infinite number of 
arbitrary functions can be found that share 'this property with the gamma 
function. What singles out r(x) from all the other possible functions we could 
have defined? One glance at the integral in Eq. (2.1) shows that 

r(t) = 1, 

and therefore 

r(n) = (n - 1)!. (2.6) 

Furthermore, r(x) is continuous and differentiable. (This will be proved later on.) 
But even so, an infinite number of other functions that also have these properties 
can be found. 

Our integral in Eq. (2.1), however, has another property that catches the eye. 
It is log convex. This fact follows immediately from our conclusions concerning 
integrals and log convexity in Chapter I. Intuitively, it means that the curve 
y = log r(x) is very smoot)t. Strange as it may seem, this property is enough 
to single out r(x) from all the other solutions of the functional equation 
f(x + I)= xf(x). 

We shall now prove the following: 
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Theorem 2.1 

If a function f(x) satisfies the following three conditions, then it is 
identical in its domain of definition with the gamma function: 

(I) f(x + I}= xf(x). 

(2) The domain of definition of f(x) contains all x > 0, and is log 
convex for these x. 

(3) /(1) = 1. 

Proof 

The existence of a function with these properties (the gamma· function) 
has already been proved. 

Suppose f(x) is a function that satisfies our three conditions. Then Eq. (2.5) 
is valid because of condition (I), and f(n) = (n - 1)! for all integers n > 0 
because of condition (3). It suffices to show that f(x) agrees with T(x) on the 
interval 0 < x ~ I. If this is the case, then f(x) must agree with T(x) every­
where because of condition (I). Let x be a real number, 0 < x ~ I, and n 
an integer :): 2. The inequality 

log/(- I -;- n)- logf(n) ~ logf(x + n) - logf(n) ~ logf(l + n)- logf(n) 
(-l+n)-n """' (x-1-n)-n """' (l+n)-n 

expresses the monotonic growth of the difference quotient for particular values, 
and is therefore valid because of condition (2). Since f(n) = (n - I )I, we have 

I ( I)
__.. logf(x + n)- log (n- 1)! __.. 

1 ogn- "'=::: ""'ogn 
X 

or 

log (n - 1)'" (n - I)! ~ logf(x + n) ~log n'"(n - 1)!. 

But the logarithm is a monotonic function; hence 

(n- I)'" (n- I)! ~f(x + n) ~ n"(n - 1)!. 

With the help of Eq. (2.5), we get the following inequality for f(x) itself: 

(n - 1 )x (n - 1 )! ~ ~ n'"(n - 1 )! 
x(x + I) ... (x + n ·- I) -..:::f(x) """'.~(x + 1) ... (x + n- 1) 

n'"n! x + n 
x(x+J) .. ·(x+n) n 

Since this inequality holds for all n :): 2, we can replace n by n + 1 on the left 
side. Thus 

~n! n~! x+n 
( 1 ( 

~ f(x) ~ -- . x x + ) ... x + n) - x(x + 1) ... (x + n) n 
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An easy calculation gives the inequality 

n n'"n! 
f(x) -- ~ ~f(x). 

x+n x(x+1) .. ·(x+n)"' 

As n approaches infinity, we get 

. n'"n! 
f(x) = hm • 

n~oc x(x + 1) ... (x + n) 

But T(x) is also a function that satisfies our three conditions. Hence the relation 
we have just derived is still valid if we put T(x) instead of f(x) on the left side. 
This completes the proof of the theorem. 

As a corollary we have the formula 

. n'"n! 
T(x) = hm . 

n~cc x(x + 1) ... (x + n) 
(2.7) 

Actually Eq. (2.7) was only proved for the interval 0 < x ~ I. To show that it 
holds in general, we denote the function under the limit sign by rn(x). It is 
easy to see that 

n 
r .. (x + 1) = xr .. (x) + 1' x+n 

These two expressions help clarify the following fact: As n approaches infinity, 
if the limit in Eq. (2.7) exists for a number x, it also exists for x + I. Conver­
sely, if it exists for x + 1 and x ::1: 0, it also exists for x. Hence the limit 
exists for exactly those values of x for which T(x) is defined. If we denote the 
limit in Eq. (2.7) by f(x), we get the equation f(x + I) = xf(x). Since f(x) 
already agrees with T(x) on the interval 0 < x ~ 1, it must also agree every­
where else. Equation (2. 7) was derived by Gauss, and it is often used as the 
fundamental definition of the gamma function. 

Another form of Eq. (2.7) which is important in the theory of functions 
was derived by Weierstrass. A simple manipulation shows that 

1 ~n ~n e~n r. (x) = e"'llogn-1/1-1/2- ... -1/nl _ .,..---.:- ---~ 
n x 1 + x/1 1 + x/2 1 + xfn • 

But the limit 

C = lim (! + ! + .. · + _!_ - log n) 
n~cc 1 2 n 
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exists.* It is often called Euler's constant. Therefore, we have 

1 " ~~~ 1 rr"" . e:>:ll 
r(x) = e-C:.:- lim II} -1- /' = rC:.:- 1 ,. ' 

X n-toc l•l o X:l X l•l + X I 
(2.8) 

where II is the product symbol. 
We shall now show that the function r(x) can be differentiated as often as we 

please; that is, r(x) has derivatives of arbitrarily high order. Because of the 
functional equation (2.2), it suffices to prove the assertion for positive x. But 
r(x) > 0 for X > 0, therefore log r(x) is defined. From (2.8) we get 

n (X · X)) log r(x) = - Cx - log X + !~~ ~ T - log ( 1 + T 
i=l 

= - Cx - log x + ~ ( : - log ( 1 + : ) ) . (2.9) 

We will now proceed to prove our assertion for the function log F(x). The 
conclusion for F(x) will then follow immediately from F(x) = elogr(:.:l. Can we 
take the derivative of the series in Eq. (2.9) term by term ? This can be done 
if the new series-the one obtained by termwise differentiation-is uniformly 
convergent. Should this be the case, the left side of Eq. (2.9) is differentiable. 
The differentiated series obtained from Eq. (2.9) is 

1 00 1 1 1 00 
X 

-C-- + ~(~ --.) = -C --+ ~. . . 
X ~-l l X + I X 1_ 1 t(X + 1) 

* To prove this we can set 

l l I · 
C =-+-+"•.1---Jogn 

" l 2 ° n 
and 

which gives us 

c,.+l- C~ = +, -log (t + ~) , 
n 0 n 

and 

The elementary inequality 

D~+1 - D~ = ~ - Jog (I + : ) . 

-
1

- < log (t + ~) < ..!_ 
n +I n n 

shows that the sequence c. decreases monotonically, whereas the D. increases monotonic· 
ally. Furthermore D~ <C.; hence, D 1 = 0 is a lower bound for the C •. In other words, 
the sequence C., converges to a limit. 
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Because x is positive, the general term of this series is smaller than xfi2• If we 
restrict x to an arbitrary interval 0 < x ~ r, then the general term is smaller 
than rfi2• This number is completely independent of x. The series 

"'r (1 1 1 ) ""-=r -+-+-+"· 1-1 ;s tz 22 32 •·1 

converges; therefore, our differentiated s,~ries converges uniformly. But this 
means log r(x) is differentiable, and that, on the interval in question, 

d r'(x) 1 "" ( 1 1 ) -log r(x) = -- = - c - - + "" ~ - --. . 
dx r(x) X {::( l X + l (2.10) 

But the choice of this interval was arbitrary, which implies that Eq. (2.10) 
holds for all x > 0. 

Suppose we take the derivative once again. We get the series 

The general term is smaller than lfi2 because x > 0. This series obviously 
converges uniformly for positive x. Repeated differentiation leads to ever better 
converging series, all of which converge uniformly for positive x. This shows 
that log F(x) can be differentiated as often as we please. We have the formula 

dk-1 ( r'(x)) _ ~ (- l)k(k- 1) 
dxk-l r(x) - ~ (x + i)" , k ~2. (2.11) 

There is no trouble in extending the validity of Eq. (2.11) to include negative x. 
This is easily done with the help of Eq. (2.2). We merely determine the functional 
equation that the left side of Eq. (2.11) satisfies, and then show that the right 
side also satisfies it. Both these steps are quite obvious. 

The case k = 2 is of special interest. The function 

~ ( r'(~) 
dx r(x) 

is always positive; therefore, the following inequality holds for all x: 

or 

This shows that the functions r(x) and r"(x) are either both positive or both 
negative for each particular value of x. Consequently the function I r(x) I 
is convex. When is r(x) positive and when is it negative? We already know that 
r(x) is positive for positive x. It follows from Eq. (2.4) that r(x) has the sign 
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(- I)" on the interval - n < x < - n + I. Furthermore, Eq. (2.4) shows 
that r(x) has a very large absolute value whenever x gets close to zero or a 
negative integer. If the well-known values of T(x) for the positive integers are 
also taken into account, we get a good idea of what the curve y = T(x) looks 
like. (The reader is encouraged to draw a sketch.) 

The integral of Eq. (2.1) is due to Euler, and it is referred to as Euler's 
second integral. He also discovered another integral related to the gamma 
function, which is called Euler's first integral: 

·1 
B(x, y) = j 

0 
re-1( 1 - t)Y-1 dt. (2.12) 

This time we have a function of the two variables x and y. We want to prove 
that the integral exists whenever x andy are positive. First, we write our integral 
as the sum of two integrals, one from 0 to !, and the other from ·k to I. The 
integrand of the first is always smaller than t"-1( 1 - t)-1 and hence smaller 
than 2t"-1• In the second the integrand is always smaller than t- 1(1 - !) 11 - 1 

and hence smaller than 2(1 - t) 11 - 1• The method we used to prove the existence 
of Euler's second integral can now be applied to these two integrals. The rest 
of the details are left to the reader. 

If we replace x by x + 1 in Eq. (2.12) and write the integral in the form 

B<x + J,y) = ( (1 _ t)X+V-1 (
1 
~ ~r dt, 

we can integrate by parts. We get 

·1-b ( t )" j (I - t)"+H ...--=-1 dt 
l 

= - ( 1 - t)'<+Y j_t -)" ~1-6 + J1-6 _::__ () - t}X+Y (-t -)x-1 _1 __ dt 
X + y \I - t l l X+ y 1 - t ( 1 - t)2 

(J - €)Y E"' - oY(l _ o)"' X 

1
.1-6 

= + -- t"-1( I - t)v-1 dt . 
.\·+y x+y' 

If we let E and o converge to zero, we get the following functional equation: 

X 
B(x + l,y) = x + y B(x,y). 

Now we hold y fixed and consider the integral of Eq. (2.12) as a function of x. 
In order to obtain a function that satisfies the functional equation (2.2) we set 

f(x) = B(x, y) T(.~ + y). 

This function obviously satisfies condition (I) in Theorem 2.1. Furthermore, 
f(x) is the product of two log-convex functions and is therefore log convex 
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itself. The log convexity of B(x, y), regarded as a function of x, follows imme­
diately from our theorem on the log convexity of integrals. T(x + y) is obviously 
log convex. This means that f(x) also satisfies condition (2) in Theorem 2.1. 
Condition (3), however, does not hold. We have 

and therefore 

·1 1 
B(J,y) = j

0 
(1- t)H dt = y, 

1 
/(I) =- T(l + y) = T(y). 

y 

But this is not really a serious difficulty. Given any function g(x) that satisfies 
conditions (I) and (2), we can always construct a function that also satisfies (3). 
Condition (2) implies that g(l) > 0, which means we can form the quotient 
g(x)fg(l). This function satisfies all three conditions and therefore is T(x). In 
other words, we have 

g(x) = g(l) T(x). 

In our particular case we get 

f(x) = T(y) T(x). 

But this means we have evaluated the integral in Eq. (2.12): 

T(x) T(y) = It t"'-t(t - w-t dt. (2.13) 
T(x + y) 0 

This formula holds for all positive x andy. 
By setting x =! and y =! in Eq. (2.13), we get an integral that can 

easily be evaluated. The substitution t = sin2 <p gives us 

But rt is positive; therefore, we have the following remarkable and important 
identity: 

ret>= v;. (2.14) 

Using Eq. (2.14) and the functional equation (2.1), we can easily calculate the 
value of T(n + i-> for integral n. 
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Large Values of x and the 
Multiplication Formula 

Can we find an elementary function that gives an accurate approximation 
of T(x) for large values of x? If the growth of n! is estimated, it is found to 
increase with n faster than nne-n, but not quite as fast as nn+1e-". * In other 
words, the growth of T(n) is caught between n"-1rn and nne-n. This suggests 
that we consider a function of the form 

(3.1) 

in order to study the behavior of T(x) for large x. Our goal is to make f(x) satisfy 
the basic conditions for the gamma function by choosing 1-!(x) in an appropriate 
way. 

If we replace x by x + I in Eq. (3.1) and divide the resulting expression 
by Eq. (3.1), we get 

f(x-+ I) I )"'+1/2 __ ._ = (1 + _ xe-1 e111z+ll-11 1xl. 
f(x) x 

This shows thatf(x) satisfies condition (1) in Theorem 2.1 if, and only if, 

(3.2) 

holds for p.(x). 

* If we consider the elementary inequalities 

( 
I )• ( I )HI l+k <e< l+k 

fork = I, 2, ···, (n - 1), and multiply them together, we get 

nn-1 n~ 

--- < en-1 < ---
(n-1)! (n-1)1' 

This leads to the approximation 

20 
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We ~enote the right side of Eq. (3.2) by g(x). A function p(x) with this 
property 1s easy to find. If we set 

<X> 

p.(x) = ~g(x + n), 
... o 

(3.3) 

then Eq. (3.2) holds, provided the infinite series in Eq. (3.3) converges. Let us 
postpone the proof of convergence for a moment and consider condition (2) 
of theorem 2.1. 

The factor x"-112 r" in Eq. (3.1) is log convex because the second derivative 
of its logarithm, 1/x + f x2, is always positive when x is positive. If we can 
show that the factor e~' 1 "' 1 is log convex, in other words that p(x) is convex, then 
f(x) also satisfies condition (2). This means that the function f(x) determined 
by the particular p(x) we defined in Eq. (3.3) will agree with r(x) to within a 
constant factor. Our p.{x) is convex if the general term of the series g(x + n) 
is convex. To show this, it suffices to prove the convexity of g(x) itself. But 
we have 

"( ) l g x = 2x2(x + 1)2 > 0. 

The convergence of the series in Eq. (3.3) still remains to be shown. We 
will combine this with an approximation of the function p(x). Let us begin by 
considering the expansion 

! log l + y = 1.._ + y3 + yr. + ... 
1-y I 3 5 ' 

which is valid for I y I < I. Now we replace y by l/(2x + 1). The resulting 
expansion is valid for positive x because l/(2x + I) < I whenever x > 0. 
We multiply this equation by 2x + l and bring the first term on the right side 
over to the left side: 

. 1 
(x +!)log (1 + -:x)- 1 =g(x) 

1 1 1 
= 3(2x + 1)2 + 5(2x + I)''+ 7(2x + 1)8 + ··· · 

This expression again shows that g(x) is convex, since every term on the right 
side is convex. Now we can approximate g(x). If the integers 5, 7, 9, ... are all 
replaced by 3, then the value of the right side increases. The result is an infinite 
geometric series, having 1/(3(2x + 1)2) as its first term and l/(2x + 1)2 as its 
ratio. Its sum is 

1 1 I 1 
3(2x + 1)1 l- (l/(2x + 1)2) = 12x(x +I) = 12x- 12(x + 1) · 
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But g(x) is positive, hence 

l I 
0 <g(x) < 12x- 12(x + 1) · 

Since every term of the series in Eq. (3.3) is positive, it suffices to show the 
convergence of 

"" 1 l 
~ ( 12(x + n) - l2(x + n + 1))' 

which converges trivially to the limit l/12x. This not only proves our assertion, 
it also gives the approximation 

In other words, 

l 
0 < 1-'(x) < 12x · 

0 
1-'(x) = 12x 

where (} is a number independent of x between 0 and l. 
By a suitable choice of the constant a, we get 

(3.4) 

If we let .\" be an integer n and multiply the expression by n, we get the appro­
ximation 

(3.5) 

We are now going to find the exact value of this constant a and determine 
some other important constants at the same time. 

Let p be a positive integer. We consider the function 

f(x) = P" r (-=-)· r (x + 1) ... r ( + P - I) . 
p p . p . 

for x > 0. The second derivative of log P"' is zero, and each of the functions 
r((x + i)/P) is obviously log convex. This implies that f(x) is also log convex. 
If we replace x by x + 1, P"' takes on the factor p, T((x + i)fp) goes over into 
the next factor, and r((x + p- 1)/P) becomes . 

r(; +t)=;r(;). 
In other words,f(x) is multiplied by x. Our function again satisfies the conditions 
( l) and (2) in Theorem 2.1 ; therefore, 

(x) (x+l) (x+p-1) pzr p r -p- ... r p = apr(x), (3.6) 
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where aP is a constant depending on p. For x = I in Eq. (3.6), we have 

If we set x = kfp in Eq. (2.7), then a simple manipulation gives 

k) . n~·!Pn!pn.;.l 
r- = hm . (p n-<oo k(k + p) (k + 2p) ··· (k + np) 

Now we set k = I, 2, ···, p, one after the other, and multiply all these expressions 
together. Factors of the form (k + hp) appear in the denominator, where k 
runs from l top, and h runs from 0 ton. For h = 0 we get the numbers from 
I to p; for h = 1, the numbers from p + l to 2p; and so on. The product in 
the denominator is obviously (np + p)!. The final result is 

. n!P+lln(n!)P pnP+l 
a = p hm --:-----'----"----7-:---

P n.- (np + p)l 

The well-known infinite product 

1 = lim ('t + _!_) (1 + ~') ··· (1 + L) , 
n-><t> np np np 

which can be written as 

l = lim (np + p)! , 
n .... X> (np )! (np)P 

can now be applied. If we multiply this last expression with the above identity 
for aP , we obtain 

. (n!)P pnv 
a,= p hm 2 • 

n....oo (np)! niP-lll' 

But Eq. (3.5) implies that 

After making the appropriate substitutions above, we obtain 

and finally 

a,= yp aP·-lJim ei01J>il2nl-I02il2nl•l, 
n--oo 

(3.8) 
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By evaluating a2 with the help of Eq. (3.7) and then comparing the result with 
Eq. {3.8), we get 

a2 = 2F(i) T(l) = 2 y; =a v'2. 

But this determines the exact values of our constants: 

a= v'2'" and 

Now we gather together all the important expressions from this. chapter: 

0 < 8 < 1, 

(3.9) 

(X) (x+ I) (x+p-1) (27T)CP-lll2 r - r -- ... r = n(x). p p p px-112 (3.10) 

In particular, for p = 2 

(3.11) 

The formulas in Eq. (3.9}, which describe the behavior of r(x) for large 
values of x, are called Stirling's formulas. If our approximation of 1-~(x) is used, 
the accuracy of the formula for T(x) will increase as x increases. This is also 
true for estimates of n! The relative accuracy for n ~ 10 is already quite high. 

The functional equation (3.10), discovered by Gauss, is called Gauss' 
multiplicatiQ71 formula. By replacing x by px in Eq. (3.10), we obtain an ex pres· 
sion for r(px) as the product of factors, each of the form T(x + (kfp)). This fact 
gave rise to the name "multiplication formula." The most important special 
case is p = 2. It was discovered by Legendre and is often referred to as Legendre's 
relation. 

[ 4 ] 

The Connection with sin x 

The gamma function satisfies another very important functional equation. 

In order to derive it, we set 

<p(x) = T(x) T(l - x) sin ?TX. (4.1) 

This function is only defined for nonintegral arguments. If we replace x by 
X+ 1, then T(x) becomes xr(x). The function T(l - x) becomes 

F( _ x) = r(l - x), 
-.'1; 

and sin 1TX changes its sign. This means that 9'(x) is left fixed, and is therefore 

periodic of period I : 
<p(X +I)= 9'(x). (4.2) 

The Legendre relation can be written in the form 

(X) ('X + I) -z r( r 2 r -2- = b2 x), 

where b is a constant. Actually, the exact value of h was determined in Chapter 3. 
But this extra information need not (and will not) be assumed here. As far as 
we are concerned now, h is just some particular constant. 

In the expression above, we replace x by I - x: 

r(' ;x)r(l- ;) =b2"'-1T(l-x). 

Now we consider 

b2 = - T(x) r(t - x) sin 1TX, 
4 

and we get the relation 

9' (; ) 9' r 1.) = d<p(x). 

25 

(4.3) 
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where dis a constant depending on b. The exact value of d is not important 
here. 

Since both T(:t·) and sin x can be differentiated as often as we please, cp(x) 
also has this property. Because of the functional equation (2.2}, we can write 

T(l + x) . 
<p{x} = T(l -- X) Sin 7rX 

X 

where the power series converges for all values of x. But the right side of this 
equation is also defined for x = 0, and it represents a function having derivatives 
of all orders at this point. This suggests that we extend our definition, Eq. (4.1}, 
by giving cp(x) the value ,. at x = 0. Because our function is periodic, we define 
,. to be the value of cp(x) for all integral arguments. cp(x) is now continuous 
everywhere and has derivatives of all orders at every point. The relation of 
Eq. (4.3) was only proven for nonintegral x. But if we let x approach an arbitrary 
integer, the validity of Eq. (4.3) for all x follows from continuity. As far as the 
sign of cp(x) is concerned, Eq. (4.1) shows that cp(x) is positive on the interval 
0 < ;..· < 1. Because of Eq. (4.2), this is now true for all .r:. 

Our goal is to prove that <p(x) is a constant. Let g(x) denote the second 
derivative of log cp(x). g(x) is also periodic of period I. Because of Eq. (4.3), it 
satisfies the functional equation 

! (g (~) + g (~t!)) = g(x). 
2 . 2 ' 

(4.4) 

Since g(x) is continuous on the interval 0 ~ x ~ 1, it is bounded on this interval, 
say, I g(x) I ~ M. But this inequality holds for all x, because g(x) is periodic. 

The following argument shows that g(x) vanishes. Equation (4.4) gives us 
the inequality 

1 l ( X ) I 1 I (X + I) I M M M I g(x) I ~ 4 g T + 4 g -2- ~ 4 + 4 = T. 

This means that the upper bound can be pushed down from M to Mf2. If we 
repeat the process again, we get 1Wi4 as an upper bound, and so on. In other 
words, the upper bound for g(x) can be made as small as we please. This implies 
that g(x) = 0. But g(x) was the second derivative of log cp(x), hence log cp(x) 
is a linear function. Furthermore, log cp(x) is periodic, which means that log cp(x) 
must be a constant. Therefore cp(x) is also a constant. We already know one value 
of cp(.r:), namely, <p(O) = TT. This implies that cp(x) = ,. for all x. 

Recalling the definition of cp(.r:) in Eq. (4.1 ), we get 

r(x) T(l - x) = ...;:__, 
smn;x 

(4.5) 
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which is often called Euler's functional equation. If we set x = i in Eq. (4.5}, 
we get a new proof of Eq. (2.14). The exact value of the constant in Legendre's 
relation was never used; therefore, this proof of Eq. (2.14) is independent of 
what was done in Chapter 3. 

With the help of Eq. (2.2) we can write Eq. (4.5) in the form 

Now we substitute the expressions for r(x) and r(- x) given by Weierstrass' 
product formula, Eq. (2.8). This gives the following representation of sin TT.r: as 
an infinite product: 

"'' 2 
sin 1rX = 1rx IJ (1 - --;-) · 

i=l 1 ' 

(4.6} 

If we had assumed this product development of sin TT.r: to start with (there 
are other proofs for the expression), we could have derived Eq. (4.5) by direct 
calculation. The approach we took is preferable, inasmuch as it gives us 
Eq. (4.6) at the same time. For the importance of Eq. (4.6) in analysis, we refer 
the reader to books on function theory. 

Let us formulate the main result of this section as a theorem: 

Theorem 4.1 

Every positive periodic function that has a continuous second deri­
vative and satisfies the functional equation (4.3) is a constant. 
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Applications to Definite Integrals 

There is extensive literature that deals with more-or-less trivial manipula­
tions of the two Euler integrals. We can only mention a few of the important 
results here. • 

If we set e-1 = -r in Eq. (2.1 }, and then write t instead of -r again, we get 

fl ( 1 )z-1 
T(x) = 

0 
log t dt. 

Similarly, the substitution t"' = -r turns Eq. (2.1) into 

r(:t) = foo e-1' 1' _!_ dt. 
0 X 

If we replace x by lfx, then 

I "" r(l +-) =f rczdt. 
x, 0 

The case .r: = 2 in Eq. (5.2) is of special interest: 

r e-'2 dt =tv;. 
0 

(5.1) 

(5.2) 

(5.3) 

The number of similar manipulations can be extended indefinitely. We 
will mention one other example of importance in analytic number theory. If 
a > 0, the substitution t = a-r leads to the integral 

T(x) ·"" -- = I e-at fX-l dt. 
a" . o 

(5.4) 

Now we turn our attention to the first Euler integral, Eq. (2.13). The 
substitutions t = -rf(-r + I) and sin2 <p, respectively, give the expressions 

·"' rx-1 T(x) T(y) 
J 0 ( 1 + t)"'H dt = T(x + y) ' 

(5.5) 

and 

f
:ot2 T(x) T(y) 

(sin <p)2"'··• (cos <p)2Y- 1 d<p = ! . 
0 r(x +·y) 

(5.6) 
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If we set y =(I - x) in Eq. {2.13), Eq. {4.5} gives us the following inter­
esting special cases: 

J
·l 1J' 

t"'- 1(1 - t)-"' dt = -.--' 
o Sln'TJ'X 

0 <X< I, {5.7) 

.ac rz-1 1J' 

J -dt=-
0 1 + t sin 1f'X' 

0 <x <I, (5.8) 

f
:t/2 1J' 

2 (tg <p)2x-1 dcp = -.-' 
o sm 7rX 

O<x<l. (5.9) 

If x andy are both rational numbers, Eq. (2.13) is the intergal of an algebraic 
function. Suppose we set x = mfn and y = i in Eq. (2.13), and make the 
substitution t = -rn. We get 

J
·• rm-t T(mfn) v; 

--.,.........,....- dt = . 
o VI .:.._ tn nT(mfn + 1/2) 

(5.l0) 

For m = I and n = 4 or n = 3, we get the following numerical results, with 
the help of Eqs. (3.11) and ( 4.5): 

J
·• dt _ (T(I/4))2 

o vi - 14 - v327r · 
(5.11) 

J• dt = (T(I/3))3 
o vi ~-,a v3 {/t&,r' 

(5.12) 

which shows a connection between these particular numbers and the elliptical 
integrals. 

An integral representation for the error 1-!{.t·) in Stirling's formula can also 
be found. Since we have 

f
1 lj2 - t ( I ) -- dt = (x + !>log I +- - 1, 
0 t +X X 

the series in Eq. (3.9) can be written in the form 

00 r· 1,2 t !-!(X) = I- - dt . 
n-o· o t + n +X 

If we define the following noncontinuous function: 

l 
t- t, for 0 < t < I 

H(t) = 0, for t = 0 

otherwise periodic of period 1 
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it follows that 

"' J1 H(t) oo f"+l H(t) ·" H(t) 
IL(x) = ~ dt = ~ --dt =lim J --dt. 

fi=U 0 I + n + X n-o· ,. t + X """'"' 0 t + x 

Because the integrand is an oscillating function that approaches zero as t 

approaches infinity, the integral 

exists. 

oc· H(t) 
IL(x) = r -dt 

• 0 t +X (5.13) 

Equation (5.13) is the first step in deriving the so-called Stirling series, 
a refinement of Stirling's formula. We now introduce the functions 

H (t) = 2 (- l)"-l ~ cos 2irrt 
2n "-J (2' )2" ' i=l f1T 

_ .. ~ sin 2i71't 
Hzn-l(t) - 2 (- 1) t{ (2irr)2n-1 ' (5.14) 

We know that - H1(t) = H(t), because - l/1(t) is the Fourier series for H(t). 
For n ~ 2, the series Hn(t) is absolutely and uniformly convergent for all x; 
for n = I, the series converges uniformly in every closed interval that contains 
no integer. Therefore Eq. (5.14) implies that 

(5.15) 

When n :): 2, this holds for all x; when n = I, for all nonintegral x. Because 
H,.+1(t) is always continuous, Eq. (5.15) implies that 

(5.16) 

The functions ll n(t) are periodic of period I, so it suffices to study them on the 
interval 0 :::;;: t < 1. Because H1(t) is a polynomial on this interval, H .. (t) must 
also be a polynomial there. We maintain that the coefficients of these polynomials 
are all rational numbers. This can be shown by induction. Our assertion is true 
when n = I; we assume that it also holds for H,.(t). This implies that 

( H,.(t) dt, 

is a rational polynomial; thus it suffices to prove that H,.._.(O) is a rational num­
ber. When n + 1 is odd, Eq. (5.14) implies H .. +1(0) = 0. When n + I is even, 
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we can set H .. +l(t) = 91(t) + H .. +l(O), where 91(t) is a rational polynomial. If we 
integrate this expression, then using Eq. (5.16) we get 

Hn+2(t) - H,+2(0) = H.,_+2(t) = ( 91(t) dt + H,+l(O) t, 

because n + 2 is odd. But Eq. (5.14) implies that H,+2(1) vanishes; thus we 
have the expression 

(5.17) 

which enables us to calculate Hn+l(O) and show that it is rational. 
We are now in a position to write Eq. (5.13) in the desired form. Repeated 

integration by parts gives 

IL(x) = H2(0) + H.,(O) I! + H4(0) 2! + ... 
x x2 :xfl 

+ H,.(O) (n - 2)! _ J"' H,.(t)(n - 1)! dt. 
xn-1 0 (t + x)" 

(5.18) 

An easy calculation shows that the sum of the last two terms in Eq. (5.18) is 
equal to 

Joo (H,(O)- H .. (t)) (n- 1)! dt. 

0 (t + x)" 

If n is even, H,.(O) - H .. (t) has the same sign (plus or minus) as H11(0) for all t; 
thus the integral above also has this sign. Furthermore, Eq. (5.14) implies that 
the numbers H 2 .. +1(0) all vanish, and that the signs of the numbers H 2,.(0) 
alternate between plus and minus. This shows that the partial sums 

are alternately larger and smaller than IL(x). In other words, for every n there 
exists a number 8, 0 < 8 < I, so that 

(x) = Hz(O) 0! + H,(O) 2! + ... , H 2,._2(0) (2n - 4)! 
1L x x3 '"1'" x2n-a 

+ 
8 

H 2 .. (0) (2n - 2)! 
x2n-l ' 

0<(}<1. (5.19) 

We can not take the limit in Eq. (5.19) because the series diverges. But so 
long as n does not get too large, it gives us a very useful approximation. When 
n = 8, for example, we get the approximation 

I I 1 0 
p(x) = l2x - 360xa + 1260x6 - 1680x7 • 

(5.10) 
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We now have a method for computing r(x). In the interval 4 ~X~ 5, 
for instance, we can compute ~-&(x) to within six decimal places by using Eq. (5.20). 
The first formula in Eq. (3.9) gives the value of log T(x) with the same accuracy. 
Using the functional equation (2.2), we finally get the value of r(x) in the interval 
from I to 2. This enables us to compute T(x) for arbitrary x. When x is very 
large, Eq. (3.9) can be used directly. 

Anyone familiar with the so-called Bernoulli numbers will recognize the 
connection with our Hn(O). The reader is left to pursue this topic on his own. 

• 

[ 6 ] 

Determining r(x) by Functional Equations 

We have aquainted ourselves with three different functional equations for 
the gamma function: the functional equation (2.2), the multiplication formula, 
and Euler's formula. To what extent is the gamma function determined by one, 
or a combination, of these equations ? 

Suppose for the time being that f(x) is an arbitrary functio.n and that IP(x) 
denotes the quotient f(x)/ T(x). If f(x) satisfies a functional equation of the type 
in Eqs. (2.2), (3.10) or (4.5), then q>(x) will clearly satisfy the corresponding 
equation among the following: 

fP(X + ) ) = fP(X), (6.1) 

9' G) 9' (X ; l) ... 9' ( +: -l) = fP(X), (6.2) 

fP(X) 9'( I - x) = I. (6.3} 

If f(x) satisfies Legendre's functional equation (3.11), for instance, then 

·x) (x-4--l) IP {1- 9' -2- = IP(x}. (6.4} 

For the sake of simplicity, we will assume from now on that f(x) satisfies 
the functional equation (2.2}; consequently, 'P(x) is periodic of period 1, that 
is, 'P(x) satisfies Eq. (6.1 }. We will also assume that f(x), along with q>(x), is 
continuous for all x. As a result of Eq. (6.1}, the continuity of IP(x} for positive x 
implies continuity at zero and at negative integers, provided 'P(x} is defined for 
these values in the right way. If Eqs. (6.2} or (6.3} also hold, they are valid for all 
x because of continuity. 

If we assume further that f(x) is always positive when x is positive, then the 
logarithm of 'P(x) is continuous. If we denote log q>(x) by g(x), the corresponding 
functional equations (in addition to g(x + I} = g(x)} are 

g G) + g r ; I) + ... + g (X +: - 1) = g(x), 

g(x) = - g( l - x) = - g(- x), 

g (; ) + g c 11) = g(x). 

33 

(6.5) 

(6.6) 

(6.7) 
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If f(x) has a continuous second derivative, then so does <p(x). We will 
assume this to be the case, and also that <p(x) satisfies Eq. (6.4). But then <p(x) 
must be a constant. This follows from the theorem proven at the end of 
Chapter 4. Because of Eq. (6.4), the value of this constant must be 1. In other 
words, we have f(x) = F(x). 

Theorem 6.1 

The gamma function is the only solution of both Eq. (2}) and 
Eq. (3.11) that is positive for positive x and possesses a continuous second 
derivative. 

This theorem demonstrates the significance of the Legendre functional 
equation. Our next step is to find out whether the assumption of a continuous 
second derivative can be weakened. As a matter of fact, we will be able to show 
that a continuous first derivative is sufficient. 

Suppose we start with a preliminary observation. Equation (6.5) represents 
an infinite number of functional equations, one for each value of p. But these 
equations are not independent of each other. Assume, for instance, that Eq. (6.5) 
holds for the integers p1 and p2 • If we consider it for the integer p1 , but with 
the argument (x + k)/p2 , we get 

Now we take the sum over k from zero to p2 - I. On the right side we get g(x), 
since Eq. (6.5) holds for p2 • But k + ip2 runs over all integers from zero to 
p1p2 - I. This yields the equation 

therefore Eq. (6.5) also holds for the product P1P2 • 

With this in mind, let us assume that Eq. (6.7) holds. Then Eq. (6.5) is 
valid for all integers of the form 2n, and hence for arbitrarily large values of p. 
More generally, if Eq. (6.5) holds for an integer p, it also holds for the powers 
of that integer, and hence for certain arbitrarily large integers. 

Now we take the derivative of Eq. (6.5) 

} ( , (. X .) , (X + 1) , ('X + p - ) )) '( ) -g- +g -- + .. ·+g --- =gx, p p p ' ' p . 
(6.8) 

and partition the positive x axis into intervals of length I fp, beginning with the 
origin. The arguments in the left side of Eq. (6.8) fall into p distinct consecutive 
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intervals. Since g'(x) is periodic of period l, we have a value of the function 
from each of the intervals between zero and (. But Eq. {6.8) holds for arbitrarily 
large values of p. Asp approaches infinity, the left side of Eq. (6.8) converges 
to the integral 

·1 

J g'(x) dx = g(l) - g(O) = 0. 
0 

This means that g'(x) = 0 for all x; consequently g(x) is a constant. The value 
of this constant is zero, as can be seen from any of the equations in (6.5) which 
happen to hold. This proves the following theorem: 

Theorem 6.2 

The gamma function is the only continuously differentiable function 
that is positive for positive values of x, and that satisfies both Eq. (2.2) and 
Eq. (3.10) for some value of p. 

Now we might be tempted to conjecture that continuity alone suffices. 
This is not true at all. The function 

00 1 
g(x) = ~ 

2
n sin (2n7Tx), 

n-1 
(6.9) 

is continuous, because the series converges uniformly. It is also periodic, and it 
is easy to see that it satisfies Eq. (6.7). But it is not identically equal to zero. 
It is not even a constant: 

g(x) = 0, 

If we assume mere continuity, what other properties must also be assumed 
to make Theorem 6.2 valid? Equation (6.6) is not sufficient; the function 
in Eq. (6.9) also satisfies Eq. (6.6). A finite number of Eq. (6.5) is not sufficient 
either. Similar counter examples can always be constructed. But what happens 
if we assume that g(x) satisfies Eq. (6.5) for all integers p? As a conclusion to 
our study of the gamma function it will be shown that this property is sufficient. 

In order to do this we will make use of some facts about Fourier series. 
Letf(x) be an integrable function of period 1. Setting (for any e~:) 

rl ,~+1 
c. = j(x) e-2:tivx dx = f(x) e-2"i•x dx, 

• 0 • " 

we associate with f(x) the series 
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regardless of whether or not this series converges. We denote this association by 

+00 

f(x) -.- ~ c,e'l.nivz. 

11=-CC 

We see immediately that the Fourier series of a sum of two functions is the sum 
of the two Fourier series. 

The Fourier series of f(x + o:) has the coefficients 

J
O<+l 

= e2-.. iv:t f(x) e-Znivz dx; 

"' 
hence d. = e2"'''"' c •• We see that the Fourier series of f(x + o:) is obtained 
from that of f(x) by making the substitution x- x + o:. 

Let k ~ 1 be an integer. The Fourier coefficient d. of the function j(kx) 
ts given by 

d.= J·l j(kx) e-'1.11ivx dx = _!_ J" j(x) e-'l.11ivz/k dx 
0 k 0 

I " m 1 " s• = - ~ f f(x) e-Znivx/k dx = - ~ j(x) e-271iv(x+m-l/k) dx 
k m-1 m-1 k m•l 0 

The sum in the last expression above is a geometric series with the 
ratio e-211'•1k. If v = p.k is divisible by k, each term of the sum is 1, and we 
obtain 

If v is not divisible by k, e-2"'''" =1= I, and the formula for the sum of the geomet­
ric series shows that d. = 0. Therefore 

f(kx),...., I c~"e'l.11i•kx, 
~~=-00 

The Fourier series for f(kx) is obtained from that of f(x) by merely substituting 
kx for x. 

If f(x) is continuous and the Fourier series converges for a particular value 
x0 , the value of the Fourier series for x = x0 is the function value j(x0). The 
reader will find a proof of this fact in most books on Fourier series. As a matter 
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of fact a consequence of Fejer's theorem is that the Fourier series of a continuous 
function f(x) is always summable (even if not convergent) to j(x). 

We are now in a position to proceed with the proof at hand. Suppose our 
function g(x) satisfies Eq. (6.5) for all integers p. Replacing x by px, we obtain 
from Eq. (6.5) 

g(x)+g(x+ !) + ... +g(x+p; !) =g(px). (6.10) 

If we let 

g(x) ...., f c,e211ivz, 
., __ «; 

then 

and 

g(px) "- ~ c,e'l.11ivpx. 

~~--a:: 

(6.11) 

Substituting this into Eq. (6.10), we see that 

is the Fourier series of the left side. 
Just as before, we obtain for 

J>-1 
~ e271ivm/p 

m=U 

the value p if v is divisible by p and zero if v is not divisible by p. The Fourier 
series of g(px) is, consequently, 

Comparing this result with Eq. (6.11), we find that 

In particular for the cases p. = 1, - 1, 0 

c - cl. 
p- p' c = '-•. 

-:1> p • c0 = 0. 
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Since we have assumed that Eq. (6.5) holds for all integers p ~ I, we get 

But g(x) is a real-valued function, and hence 

co (a b ) g(:.::) ,...., I. - sin 2V71'x + - cos 2V11'x • 
•=1 11 11 

The terms 

and 

are the Fourier series for the functions 11H(x) and - log (2 sin 1rx}, respectively, 
where H{x) denotes the function introduced in Chapter 5. Therefore, at every 
point of continuity, 

g(x) = a1rH(x) - b log (2 sin 1rx). 

The function H(x) is bounded, the function - log (2 sin 1rx} is not. This 
implies that b = 0 for continuous g(x). But H(x) is not continuous; hence 
a = 0. This proves the following theorem: 

Theorem 6.3 

The gamma function is the only continuous function that is positive 
for positive x, and that satisfies Eq. (2.2) and Eqs. (3.10) for all values 
of p. 
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